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Abstract

This paper proposes a novel and flexible framework to estimate autoregressive mod-

els with time-varying parameters. Our setup nests various adaptive algorithms that are

commonly used in the macroeconometric literature, such as learning-expectations and

forgetting-factor algorithms. These are generalized along several directions: specifically,

we allow for both Student-t distributed innovations as well as time-varying volatility.

Meaningful restrictions are imposed to the model parameters, so as to attain local sta-

tionarity and bounded mean values. The model is applied to the analysis of inflation

dynamics. Allowing for heavy-tails leads to a significant improvement in terms of fit

and forecast. Moreover, it proves to be crucial in order to obtain well-calibrated density

forecasts.
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1 Introduction

Since the seminal work of Cogley and Sargent (2002) and Primiceri (2005) time-varying

parameter (TVP) models have been widely regarded as a flexible tool for investigating the

dynamics of key macroeconomic aggregates and changes in the statistical and structural laws

that drive their joint behavior. In particular, the importance of accounting for time-variation

in the coeffi cients as well as in the volatilities has been emphasized in a stream of papers that:

(i) document changes in the predictability and the persistence of key macro variables (Benati

and Mumtaz, 2007, Cogley, Sargent and Primiceri, 2010); (ii) link the Great Moderation to

changes in monetary policy regimes (Canova and Gambetti, 2009, Primiceri 2005, Cogley and

Sargent, 2005); and (iii) stress the relative gains in terms of forecast accuracy achieved by this

framework compared to the traditional constant parameter models (D’Agostino et al., 2013).

Notice that all these papers are framed in a Bayesian setup that presents some shortcomings:

(i) it is computational demanding (ii) when restrictions are imposed to achieve a stationary

representation of the VAR a large number of draws need to be discarded, therefore leading to

potentially large ineffi ciency. Furthermore, most of these studies assume a Normal distribution

of the errors, a convenient assumption that however limits their ability to capture the tails

behavior that characterizes a number of macro variables in turbulent periods.1

Building on recent insights of Creal et al. (2012) and Harvey (2013), in this paper we propose

a new adaptive algorithm for time-varying autoregressive models that addresses simultaneously

all these issues. First, the resulting model is an observation-driven model2 that can be estimated

by traditional maximum likelihood methods, rather than by simulation based methods. Second,

we show how restrictions can be easily imposed ex-ante rather than being checked ex-post,

therefore increasing computational effi ciency.3 Third, it can accommodate various assumptions

on the distribution of the error terms. In particular, in our application we stress the importance

of considering Student-t innovations. The different distributions lead to substantially different

updating mechanisms that prove to be more appropriate depending on the specific economic

problem we tackle.

Our model resembles the discount regression model that has been extensively used in the en-

gineering literature (Fagin, 1964, Jazwinski, 1970, Ljung and Soderstrom, 1985). The adaptive

model developed in this paper extends traditional adaptive algorithms along various dimen-

sions, making three distinct contributions. First, it considers how the existing algorithms are

to be modified in the presence of heavy tails, focussing on Student-t innovations. Second, it

introduces time-variation in volatility, emphasizing when and how this interacts with the coeffi -

1A noticeable exception is the recent paper by Chiu, Mumtaz and Pinter (2014).
2Cox (1981) categorizes time series models with time-varying parameters into parameter-driven and

observation-driven models. In the former class of models the parameters are stochastic processes which are
subject to their own source of error. In the observation-driven approach the parameters are functions of the
observed variables. Although the parameters are stochastic, they are perfectly predictable given past informa-
tion.

3In contrast, parameter-driven models which typically rely on simulation techniques can be particularly
computational demanding when restrictions are imposed (see e.g. Koop and Potter, 2011, and Chan et al.,
2013).
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cients’updating rule. Last, it shows how to impose restrictions on the time-varying parameters

so that the model is locally stationary and has a bounded mean.

On a more theoretical side, our work relates to the analysis of learning expectations. Since

the seminal work of Marcet and Sargent (1989) adaptive algorithms have in fact been exten-

sively used in macroeconomics to describe the learning mechanism of expectation formation

(see, e.g., Sargent, 1999 and Evans and Honkapohja, 2001). It is well known that, under

certain conditions, learning rules can be obtained from the Kalman filter (KF) with appropri-

ate restrictions (Sargent and Williams, 2005; Evans et al., 2010). We show that most of the

commonly used learning algorithms can be derived as a special case of the one developed in

this paper. As a consequence, we open the route to the analysis of learning dynamics in the

presence of time-variation in the volatility of the structural innovations (see, e.g., Justiniano

and Primiceri, 2008) and/or in a context where rare events are introduced into a structural

macroeconomic model (see Curdia et al., 2013). Furthermore, we discuss a convenient way to

implement the projection facility used in the learning context.4

Moreover, our work speaks to the literature on forecasting in the presence of structural

changes. In this context, Cooley and Prescott (1973, 1976) have pioneered the use of adaptive

models to deal with the structural instability in economic relationships. Stock and Watson

(1996) have highlighted the usefulness in economic forecasting of time-varying regressions that

imply an exponentially weighting scheme. Giraitis et al. (2011) consider deterministic time-

varying coeffi cient models and discuss the properties of the non-parametric estimation approach

for an autoregressive model with a stochastic attractor. Related work by Pesaran and Tim-

merman (2007), Pesaran and Pick (2011) and Pesaran et al (2013) considers the issue of the

optimal weights in the presence of structural breaks. Koop and Korobilis (2012) propose the

use of an exponential weighted algorithm (obtained by ad-hoc restrictions on the KF) to model

time-variation in both the coeffi cients and volatility. Some of these models are nested as a

special case of the adaptive model we put forward.5

The empirical application applies our setup to the analysis of U.S. inflation dynamics in the

past 60 years. We find that, when confronted with the data, our model produces reasonable

patterns for the long-run trend of inflation and the underlying volatility as well as describing

accurately the changes in inflation persistence and predictability highlighted by most of the

literature. Most importantly, we show that by introducing the Student-t distribution we make

model estimates more robust to short lived spikes in inflation (especially in the last part of the

sample), a feature that leads to better in sample fit and out of sample forecasting performance.

The latter is particularly striking when we try to characterize the density of the data, since

well calibrated density forecasts are obtained only when we allow for heavy tails.

The paper is organized as follows. Section 2 introduces the score-driven autoregressive

4The projection facility is a procedure that constrains the time-varying parameters in the neighborhood of
a particular solution, such as the Rational Expectations (RE) equilibrium; see e.g. Timmermann (1996) and
Evans and Honkapohja (1998). In the context of adaptive algorithms, the parameters are restricted so that the
model produces stable predictions; see Ljung and Soderstrom (1985, Section 3.4.4).

5Koop and Korobilis (2012) consider a multivariate specification with possible time-varying dimensions. It
is clear that the approach discussed in this paper generalizes to the multivariate case.
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model with Gaussian innovations and Section 3 discusses the relationship with the adaptive

algorithms used in the literature. Section 4 extends the model to the case of Student-innovations

and Section 5 shows how to impose restrictions to the model parameters. Section 6 reports an

application to inflation dynamics and Section 7 concludes the article.

2 Autoregressive model with time varying parameters

An autoregressive model of order p with time-varying parameters and Gaussian residuals

is defined as

yt = φ0,t + φ1,tyt−1 + ...+ φt,pyt−p + εt, εt ∼ N
(
0, σ2t

)
, t = 1, ..., n. (1)

The model is typically augmented with an updating rule describing the dynamics of the para-

meters. Specifically, the variation of the vector of time-varying parameters, ft = (φ′t, σ
2
t )
′ with

φt = (φ0,t, φ1,t, ..., φp,t)
′, is described by a dynamic model, e.g. a first order Markov process

ft+1 = ω + Af t + ηt, ηt ∼ N (0,Qt) , (2)

where ω, A andQt are matrices of appropriate dimension containing the hyper-parameters, and

ηt is a vector of stochastic shocks driving the parameters’variation. Equations (1)-(2) denote

the typical specification of a parameter-driven model. In particular, given past and concurrent

observations, the filtered estimates of ft are not perfectly predictable. In fact the unobserved

state vector has an associated covariance matrix which is also recursively estimated.6

The alternative avenue to model the time-variation of the parameters, which is followed in

this paper, is represented by observation-driven models. In line with Creal et al (2012) and

Harvey (2013), the dynamics of the time-varying parameters is driven by the scaled score of

the conditional likelihood. The updating rule for filter estimate of ft given information up to

time t− 1, ft|t−1 = (φ′t|t−1, σ
2
t|t−1)

′, is

ft+1|t = ω + Af t|t−1 + Bst, (3)

where ω, A and B are matrices of appropriate dimension containing the static parameters.

The driving mechanism is equal to the scaled score vector, st = I−1t Ot, which is computed as
follows

Ot =
∂ [`t (yt|Ft,θ)]

∂ft|t−1
and It = −E

[
∂2 [`t (yt|Ft,θ)]

∂ft|t−1∂f ′t|t−1

]
, (4)

where `t (yt|Ft,θ) = log p(yt|Ft,θ) is the predictive log-likelihood for the t−th observation
which is conditioned to the information set Ft = {Ft, Yt−1} and the vector of static parameters
θ. Specifically, Ft = {ft|t−1, ft−1|t−2, ...., f1|0} denotes present and past values of the estimated

6For linear and Gaussian models, the likelihood function can be computed in closed form using the Kalman
filter (KF) (see Harvey, 1989 and Kim and Nelson, 1999). In non-linear and non-Gaussian models, the condi-
tional density is instead generally evaluated via simulation methods (see e.g. Durbin and Koopman, 2001).
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parameters and Yt−1 = {yt−1, yt−2, ...., y1} are the past observations.
Note that Ot is known as the score vector and the scaling matrix I−1t is the inverse Fisher

information matrix. As a result, the scaled score vector has the conditional mean E(st|Ft) =

0 and variance E(sts
′
t|Ft) = I−1t : the updating rule (3) takes a step in the direction that

maximizes the predictive likelihood given the past information, therefore it can be rationalized

as a stochastic analog of the Gauss—Newton search direction for estimating the time-varying

parameters.7 Clearly, in the observation-driven framework the vector ft+1|t, although stochastic,

is perfectly predictable at time t. The observation-driven models can be estimated by maximum

likelihood. Thus, the vector of static parameters is estimated as

θ̂ = arg maxL = arg max
n∑
t=1

`t (yt|Ft,θ) .

