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Abstract

Using the techniques of revealed preference analysis, we study a two-stage model of
choice behavior. In the first stage, the decision maker maximizes a menu-dependent
binary relation encoding preferences that are imperfectly perceived. In the second, a
menu-independent binary relation is maximized over the subset of alternatives that
survive the first stage. This structure can support various interpretations, including
those of salience effects, positive action, and surface characteristics. We characterize
the model behaviorally both in ordinal form and in terms of the corresponding
numerical representations.
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1 Introduction

1.1 The secondary criterion

This paper uses the techniques of revealed preference analysis to study a two-stage model
of choice behavior. In the first stage, the decision maker (henceforth “DM”) maximizes a
menu-dependent binary relation encoding preferences that are imperfectly perceived due
to cognitive or information-processing constraints. As detailed in [35], this mechanism
leads to a form of satisficing in the sense of Simon [32].1 In the second stage of the model,
a menu-independent binary relation (termed the “secondary criterion”) is maximized over
the subset of alternatives that survive the first stage.

At the formal level, adding a second stage to the basic satisficing model changes the
implied constraints on behavior, and our main result will identify these constraints. At
the level of interpretation, the secondary criterion can be used to capture a variety of
additional factors that may influence the DM’s choices. For example:

∗School of Economics and Finance, Queen Mary University of London, Mile End Road, London E1
4NS, U.K. Email: [c.j.tyson@qmul.ac.uk].

1Satisficing has been defined by Reber et al. [21, p. 701] as “accept[ing] a choice or judgement as one
that is good enough, one that satisfies.”
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• Salience effects. After the DM has used his deliberative resources to identify a subset
of alternatives as good, if not necessarily the best, attention effects may influence his
final selection from among these options that pass the satisficing threshold.2 Here
the secondary relation would be interpreted as a measure of salience—the property
of standing out from the rest.3

• Positive action. Legal frameworks that prohibit most employment discrimination
may nevertheless permit or even mandate “positive action” aimed at increasing
participation by groups deemed to be disadvantaged for historical or other reasons.4

Importantly, such positive discrimination is allowed only if the individual to be
given favorable treatment is “as qualified as” other candidates. In a maximization
setting, the latter proviso means that action can be taken only to break indifference
between candidates who are exactly equally qualified. But if the employer engages
in satisficing at the merit-evaluation (i.e., first) stage, there is more room left for
group-identity (i.e., second-stage) criteria to influence employment outcomes.

• Surface characteristics. In many situations the DM cares about two distinct aspects
of the choice problem, one of which is more important than the other but at the
same time requires more effort to rank the alternatives. For instance, in the choice
of a new car a frequent commuter may value reliability more than appearance. But
appearance is a surface characteristic, while reliability is to some extent hidden.
Hence the DM may seek to identify a subset of cars that are “reliable enough”
(without ranking the options extremely precisely on this dimension), and may then
simply choose the most visually attractive car from within this set.5

Our goal is to develop an abstract model that encompasses these and similar phenomena
within the framework of axiomatic choice theory.

The combination of hidden characteristics at the initial stage and surface character-
istics at the second stage is at the core of our model, and applies also to the first two
interpretations above. In the case of salience effects, the hidden criterion is the DM’s

2Attention is a core topic in cognitive psychology; see, e.g., Anderson [1, pp. 72–105]. In the context of
salience effects it is understood that we refer to attention allocated involuntarily, rather than consciously.

3Combining satisficing and salience effects is natural in that both are responses to the same problem:
Human cognitive capabilities are limited, while the environment in which choices are made can be highly
complex. Satisficing deals with this problem by allowing a margin of error in the attempt to find an
optimal alternative. Salience, meanwhile, focuses attention on aspects of the environment that we are
predisposed to find interesting or enticing. The present framework provides a model of how these two
coping mechanisms could interact.

4Positive (or “affirmative”) action legislation specifies certain “protected characteristics,” such as age,
disability, marital status, pregnancy and maternity, race and national origin, sex and sexual orientation;
which by law may not normally play a role in employment decisions. If a group is considered to suffer a
disadvantage related to one of these characteristics, then an employer may (according to the U.K. Equality
Act 2010, Part 11, Chapter 2) “[treat] a person (A) more favourably in connection with recruitment or
promotion than another person (B) because A has the protected characteristic but B does not.”

5Similarly, a reader selecting a novel to take on an extended beach vacation may value literary merit
(a hidden characteristic) more than the number of pages (a surface characteristic), and a voter may care
more about candidates’ policy preferences (hidden) than about their party affiliations (surface).
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utility (i.e., his maximand in the absence of cognitive constraints) while the surface cri-
terion is the ability of the alternatives to attract attention. In the case of positive action,
the hidden criterion is the employee’s merit while the surface criterion is his degree of
membership in the favored group. Note that for our model to be suitable these criteria
must be applied lexicographically, since allowing for tradeoffs would lead to quite different
forms of behavior.6

Since the interpretation of the model is not fixed, some important conceptual questions
cannot be answered until we commit to a particular viewpoint. For example, the DM’s
welfare could be measured by the primary criterion alone (as in the case of salience effects
when salience per se is not valued) or by the lexicographic composition of the primary and
second criteria (as in the case of surface characteristics such as the visual attractiveness of
cars). Other issues that hinge on interpretation include whether or not the second-stage
maximization should be thought of as a deliberate action by the DM—arguably so under
the positive action interpretation but not under the salience effects interpretation—and
the conceptual relationship of our theory to other models of choice.7

1.2 Components of the model

To see how our model works, imagine a setting where alternatives are drawn from the set
X = xyz.8 (A more elaborate four-alternative example appears below in Figure 1.) The
DM will have two complete and transitive relations over X, namely a primary relation
R1 and a secondary relation R2; and the symmetric and asymmetric parts of each Rk will
be denoted by Ik and Pk, respectively. For example, the primary and secondary rankings
could be xP1yP1z (implying xP1z) and zI2yP2x (implying zP2x).

In the absence of cognitive constraints, the DM would optimize R1 at the first stage
and then R2 at the second stage, amounting to a procedure of lexicographic preference
maximization. Indeed, this is precisely how our DM will behave when faced with “binary”
choice problems containing just two alternatives. For instance, when facing the menu xy,
a DM with the two relations specified above will apply the strict primary preference xP1y
and eliminate alternative y from consideration, at which point the secondary relation R2

is irrelevant. The rationale here is that binary menus are particularly simple in terms of
cognition, and so it is in these contexts that the DM’s true primary rankings are most
likely to be reflected accurately.

In larger and thus more complex problems we shall allow cognitive constraints to bind
at the first stage. This will mean that strict primary rankings perceived in the relevant
binary problem need not be perceived when additional options are present. For instance,
in problem xyz it could be that the strict preferences xP1z and yP1z are perceived but the
strict preference xP1y is not perceived, even though the latter is perceived in the simpler
problem xy. In problem xyz the DM will then be left “pseudo-indifferent” between x and
y after the first stage (alternative z having been eliminated), and so the secondary relation

6In connection with the lexicographic nature of the model, see Manzini and Mariotti’s [14, p. 1825]
discussion of “sequential noncompensatory heuristics” and the associated psychology literature.

7For further discussion of these points, see Section 3 regarding welfare analysis and Section 4 regarding
the relationship to other models.

8Note the multiplicative notation for enumerated sets, which we shall use whenever convenient.
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will become relevant. Indeed, since yP2x we can conclude that x will be eliminated from
consideration in the second stage and y will be chosen (despite being R1-suboptimal).9

To keep a record of when different rankings are and are not perceived, we shall make
explicit the menu-dependence of the relations R1, I1, and P1; writing xP1

xyy to indicate
perception of the strict preference xP1y in problem xy, and writing xI1xyzy to indicate its
non-perception (resulting in pseudo-indifference) in problem xyz.10 Since by assumption
cognitive constraints do not affect the second stage, the relations R2, I2, and P2 will remain
menu-independent. When facing an arbitrary problem A, our model thus imagines the
DM maximizing a menu-dependent relation R1

A and then maximizing a menu-independent
relation R2 over the alternatives that remain.

Observe that the relations R1 and R2 in our example can be represented numerically by
any utility assignments with f1(x) > f1(y) > f1(z) and f2(z) = f2(y) > f2(x). Moreover,
for problem xyz we can set the first-stage satificing threshold θ1(xyz) equal to the lowest
f1-utility assigned to an alternative in the highest pseudo-indifference class according to
R1
xyz. Since the preferences perceived here are xyP1

xyzz, the highest pseudo-indifference
class is the subset xy and the threshold is θ1(xyz) = f1(y) < f1(x). Assigning thresholds
in the same way for each problem A, the DM will then be willing to choose w ∈ A if and
only if it maximizes f2(w) subject to f1(w) ≥ θ1(A).11

In summary, our theory has three interlinked components. Its mathematical primitive
is the DM’s choice behavior, and our main result (Theorem 2.9) will concern when this
behavior possesses a certain underlying structure. In contrast, our conceptual primitive is
the ordinal model (comprising R1, P2, R1

xy, I1xyz, etc.) formalizing our assumptions about
how choices are generated, and it is to this model that we should turn when considering
whether the theory is plausible introspectively.12 Finally, the third component—which is
not in any sense primitive—is the numerical representation of the DM’s behavior (com-
prising f1, θ1, and f2). This representation may be useful in applications of the theory,
and a subsidiary result (Theorem 2.11) will translate our characterization of the model

9For completeness, the full mapping from choice problems to surviving alternatives in this example is
xy 7→ x, xz 7→ x, yz 7→ y, and xyz 7→ y.