The evaluation of the log-likelihood is straightforward and the maximization can be obtained

using recursive formulae for the Gradient and the Hessian of L with respect to the static
parameter θ. Alternatively, those derivatives can be obtained numerically. In line with Creal et

al (2012, sec. 2.3) we conjecture that
√
n(θ̂−θ)→ N(0,Ω), where Ω is evaluated by numerical

derivative at the optimum. The observation-driven counterpart of (1) can be expressed as

follows

yt = x′tφt|t−1 + εt, εt|Yt−1 ∼ N(0, σ2t|t−1), t = 1, ..., n, (5)

where xt = (1, yt−1, ..., yt−p)
′ and φt|t−1 = (φ0,t|t−1, φ1,t|t−1, ...., φp,t|t−1)

′. Under Gaussian distri-

bution, the predictive log-likelihood at time t is equal to

`t (yt|Ft,θ) = −1

2
log (2π)− 1

2
log σ2t|t−1 −

ε2t
2σ2t|t−1

, (6)

where εt = (yt − x′tφt|t−1) is the prediction error and σ
2
t|t−1 is the conditional variance.

8 It can

be shown that It is block diagonal so that the scaled score vector st can be specialized in two

parts: the vector sφt driving the coeffi cients9

sφt = (xtσ
−2
t|t−1x

′
t)
−1xtσ

−2
t|t−1εt, (7)

and the scalar sσt driving the volatility

sσt = (ε2t − σ2t|t−1). (8)

In accordance with the literature on time-varying parameters models, we opt for a random

walk specification and the matrix B is restricted to depend only upon two scalar parameters.10

7In principle one could also use a different scaling matrix as discussed in Creal et al (2012, sec. 2.2).
8When the model is written is vector form it becomes evident that the results derived in this paper generalize

to any univariate model with exogenous and/or predetermined regressors.
9Note that the scaling matrix (xtσ

−2
t|t−1x

′
t) is not invertible, we therefore use the Moore-Penrose pseudo-

inverse.
10Lucas (1973) first noted that most policy changes will cause changes in the decision rules that are perma-
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The implied filter is then equal to

φt+1|t = φt|t−1 + κφ(xtσ
−2
t|t−1x

′
t)
−1xtσ

−2
t|t−1εt, (9)

and

σ2t+1|t = σ2t|t−1 + κσ(ε2t − σ2t|t−1). (10)

Equation (9) resembles the Kalman filter, in fact the updated parameters react to the prediction

error εt scaled by a gain which depends on xtσ−2t|t−1. Moreover, (9) also resembles the recursive

least squares where 1/t is replaced by the constant parameter κφ. Equation (10) is the same

as the integrated GARCH model. Note that the time-varying volatility cancel out from the

coeffi cients’dynamics and it does not directly affect the coeffi cients’filtering in (9).11 In order

to avoid swift changes in the parameters, it is customary to replace it with its smoothed

version12

Rt = (1− κh)Rt−1 + κhxtσ
−2
t|t−1x

′
t = Rt−1 + κh(xtσ

−2
t|t−1x

′
t −Rt−1), (11)

where κh is a smoothing parameter to be estimated. As a result the updating rule for the

coeffi cients (9) is equal to

φt+1|t = φt|t−1 + κφR
−1
t xtσ

−2
t|t−1εt. (12)

Equations (10)-(12) describe the dynamics of the parameters in an observation-driven

model. As opposed to the parameter-driven approach in (2), both the signal (5) and the

parameters (3) are driven by the prediction error. The model is therefore similar to the single-

source of error model of Casalas et al (2002) and Hyndman et al (2008).13 Blasques et al.

(2014) focus on the AR(1) specification with constant variance showing that the implied re-

duced form model follows a nonlinear ARMA and show that this class of models is optimal in

terms of the Kullback-Leibler criterium.

3 Relation with the adaptive algorithms

This section highlights the relation between the score-driven model and various adaptive

algorithms widely used in the literature. We illustrate that our setup is very general and nests

some important model used in macroeconomics as well as in econometrics. In particular, the

nent. According to this view we assume that the parameters of the model will drift systematically over time
away from their initial value with no tendency to return to a mean value (see also Cooley and Prescott, 1976).

In practice we restrict ω = 0, A = I and B =

[
κφIp+1 0
0 κσ

]
. One could relax those restrictions allowing a

more general specification of ω, A and B. However, by doing so the model would not resemble a stochastic
version of the Gauss-Newton algorithm (see Remark 1).

11Note that this is no longer the case when the Hessian matrix is replaced with a smoothed version as
described later on.

12For some extreme observation at time t, the second moment matrix can be very large or very small and
this might lead to instability (see Creal et al., 2012). Ljung and Soderstrom (1985) justify the smoothing of
the Hessian matrix appealing to the stochastic Gauss-Newton principle as it is discussed in the next section.

13In the single source of error specification, the state space model has perfectly correlated disturbances, the
MSE of the state vector converges to zero and the filter is equal to the smoother.
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algorithms widely used to model the learning expectations, the large TVP-VAR of Koop and

Korobilis (2012) and the TVP model of Stock and Watson (1996) can be all derived as a special

case of our score-driven model. To facilitate the comparison it is convenient to start with a

model with constant variance, so that the derivations in the previous section can be viewed

as a generalization to the case of time-varying variance. With constant variance, and setting

κφ = κh = κ, the score-driven filter (11)-(12) collapses to

Rt = Rt−1 + κ(xtσ
−2x′t −Rt−1), (13)

φt+1|t = φt|t−1 + κR−1t xtσ
−2εt.

The recursive algorithm in (13) is exactly the Constant Gain Learning (CGL) widely used in

the learning expectations literature.14

Lemma 1 The CGL algorithm weights the observations yt−j with the exponential rate (1−κ)j,

where 0 < κ < 1, and the parameter κ gives a trade-off between the tracking capability and the

smoothness. Moreover, the CGL is a forgetting factor algorithm and can also be derived from

an off-line method, i.e. the discounted least squares principle. See details in the Appendix A.

The discounted regression model has been extensively used in the adaptive control litera-

ture (see Brown, 1963, Montgomery and Johnson, 1976, and Abraham and Ledolter, 1983).

Similarly, in the engineering literature the same algorithm is known as forgetting factor algo-

rithm. Fagin (1964) notes that a given linear state space model might be adequate for a time

period but may not be for long time intervals and therefore proposes to robustify the KF using

an exponentially decay forgetting factor labelled as fading memory (or limited memory) filter

(see Jazwinski, 1970, p. 255).

The CGL algorithm is often derived from a parameter-driven model (2) with specific re-

strictions. In this respect, it is useful to point out the result of the following Lemma.

Lemma 2 Given the following parameter-driven model

yt = x′tφt + εt, εt ∼ N

(
0,

σ2

1− κ

)
, (14)

φt+1 = φt + ηt, ηt ∼ N

(
0,Pt|t

κ

1− κ

)
,

where Pt|t = E[(φt|t−φt)(φt|t−φt)′] and φt|t = E(φt|Yt) are the estimated quantities from the
KF, and κ is the gain parameter. The KF delivers the estimated state vector φt+1|t = E(φt+1|Yt)
which is exactly equal to the CGL algorithm and thus it is a score-driven filter. It is worth

noticing that the restrictions on (14) imply that the shock ηt is driven by the prediction error

and thus the parameter-driven model collapses to an observation-driven model. See Appendix

A for details.

14See, among others, Evan and Honkaphoja (2001), Sargent and William (2005), Branch and Evans (2006)
and Carceles-Poveda and Giannitsarou (2007).
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Koop and Korobilis (2012) propose to estimate a large TVP-VAR using the specification

described in the previous Lemma. Therefore, they use the CGL algorithm which is nested

within the score-driven framework. Koop and Korobilis (2012) also allow for a time-varying

covariance matrix estimated by an exponential smoothing; later on we show that also this

feature is nested in our framework.

Another widely used specification of the parameter-driven model (14) assumes that εt ∼
N (0, σ2) and ηt ∼ N (0, κ2Σ) with Σ = σ2[E(xtx

′
t)]
−1 (see Stock and Watson, 1996, Sargent

and William, 2005, Branch and Evans, 2006 and Li, 2008). Evans et al. (2010) named this

specification Stochastic Gradient algorithm,15 whereas Slobodyan and Wouters (2012) refer to

it as KF learning.

Lemma 3 Setting ηt ∼ N (0, κ2Σ) implies that the parameter-driven model (14) collapses

to an observation-driven model and the KF converges to the score-driven filter (9) where the

time-varying scaling matrix is replaced by its unconditional expectation σ−2E(xtx
′
t). Similarly,

setting ηt ∼ N (0, κ2Σ−1) leads to the score-driven filter (9) where the scaling matrix is replaced

by the identity matrix. See details in the Appendix A.

In fact, all the recursive algorithms discussed in this sub-section can be seen as particular

cases of the adaptive algorithms popularized by Ljung and Soderstrom (1985), which are the

building blocks of the learning expectations literature in macroeconomics.

Remark 1 Following Ljung and Soderstrom (1985), the CGL can be obtained from a recursive
solution of a quadratic loss function. In particular, given a sequence of random IID random

variables ε = {ε1, ..., εT}, the optimal choice of the full coeffi cients’ path across time, that
is φ = {φ1, ...,φT}, can be obtained from a quadratic criterion function and it leads to the

stochastic analog of a Gauss-Newton search direction method

φ̂t+1|t = φ̂t|t−1 + κt[H(φ̂t|t−1, εt)]
−1G(φ̂t|t−1, εt),

where G(φt|t−1, εt) and H(φt|t−1, εt) are the Gradient vector and the Hessian matrix respec-

tively, and κt is a sequence of gain parameters appropriately chosen. Under Gaussian distrib-

ution, the recursive Gauss-Newton solution for a quadratic criterion function is equivalent to

the score-driven model proposed in this paper.

Remark 1 highlights how the score-driven model (5)-(10)-(12) extends the adaptive algo-

rithms allowing for non-Gaussian distribution as well as for changes in volatility. In fact, the

estimated volatility (10) is obtained following exactly the same criterion and the implied filter

is an exponentially smoothing of the squared prediction errors

σ2t+1|t = κσ

∞∑
j=0

(1− κσ)jε2t−j.

15Note that this specification is an approximation of the Stochastic Gradient Algorithm; see details of Lemma
3 discussed in the Appendix.
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Ljung and Soderstrom (1985, sec. 3.4.3) and Koop and Korobilis (2012) use exactly the same

model to capture the variation in the volatility. However, they propose this model in a rather

heuristic way without a derivation from the Gauss-Newton principle.

The next section extends the adaptive algorithms to the case of non-Gaussian distribution,

i.e. the Student-t distribution. This can be considered as a recursive algorithm for a non-

quadratic loss function (see Ljung and Soderstrom, 1985, sec. 3.5).

4 Student-t Distribution

The score-driven model can be easily extended to the case of non-Gaussian distributions.

The Student-t has higher mass probability on the tails of the distribution, it can therefore be

considered for cases where rare events become relevant. In light of the recent turbulent time

the departure from Gaussianity become very relevant in both applied and theoretical works

(see Curdia et al. 2013, Chiu et al., 2014).

Harvey and Luati (2012) highlight that a score-driven model with Student-t innovations

leads to a filter which is robust to a few large errors. Thus model (5) becomes16

yt = x′tφt|t−1 + εt, εt|Yt−1 ∼ tυ(0, σ
2
t|t−1), (15)

where σ2t|t−1 is the conditional variance and υ is the degrees of freedom parameter regulating

the heavy-tails. The predicted log-likelihood can be written as

`t (yt|Ft,θ) = c (η)− 1

2
lnσ2t|t−1 −

(
η + 1

2η

)
log

[
1 +

η

1− 2η

ε2t
σ2t|t−1

]
, (16)

where

c (η) = log

[
Γ

(
η + 1

2η

)]
− log

[
Γ

(
1

2η

)]
− 1

2
log

(
1− 2η

η

)
− 1

2
log π,

η = 1/υ and Γ(·) is the Gamma function. It can be shown that the scaled-score driving the
coeffi cients and the variance are equal to

sφt =
(1− 2η) (1 + 3η)

(1 + η)
(xtσ

−2
t|t−1x

′
t)
−1xtσ

−2
t|t−1wtεt, (17)

and

sσt = (1 + 3η) (wtε
2
t − σ2t|t−1). (18)

Notice that both depend upon scalar weights

wt =
(1 + η)

(1− 2η + ηζt)
, (19)

16Model (15) generalizes the setting in Harvey and Luati (2012) to the case of additional regressors and time-
varying variance. A score-driven model with non-Gaussian innovations, not only modifies the likelihood function
(as in the t-GARCH of Bollerslev, 1987) but it also implies a different filtering process for the time—varying
parameters.
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where ζt = ε2t/σ
2
t|t−1 and nest the Gaussian case for η = 0 (υ → ∞); see the Appendix A for

details. Clearly, the resulting adaptive algorithm is affected by the distributional assumption.

Furthermore, while in a Gaussian setting the score driving the dynamic of the coeffi cients is not

affected by the variance, when we allow for Student-t the time-varying volatility has a direct

impact on the updating mechanism for the time-varying coeffi cients.

The crucial role played by the weights (19) is visualized by Figure 1. The left panel shows

the magnitude of the weights wt as a function of the standardized prediction errors, while the

right one shows the weighted realizations wt
√
ζt which is known as influence function in robust

statistics (see Maronna et al., 2006). Note that large innovations are categorized as being part

of the tails of the distribution. As such they are downweighted and have a small effect on the

dynamic of the time-varying parameters.

[insert Figure 1]

Under Student-t distribution the score-driven algorithm leads to a robust filter and gener-

alizes the CGL algorithm (13).

Proposition 1 Under Student-t distribution the score-driven model leads to the following
adaptive algorithm for the time-varying parameters

Rt = Rt−1 + κh[αwt(xtσ
−2
t|t−1x

′
t −Rt−1)], (20)

φt+1|t = φt|t−1 + κφR
−1
t xtσ

−2
t|t−1[αwt(yt − x′tφt|t−1)],

σ2t+1|t = σ2t|t−1 + κσ[(1 + 3η) (wtε
2
t − σ2t|t−1)],

with α = [(1− 2η) (1 + 3η) /(1 + η)], wt defined in (19) and θ = (υ, κh, κφ, κσ)′ is the corre-

sponding vector of static parameters. The magnitude of the weights wt depends on how close the

actual observation is to the center of the distribution of εt: large deviations are downweighted

and a small value of wt is more likely with lower degree of freedom and lower dispersion of

the distribution. Therefore, the recursions above imply a double weighting scheme, i.e. the

observations are weighted both across time and realizations, and the estimated time-varying

parameters are robust to extreme events.

A simplified version of model (15) helps clarify the impact of the double weighting. Assume

that xt = 1 and wt is exogenously given. This specification leads to an IMA(1,1) model with

time-varying moving average coeffi cient (1−κθwt), and time-varying variance. The time-varying
mean can be expressed as follows

µt+1|t = µt|t−1 + κθwt(yt − µt|t−1) = κθ

∞∑
j=0

γj ỹt−j =
κθ

1− (1− κθwt)L
ỹt, (21)

with ỹt−j = wt−jyt−j. Specifically, equation (21) shows that the observations are: (i) weighted

to be robust to the impact of extreme events, i.e. ỹt = wtyt, and (ii) they are also smoothed
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across time with weights γj =
t∏

k=t−j+1
(1 − κθwk), γ0 = 1 and κθ = κφα. This is equivalent

to a one-sided low-pass filter with time-varying coeffi cients, that is κθ/[1 − (1 − κθwt)L], and

it implies a time-varying transfer function.17 Similarly, in order to estimate the variance σ2t ,

the squared prediction errors ε2t−j are weighted by γjwt, where the weights across time are

γj = [1− κσ (1 + 3η)]j, namely

σ2t+1|t = σ2t|t−1 + κζ(wtε
2
t − σ2t|t−1) = κζ

∞∑
j=0

(1− κζ)j ε̃2t−j =
κζ

1− (1− κζ)L
ε̃2t , (22)

where ε̃2t−j = wt−jε
2
t−j is the weighting across realizations, and κζ/[1−(1−κζ)L] is the standard

one-sided low-pass filter, with κζ = κσ (1 + 3η).

Remark 2 In practice the weights wt depend (non-linearly) on the current observations and
the past parameters’estimation through ζt = ε2t/σ

2
t|t−1. Therefore, the score-driven model under

Student-t distribution solves a recursive stochastic Gauss-Newton algorithm for a non-quadratic

loss function and it leads to a non-linear filter. Therefore, it cannot be derived as a solution

of quadratic loss function with re-weighted observations of the type discussed in Ljung and

Soderstrom (1985, sec. 2.2).

5 Model restrictions

Applications of time-varying parameters models often require to impose restrictions on the

parameters space. For instance, in the autoregressive model (1) it is customary to impose

restrictions on the autoregressive coeffi cients so that the implied roots are always within the

unit circle, i.e. restrictions implying a locally stationary model. In the Bayesian framework

constraints are usually imposed by rejection sampling (see e.g. Cogley and Sargent, 2005, and

Koop and Potter, 2012). Thus, however, leads to heavy ineffi ciencies.

General non-linear restrictions can be accommodated within the score-driven model. This

requires to reparameterize the model with respect to a new vector of unconstrained parameters.

Define the following transformation ft = g(f̃t), where ft is the original vector of parameters,

f̃t is the new parametrization and g(·) is a continuous and twice differentiable transformation
function, often known as link function, which maps the new vector of unconstrained parameters

into the space of constrained parameters. Following Creal et al (2012) and Harvey (2013), the

score-driven model (3) can be expressed with respect to the new vector of parameters

f̃t+1|t = ω̃+Ãf̃t|t−1 + B̃s̃t, (23)

where s̃t = Ĩ−1t Õt is the scaled score computed with respect to f̃t = g−1(ft), where g−1(·) is the

17The transfer function ca be expressed as follows G(λ) = κθ
[
1 + (1− κθwt)2 − 2(1− κθwt) cos(λ)

]−1/2
,

where 0 < λ < π is the radian frequancy. See Dahlhaus (2012) for details on stationary processes with
time-varying spectral density.
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inverse function of g(·). For a given continuous and differentiable function g(·), the new score
vector is then

Õt =
∂`t

∂ f̃t|t−1
=

[
∂`t

∂f ′t|t−1

∂ft|t−1

∂ f̃ ′t|t−1

]′
= Ψ′tOt,

where Ψt = ∂ft|t−1/∂ f̃ ′t|t−1 is the Jacobian of g(·) and is deterministic given past information.
Therefore, the transformed scaling matrix is equal to Ĩt = Ψ′tItΨt and the new scaled score is

then equal to

s̃t = (Ψ′tItΨt)
−1Ψ′tOt. (24)

The transformation function g(.) imposes (possibly) non-linear restrictions on the time-

varying parameters. It is worth noticing that under Gaussian distribution, the non-linear

filtering problem can be solved by first order Taylor approximation. This argument is formalized

in the Theorem below. Also in this case we can replace the scaling matrix Ĩt with its smoothed
version Rt = (1− κh)Rt−1 + κhĨt.

Theorem 1 Consider the Gaussian model (14) and impose a non-linear transformation on the
coeffi cients φt = g(αt). The model can be solved by the Extended KF of Anderson and Moore

(1979, sec. 8.2) and the implied algorithm is exactly equal to the score-driven filter (23).

(Proof in the Appendix A.)