10Permitting arbitrary menu-dependence at the first stage would make our theory hard to falsify, but
we shall impose additional restrictions in the form of the “nestedness” hypothesis on perceived preferences
discussed in Section 2.2 below (and in [35, pp. 54–56]).

11Of course, the DM need not solve this constrained maximization problem consciously or intentionally.
Indeed, if the satisficing constraint results from cognitive limitations then a literal understanding of the
numerical formulation of our model is not entirely natural: In order to check the constraint the DM
would need to know f1, but then he would maximize this function perfectly and ignore the threshold.
This is why the relation R1 and the associated f1 should be interpreted as objects that the DM would
maximize in the absence of cognitive constraints, and why the numerical representation 〈f1, θ1, f2〉 is best
viewed as a convenient analytical tool rather than as a procedural model.

12Indeed, the purpose of choice-theoretic analysis is to draw logical connections between observable
behavior and hypotheses about cognition. The related point that theories of choice cannot be based only
on “internal consistency” has been made by Sen [31] and Rubinstein and Salant [26, pp. 118–120].

Note also that it is not our goal to explain the origin of the DM’s primary or secondary preferences,
nor why these preferences are or are not perceived in different choice problems. In particular, we do not
attempt to embed preference perception in an explicit optimization model with, for example, information-
gathering or contemplation costs (see [35, pp. 64–65]). As is typical in axiomatic choice theory, we take
cognitive structures as given and subject only to consistency or regularity assumptions.
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into numerical terms.
The remainder of the paper is organized as follows. In Section 2 we define our model

formally (Sections 2.1–2.2), introduce our axioms (Section 2.3), and state our main and
subsidiary characterization results (Sections 2.4–2.5). Section 3 discusses welfare analysis,
while Section 4 reviews two strands of related work. All proofs not in the text appear in
Appendix A.

2 Characterization results

2.1 Preliminaries

Fix a set X of alternatives and a domain D ⊆ {A ⊆ X : A 6= ∅} =: F. A map C : D→ F
is a choice function if ∀A ∈ D we have C(A) ⊆ A. Here each A ∈ D is a menu and C(A)
is the corresponding choice set containing the alternatives that might be chosen from A
given some cognitive hypothesis. We shall assume that {xy : x, y ∈ X} ⊆ D, so that C
associates a choice set with each binary (or unary) menu, and also for convenience that
X ∈ D. But D will be otherwise unrestricted and need not be the full domain F.13

A (binary) relation R on X is a subset of X ×X, with 〈x, y〉 ∈ R commonly written
as xRy. Such a relation is a complete preorder if it is complete (¬[xRy] only if yRx) and
transitive (xRyRz only if xRz); a tournament if it is complete and antisymmetric (xRyRx
only if x = y); and a complete order if it is complete, transitive, and antisymmetric.

Notation 2.1. Write G(A,R) := {x ∈ A : ∀y ∈ A, xRy}.

Recall that classical choice theory (see, e.g., Samuelson [28] and Arrow [3]) imagines
the DM’s behavior to be determined entirely by his or her preferences among alternatives.
Writing xR1y when x is considered at least as good as y (“weak preference”), xP1y when
xR1y and ¬[yR1x] (“strict preference”), and xI1y when xR1yR1x (“indifference”), this
hypothesis becomes the requirement that ∀A ∈ D we have C(A) = G(A,R1), expressed
more compactly as C = G(·,R1). When R1 is a complete preorder, C then simply selects
from each menu the highest I1-equivalence class of alternatives according to P1.

2.2 Relation systems and nestedness

The model of decision making studied here differs from the classical model in two respects.
Firstly, primary preference maximization is imperfect, and may become increasingly so
as the menu becomes more complex. And secondly, the initial satisficing stage is followed
by maximization of an independent secondary relation. We proceed now to develop the
first-stage structure, before turning in Sections 2.3–2.4 to the characterization of the full
composite model.

13The inclusion of all binary menus in D is essential for our analysis. However, this restriction is weak
by the standards of axiomatic choice theory, where D = F is commonly assumed (despite exceptions such
as, e.g., Bossert et al. [8]). A penetrating analysis of domain specifications in choice-theoretic models of
bounded rationality is provided by de Clippel and Rozen [10].
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In our formulation, satisficing is represented cognitively as menu-dependence of the
“perceived preferences” guiding choice behavior. That is to say, for each A ∈ D we have
a separate relation R1

A, with associated P1
A and I1A, that incorporates both the DM’s true

primary preferences over A (encoded in R1) and the resolution at which these preferences
are perceived. Assembling the menu-specific relations into a vector then yields the DM’s
“primary preference system” R1, a type of construct that we now define more formally.

Definition 2.2. A. A relation system R = 〈RA〉A∈D on D is a vector of relations on the
menus in D. B. A system of complete preorders is a relation system each component of
which is a complete preorder.

To require that the primary preference system R1 be made up of complete preorders
is to assume that while its components may be incomplete in the sense of reflecting the
DM’s true preferences only coarsely, each R1

A must be both complete and transitive in the
relation-theoretic sense. It follows that menu A is partitioned into well-defined “pseudo-
indifference” (i.e., I1A-equivalence) classes, and maximization of perceived preferences then
amounts to selecting the highest such class according to P1

A.14

Notation 2.3. Write G(A,R) := G(A,RA) = {x ∈ A : ∀y ∈ A, xRAy}.

In addition to the intramenu ordering requirement in Definition 2.2B, we shall impose
the following pair of intermenu consistency properties on the primary preference system.

Definition 2.4. A. A relation system R is nested if ∀x, y ∈ A,B ∈ D such that A ⊆ B
we have xPBy only if xPAy. B. A relation system R is binary transitive if ∀x, y, z ∈ X
we have xRxyyRyzz only if xRxzz.

Nestedness captures an assumption that the DM can discriminate among alternatives
at least as precisely when the menu on which they appear is smaller. Since the default
relationship between any two alternatives is pseudo-indifference, it is the agent’s strict
preferences that his cognitive faculties seek to uncover. Given x, y ∈ A ⊆ B, we posit
that if the strict preference xP1y is perceived in the context of problem B, written xP1

By,
then this same strict preference should also be perceived in the context of the (weakly)
simpler problem A, written xP1

Ay.15 This is equivalent (when R1 is a system of complete
preorders) to yR1

Ax =⇒ yR1
Bx, but does not guarantee the converse implication.16

14As emphasized by the associate editor, the complete preorder assumption on perceived preferences
is debatable for a DM with cognitive limitations. In particular, cognitive constraints could plausibly be
manifested as incompleteness of R1

A or intransitivity of I1A. For the first stage of our model in isolation,
this issue has been considered in [35, pp. 60–61], where characterization results are given for perceived
preferences with less stringent ordering properties. Determining which of these results can be extended to
two stages is, however, beyond the scope of the present paper. Here our starting point is the (one-stage)
satisficing model in [35], for which the full complement of standard ordering properties is needed.

15The implicit assumption that the relative complexity of two menus is aligned with set inclusion is
discussed at length in [35, pp. 54–56].

16The intuition for nestedness can be understood in terms of an analogy (suggested by Robert Wilson)
to either mapmaking or telescopic vision. The larger the area one wishes to depict on one’s map or
view through one’s telescope, the lower will be the resolution of the resulting image. Zooming in on a
particular region—analogous to removing alternatives from a menu—will improve the level of detail but
at the cost of narrower scope.
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The second intermenu consistency property concerns “binary” choice problems with
either one or two alternatives. Intuitively, our assumption is that the DM fully perceives
his primary preferences when facing these very simple menus. That is to say, we have
xP1

xyy ⇐⇒ xP1y, or equivalently yR1
xyx ⇐⇒ yR1x. Of course, we also assume that the

true primary relation R1 is a complete preorder, and in particular that it is transitive.
Since true and binary perceived preferences are identical, this amounts to the binary
transitivity property xR1

xyyR1
yzz =⇒ xR1

xzz in Definition 2.4B.
For x, y ∈ A, note that xP1

Ay =⇒ xP1
xyy ⇐⇒ xP1y, where the first implication

follows from nestedness. This means that a strict preference perceived in any choice
problem is always genuine, in the sense that it would be affirmed by the DM if he were
cognitively unconstrained. In contrast xR1

Ay does not in general ensure that xR1y, so
weak perceived preferences need not be genuine. For this reason we refer to the assertion
xR1

Ay as a “pseudo-preference,” just as xI1Ay (equivalent to xR1
AyR1

Ax) is a statement of
“pseudo-indifference.”17

In summary, the first stage of our model describes a DM possessing true primary
preferences of the classical sort; who perceives these preferences fully in binary problems
but (perhaps) imperfectly in larger ones; whose perceived preferences partition each menu
into well-defined pseudo-indifference classes; and who perceives a strict preference in a
given problem only if he also perceives it in each smaller problem in which it is relevant.