The constrained algorithm has been commonly implemented in the literature by means

of the projection facility (see Ljung and Soderstrom, 1985, sec. 6.6, Timmermann, 1996, and

Evans and Honkapohja, 1998). Specifically, they use a constant parameter weighting the driving

process such that the incremental step is progressively shrunk until the restriction is satisfied.18

The adaptive model (5), with (23)-(24), automatically achieves the same objective. In fact,

the matrix Ψt re-weights the Gauss-Newton search direction so that the restrictions are always

satisfied. With respect to the standard projection facility, the re-weighting of our adaptive

model varies at different points of the recursion and, most importantly, shrinks the search in

the optimal way as opposed to the usual scalar shrinkage.

In the next sub-sections we illustrate how to implement specific restrictions which are

commonly imposed to an autoregressive model with time-varying parameters.

5.1 Imposing stationarity

In this section we consider restrictions to the parameters space implying the model is locally

stationary. This exploits the mapping between the coeffi cients of an autoregressive model and

its partial autocorrelations. Stationarity is then imposed by restricting the latter in the interval

(−1, 1). To simplify the notation we start with model (1) without the intercept and then we

consider the general model.

18In practice this is often implemented by skipping the updating each time the restrictions are violated.
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Proposition 2 For each point in time t, let φt = (φ1,t, ..., φp,t)
′ denote the vector of coef-

ficients, πt = (π1,t, ..., πp,t)
′ the corresponding vector of partial autocorrelations and αt =

(α1,t, ..., αp,t)
′ the vector of unrestricted coeffi cients. A locally stationary model has φt∈ Sp,

where Sp is the hyperplane with all roots, zt, inside the unit circle, i.e. φt(zt) = 0, zt ∈ Cp

and |zj,t| < 1 for j = 1, ..., p. It is possible to show that φt∈ Sp if and only if πt ∈ Rp and

|πj,t|<1. Therefore, let φt = Φ(πt) define the function mapping the coeffi cients to the partial

autocorrelations and πt = Υ(αt) a function that restricts the partial autocorrelations to lie in

the region (−1, 1). The function φt = Φ(πt) is uniquely obtained by the last recursion of the

Durbin-Levinson algorithm

φj,kt = φj,k−1t − πk,tφk−j,k−1t for j = 1, ..., k − 1 and k = 2, ..., p, (25)

with φ1,1t = π1,t and φ
k,k
t = πk,t. The function πt = Υ(αt) is any monotonic and differentiable

function

πj,t = Υ(αj,t), such that πj,t∈ (−1,1), j = 1, ..., p. (26)

The composite function g(·) = Φ[Υ(·)] maps the restricted stationary coeffi cients into the un-
restricted parameters, i.e. φt = g(αt) with αt∈ (−∞,∞) and φt∈ Sp.

(The Proof follows from Bandorff-Nielsen and Schou, 1973, and Monahan, 1984).

The functions Φ(·) and Υ(·) are continuous and differentiable and the Jacobian matrix is

Ψt =
∂g(αt)

∂α′t
=
∂Φ(πt)

∂π′t

∂Υ(αt)

∂α′t
, (27)

where ∂Υ(αt)/∂α
′
t is diagonal matrix containing ∂Υ(αjt)/∂αj,t with j = 1, ..., p, while the

analytic expression for ∂Φ(πt)/∂π
′
t = Γt is obtained in the theorem below.

Theorem 2 The Jacobian matrix Γt is obtained from the last iteration of the recursion

Γk,t =

[
Γ̃k−1,t bk−1,t

0′k−1 1

]
, (28)

Γ̃k−1,t = Jk−1,tΓk−1,t, k = 2, ..., p,

with

bk−1,t = −



φk−1,k−1t

φk−2,k−1t
...

φ2,k−1t

φ1,k−1t


, Jk−1,t =



1 0 · · · 0 −πk,t
0 1 0 −πk,t 0
...

. . .
...

0 −πk,t 0 1 0

−πk,t 0 · · · 0 1


. (29)

Note that if k is even the central element of Jk−1,t it is equal to (1 − πk,t). The recursion is
initialized with J1,t = (1− π2,t) and Γ1,t = 1.

(Proof in the Appendix A).

13



Given the elements of the scaled score vector sφt = I−1φt Oφt (computed with respect to φt),
the adaptive algorithm for the transformed coeffi cients αt is equal to

αt+1|t = αt|t−1 + κα(Ψ′tIφtΨt)
−1Ψ′tOφt, (30)

where φt = g(αt) and Ψt = Ψ(αt) are computed as outlined in Proposition 2 and Theorem

2, respectively. When the time-varying intercept is included without any restrictions, i.e.

φ0,t = α0,t, the Jacobian matrix is modified as follows

Ψt =
∂φt
∂α′t

=

[
1 0′

0 Ψ22,t

]
, (31)

where Ψ22,t = ∂(φ1,t, ..., φp,t)
′/∂(α1,t, ..., αp,t) as computed in Theorem 2.

5.2 Bounded trend

It is also often the case that in practice one wants to discipline the model so as to have

a bounded conditional mean. Following Beveridge and Nelson (1981), a stochastic trend

can be expressed in terms of long-horizon forecasts. For a driftless random variable, the

Beveridge-Nelson trend is defined as the value to which the series is expected to converge

once the transitory component dies out (see e.g. Benati, 2007 and Cogley et al, 2010), i.e.

limh→∞ Et (yt+h) = µt. . Specifically, for a stationary time-varying autoregressive process,

local-to-date t approximation implies that the unconditional time-varying mean is equal to

µt = φ0,t/(1 −
∑p

j=1 φj,t). In line with Cogley et al (2010), our specification implies that the

detrended component, that is ỹt = (yt − µt), follows a locally stationary time-varying AR(p)
model, i.e. Pr {limh→∞ Et (ỹt+h) = 0} = 1. Following Chan et al (2013), we want to restrict µt
∈ [b, b].

Proposition 3 Let h (·) be any continuous and differential function so that h (·) ∈ [b, b]. The

restriction on µt ∈ [b, b] can be achieved with the following transformation

φ0,t = h (α0,t)

(
1−

p∑
j=1

φj,t

)
. (32)

The Jacobian matrix is then equal to

Ψt =
∂φt
∂α′t

=

[
ψ11,t ψ′12,t

0 Ψ22,t

]
, (33)

where Ψ22,t has been computed in Theorem 2, while ψ11,t and ψ
′
12,t are

ψ11,t =
∂h (α0,t)

∂α0,t

(
1−

p∑
j=1

φj,t

)
, ψ′12,t = −h (α0,t) ι

′Ψ22,t,
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where ι = (1, 1, ..., 1)′.

To summarize, for each time t, the recursion (30) is implemented as follows: first, the

stationary AR coeffi cients are computed following Proposition 2; second, the constrained in-

tercept and the Jacobian matrix Ψt are computed as described in Proposition 3 so that all

the necessary elements to update αt|t−1 are then available. In this section we have shown how

to implement some popular restrictions in a score-driven setup and this leads to a non-linear

filter that can be implement in the Classical framework without incurring in the computational

demanding simulation methods of Koop and Potter (2011) and Chan el al (2013).

6 Application to the inflation dynamics

We implement the adaptive model in the analysis of inflation dynamics. The change in

the persistence of the inflation has been strongly supported by Cogley and Sargent (2001).19

Specifically, they find that the persistence of inflation in the United States rose in the early

1970s and remained high during this decade, before starting a gradual decline from the early

1980s until the present. Pivetta and Reis (2007) challenge these findings presenting evidence of

a stable level of persistence throughout the sample. It is therefore interesting to examine those

issues in the light of our model. Another issue that has received much attention in recent years

is related to the presence of a time-varying level of trend-inflation (Cogley, 2002, and Stock and

Watson, 2006). Specifically, trend-inflation is generally thought of as a measure of the public’s

perception of the credibility of the central bank inflation targeting, (see Kozicki and Tinsley,

2001, and Faust and Wright, 2011). Furthermore, Clark and Doh (2011) and Chan et al.

(2013) highlight how accurate estimates of trend-inflation can improve the inflation forecasts

at a long-horizon.

Following Cogley and Sargent (2005) and Pivetta and Reis (2007), we estimate the following

p-th order autoregressive representation for inflation:

πt = φ0,t +

p∑
j=1

φj,tπt−j + εt, εt ∼
(
0, σ2t

)
, t = 1, ..., n. (34)

This specification is flexible enough to capture changes in the long-run trend as well as changes

in the persistence of the deviation around the trend. In addition, it allows for variation in

the volatility which has been proven to be particularly important to understand the dynamic

of inflation (see e.g. Pivetta and Reis, 2007 and Clark and Doh, 2011). Those features are

of foremost importance to understand the changes in inflation dynamic over the post-WWII

sample. The literature has mainly focussed on the parameter-driven models, estimated by

Bayesian methods.20

In the application we allow for various specifications of (34). Specifically, we first consider

a model with time-varying trend-only (p = 0), then we allow for various specifications of

19Similar results are provided by Taylor (2000) and Brainard and Perry (2000).
20A noticeable exception is the work of Pivetta and Reis (2007).
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the autoregressive components (p = 1, 2 and 4), and the time-varying mean φ0,t is always

included. Chan et al. (2013) forcefully argue for imposing bounds on the long-run trend on

the grounds that a level of the trend inflation that is too low (or too high) is inconsistent with

the clear mandate of the central bank inflation stability. Therefore, for every specification we

also include a counterpart derived with a bound (between 0 and 5) on the long-run trend.21

Furthermore, we consider all specifications under Gaussian and Student-t innovations. Finally,

partial autocorrelations are always bounded so as to impose local stationarity of the model and

the variance is reparameterized so that it is always positive.

Stock and Watson (2007, SW hereafter) documents that when correctly specified, a model

featuring a time-varying trend-inflation is the best performing model for producing point fore-

casts. Given the prominence of the SW benchmark, it is worth discussing how this model is

related to the score-driven model (5) without the autoregressive terms. In SW the conditional

mean and the measurement error are driven by two independent shocks with stochastic volatil-

ity. The model then implies that inflation follows a reduced form IMA(1,1) with time-varying

MA coeffi cient and time-varying variance, where both parameters are driven by a convolu-

tion of the two independent stochastic volatilities. The observation-driven model also implies

an IMA(1,1) which has time-varying variance but constant coeffi cient under Gaussian innova-

tions. Yet, as was pointed out in Section 4, when the Student-t distribution is considered the

score-driven model produces an IMA(1,1) with both time-varying coeffi cients and time-varying

variance.

[Insert Table 1]

Table 1 reports the estimates for the various specifications for the annualized quarterly

US-CPI inflation over the period 1955Q1—2012Q4. Besides the estimates of the parameters

and their associated standard error, we also report the value of the log likelihood function

and the Akaike (AIC) and Bayesian Information Criterion (BIC). The trend-only specification

with Gaussian innovations implies that the trend is estimated by the exponential smoothing

as in Cogley (2002).22 This model features a high estimation of the smoothing parameter

which implies a faster learning process. This is also true for all the specifications without

autoregressive coeffi cients. Adding the autoregressive components shows a substantially smaller

estimate of the smoothing parameter as some of the persistence of inflation is now captured

by the autoregressive terms. In contrast, the smoothing parameter associated to the variance

equation is instead stable and typically higher than the one associated with the coeffi cients,

lending support to the idea that changes in the variance are particularly relevant in our sample

(see also Pivetta and Reis, 2007). Noticeably, the specifications with Student-t distribution

21The bounds correspond to the upper and lower bounds in the posterior in Chen et al. (2013). They
highlight that it is diffi cult to identify exactly those bounds. They also show that, once the bounds are imposed
to the autoregressive specification, variations in the estimated long-run trend tends to be very limited. We also
obtain a stable estimate for the long-run trend. This is typically not affected by the choice of the upper and
lower bound.

22Notice that with respect to the model in Cogley (2002) the specification used as benchmark allows for
the time-variation in the variance. The latter does not affect the way the trend component is computed.
Nevertheless, it does affect the estimate of the smoothing parameter.
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always considerably outperform the ones with Gaussian innovations, as for the likelihood values

and information criteria. In fact, the estimated low value of degrees of freedom υ depicts a

remarkable difference between the Gaussian and the Student-t specification. The low value of

υ suggests that there might be pronounced variations of inflation at the quarterly frequency.

Those variations either arise from measurement issues or are related to the presence of rare

events that structural macroeconomics should explicitly account for (as recently advocated by

Curdia et al., 2013). Notice that υ = 5 is also consistent with the calibrated density forecast

in Corradi and Swanson (2006). Furthermore, the AR(1) specification without bounds on the

long-run mean slightly outperforms all the others in terms of fitting.

6.1 Estimates of Trend Inflation, Persistence, and Volatility

Figure 2 presents estimates of the long-run trend in inflation for the various specifications

considered in this paper. The long-run trend, when is not bounded, tends to follow the underly-

ing inflation, smoothing away the transitory fluctuations. Some differences can be appreciated

when comparing the different specifications. The trend-only specification follows inflation very

closely trough the ups and downs. When we add autoregressive terms to the model, few differ-

ences can be appreciated across various specifications. The inclusion of lags delivers a smoother

long-run trend, suggesting that the high inflation in the early part of the sample and in the

70s is to be attributed to deviations from the trend. All specifications suggest that since the

mid 90s, the long-run trend is stable between 2-3%, going slightly over 3% on the run up to

the recent recession. Also, it is worth noticing that the specification with Student-t are less

affected by the sharp transitory movements in inflation, in particular in the last part of the

sample. Imposing the upper bound on the long-run mean implies a qualitatively similar pic-

ture for the trend-inflation across the specifications.23 The trend is consistent with the idea

of a central bank anchoring the expectations of trend-inflation to a fairly stable level over the

sample. Trend-inflation rises above 3% in the early 70s and then decreases back to a slightly

lower level only in the mid 90s. It is interesting to note that the pattern in the long-run trend

is quite similar to the one found by Chan et al. (2012), although they use a different model

specification and estimation techniques.

[Insert Figure 2]

Moving to the analysis of the persistence in inflation, for p > 1 we follow Pivetta and Reis

(2007) and compute both the sum of the AR coeffi cients and the largest root as proxy of the

overall persistence; those are shown in Figures 3 and 4. Similar to Cogley and Sargent (2001),

most of our specifications tend to suggest that the persistence of inflation in the US rose in

the early part of the sample to reach the pick during the great inflation of the 1970s, before

starting a gradual decline from mid to late 1980s. Yet it is also interesting to note that allowing

23Figure 2 excludes the trend-bound specification which is destined to reach the bounds during the great
inflation period by construction.
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for a large number of lags tends to decrease the estimated persistence. This finding reconciles

the different results obtained by Pivetta and Reis (2007), who focus on time-varying AR model

with three lags. It reports evidence of little variation in inflation persistence. Interestingly, the

specifications with Student-t innovations are more robust to sharp variations which are due to

the short lived spikes in the late part of the sample.

[Insert Figure 3]

[Insert Figure 4]

Figure 5 reports measures of the change in volatility. Some interesting issues emerge. All

specifications show that the variance of inflation was substantially higher in the 50s, in the

70s and then again in the last decade. As in Chan et al. (2013), the trend-only specifications

feature substantial differences between bound versus unrestricted trend. Clearly, the bounded

specifications overstate the level of volatility in the period when the bound is binding. Inter-

estingly, if we compare Gaussian and Student-t distribution, they share similar low-frequency

variation and the specifications with Student-t innovation display substantially more variation

in the volatility. Consequently, with Student-t innovations the variance is less affected by the

outliers and it can better adjust to accommodate changes in the dispersion of the central part

of the distribution. This latter result is particularly important in light of the considerable

evidence in favor of the Student-t specification reported in the previous sub-section. In fact,

most of the macroeconomic literature, which has mainly focused on Gaussian distribution, has

reported and emphasized the importance of the low frequency variation in the volatility. Fur-

thermore, it is also worth mentioning that the measures based on the Student-t are also more

robust to single outliers. Indeed, it is clear that under Gaussianity the volatility in the last

part of the sample seems to be disproportionately affected by very few observations.

[Insert Figure 5]

6.2 Forecasting Evaluation

In this section we assess the forecasting performance of the various specifications. Specifi-

cally, we evaluate the forecasts over the period 1973Q1—2012Q4, with the model re-estimated

recursively over an expanding window. Consistent with a long-standing tradition in the learn-

ing literature (referred to as anticipated-utility by Kreps, 1998), we update the coeffi cients

period by period and then treat the updated values as if they remained constant going forward

in time. We first consider point forecast and use both root mean squared error (RMSE) and

the absolute mean error (MAE). The specification with trend-only and Gaussian innovation is

taken as the benchmark model, as this is the closest specification to the one of SW and it very

close to the model of Cogley (2002).

Table 2 reports the results. Despite the well-known performance of the benchmark model,

many of the alternative models tend to have lower RMSE or MAE. This improvement becomes
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substantial at longer forecast horizons, although in most of the cases the difference in forecasting

performance is not statistically significant.24 A comparison between the Gaussian and Student-

t models reveals little differences in terms of point forecast. Imposing bounds on the long-run

mean marginally enhances the performance of the various specifications, and in particular for

the specification with Student-t innovations.25

[Insert Table 2]

Table 3 reports the results from a density forecast exercise where we focus on the one-step-

ahead forecast. A comparison of the average log score reveals that the models with Student-t

innovations substantially improve in performance with respect to the ones with Gaussian inno-

vations, regardless of the model.26 Furthermore, the table reports two tests for the calibration

of the densities. One is the LR test on the inverse transformation of the PITs (Berkowitz, 2001)

and the other is the nonparametric test of Rossi and Sekhposyan (2013, RS hereafter). The

latter test remains valid also in the presence of parameter estimation error. The specifications

with Gaussian innovations prove to be not well calibrated. In order to understand why this is

the case Figure 6 plots the empirical distribution function (p.d.f.) of the PITs. In addition to

the PITs, we also provide the 95% confidence interval (broken lines) using a Normal approxi-

mation to a binomial distribution as in Diebold et al. (1998). Figure 7 displays the cumulative

distribution function (c.d.f.) of the PITs for each realization, under the null hypothesis the

PITs should be uniformly distributed. Therefore the c.d.f. of the PITs should be the 45o line.

The figure also reports the critical values based on the RS test. If the c.d.f. of the PITs is

outside the critical value lines, we conclude that the density forecast is not well calibrated.

[Insert Table 3]

From both figures it is evident that the models with Gaussian innovations tend to produce

densities where too many realizations fall in the middle of the forecast densities relative to

what we would expect if the data were really Normally distributed.

[Insert Figure 6]

[Insert Figure 7]

In Table 4, for each pair of models, we report the p-values of the test of difference in the

average log predictive score using uniform weights, as outlined in Amisano and Giacomini

24Despite the expanding window, it is possible to apply the Giacomini and White (2006) test as the models
implicitly discount the observations, so that the earlier observations tend to have limited or no relevance to the
estimates in the late part of the sample that is used to forecast.

25The trend-only specification with restricted long-run mean is always outperformed by the alternative ones,
in particular for the short horizon. Anyway, the relative performance of this specification is severely biased by
the inclusions of the great inflation period (mid 70s-80s), as the model has an upper boundeat 5%.

26Clark and Ravazzolo (2012) document the gains of allowing for fatter tails. However, they found much
smaller improvement.
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(2007). The results confirm that the substantial differences between the Normal and Student-t

are indeed significant. At the same time, the p-values confirm that some of the differences

across the various specifications with Student-t innovations are significative, but none of the

various specifications clearly outperforms the others.

[Insert Table 4]

The adaptive model developed in this paper delivers a model-consistent algorithm in pres-

ence of heavy tails distribution. Appendix B explores the importance of using a law of motion

for the parameters consistent with the score-driven model as opposed to some ad-hoc spec-

ifications. We show that the score-driven specification outperforms the alternative ones: in

particular, both the low degree of freedom and the score-driven law of motion, are important

to achieve a well calibrated density forecasts.