2.3 Weak Congruence and Base Transitivity

When maximization of the secondary relation R2 is appended to the first-stage model
described above, the choice set for a given A ∈ D is determined as

C(A) = G(G(A,R1),R2). (1)

Our task is to characterize this model behaviorally for the case of R2 a complete preorder
and R1 a nested, binary transitive system of complete preorders.

To achieve the desired characterization, we shall need methods of deducing from raw
choice data sufficient information about R1 and R2, both assumed to be unobserved.18

The first type of information is contained in the following pair of revealed relation systems,
which for a given menu B conduct a “local” (relative to B) search of the domain for direct
or indirect evidence of a primary pseudo-preference.

Definition 2.5. Define the relation systems R̂1d and R̂1i as follows. For x, y ∈ B ∈ D:
A. Let xR̂1d

B y if ∃A ∈ D such that both y ∈ A ⊆ B and x ∈ C(A). B. Let xR̂1i
By if

∃n ≥ 2 and z1, z2, . . . , zn ∈ B such that x = z1R̂
1d
B z2R̂

1d
B · · · R̂1d

B zn = y.

The assertion xR̂1d
B y means that x is choosable in the presence of y in at least one

problem A ⊆ B. This implies that xR1
Ay (since otherwise x would have been eliminated

17Here the asymmetry between strict and weak perceived preference results from pseudo-indifference
being the default relationship between options, which can be overturned by the DM’s cognitive efforts.

18In some applications the secondary criterion may be observed or otherwise known to the modeler,
in which case information about this relation no longer needs to be inferred from choice behavior. For
example, R2 may reflect the relative salience of the alternatives as determined by observable advertising.
Such scenarios lead to a different revealed preference exercise, of the sort studied by Manzini et al. [16].
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in the first stage) and so xR1
By by nestedness. But then x = z1R̂

1d
B z2R̂

1d
B · · · R̂1d

B zn = y
implies x = z1R

1
Bz2R

1
B · · ·R1

Bzn = y, whereupon xR1
By since R1

B is transitive. We conclude
that either xR̂1d

B y or xR̂1i
By is valid evidence that xR1

By, and it is worth noting that this
remains true regardless of what occurs later in the decision-making process.

Next we deduce secondary preferences from the choice data, collecting this information
in menu-independent binary relations and conducting a “global” search of the domain.

Definition 2.6. Define the relations R̂2d and R̂2i as follows. For x, y ∈ X: A. Let xR̂2dy
if ∃A ∈ D such that yR̂1i

Ax and x ∈ C(A). B. Let xR̂2iy if ∃n ≥ 2 and z1, z2, . . . , zn ∈ X
such that x = z1R̂

2dz2R̂
2d · · · R̂2dzn = y.

The assertion xR̂2dy means that x is choosable in the presence of y in at least one prob-
lem A for which yR̂1i

Ax. Since the latter implies that yR1
Ax and since x is not eliminated

in the first stage, for each z ∈ A we have yR1
AxR1

Az and thus yR1
Az since R1

A is transitive.
It follows that y too survives the first stage, and since x is choosable we can conclude that
xR2y. In short, we have that xR̂2dy implies xR2y. But then x = z1R̂

2dz2R̂
2d · · · R̂2dzn = y

implies x = z1R
2z2R

2 · · ·R2zn = y, whereupon xR2y since R2 is transitive. We conclude
that either xR̂2dy or xR̂2iy is valid evidence that xR2y.

We shall use Definitions 2.5–2.6 to state the first of two axioms needed to characterize
our model. Given x, y ∈ A, let x ∈ C(A) and yR̂1i

Ax, so that y survives the first stage (as
shown above). If also yR̂2ix then we know that yR2x (again as shown above), and since
x survives the second stage it follows that y ∈ G(G(A,R1),R2) = C(A). The following
property of the choice function is therefore a necessary condition for the model.

Condition 2.7 (Weak Congruence). Given x, y ∈ A ∈ D, if x ∈ C(A), yR̂1i
Ax, and yR̂2ix,

then y ∈ C(A).

In words, Weak Congruence states that if alternative x is choosable and alternative y is
revealed to be (perceived to be) at least as good as x at both stages of the model, then
y too must be choosable.19

The second axiom we shall employ imposes transitivity on the DM’s binary choices.

Condition 2.8 (Base Transitivity). Given x, y, z ∈ X, if x ∈ C(xy) and y ∈ C(yz) then
x ∈ C(xz).

In binary problems the DM applies the true first-stage relation R1 (since true and binary
perceived preferences are identical), followed by the secondary relation R2. Furthermore,
since both of these relations are complete preorders, their lexicographic composition (see
Definition 3.1) will inherit this property, and thus choices must satisfy Base Transitivity.

19The name “Weak Congruence” refers to Richter’s [23, p. 637] classical Congruence axiom, which can
be stated as follows: Given x, y ∈ A ∈ D, if x ∈ C(A) and yR̂1i

Xx, then y ∈ C(A). The conclusion of
this implication is retained in Condition 2.7 while the hypotheses are strengthened—thereby weakening
its logical force—in two distinct ways. First, the stage-one hypothesis yR̂1i

Ax replaces yR̂1i
Xx, so that the

revealed preference must be found within menu A. And second, the stage-two hypothesis yR̂2ix is added.
Note also that, while weaker than Congruence, Weak Congruence continues to imply Sen’s [29, p. 384]

so-called “β” condition: Given x, y ∈ A,B ∈ D, if A ⊆ B, x, y ∈ C(A), and y ∈ C(B), then x ∈ C(B).
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C(wxyz) = x

zI1wxyzyI1wxyzxP1
wxyzw

xP2wP2yI2z

C(wxy) = x

yI1wxyxP1
wxyw

xP2wP2y

C(wxz) = z

zP1
wxzxP1

wxzw

xP2wP2z

C(wyz) = yz

zI1wyzyP1
wyzw

wP2yI2z

C(xyz) = z

zP1
xyzyP1

xyzx

xP2yI2z

C(wx) = x

xP1
wxw

xP2w

C(wy) = y

yP1
wyw

wP2y

C(wz) = z

zP1
wzw

wP2z

C(xy) = y

yP1
xyx

xP2y

C(xz) = z

zP1
xzx

xP2z

C(yz) = z

zP1
yzy

yI2z

Figure 1: A choice function satisfying the conditions in Theorem 2.9. The first entry in
each cell shows the subset of choosable options, and the second and third entries show the
relevant ranking information for the two stages of the model. Here the DM’s primary and
secondary rankings are zP1yP1xP1w and xP2wP2yI2z. Moreover, the assertion zP1

xyzy
means that the strict primary ranking zP1y is perceived in problem xyz, while zI1wxyzy
means that the same strict ranking is not perceived in problem wxyz. In each problem
A the choice set C(A) is obtained by maximizing R1

A followed lexicographically by R2.

2.4 Ordinal characterization

Our main characterization result states that Weak Congruence and Base Transitivity
together are necessary and sufficient for the two-stage model under investigation.

Theorem 2.9. There exist a nested, binary transitive system of complete preorders R1

and a complete preorder R2 such that C = G(G(·,R1),R2) if and only if Weak Congruence
and Base Transitivity hold.

As usual, moving from the cognitive model to the axioms is the more straightforward
exercise. Indeed, we have already seen rough arguments for the necessity of Weak Con-
gruence and Base Transitivity when choices are generated as in Equation 1. Conversely,
the heart of the proof of Theorem 2.9 lies in showing that C = G(G(·, R̂1i), R̂2i); i.e., that
the indirect revealed primary preference system R̂1i and secondary relation R̂2i can stand
in for the unobserved structures R1 and R2.20

An example of a choice function that satisfies the conditions in Theorem 2.9 appears
in Figure 1, in which each cell corresponds to a choice problem drawn from wxyz. Here
the first entry in a given cell shows which alternatives on the menu are deemed choosable
(e.g., C(wyz) = yz), the second shows the perceived primary preference rankings (e.g.,
zI1wyzyP1

wyzw), and the third shows the relevant secondary rankings (e.g., wP2yI2z). It is
easily verified in this case that C = G(G(·,R1),R2), in accordance with our result.

Starting with the choice function in Figure 1, a violation of Weak Congruence can be

20Furthermore, the revealed constructs are shown to have the required nestedness and ordering proper-
ties, except that R̂2i need not be complete. This difficulty is overcome by using Szpilrajn’s Theorem [34]
to replace R̂2i with a complete preorder that generates the same behavior when composed with R̂1i.
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manufactured by changing the data point C(wxyz) = x to C(wxyz) = y.21 To confirm the
violation, observe that since y ∈ C(xy) we have yR̂1d

wxyx, and since x ∈ C(wxy) we then

have both xR̂1d
wxyzy and xR̂2dy. But now, since xR̂1i

wxyzy, xR̂2iy, and y ∈ C(wxyz), Weak
Congruence demands that x ∈ C(wxyz), when in fact C(wxyz) = y. By Theorem 2.9
the new (post-modification) choice function is thus inconsistent with our model.