Concluding, the empirical exercise shows that the model with Student-t distribution pro-

duces time variation in the parameters which are robust to the presence of heavy tails. Fur-

thermore, the volatility is less affected by the behavior in the tail of the distribution so that it

can better reflect the changes in the spread of the central part of the density. These aspects

of the model are key in order to retrieve well calibrated density forecast for inflation over the

sample analyzed.

7 Conclusion

In this paper we derive an adaptive algorithm for time-varying autoregressive models, both

under Gaussianity and with heavy tails using a Student-t distribution. Following Creal et al.

(2012) and Harvey (2013), the score of the conditional distribution is the driving process for the

evolution of the parameters. This approach extends the least squares algorithms popularized

by Ljung and Soderstrom (1985) - which are the building block of the learning expectation

literature - to non-quadratic criterion functions. Furthermore, the algorithm is extended to

incorporate restrictions which are popular in the empirical literature. Specifically, the model

is allowed to have a bounded long-run mean and the coeffi cients are restricted so that the

model is locally stationary. Moreover, the adaptive algorithm is extended to an environment

with changes in volatility and non-Gaussian distribution. The latter extension robustifies the

standard adaptive algorithms to the presence of tail events. With regards to the parameter-

driven models, the route taken in this paper does not require the use of simulation techniques

and thus has a clear computational advantage especially when restrictions on the parameters

are imposed.

We apply the algorithm to the study of inflation dynamics. Several alternative specifications

are shown to track the data very well, so that they give a parsimonious characterization of the

inflation dynamics and producing good forecasts. Allowing for heavy-tails is found to be a key

ingredient to obtain well calibrated density forecasts over the analyzed sample. The dynamics

of the parameters under Student-t innovations are more robust to short lived variations in
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inflation, especially in the last decade. Furthermore, the use of heavy-tails highlights the

presence of high-frequency variations in the volatility on top of the well documented low-

frequency variations.

The results of this paper can be extended along various directions. The convergence prop-

erties of the algorithm are to be explored, so that the algorithm could be directly applicable

to the study of the convergence to equilibrium under learning expectations (in an environment

with changes in volatility or/and heavy tails). Furthermore, the model can be extended (along

the lines of Koop and Korobilis, 2012) to the multivariate case where the dimensions of the

model might be so large that the use of MCMC methods is infeasible and imposing stationarity

is problematic.
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Trend Trend-B AR(1) AR(1)-B AR(2) AR(2)-B AR(4) AR(4)-B

Normal
κc 0.5309 0.2055 0.1483 0.0861 0.1168 0.0976 0.1360 0.0960

(0.0214) (0.0221) (0.0227) (0.0201) (0.0215) (0.0209) (0.0224) (0.0206)
κσ 0.1467 0.4870 0.1830 0.2831 0.1661 0.2669 0.2144 0.2729

(0.0225) (0.0203) (0.0233) (0.0232) (0.0229) (0.0233) (0.0233) (0.0230)

LogLik -549.1139 -604.3270 -541.1469 -535.9191 -551.3741 -535.4122 -544.2799 -545.2302
AIC 1102.2277 1212.6541 1086.2937 1075.8381 1106.7481 1074.8245 1092.5598 1094.4603
BIC 1109.3491 1219.7754 1093.4151 1082.9595 1113.8695 1081.9458 1099.6811 1101.5817

Student-t
κc 0.4707 0.8197 0.1704 0.0735 0.0978 0.0683 0.1381 0.0867

(0.0700) (0.1649) (0.0003) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
κσ 0.2116 0.2461 0.1697 0.2624 0.2171 0.2527 0.2598 0.2952

(0.0847) (0.1137) (0.0003) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
υ 5.3309 5.8753 5.1371 4.2080 5.7377 4.7426 6.2070 5.6393

(1.2107) (1.4062) (0.0019) (0.0001) (0.0005) (0.0001) (0.0006) (0.0003)

LogLik -523.1822 -561.7474 -519.5975 -520.5671 -526.5179 -520.7939 -520.5114 -521.3150
AIC 1052.3645 1129.4949 1045.1951 1047.1342 1059.0359 1047.5879 1047.0227 1048.6299
BIC 1063.0465 1140.1769 1055.8771 1057.8163 1069.7179 1058.2699 1057.7048 1059.3120

Table 1: Estimation of the annualized quarterly US-CPI inflation, πt = 400∆ log pt, sample
1955Q1-2012Q4. “Trend” denotes the specification without ARs coeffi cients (p = 0), “B”
denotes the specifications with restricted long-run mean, and κc, κσ and υ are the static
parameters (s.e. in brackets).
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RMSE MAE
h=1 h=4 h=8 h=1 h=4 h=8

Normal
Trend 2.1829 2.8050 3.3144 1.4529 2.0313 2.3960

– – – – – –

Trend-B 1.4379 1.1448 0.9086 1.5986 1.1854 0.9780
(0.0001) (0.1685) (0.4930) (0.0000) (0.0810) (0.8676)

AR(1) 0.9652 0.9438 0.8658 0.9973 0.9497 0.8668
(0.3171) (0.3479) (0.1694) (0.9473) (0.4926) (0.1681)

AR(1)-B 1.0422 0.9616 0.8830 1.0922 0.9485 0.8857
(0.4135) (0.5723) (0.3359) (0.0809) (0.5019) (0.2873)

AR(2) 0.9787 0.9271 0.9158 0.9957 0.9451 0.9116
(0.4128) (0.0501) (0.2053) (0.8922) (0.2811) (0.2167)

AR(2)-B 1.0255 0.9372 0.8764 1.0596 0.9339 0.8587
(0.2646) (0.2053) (0.2189) (0.0608) (0.2691) (0.1013)

AR(4) 0.9492 0.9061 0.8892 0.9693 0.9287 0.8820
(0.0966) (0.0318) (0.0726) (0.4023) (0.1703) (0.0616)

AR(4)-B 1.1479 0.9617 0.8916 1.0828 0.9261 0.8600
(0.3362) (0.5566) (0.3774) (0.3023) (0.2810) (0.1437)

Student-t
Trend 1.0191 0.9878 0.9898 0.9856 0.9792 0.9735

(0.6677) (0.4429) (0.7113) (0.7342) (0.2304) (0.3427)
Trend-B 1.4013 1.1109 0.8800 1.4728 1.0932 0.9236

(0.0007) (0.2944) (0.3666) (0.0000) (0.3389) (0.5336)
AR(1) 0.9668 0.9597 0.8838 0.9889 0.9703 0.8740

(0.2731) (0.4611) (0.2059) (0.7687) (0.6700) (0.1760)
AR(1)-B 0.9570 0.9397 0.8644 0.9917 0.9017 0.8204

(0.2325) (0.4179) (0.2843) (0.8383) (0.2188) (0.0966)
AR(2) 1.0104 0.9562 0.9537 1.0187 0.9705 0.9364

(0.6512) (0.1769) (0.4184) (0.5512) (0.5405) (0.4004)
AR(2)-B 1.0148 0.9566 0.9127 1.0684 0.9345 0.8710

(0.4743) (0.4413) (0.3643) (0.0119) (0.2692) (0.1424)
AR(4) 0.9561 0.9083 0.8849 0.9714 0.9240 0.8696

(0.1460) (0.0171) (0.0866) (0.4586) (0.1523) (0.0818)
AR(4)-B 1.0229 0.9611 0.9290 1.0521 0.9432 0.8983

(0.6411) (0.5034) (0.5418) (0.2431) (0.3545) (0.2638)

Table 2: Point forecast 1973Q1—2012Q4. The RMSE and the MAE are expressed in relative
term with respect to the benchmark model “Trend”. “h”is the forecast horizon, in brackets
the p-values of the Giacomini and White (2006) test.
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ALogS LR RS ALogS LR RS
Normal Student-t

Trend -2.5591 0.1445 4.4223 -1.5897 0.7000 0.7023
Trend-B -3.1073 0.0581 7.8323 -1.5688 0.0048 0.2723
AR(1) -2.4857 0.0041 3.7823 -1.6325 0.9976 0.1322
AR(1)-B -2.4543 0.0046 3.1923 -1.6766 0.9946 0.0423
AR(2) -2.5357 0.0058 4.6922 -1.6249 0.5005 0.5522
AR(2)-B -2.6275 0.4572 3.7210 -1.6671 0.7590 0.3610
AR(4) -2.4663 0.1455 3.4810 -1.5976 0.7914 0.2560
AR(4)-B -2.6022 0.9784 4.0960 -1.6272 0.7549 1.3323

Table 3: Density Forecast 1973Q1-2012Q4. The average log-score (AlogS), the p-values of the
Likelihood Ratio (LR) test of Berkowitz (2001), and RS corresponds to the test of Rossi and
Sekhposyan (2013) with critical values 2.25 (1%), 1.51 (5%), 1.1 (10%).
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Normal Student-t
Trend Trend-B AR(1) AR(1)-B AR(2) AR(2)-B AR(4) AR(4)-B Trend Trend-B AR(1) AR(1)-B AR(2) AR(2)-B AR(4)

Normal
Trend-B 0.000
AR(1) 0.0458 0.0000
AR(1)-B 0.0431 0.0000 0.4027
AR(2) 0.4218 0.0000 0.0025 0.0490
AR(2)-B 0.4587 0.0001 0.2042 0.1411 0.3829
AR(4) 0.0555 0.0000 0.5724 0.7961 0.0536 0.2042
AR(4)-B 0.4238 0.0000 0.0786 0.0289 0.2972 0.8402 0.0135

Student-t
Trend 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Trend-B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6531
AR(1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2808 0.1554
AR(1)-B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0767 0.0209 0.0853
AR(2) 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2544 0.3086 0.8184 0.2434
AR(2)-B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0385 0.0386 0.2610 0.7604 0.1609
AR(4) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8341 0.5756 0.3295 0.0596 0.3486 0.0592
AR(4)-B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3494 0.2119 0.8971 0.2708 0.9568 0.2987 0.3476

Table 4: Pairwise comparison: p-values for the difference in the average log-scores (Amisano and Giacomini, 2007).
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Figure 2: Implied trend-inflation and realized inflation. “N”denotes Gaussian distribution while “T”Student-t distribution. On the right
panel we exclude the trend-only specification which reaches the upper bound during the great inflation.
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Figure 3: Sum of ARs coeffi cients, “B”denotes the specifications with bounded long-run mean.
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Figure 4: Largest eigenvalue, “B”denotes the specifications with bounded long-run mean.
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Figure 6: The p.d.f. of the PITs (normalized) and the 95% critical values (dashed lines) approximated by binomial distribution, constructed
using a normal approximation as in Diebold et al. (1998).
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Figure 7: The c.d.f. of the PITs and the 95% critical values based on Rossi and Sekhposyan (2013). Solid (blue) line for Gaussian distribution
and dashed (green) line for Student-t distribution.
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Appendix A: Proofs

Lemma 1 Following Ljung and Soderstrom (1985, section 2.6.2), the recursive estimation of

the CGL can be obtained from an off-line identification approach that minimizes the

weighted sum of squared errors

St(φt) =

t∑
j=1

γj
(
yt−j − x′t−jφt

)2
,

where γj =
t∏

k=j+1

δk is a sequence of weights assign to the observation yt−j. Setting

δ = (1− κ), where δ ≤ 1 is known as the forgetting factor, the observations are weighted

exponentially, i.e. γj = (1 − κ)j, and the gain parameter is equal to

[
t∑

j=1

γj

]−1
→ κ.

Thus, the CGL can be seen as a recursive estimation of the discounted least squares and

it generalizes the exponential smoothing of Hyndman et al (2008) when explanatory vari-

ables are included. Under time-varying parameters model the constant gain κ regulates

the tracking ability (large κ) and the noise insensitivity (small κ). On the other hand,

for κ = 1/t we obtain the recursive least squares and the parameters variation vanishes

asymptotically.

Lemma 2 Ljung (1992, p. 99) and Sargent (1999, p. 115) show how to obtain the CGL

algorithm from the KF applied to the restricted state space model. It is worth to show

that the restrictions imply that ηt = c(φt|t−φt), where c = [κ/(1−κ)]1/2. Consequently,

the transition equation in (14) is equal to φt+1 = (1 − c)φt + cφt|t and the true state

vector can be expressed as exponential weighted average of past filter estimates

φt+1 = c

t−1∑
j=0

(1− c)jφt−j|t−j.

Moreover, the filter estimate can be expressed as

φt|t = Ltφt−1|t−1 + Ktyt =
t−1∑
j=0

(
j−1∏
i=0

Lt−i

)
Kt−jyt−j

where

Lt = (I−Ktx
′
t), Kt = Pt|t−1xt

(
x′tPt|t−1xt +

σ2

1− κ

)−1
.

Thus, differently from the parameter-driven model, the Kalman gain does not depend on

any unobserved shock and it rather obtained from past observations only. Therefore, those

restrictions leads to have time-varying coeffi cients that are driven by past observations

only.

Lemma 3 Setting Qt:=κ
2Σ, with Σ =σ2E[(xtx

′
t)]
−1, we have that the shock driving the time-
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varying coeffi cients is

ηt = κ(xtx
′
t)
−1xtεt = κ(xtx

′
t)
−1xtεt.

Therefore, the parameter-driven model collapses to an observation-driven model. More-

over, up to a scalar factor, the shock ηt is equal to the driving process of our score

driven model. However, under the parameter driven framework the vector of coeffi cients

is considered as unobserved state vector which is optimally estimated by the mean of KF

which leads to

φt+1|t = φt|t−1 + Pt|t−1xt(x
′
tPt|t−1xt + σ2)−1(yt − x′tφt|t−1)

Pt+1|t = Pt|t−1 −Pt|t−1xt(x
′
tPt|t−1xt + σ2)−1x′tPt|t−1 + κ2Σ.

Following Benveniste et al (1990, p. 139), for κ2 � σ2 meaning that the variance drifting

parameters is much smaller than the variance model disturbances, for t > t̊, where t̊ is

a given large value of t, one has the approximation (x′tPt|t−1xt + σ2) ≈ σ2, this implies

that the conditional variance of the forecast error converges to the variance of model

disturbances. For t large enough, the variation of Pt|t−1 is small with respect to xt, and

x′tPt|t−1xt can be neglected with respect to σ2. Using these approximations, we obtain

φt+1|t = φt|t−1 + Pt|t−1xtσ
−2(yt − x′tφt|t−1)

Pt+1|t = Pt|t−1 −Pt|t−1xtσ
−2x′tPt|t−1 + κ2Σ.

Replacing xtx
′
t/σ

2 with its expected valueΣ−1 we obtainPt+1|t = Pt|t−1−Pt|t−1Σ
−1Pt|t−1+

κ2Σ. When Pt|t−1 is set to its steady-state value P as in Harvey (1989, p. 118), one has

PΣ−1P = ΛΣΛ⇒κ−2PΣ−1P = Σ⇒κ−1P = Σ. Using last expression the recursion for

the vector of coeffi cients is

φt+1|t = φt|t−1 + κΣxtσ
−2(yt − x′tφt|t−1),

which has the same asymptotic behavior of the CGL; see Sargent and William (2005)

and Evans et al (2010). Similarly, setting Qt:=κ
2Σ−1, we have that ηt = κxtεt and the

parameter-driven model collapses to an observation-driven model. In the steady-state

κ−1P = I and the recursion for the coeffi cients is

φt+1|t = φt|t−1 + κxtσ
−2(yt − x′tφt|t−1).

which is a score based algorithm without the use of scaling matrix.

Scaled Score under Student-t distribution We re-write the predictive log-likelihood (16)
as follows

`t (Ft,θ) = c+ dt + gt
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with

c = log

[
Γ

(
η + 1

2η

)]
− log

[
Γ

(
1

2η

)]
− 1

2
log

(
1− 2η

η

)
− 1

2
log π,

and

dt = −1

2
log σ2t|t−1, gt = −

(
η + 1

2η

)
log

[
1 +

η

1− 2η
ζt

]
,

where ζt = ε2t/σ
2
t|t−1 and Γ is the Euler’s gamma function. Let ∇t = ∂`t(Ft,θ)/∂ft|t−1

denote the gradient function and partition it in two blocks, ∇φ and ∇σ, the first one

depend upon gt and ζt, while the second upon dt, gt and ζt. We have to compute
∂gt
∂φ′t

= ∂gt
∂ζt

∂ζt
∂φ′t

, where

∂gt
∂ζt

= −
(
η + 1

2η

) ∂ ln
[
1 + η

1−2ηζt

]
∂ζt

= −
(
η + 1

2η

)[
1 +

η

1− 2η
ζt

]−1(
η

1− 2η

)
= − η + 1

2 (1− 2η)

[
1− 2η + ηζt

1− 2η

]−1
= − η + 1

2(1− 2η + ηζt)

and ∂ζt
∂φ′t

= − 2x′tεt
σ2
t|t−1

. The score for the coeffi cients of the model is then equal to

∇φ =
∂gt
∂ζt

∂ζt
∂φt

= xt
(η + 1) εt/σ

2
t|t−1

(1− 2η + ηε2t/σ
2
t|t−1)

.

The gradient for the variance component is

∇σ =
∂dt
∂σ2t

+
∂gt
∂σ2t

=
∂dt
∂σ2t

+
∂gt
∂ζt

∂ζt
∂σ2t

,

where ∂ζt
∂σ2t

= − ε2t
σ4
t|t−1

and thus we obtain

∇σ = − 1

2σ2t|t−1
+

(η + 1)ε2t/σ
4
t|t−1

2(1− 2η + ηζt)
=

1

2σ4t|t−1

[
(η + 1)

(1− 2η + ηζt)
ε2t − σ2t|t−1

]
.

We compute the information matrix as It = −Et(Ht), where Ht the Hessian matrix and

it can be partitioned in four blocks

Ht =

[
Hφφ,t Hφσ,t

H′φσ,t Hσσ,t

]
.

The first block Hφφ,t can be calculated as

Hφφ,t =
∂∇φ,t
∂φ′t|t−1

=
(1 + η) [ηζt + 2η − 1]

(1− 2η + ηζt)
2

xtx
′
t

σ2t|t−1
.

Following Fiorentini et al. (2003), recalling that εt/σt|t−1 = ζ
1/2
t ∼ tυ (0, 1) implies that

ζ
1/2
t =

√
(υ−2)ςt
ξt

ut, where ut is uniformly distributed on the unit set, ς t is a chi-squared
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random variable with 1 degree of freedom, ξt is a gamma variate with mean υ > 2 variance

2υ, and ut, ς t and ξt are mutually independent. Therefore, it is possible to show that

Iφφ,t = −E(Hφφ,t) =
(1 + η)

(1− 2η) (1 + 3η)

xtx
′
t

σ2t|t−1
.

The cross-derivative term in the Hessian isHσφ,t = − xtεt
σ4
t|t−1

and therefore Iφσ,t = −E(Hσφ,t) =

0.

Hσσ,t =
∂2`t

∂2σ2t|t−1
=

∂∇σ

∂σ2t|t−1
=

1

2σ4t|t−1
−

[2 (1− 2η) + ηε2t/σ
2
t|t−1] (η + 1) ε2t/σ

6
t|t−1

2[1− 2η + ηε2t/σ
2
t|t−1]

2
,

it is possible to show that

Iσσ,t = −Et(Hσσ,t) =
(1 + η)

2 (3 + η)σ4t|t−1
− η

2 (3 + η)σ4t|t−1
=

1

2 (1 + 3η)σ4t|t−1
.

Finally, the information matrix is equal to

It =

 (1+η)
(1−2η)(1+3η)xtσ

−2
t|t−1x

′
t 0

0′ 1
2(1+3η)σ4

t|t−1

 ,
and the final expression for the scaled score vector is

st = I−1t ∇t =

[
sφt

sσt

]
=

 (1−2η)(1+3η)
(1−2η+ηζt)

(xtσ
−2
t|t−1x

′
t)
−1xtσ

−2
t|t−1εt

(1 + 3η)
[

(1+η)
(1−2η+ηζt)

ε2t − σ2t|t−1
]  .