2.5 Numerical representations

In this section we examine numerical representations of the cognitive model characterized
in Theorem 2.9 under the simplifying assumption that X is finite.22 Clearly the operation
G(·,R2) can then be represented by maximization of a real-valued function, while G(·,R1)
does not in general have this property. Instead, the latter operation admits the following
more elaborate type of representation, which makes its satisficing interpretation apparent.

Definition 2.10. A. A threshold structure 〈f1, θ1〉 is a pair of functions f1 : X → R and
θ1 : D→ R such that ∀x, y ∈ X we have θ1(xy) = max f1[xy]. B. A threshold structure
〈f1, θ1〉 is said to be expansive if ∀A,B ∈ D such that A ⊆ B and max f1[A] ≥ θ1(B) we
have θ1(A) ≥ θ1(B).

Here f1 represents the true primary relation R1, while θ1 associates with each menu
A an f1-threshold θ1(A) for viability as a potential choice. The alternatives that progress
to the second stage are those whose primary utilities fall on the interval between θ1(A)
and max f1[A], which is another way to describe the highest pseudo-indifference class of
options according to P1

A. The θ1(xy) = max f1[xy] requirement then enforces our assump-
tion that the agent perceives his true primary preferences in binary choice problems.23

Nestedness of the perceived preference system R1 translates into the requirement that
the threshold representation be “expansive.”24 To understand this property, let A ⊆ B
and suppose (contrary to Definition 2.10B) that max f1[A] ≥ θ1(B) > θ1(A). Selecting
x ∈ A such that f1(x) = max f1[A] and assuming without loss of generality that ∃y ∈ A
with f1(y) = θ1(A), we then have f1(x) ≥ θ1(B) > θ1(A) = f1(y). In this case the strict
preference xP1y is perceived in problem B but not in A ⊆ B, violating nestedness. The
expansiveness property thus requires θ1 to be in a sense conditionally decreasing: Larger
menus must be assigned lower thresholds, but only if some option on the smaller menu
achieves the threshold for the larger one.25

21Base Transitivity of course continues to hold after this modification.
22Without the finiteness restriction, necessary and sufficient conditions for a binary relation to admit a

utility representation are provided by Fishburn [12, p. 27]. The relationship between threshold structures
(see Definition 2.10) and relation systems can also be investigated in the general case, but this essentially
technical issue is not pursued here.

23For example, the first-stage constructs R1 andR1 in Figure 1 admit representations 〈f1, θ1〉 such that
f1(z) > f1(y) > f1(x) > f1(w); θ1(wx) = θ1(wxy) = θ1(wxyz) = f1(x); θ1(wy) = θ1(xy) = θ1(wyz) =
f1(y); and θ1(wz) = θ1(xz) = θ1(yz) = θ1(wxz) = θ1(xyz) = f1(z).

24This terminology originated in [35, p. 59], where the property was linked to the “Strong Expansion”
axiom on the choice function (see Sen [30, p. 66]).

25Note that since θ1(A) equals the lowest f1-value in the highest pseudo-indifference class of alternatives
in A, we always have max f1[A] ≥ θ1(A) and at least one option survives the first stage. Of course, there
do exist threshold structures for which this inequality fails for one or more menus, but these structures
do not yield well-defined choice functions. (Recall that we assume that C is nonempty-valued.)
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We can now state a version of the characterization in Theorem 2.9 in which the DM’s
satisficing with respect to the primary criterion and subsequent maximization of the
secondary criterion appear explicitly.

Theorem 2.11. Let X be finite. Then there exist an expansive threshold structure 〈f1, θ1〉
and an f2 : X → R such that ∀A ∈ D we have

C(A) = arg max
x∈A∧ f1(x)≥θ1(A)

f2(x) (2)

if and only if Weak Congruence and Base Transitivity hold.

Since the conditions on the choice function remain the same as in the earlier result, this
establishes (for the case of finite X) a three-way equivalence between the cognitive model,
the behavioral restrictions, and the numerical representation in Equation 2.

3 Welfare analysis

3.1 Alternative conceptions of well-being

The problem of welfare analysis for boundedly rational and other nonstandard models of
decision making has been discussed at length in the literature. In a detailed survey of
the issue, Bernheim [5] contrasts three methodological approaches, which identify welfare
with “revealed well-being,” “measured well-being,” or “choice.” Our model will be suited
to the first of these approaches once we have agreed which of its components is the
indicator of well-being.26 However, there are at least two good candidates for this role.

1. The primary criterion.

Under some interpretations of the model, R1 will be the appropriate welfare stan-
dard. In the case of positive action, for example, it is natural to suppose that the
employer’s well-being (e.g., profit) is determined entirely by the employee’s merit,
and that group identity is taken into account in the second stage only because of
legal or social pressure. Similarly, in the case of salience effects we would normally
assume that salience (the secondary criterion) neither benefits nor harms the DM
directly.

2. The lexicographic composition of the primary and secondary criteria.

In the case of surface characteristics, both R1 and R2 are relevant to well-being.
Welfare is therefore indicated by the composition of these two criteria, which is the
relation that the DM would maximize in the absence of first-stage satisficing. This
welfare order would also apply if we were to posit that group identity directly ben-
efits the employer (but cannot substitute for higher merit), or that higher salience
directly benefits the DM.

26Specifically, our model is of the sort that Bernheim [5, p. 274] describes as “allowing for divergences
between preferences and behavior,” a strategy advocated by Rubinstein and Salant [26, pp. 120–122].
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Taking the second of these two candidates first, and recalling that R1 is fully perceived
in binary problems, we can define the lexicographic composition of the primary and
secondary criteria more precisely as follows.

Definition 3.1. Given a relation system R1 and a relation R2, let xL12y if and only if
either xP1

xyy or yI1xyxR2y.

When our model holds we then have ∀x, y ∈ X that

G(xy,L12) = G(G(xy,R1
xy),R

2) = G(G(xy,R1),R2) = C(xy), (3)

and thus xL12y ⇐⇒ x ∈ C(xy).27 It follows that the DM’s well-being is revealed precisely
by his behavior in binary problems.

Proposition 3.2. Given a nested, binary transitive system of complete preorders R1 and
a complete preorder R2, let C = G(G(·,R1),R2). Then ∀x, y ∈ X we have xL12y if and
only if x ∈ C(xy).

We can therefore conclude that if L12 is the appropriate welfare order then welfare analysis
is straightforward under our model—at least provided binary choice data are available.

Now suppose instead that the primary criterion R1 is the welfare standard. In this
case by Equation 3 we have G(xy,R1

xy) ⊇ C(xy) and thus x ∈ C(xy) =⇒ xR1
xyy, but

we lack the converse implication xR1
xyy =⇒ x ∈ C(xy). Of course, the latter assertion is

equivalent to x /∈ C(xy) =⇒ yP1
xyx. Hence we know that revealed weak base preferences

of the form x ∈ C(xy) are always genuine weak primary preferences, but we do not yet
know when revealed strict base preferences of the form C(xy) = x 6= y are genuine strict
primary preferences.

To address this question, observe first that C(xy) = x implies xR1
xyy. If in addition

yR̂1d
X x, then ∃A ∈ D such that x ∈ A and y ∈ C(A) = G(G(A,R1),R2). From xR1

xyy
and the nestedness of R1 we have also xR1

Ay, so that x ∈ G(A,R1) and yR2x. And to
ensure that y /∈ C(xy) we must then have xP1

xyy. This argument shows that any revealed

strict base preference standing in opposition to a R̂1d
X -ranking is certain to be genuine.

Proposition 3.3. Given a nested, binary transitive system of complete preorders R1 and
a complete preorder R2, let C = G(G(·,R1),R2). Then ∀x, y ∈ X we have: A. x ∈ C(xy)
only if xR1

xyy. B. C(xy) = x 6= y and yR̂1d
X x only if xP1

xyy.

If yR̂1d
X x does not hold then ∀A ∈ D with x ∈ A we have y /∈ C(A), and in particular

y /∈ C(xy). This is the case in which the revealed strict base preference C(xy) = x 6= y
does not stand in opposition to a R̂1d

X -ranking, and so Proposition 3.3B does not apply.
Indeed, the conclusion xP1

xyy need not hold in such situations.28 The issue here is that our
two-stage model has extra degrees of freedom relative to standard preference maximiza-
tion: When y is never chosen in the presence of x, we lack direct evidence to determine
whether this fact should be attributed to primary or secondary preference. As with most

27In Equation 3, the first equality comes from Definition 3.1, the second from Notation 2.3, and the
third from Theorem 2.9.

28For example, if D = {x, y, xy} then C(xy) = x 6= y is consistent with xI1xyy and xP2y.
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generalizations of the standard model, we require violations of classical rationality axioms
(see, e.g., Footnote 19) to fully identify the components of our theory.29

3.2 Single-valued choice sets

Proposition 3.2 shows that binary choice data provide reliable welfare comparisons when
L12 is the appropriate ranking, while Proposition 3.3 shows that the same is true to a
partial extent when R1 is the appropriate ranking. To obtain a model in which L12 and R1

are identical, and hence binary welfare comparisons are reliable in either case, it suffices
to require that the primary criterion be a complete order. This can be implemented by
imposing the following restriction on the preference system R1.