Proposition 1 Under Student-t distribution the driving process is (17)-(19) and the coeffi -
cients’updating rule is

φt+1|t = φt|t−1 + κφ
(1− 2η) (1 + 3η)

(1 + η)
(xtσ

−2
t|t−1x

′
t)
−1xtσ

−2
t|t−1[wt(yt − x′tφt|t−1)],

and smoothing the scaling matrix (incorporation wt) we obtain (20). If we consider the

example with time varying mean only, we have that

yt = µt|t−1 + εt, εt ∼ tυ(0, σ
2
t|t−1)
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and the estimated level is

µt+1|t = µt|t−1 + κθwt(yt − µt|t−1)
= (1− κθwt)µt|t−1 + κθwtyt

=
κθ

1− κθwtL
wtyt

= κθ

∞∑
j=0

γjwt−jyt−j,

with κθ = κφ
(1−2η)(1+3η)

(1+η)
. After a bit of algebra, we can obtain explicit expression the

weights across time that is

γ0 = 1 and γj =
t∏

k=t−j+1

(1− κθwk).

The same weighting pattern is obtained when regressors are included. Since the weights

across time are affected by the cross sectional weights wt, we can not obtained the robust

filter (21) as solution of a re-weighted quadratic criterion function as Ljung and Sostre-

strom (1985, sec. 2.6.2). In general, when we depart from Gaussianity the stochastic

Newton-Gradient algorithm cannot be obtained as a recursive solution of a quadratic

criterion function. For the variance is straightforward to obtain (22) and the implied

weighting pattern.

Theorem 1 Given the non-linear state space model

yt = x′tφt + εt, εt ∼ N
(
0, σ2

)
, (35)

αt+1 = αt + ηt, ηt ∼ N (0,Qt) ,

with φt = g(αt). We can solve it by the mean of the Extended Kalman filter

vt = yt − x′tφt|t−1,

Kt = Pt|t−1x̃tF
−1
t ,

Ft = x̃′tPt|t−1x̃t + σ2

αt+1|t = αt|t−1 + Ktvt,

Pt+1|t = Pt|t−1 −Pt|t−1x̃tF
−1
t x̃′tPt|t−1 + Qt,

where x̃′t = x′t
∂g(α)
∂α′ |α=αt|t−1 = x′tΨt. Setting σ2 = σ2

1−κand Qt = Pt|t
κ
1−κ and following

same approach in Ljung (1992, p. 99) and Sargent (1999, p. 115), we obtain the modified

version of the CGL algorithm

αt+1|t = αt|t−1 + κR−1t Ψ′txtσ
−2(yt − x′tφt|t−1),

Rt = (1− κ)Rt−1 + κ(Ψ′txtσ
−2x′tΨt).
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This is exactly the score-driven filter (30), where the information matrix Ψ′txtσ
−2x′tΨt is

replaced by its smoothed version Rt.

Theorem 2 For simplicity we drop the temporal subscript t such that the p × p Jacobian

matrix is

Γ =
∂φ

∂π′
=
∂Φ(π)

∂π′
.

The first (p− 1) coeffi cients are obtained from last recursion in (25), and the last coeffi -

cients is equal to the last partial autocorrelation πp. We denote the final vector of coeffi -

cients as φp = (φ1,p, ..., φp−1,p, φp,p)′ = (a′p, πp), where ap = (φ1,p, ..., φp−1,p) and φp,p = πp.

Therefore, we can express the last iteration of (25) in matrix form ap = Jp−1φp−1, where

φp−1 = (φ1,p−1, ..., φp−2,p−1, φp−1,p−1)′ = (a′p−1, πp−1)
′ and

Jp−1 =



1 0 · · · 0 −πp
0

. . . 0
... .

...

0
. . . 0

−πp 0 · · · 0 1


.

Note that if p is even the central element of Jp−1 is 1 − πp. Moreover, the vector φ̃p =

(φ′p−1, πp)
′ contains all the partial autocorrelations, i.e. φ̃p = (a′p−1, πp−1, πp) and keep

substituting we obtain φ̃p = πp = (π1, ..., πp−1, πp). The Jacobian matrix can be expressed

as follows

Γ = Γp =

 ∂ap
∂φ′p−1

∂ap
∂πp

∂πp
∂φ′p−1

∂πp
∂πp

 .
The upper-left block is a (p − 1) × (p − 1) matrix and it can be computed using the

definition ap = Jp−1φp−1; since Jp−1 contains the last partial correlation πp we have the

recursive formulation
∂ap
∂φ′p−1

= Jp−1Γp−1

where Γp−1 = ∂φp−1/∂πp−1 is the Jacobian of the first p− 1 coeffi cients with respect to

the first p− 1 partial autocorrelations. Finally, we have that the other three blocks are

∂πp
∂a′p−1

= 0′,
∂πp
∂πp

= 1 and
∂ap
∂πp

=
∂Jp−1
∂πp

φp−1 =


−φp−1,p−1

−φp−2,p−1
...

−φ1,p−1

 .

Note that φp−1 is a given and
∂Jp−1
∂πp

= antidiag(−1, ...,−1) inverts the order of elements

in φp−1 = (φ1,p−1, ..., φp−2,p−1, φp−1,p−1)′ with opposite sign.
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Appendix B: Robustness

Section 4 shows that, in presence of heavy tails, the adaptive algorithm developed in this

paper delivers a model-consistent penalization of the outliers. In fact, the estimated time

variation in the parameters is such that the observations are downweighted when they are too

large. In this appendix we assess the importance of using the law of motion of the parameters

consistent with the score-driven model in presence of heavy-tails. In order to achieve this

goal, we compare the density forecast of the specifications under Student-t innovations to two

‘misspecified’cases. Firstly, we consider the case where the dynamic of the parameters is driven

by the law of motion under Normal distribution (10)-(12) but we assume that the appropriate

density is the Student-t; this is similar in spirit to the t-GARCH model of Bollerslev (1987) and

it is labelled “Miss1”. Secondly, we use the estimated time varying parameters obtained under

Gaussian distribution and produce the density using a Student-t with calibrated degrees of

freedom. Following Corradi and Swanson (2006) we choose υ = 5. This second case is labelled

“Miss2”.

Table 5 reports the average log-scores for the above two specifications together with the

benchmark Student-t specifications. Figures 8 and 9 report the empirical distribution of the

PITs as in Diebold et al. (1998), and its cumulative distribution as in Rossi and Sekhposyan

(2013). In both cases, we report the 95% confidence interval. Miss1 model delivers average log-

scores which are comparable with the baseline Student-t specifications. However, an inspection

of the PITs suggests that the densities from this model tend to be not well calibrated, slightly

overstating the probability mass at the center of the density. Conversely, Miss2 model produces

much better calibrated densities, but they perform rather poorly compared to the benchmark

models as documented in the lower panel of Table 5. Those results suggest that both the

low degree of freedom and the score-driven law of motion of the time-varying parameters, are

important to achieve well calibrated density forecasts.
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Student-t
Trend Trend-B AR(1) AR(1)-B AR(2) AR(2)-B AR(4) AR(4)-B

ALogS -1.5897 -1.5688 -1.6325 -1.6766 -1.6249 -1.6671 -1.5976 -1.6272
Miss1 Trend -1.6546 0.0530 0.1148 0.5386 0.6230 0.3557 0.6763 0.1611 0.5172

Trend-B -1.4760 0.0493 0.0244 0.0019 0.0001 0.0116 0.0001 0.0270 0.0071
AR(1) -1.5713 0.6151 0.9601 0.0177 0.0043 0.1338 0.0036 0.5013 0.1975
AR(1)-B -1.5354 0.2296 0.4723 0.0007 0.0001 0.0322 0.0005 0.1258 0.0357
AR(2) -1.5248 0.0606 0.4343 0.0024 0.0016 0.0000 0.0001 0.0210 0.0209
AR(2)-B -1.5902 0.9907 0.6932 0.3241 0.0835 0.3895 0.0384 0.8839 0.4795
AR(4) -1.5266 0.1377 0.4760 0.0149 0.0045 0.0032 0.0026 0.0007 0.0144
AR(4)-B -1.5453 0.2534 0.6111 0.0464 0.0103 0.0749 0.0060 0.1534 0.0047

Miss2 Trend -1.7339 0.0000 0.0054 0.0072 0.2327 0.0006 0.0505 0.0012 0.0162
Trend-B -1.8480 0.0001 0.0000 0.0000 0.0005 0.0005 0.0007 0.0001 0.0002
AR(1) -1.7260 0.0041 0.0033 0.0000 0.1052 0.0097 0.1071 0.0029 0.0430
AR(1)-B -1.7896 0.0001 0.0000 0.0000 0.0011 0.0007 0.0011 0.0001 0.0009
AR(2) -1.7171 0.0017 0.0119 0.0115 0.3333 0.0003 0.1270 0.0012 0.0556
AR(2)-B -1.7747 0.0001 0.0005 0.0003 0.0256 0.0002 0.0012 0.0003 0.0048
AR(4) -1.7354 0.0020 0.0055 0.0099 0.2026 0.0025 0.0979 0.0000 0.0048
AR(4)-B -1.7703 0.0000 0.0002 0.0022 0.0605 0.0016 0.0161 0.0000 0.0000

Table 5: Average log-scores (ALogS) in the first row and column. All the other entries corre-
spond to the p-values for the difference in the ALogS (Amisano and Giacomini, 2007).
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Figure 8: Density forecast-Miss1: in the upper panel, the p.d.f. of the PITs (normalized) and the 95% critical values (dashed lines) approximated
by binomial distribution, constructed using a normal approximation as in Diebold et al. (1998). In the lower panel, the c.d.f. of the PITs with
critical values based on Rossi and Sekhposyan (2013).
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Figure 9: Density forecast-Miss2: in the upper panel, the p.d.f. of the PITs (normalized) and the 95% critical values (dashed lines) approximated
by binomial distribution, constructed using a normal approximation as in Diebold et al. (1998). In the lower panel, the c.d.f. of the PITs with
critical values based on Rossi and Sekhposyan (2013).
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