Definition 3.4. A relation system R is binary antisymmetric if ∀x, y ∈ X we have
xRxyyRxyx only if x = y.

The observable consequence of this restriction is that menus with two alternatives will
have choice sets with only one.

Condition 3.5 (Base Univalence). For each x, y ∈ X we have |C(xy)| = 1.

Proposition 3.6. There exist a nested, binary transitive, binary antisymmetric system
of complete preorders R1 and a complete preorder R2 such that C = G(G(·,R1),R2) if
and only if Weak Congruence, Base Transitivity, and Base Univalence hold.

Propositions 3.2–3.3 can then be merged and strengthened into the following result.

Proposition 3.7. Given a nested, binary transitive, binary antisymmetric system of
complete preorders R1 and a complete preorder R2, let C = G(G(·,R1),R2). Then ∀x, y ∈
X we have x ∈ C(xy)⇐⇒ xL12y ⇐⇒ xR1

xyy.

Incidentally, for some purposes we may wish to require global single-valuedness of C;
for example, to relate the theory to other models that generate unique choices.

Condition 3.8 (Univalence). For each A ∈ D we have |C(A)| = 1.

This has the incremental effect of imposing the complete order requirement also on the
secondary relation.30

Theorem 3.9. There exist a nested, binary transitive, binary antisymmetric system of
complete preorders R1 and a complete order R2 such that C = G(G(·,R1),R2) if and
only if Weak Congruence, Base Transitivity, and Univalence hold.

29For example, if D = {x, y, z, xy, xz, yz, xyz} then R1 and R2 are both fully identified by the choice
data C(xy) = xy, C(xz) = x, C(yz) = y, and C(xyz) = z.

30Hence adding Univalence to the axioms in Theorem 2.9 does not reduce our model to standard
preference maximization, as occurs under satisficing without a secondary criterion (see [35, pp. 61–62]).
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3.3 The primacy of binary problems

To summarize, the message of Section 3 is that welfare analysis is quite tractable under our
model if either R1 or L12 is the appropriate welfare order. Conflicts between classical re-
vealed preferences are resolved by favoring data from smaller menus in which—according
to the model—the true, welfare-significant preferences are perceived with higher resolu-
tion. This leads us to take binary choices as the most reliable arbiter of well-being.

Our approach to “behavioral welfare economics” is in fact anticipated in Bernheim’s
survey [5, p. 299], which offers the following illustration of the methodology proposed by
Bernheim and Rangel [6].

For example, if it is known that an individual with well-behaved preferences some-
times “satisfices” when confronted with more than two alternatives, we would re-
strict [the welfare-relevant domain] to binary choice sets [i.e., menus], and thereby
generate a welfare criterion that accurately reflects his well-being.

The same approach is valid in the context of Manzini and Mariotti’s [15, p. 1160] model
of choice with categorization, in which “[w]henever there is conflict between choice from a
binary set and choice from a larger set, the choice from the binary set is driven by prefer-
ence[.]” Indeed, binary choices can be used to infer welfare rankings in any setting where
removing other options strips away complicating factors to expose the DM’s underlying
evaluation of two alternatives.31

4 Related work

4.1 Consideration-set models

This paper belongs to a substantial literature that studies the behavioral implications of
nonstandard models of decision making. Without attempting a comprehensive survey,
we now highlight some areas of related work.

Several recent papers introduce into choice theory versions of the “consideration set.”
Recall that this is the subset of available alternatives that is actively investigated by the
DM, a concept discussed extensively in the marketing literature.32 Writing σ(A) for the
consideration set associated with menu A and R2 for the preference relation, such models
assume that

C(A) = G(σ(A),R2). (4)

The empirical content of the theory is thus determined by the restrictions imposed on
the map σ : D→ F and the binary relation R2, as in the following special cases.

31Note that this commonality of welfare rankings under different models allows a partial escape from
the problem of “observational equivalence” emphasized by Bernheim [5, p. 279].

32See, e.g., Roberts and Lattin [24]. Versions of this idea have been incorporated into economic models
by, among others, Eliaz and Spiegler [11], who examine the strategic interaction among firms that try
to manipulate the consideration sets of their customers with “door opener” products and other costly
marketing schemes; and by Armstrong et al. [2], who analyze a search model in which one seller is more
“prominent” than its rivals and is therefore sampled first by potential buyers.
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1. Masatlioglu et al. [18] require that ∀A,B ∈ D such that σ(B) ⊆ A ⊆ B we have
σ(A) = σ(B), in which case σ is designated an “attention filter.” In addition, they
require that R2 is a complete order.

2. Lleras et al. [13] impose the “consideration filter” assumption that ∀A,B ∈ D with
A ⊆ B we have σ(B) ∩ A ⊆ σ(A), and assume also that R2 is a complete order.
The same structure describes Cherepanov et al.’s [9] “order rationalization theory.”

3. In Manzini and Mariotti’s [14] model of “rational shortlist methods,” R2 is a tour-
nament and there exists a complete relation R1 such that σ = G(·,R1).

4. Spears [33] requires that σ be a consideration filter and R2 a tournament. This also
describes Cherepanov et al.’s [9] notion of “basic rationalization” and Manzini and
Mariotti’s [15, p. 1160] “categorize-then-choose” theory.

It is apparent from the descriptions of these models that Cases 2 and 3 each separately
imply Case 4, since any complete order is a tournament and for any relation R1 the map
G(·,R1) is a consideration filter. Cases 2 and 3 are independent of each other, however,
and Case 1 is independent of all the others.33

Taking σ = G(·,R1), our model is also an instance of the consideration-set framework
in Equation 4. Our hypothesis that R2 is a complete preorder is weaker than the complete-
order assumption and independent of the tournament assumption (since transitivity and
antisymmetry are themselves independent). Moreover, for a relation systemR1 possessing
the properties specified in our model, the hypothesis that σ = G(·,R1) is independent of
both the attention filter and consideration filter assumptions, as well as independent of
the structure imposed on the map σ in Case 3 (where R1 need not be transitive). In short,
our theory of satisficing behavior with a secondary criterion is structurally unrelated to
all of the above consideration-set models.34

Depending on the interpretation of our framework, it may or may not bear conceptual
similarities to the theories cited above. On the one hand, the idea of surface character-
istics resembles Manzini and Mariotti’s [14] motivation for “sequential rationalizability”
(see Footnote 6). The substantive difference between these two models lies in how the
DM’s bounded rationality is manifested in the lexicographic setting—whether by relax-
ing transitivity of R1 in the case of rational shortlist methods, or by moving to a nested
preference system R1 in the case of our theory.

On the other hand, if we interpret our model as one of salience effects, then conceptu-
ally there are clear distinctions from the above consideration-set theories. In Masatlioglu
et al. [18] and Lleras et al. [13], for example, the options in σ(A) are preselected from
menu A by some cognitive mechanism (respectively, awareness and consideration), after

33Note that all of the contributions cited in Cases 1–4 impose Univalence (Condition 3.8) as a back-
ground assumption, and all except for [15] assume that D = F.

34Indeed, it is shown in [35] that the consideration-filter property is precisely the feature of classical
choice behavior that must be abandoned to allow for satisficing (as modeled in Section 2.2). Observe
also that the independence of our theory from those in Cases 1–4 at the level of the cognitive model has
its counterpart at the axiomatic level. For example, Weak Congruence and Base Transitivity together do
not imply either of the “Weak WARP” and “Expansion” conditions used in Cases 3–4 (see [14, p. 1828]).
And conversely, Weak Congruence is itself not implied by any of the other consideration-set structures.
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which the DM applies a standard preference relation R2. Contrastingly, in our model R2

encodes comparative salience, while the preference relation R1 used in the first stage is
coarsened by satisficing into the nested relation system R1. Furthermore, these differ-
ences will persist when the theories are adapted for applied work: Whereas the structures
in [18] and [13] are well-designed for modeling informative advertising, which (among
other goals) seeks to bring alternatives into the consideration set, our model could be
used to create a role for non-informative advertising that seeks to affect the relative
salience of options between which a satisficing agent is pseudo-indifferent.35

In [36], the author provides an abstract theory of two-stage choice procedures that is
general enough to encompass versions of the Lleras et al. [13] consideration-filter model
and the Manzini and Mariotti [14] rational-shortlisting model, as well as a weaker version
of our model. This theory proceeds by formulating a generalization of the Weak Congru-
ence condition that can characterize any procedure with a certain lattice structure. The
abstract analysis adds little of value to the present paper, telling us only that removing
Base Transitivity from the axioms in Theorem 2.9 is equivalent to relaxing binary tran-
sitivity of R1. In particular, it yields nothing resembling the numerical representation in
Equation 2, for which Base Transitivity is essential. However, [36] does illustrate that
multi-stage models of choice can share mathematical structure that allows us to transfer
techniques between seemingly distinct frameworks.

In contrast, Manzini et al. [17] focus on the numerical representation, axiomatizing the
existence of functions f1, f2 : X → R and θ1 : D→ R such that Equation 2 holds. Since
they impose neither expansiveness of the threshold structure 〈f1, θ1〉 nor the requirement
(part of Definition 2.10A) that each θ1(xy) = max f1[xy], this is weaker than the model
characterized in Theorem 2.9. In fact, Manzini et al. show that it is much weaker, to the
extent that Equation 2 is completely vacuous for choice functions satisfying Univalence.
Since our theory significantly constrains choice behavior with or without Univalence, this
implies that most of the logical strength of our axioms is captured not by Equation 2
itself, but rather by the additional restrictions we impose.36

4.2 Models with framing effects

A second area of related research studies the impact of “frames” on decision making. In
the broadest sense, a frame is any aspect of a choice problem other than the available
alternatives and their payoff-relevant characteristics that may affect the DM’s behavior.
Examples include the order in which the options are presented and the moment in time

35For instance, a “Coca-Cola!” billboard is unlikely to bring the ubiquitous carbonated drink into the
consideration sets of many consumers previously unaware of its existence. The billboard might, however,
make Coke an especially salient product for those consumers who have no perceivable preference between
various brands of cola which both taste and cost very much the same.

Non-informative advertising is by no means rare: Resnik and Stern [22] review 378 commercials broad-
cast on American network television in the year 1975, and conclude that “less than half of the sample’s
advertisements met the liberal criteri[on] of possessing [any ] useful informational cues.” (For a survey of
economic justifications for non-informative, or “persuasive” advertising, see Bagwell [4].)

36It is straightforward to show that the axiom used by Manzini et al. [17] is implied by the conjunction
of Weak Congruence and Base Transitivity.
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when the choice is made.37

Salant and Rubinstein [27] allow for framing effects by conditioning the choice function
on the new, payoff-irrelevant information. Denoting the set of frames by F , the choice
set associated with menu A in f ∈ F is written c(A, f), and C(A) =

⋃
f∈F c(A, f) then

contains the alternatives that are choosable from A in at least one frame. Assuming for
simplicity that each |c(A, f)| = 1, the authors investigate the relationship between the
“extended choice function” c : D × F → F and the induced C : D → F. In particular,
they show when C will satisfy classical rationality axioms.

If we interpret our model in terms of salience effects or in terms of positive action,
then the payoff-irrelevant information affecting behavior is contained in the secondary
relation R2. Writing F for the set of all complete orders on X and taking some R2 ∈ F ,
Equation 1 can be rephrased as c(A,R2) = G(G(A,R1),R2). Moreover, since in this case
C(A) =

⋃
R2∈F G(G(A,R1),R2) = G(A,R1), the models of satisficing behavior with and

without a secondary criterion are linked in Salant and Rubinstein’s formulation.
Extended choice functions could also be used to give our theory additional structure.

Suppose, for example, that ρ ∈ F ⊆ R measures the cognitive resources available to the
DM. This endowment will affect his perceived primary preference system, now written
R1(ρ), yielding conditional choice sets c(A, ρ) = G(G(A,R1(ρ)),R2). The rationale for
nestedness (see Section 2.2) will then apply not only to changes in the menu but also to
changes in the resource allocation: Given x, y ∈ A ∈ D and ρ1, ρ2 ∈ F such that ρ1 ≤ ρ2,
we should have xP1

A(ρ1)y only if xP1
A(ρ2)y. This extended nestedness assumption opens

the door to revealed-preference deductions across different values of ρ, and to comparative
statics with respect to the resource endowment.

One example of framing offered by Salant and Rubinstein [27, p. 1289] is a satisficing
procedure in the context of choice from lists.38 Here once again F is the set of all complete
orders on X, and R2 ∈ F has the interpretation that xR2y whenever x is no later than
y in the list order. The DM has utility function f1 : X → R and “aspiration threshold”
θ̄ ∈ R, which we can think of as a constant map θ1 : D → R. Given a menu A, if
any available alternative achieves the utility threshold then the DM chooses the first such
option (according to the list order), and otherwise he chooses the last available alternative
regardless of its utility. Taking any representation f2 : X → R of the list order R2, this
means that the DM will solve the constrained optimization problem in Equation 2 when
facing any menu A such that max f1[A] ≥ θ̄. At least over the latter subdomain of choice
problems, the list order here plays the same role as salience or group identity in our
theory. But of course in our model the map θ1 need not be constant, and the thresholds
assigned to menus are by construction always achievable.

37An important branch of the literature on framing seeks to model status-quo or other reference-point
effects. Among numerous other contributions in this area, Bossert and Sprumont [7] propose a theory
in which the status-quo alternative is “exogenous” (i.e., objective), while Ok et al. [19] consider the
“endogenous” (i.e., subjective) case.

38See also Rubinstein and Salant [25, p. 5]. Papi [20] studies a related but considerably more flexible
model of satisficing in which alternatives need not be examined one at a time.
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A Appendix

Given a binary relation R on X, its transitive closure R∗ is defined by xR∗y if and only
if ∃n ≥ 2 and z1, z2, . . . , zn ∈ X such that x = z1Rz2R · · ·Rzn = y. Furthermore, R
has symmetric part R• defined by xR•y if and only if xRyRx, and asymmetric part R◦

defined by xR◦y if and only if both xRy and ¬[yRx].
A relation is a strict partial order if it is irreflexive (xRy only if x 6= y) and transitive;

a linear order if it is irreflexive, transitive, and weakly complete (x 6= y only if xRy or
yRx); and an equivalence if it is reflexive (x = y only if xRy), symmetric (xRy only if
yRx), and transitive. An equivalence Q is a congruence with respect to R whenever we
have wQxRyQz only if wRz.

The following fact about binary relations is adapted from Richter [23, pp. 639–640].

Lemma A.1. Any reflexive relation R admits a complete preorder Q ⊇ R∗ such that xQy
only if xR∗y or ¬[yR∗x].

Proof. Since R is reflexive, [R∗]• is a congruence with respect to the strict partial order
[R∗]◦. Write φ(x) for the [R∗]•-equivalence class containing x ∈ X, and define a strict
partial order� on Φ = {φ(x) : x ∈ X} by φ(x)� φ(y) if and only if x[R∗]◦y. Szpilrajn’s
Theorem [34] then allows us to embed � in a linear order ≫ on Φ, and we can proceed
to define a complete preorder Q by xQy if and only if ¬[φ(y) ≫ φ(x)]. It follows that
xR∗y only if either φ(x)� φ(y) or φ(x) = φ(y). But then φ(x) ≫ φ(y) or φ(x) = φ(y),
and in either case we have ¬[φ(y) ≫ φ(x)] and xQy. Hence R∗ ⊆ Q. Moreover, if xQy
then ¬[φ(y)� φ(x)] and hence ¬[y[R∗]◦x], which means that xR∗y or ¬[yR∗x].

Lemma A.2. A. R̂1d is a nested system of complete relations, and R̂1i is a nested system
of complete preorders. B. C ⊆ G(·, R̂1i). C. If C ⊆ G(·,R1) for some nested system of
complete preorders R1, then R̂1i ⊆ R1.

Proof. A. The nestedness of R̂1d is immediate. Also, given x, y ∈ A ∈ D we have both
A ⊇ xy ∈ D and C(xy) 6= ∅, and therefore R̂1d

A is complete. The nestedness of R̂1i and
completeness of R̂1i

A follow, respectively, from the nestedness of R̂1d and completeness of
R̂1d
A . Moreover, R̂1i

A is transitive by construction and is thus a complete preorder.
B. Given x ∈ A ∈ D, let x /∈ G(A, R̂1i). Then ∃y ∈ A such that ¬[xR̂1i

Ay], so ¬[xR̂1d
A y]

and x /∈ C(A).
C. Let C ⊆ G(·,R1) for some nested system of complete preorders R1. Given x, y ∈

B ∈ D, the assertion yR̂1d
B x means that ∃A ∈ D such that x ∈ A ⊆ B and y ∈ C(A) ⊆

G(A,R1). We then have yR1
Ax and hence yR1

Bx since R1 is nested. Thus R̂1d ⊆ R1, and
it follows that R̂1i = [R̂1d]∗ ⊆ [R1]∗ ⊆ R1 since R1 is a system of transitive relations.

Definition A.3. For x, y ∈ X: A. Let xR̂by if x ∈ C(xy). B. Let xP̂by if y /∈ C(xy).

Lemma A.4. A. Base Transitivity implies that R̂1i is binary transitive. B. Base Uni-
valence implies that R̂1i is binary antisymmetric.

Proof. A. Given x, y, z ∈ X, if xR̂1i
xyyR̂1i

yzz then xR̂1d
xyyR̂1d

yzz and therefore xR̂byR̂bz. But

then xR̂bz by Base Transitivity, in which case xR̂1d
xzz and xR̂1i

xzz.
B. Given x, y ∈ X, if xR̂1i

xyyR̂1i
xyx then xR̂1d

xyyR̂1d
xyx and therefore xR̂byR̂bx. But then

x, y ∈ C(xy), and so x = y by Base Univalence.
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Definition A.5. Define the binary relation Q̂2d as follows. For x, y ∈ X, let xQ̂2dy if
∀A ∈ D such that xR̂1i

Ay and y ∈ C(A) we have x ∈ C(A).

Lemma A.6. A. R̂2d is reflexive. B. C ⊆ G(G(·, R̂1i), R̂2i). C. If C ⊆ G(G(·,R1),R2)
for some nested system of complete preordersR1 and complete preorder R2, then R̂2i ⊆ R2.
D. If C = G(G(·,R1),R2) for some nested system of complete preorders R1 and complete
preorder R2, then R2 ⊆ Q̂2d.

Proof. A. Given x ∈ X, we have {x} ∈ D and C(x) = x, so xR̂2dx and R̂2d is reflexive.
B. Given x ∈ A ∈ D, let x /∈ G(G(A, R̂1i), R̂2i). If x /∈ G(A, R̂1i), then x /∈ C(A) by

Lemma A.2B. If x ∈ G(A, R̂1i) then ∃y ∈ G(A, R̂1i) such that ¬[xR̂2iy], and so ¬[xR̂2dy].
Since yR̂1i

Ax, this implies once again that x /∈ C(A).
C. Let C ⊆ G(G(·,R1),R2) for some nested system of complete preorders R1 and

complete preorder R2. Given x, y ∈ X, the assertion yR̂2dx means that ∃A ∈ D such that
xR̂1i

Ay and y ∈ C(A) ⊆ G(G(A,R1),R2). We then have xR1
Ay by Lemma A.2C. Moreover,

since y ∈ G(A,R1) andR1 is a system of complete preorders, we have x ∈ G(A,R1) and it
follows that yR2x. Thus R̂2d ⊆ R2, and so we can conclude that R̂2i = [R̂2d]∗ ⊆ [R2]∗ ⊆ R2

since R2 is transitive.
D. Let C = G(G(·,R1),R2) for some nested system of complete preorders R1 and

complete preorder R2. Given x, y ∈ X, the assertion ¬[yQ̂2dx] means that ∃A ∈ D such
that yR̂1i

Ax and x ∈ C(A) = G(G(A,R1),R2) 63 y. We then have yR1
Ax by Lemma A.2C.

Moreover, since x ∈ G(A,R1) and R1 is a system of complete preorders, it follows that
y ∈ G(A,R1) and hence ¬[yR2x] since R2 is a complete preorder. But then R2 ⊆ Q̂2d by
contraposition.

Proof of Theorem 2.9. Let Weak Congruence and Base Transitivity hold and suppose for
some x ∈ A ∈ D that x /∈ C(A). Then ∃y ∈ C(A), and we have y ∈ G(G(A, R̂1i), R̂2i) by
Lemma A.6B. If x ∈ G(A, R̂1i) then yR̂2ix, and since xR̂1i

Ay we have also ¬[xQ̂2dy]. In this
case ¬[xR̂2iy] by Weak Congruence (which is equivalent to R̂2i ⊆ Q̂2d). Defining S2 by
wS2z ⇐⇒ [wR̂2iz∨¬[zR̂2iw]], it follows that ¬[xS2y] and hence x /∈ G(G(A, R̂1i), S2). But
then G(G(·, R̂1i), S2) ⊆ C by contraposition. Moreover, R̂2d is reflexive by Lemma A.6A,
and so by Lemma A.1 there exists a complete preorder T2 ⊇ R̂2i with T2 ⊆ S2. We
then have that C ⊆ G(G(·, R̂1i), R̂2i) ⊆ G(G(·, R̂1i),T2) ⊆ G(G(·, R̂1i), S2) ⊆ C, using
Lemma A.6B, and hence C = G(G(·, R̂1i),T2). Finally, by Lemmas A.2A and A.4A we
have that R̂1i is a nested, binary transitive system of complete preorders.

Conversely, suppose that there exist a nested, binary transitive system of complete
preorders R1 and a complete preorder R2 such that C = G(G(·,R1),R2). We then have
R̂2i ⊆ R2 ⊆ Q̂2d by Lemma A.6C–D, which implies Weak Congruence (i.e., R̂2i ⊆ Q̂2d).
Moreover, given x, y, z ∈ X, if xR̂byR̂bz then xR1

xyyR1
yzz since C ⊆ G(·,R1), and hence

xR1
xzz since R1 is binary transitive. Since C ⊆ G(G(·,R1),R2) we have xI1xyy =⇒ xR2y,

and similarly yI1yzz =⇒ yR2z. It follows that xI1xzz =⇒ xR2yR2z =⇒ xR2z since R2 is

transitive. But then xR̂bz since G(G(·,R1),R2) ⊆ C, and so Base Transitivity holds.

Proof of Theorem 2.11. Let Weak Congruence and Base Transitivity hold, so that by
Theorem 2.9 there exist a nested, binary transitive system of complete preorders R1 and
a complete preorder R2 such that C = G(G(·,R1),R2). Since R2 is a complete preorder
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(and X is finite) it admits a representation f2 : X → R. Moreover, by Base Transitivity
we have that R̂b is a complete preorder and so it too admits a representation f1 : X → R.
Define θ1 : D → R by setting each θ1(A) = min f1[G(A,R1)], with the implication that
G(A,R1) ⊆ {z ∈ A : f1(z) ≥ θ1(A)}. Now, given any z ∈ A ∈ D for which z /∈ G(A,R1),
select any y ∈ G(A,R1) such that f1(y) = min f1[G(A,R1)]. We then have yP1

Az since
R1
A is a complete preorder, yP1

yzz since R1 is nested, and z /∈ G(G(yz,R1),R2) = C(yz).

It follows that yP̂bz, and therefore f1(z) < f1(y) = θ1(A) since f1 represents R̂b. Hence,
by contraposition, we have {z ∈ A : f1(z) ≥ θ1(A)} ⊆ G(A,R1), and so we can conclude
that G(A,R1) = {z ∈ A : f1(z) ≥ θ1(A)}. But then Equation 2 holds for each A ∈ D,
as desired. To confirm that 〈f1, θ1〉 is a valid threshold structure, take any x, y ∈ X
such that f1(x) ≥ f1(y), in which case f1(x) ≥ θ1(xy). If f1(x) > θ1(xy) = f1(y), then
xP̂by since f1 represents R̂b, y /∈ C(xy), and thus f1(y) < θ1(xy), a contradiction. Hence
θ1(xy) = f1(x) = max f1[xy], as desired. Finally, to confirm that 〈f1, θ1〉 is expansive,
let A,B ∈ D be such that A ⊆ B and max f1[A] ≥ θ1(B). Then ∃y ∈ A ⊆ B such that
f1(y) ≥ θ1(B), and so y ∈ {z ∈ B : f1(z) ≥ θ1(B)} = G(B,R1). For any x ∈ G(A,R1)
we have xR1

Ay and so xR1
By since R1 is nested. Since y ∈ G(B,R1) and R1

B is a complete
preorder, this implies that x ∈ G(B,R1). But then G(A,R1) ⊆ G(B,R1) and therefore
θ1(A) = min f1[G(A,R1)] ≥ min f1[G(B,R1)] = θ1(B), as desired.

Conversely, suppose that there exist an expansive threshold structure 〈f1, θ1〉 and an
f2 : X → R such that Equation 2 holds for each A ∈ D. Define a relation system R1 as
follows: For each A ∈ D, let xR1

Ay if and only if ∀B ∈ D with B ⊇ A and f1(y) ≥ θ1(B)
we have f1(x) ≥ θ1(B). By construction R1 is then nested and each R1

A is complete, and
clearly ∀A ∈ D we have G(A,R1) ⊆ {z ∈ A : f1(z) ≥ θ1(A)}. Now, given x, y, z ∈ A ∈ D
such that xR1

AyR1
Az, for any B ∈ D with B ⊇ A and f1(z) ≥ θ1(B) we have f1(y) ≥ θ1(B)

since yR1
Az, and in turn f1(x) ≥ θ1(B) since xR1

Ay. It follows that xR1
Az, so we have that

R1
A is transitive and R1 is a system of complete preorders. Furthermore, given x ∈ A ∈ D

such that x /∈ G(A,R1), there exists a y ∈ A such that yP1
Ax. It follows that ∃B ∈ D

such that B ⊇ A and f1(y) ≥ θ1(B) > f1(x), and since 〈f1, θ1〉 is expansive we have that
θ1(A) ≥ θ1(B) > f1(x) and x /∈ {z ∈ A : f1(z) ≥ θ1(A)}. But then by contraposition we
have {z ∈ A : f1(z) ≥ θ1(A)} ⊆ G(A,R1) and thus G(A,R1) = {z ∈ A : f1(z) ≥ θ1(A)}.
To confirm that R1 is binary transitive, let x, y, z ∈ X be such that xR1

xyyR1
yzz. We then

have f1(y) ≥ θ1(xy) =⇒ f1(x) ≥ θ1(xy) and similarly f1(z) ≥ θ1(yz) =⇒ f1(y) ≥ θ1(yz).
Since also θ1(xy) = max f1[xy] and similarly θ1(yz) = max f1[yz], we can conclude that
f1(x) ≥ f1(y) ≥ f1(z) and hence xR1

xzz, as desired. Finally, denoting by R2 the complete
preorder represented by f2, we have that C = G(G(·,R1),R2) and so Weak Congruence
and Base Transitivity hold by Theorem 2.9.

Proof of Proposition 3.6. If Weak Congruence, Base Transitivity, and Base Univalence
hold, then R̂1i is a nested, binary transitive, binary antisymmetric system of complete
preorders by Lemmas A.2A and A.4. Moreover, it can be shown (see the above proof of
Theorem 2.9) that there exists a complete preorder T2 such that C = G(G(·, R̂1i),T2).

Conversely, if there exist a nested, binary transitive, binary antisymmetric system of
complete preorders R1 and a complete preorder R2 such that C = G(G(·,R1),R2), then
Weak Congruence and Base Transitivity follow from Theorem 2.9 and Base Univalence
follows from C ⊆ G(·,R1) and the binary antisymmetry of R1.
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Proof of Proposition 3.7. Suppose that C = G(G(·,R1),R2) for some nested, binary tran-
sitive, binary antisymmetric system of complete preorders R1 and complete preorder R2.
For x, y ∈ X we then have xL12y ⇐⇒ x ∈ C(xy) =⇒ xR1

xyy by Propositions 3.2 and 3.3A.
Moreover, if xR1

xyy then since R1 is binary antisymmetric we have xP1
xyy or x = y, and

in either case it follows that x ∈ C(xy).

Proof of Theorem 3.9. If Weak Congruence, Base Transitivity, and Univalence hold, then
R̂1i is a nested, binary transitive, binary antisymmetric system of complete preorders by
Lemmas A.2A and A.4. Define a relation S2 by wS2z ⇐⇒ wR̂2dz 6= w. If ∃x ∈ X with
x[S2]∗x, then clearly ∃y ∈ X such that xS2y[S2]∗x 6= y. Hence xR̂2dyR̂2ix, and it follows
that ∃A ∈ D with yR̂1i

Ax and x ∈ C(A). But then y ∈ C(A) by Weak Congruence and so
y = x by Univalence, a contradiction. This establishes that [S2]∗ is irreflexive and hence
a strict partial order. Szpilrajn’s Theorem [34] allows us to embed [S2]∗ in a linear order,
which can be reflexivized to yield a complete order T2 ⊇ [S2]∗ ⊇ R̂2i. Using Lemma A.6B,
it follows that C ⊆ G(G(·, R̂1i), R̂2i) ⊆ G(G(·, R̂1i),T2). Now, take any x ∈ A ∈ D with
x /∈ C(A). Using Lemma A.2B, we know that ∃y ∈ C(A) ⊆ G(A, R̂1i) such that y 6= x.
If x ∈ G(A, R̂1i) then xR̂1i

Ay and hence yR̂2dx. But then yT2x, whereupon ¬[xT2y] since
x 6= y and T2 is a complete order. It follows that x /∈ G(G(A, R̂1i),T2), and thus we can
conclude that G(G(·, R̂1i),T2) ⊆ C by contraposition. Hence C = G(G(·, R̂1i),T2).

Conversely, if there exist a nested, binary transitive, binary antisymmetric system of
complete preorders R1 and a complete order R2 such that C = G(G(·,R1),R2), then
Weak Congruence and Base Transitivity follow from Theorem 2.9 and Univalence follows
from C ⊆ G(G(·,R1),R2) and the antisymmetry of R2.

References

[1] John R. Anderson. Cognitive Psychology and Its Implications. Worth, New York,
2005.

[2] Mark Armstrong, John Vickers, and Jidong Zhou. Prominence and consumer search.
RAND Journal of Economics, 40(2):209–233, Summer 2009.

[3] Kenneth J. Arrow. Rational choice functions and orderings. Economica, New Series,
26(102):121–127, May 1959.

[4] Kyle Bagwell. The economic analysis of advertising. In Mark Armstrong and
Robert H. Porter, editors, Handbook of Industrial Organization, volume 3. Elsevier,
New York, 2007.

[5] B. Douglas Bernheim. Behavioral welfare economics. Journal of the European Eco-
nomic Association, 7(2–3):267–319, April-May 2009.

[6] B. Douglas Bernheim and Antonio Rangel. Beyond revealed preference: Choice-
theoretic foundations for behavioral welfare economics. Quarterly Journal of Eco-
nomics, 124(1):51–104, February 2009.

21



[7] Walter Bossert and Yves Sprumont. Non-deteriorating choice. Economica,
76(302):337–363, April 2009.

[8] Walter Bossert, Yves Sprumont, and Kotaro Suzumura. Rationalizability of choice
functions on general domains without full transitivity. Social Choice and Welfare,
27(3):435–458, November 2006.

[9] Vadim Cherepanov, Timothy Feddersen, and Alvaro Sandroni. Rationalization. The-
oretical Economics, 8(3):775–800, September 2013.

[10] Geoffroy de Clippel and Kareen Rozen. Bounded rationality and limited datasets.
Unpublished, May 2014.

[11] Kfir Eliaz and Ran Spiegler. Consideration sets and competitive marketing. Review
of Economic Studies, 78(1):235–262, January 2011.

[12] Peter C. Fishburn. Utility Theory for Decision Making. Wiley, New York, 1970.

[13] Juan Sebastian Lleras, Yusufcan Masatlioglu, Daisuke Nakajima, and Erkut Y.
Ozbay. When more is less: Limited consideration. Unpublished, October 2010.

[14] Paola Manzini and Marco Mariotti. Sequentially rationalizable choice. American
Economic Review, 97(5):1824–1839, December 2007.

[15] Paola Manzini and Marco Mariotti. Categorize then choose: Boundedly rational
choice and welfare. Journal of the European Economic Association, 10(5):1141–1165,
October 2012.

[16] Paola Manzini, Marco Mariotti, and Christopher J. Tyson. Manipulation of choice
behavior. Unpublished, July 2011.

[17] Paola Manzini, Marco Mariotti, and Christopher J. Tyson. Two-stage threshold
representations. Theoretical Economics, 8(3):875–882, September 2013.

[18] Yusufcan Masatlioglu, Daisuke Nakajima, and Erkut Y. Ozbay. Revealed attention.
American Economic Review, 102(5):2183–2205, August 2012.

[19] Efe A. Ok, Pietro Ortoleva, and Gil Riella. Revealed (p)reference theory. Unpub-
lished, June 2014.

[20] Mauro Papi. Satisficing choice procedures. Journal of Economic Behavior and Or-
ganization, 84(1):451–462, September 2012.

[21] Arthur S. Reber, Rhianon Allen, and Emily S. Reber. The Penguin Dictionary of
Psychology. Penguin, London, 2009.

[22] Alan Resnik and Bruce L. Stern. An analysis of information content in television
advertising. Journal of Marketing, 41(1):50–53, January 1977.

22



[23] Marcel K. Richter. Revealed preference theory. Econometrica, 34(3):635–645, July
1966.

[24] John H. Roberts and James M. Lattin. Consideration: Review of research and
prospects for future insights. Journal of Marketing Research, 34(3):406–410, August
1997.

[25] Ariel Rubinstein and Yuval Salant. A model of choice from lists. Theoretical Eco-
nomics, 1(1):3–17, March 2006.

[26] Ariel Rubinstein and Yuval Salant. Some thoughts on the principle of revealed
preference. In Andrew Caplin and Andrew Schotter, editors, The Foundations of
Positive and Normative Economics. Oxford University Press, New York, 2008.

[27] Yuval Salant and Ariel Rubinstein. (A, f): Choice with frames. Review of Economic
Studies, 75(4):1287–1296, October 2008.

[28] Paul A. Samuelson. A note on the pure theory of consumer’s behaviour. Economica,
New Series, 5(17):61–71, February 1938.

[29] Amartya K. Sen. Quasi-transitivity, rational choice, and collective decisions. Review
of Economic Studies, 36(3):381–393, July 1969.

[30] Amartya K. Sen. Social choice theory: A re-examination. Econometrica, 45(1):53–89,
January 1977.

[31] Amartya K. Sen. Internal consistency of choice. Econometrica, 61(3):495–521, May
1993.

[32] Herbert A. Simon. A behavioral model of rational choice. Quarterly Journal of
Economics, 69(1):99–118, February 1955.

[33] Dean Spears. Intertemporal bounded rationality as consideration sets with contrac-
tion consistency. B.E. Journal of Theoretical Economics, 11(1):#12, June 2011.

[34] Edward Szpilrajn. Sur l’extension de l’ordre partiel. Fundamenta Mathematica,
16:386–389, 1930.

[35] Christopher J. Tyson. Cognitive constraints, contraction consistency, and the satis-
ficing criterion. Journal of Economic Theory, 138(1):51–70, January 2008.

[36] Christopher J. Tyson. Behavioral implications of shortlisting procedures. Social
Choice and Welfare, 41(4):941–963, October 2013.

23



This working paper has been produced by
the School of Economics and Finance at
Queen Mary University of London

Copyright © 2014 Christopher J. Tyson

School of Economics and Finance 
Queen Mary University of London
Mile End Road
London E1 4NS
Tel: +44 (0)20 7882 7356
Fax: +44 (0)20 8983 3580
Web: www.econ.qmul.ac.uk/papers/wp.htm

All rights reserved




