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Abstract

The use of coarse categories is prevalent in various situations and has been
linked to biased economic outcomes, ranging from discrimination against minorities
to empirical anomalies in financial markets. In this paper we study economic
rationales for categorizing coarsely. We think of the way one categorizes one’s
past experiences as a model of the world that is used to make predictions about
unobservable attributes in new situations. We first show that coarse categorization
may be optimal for making predictions in stochastic environments in which an
individual has a limited number of past experiences. Building on this result, and
this is a key new insight from our paper, we show formally that cases in which
people have a motive to coordinate their predictions with others may provide an
economic rationale for categorizing coarsely. Our analysis explains the intuition
behind this rationale.
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1 Introduction

Casual observation as well as empirical research show that people tend to categorize.

For example, when an employer encounters a new applicant, she may observe that the

applicant is ‘white, male, engineer’, and she may use her past experience with other

applicants in this category to make a prediction about the suitability of the applicant

for the job. College admission officers may place pupils in different categories on the

∗We thank Diego Cerdeiro, Jane Cooley-Fruehwirth, Edoardo Gallo, Sanjeev Goyal, Nobuyuki Hanaki,
Penelope Hernandez, Matthew Jackson, David Levine, Bob Marks, Friederike Mengel, John Miller,
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Jan Tuinstra, and seminar and workshop participants at the University of Cambridge for comments.
Earlier versions of the dynamic model were presented at the Santa Fe Institute, at Queen Mary University
of London, and at the SCE conferences in London (2010) and San Francisco (2011). All errors are our
own.
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basis of their grades in school, and make inferences about the ability of the pupil

based on their experience with past students in the respective categories. Credit rating

agencies sort countries and firms into different categories (e.g. A++ or C-) to convey an

estimate of their probability of default on debt. Equity researchers place companies into

the categories ‘buy’, ‘sell’, and ‘neutral’ to indicate their recommendations for traders.

Customers or certification agencies group hotels and restaurants into categories such as

4? and 2?, and we have certain expectations about the quality of a hotel or restaurant

based on the rating it has received. Thus, people often group past experiences such as

objects they have seen, other people they have met or situations they have experienced

into categories, and they, then, use these categories as a tool on the basis of which

to make predictions and decisions in new situations encountered. This widespread use

of categories is a first empirical motivation for our paper. If categories are used in so

many different spheres of life, it seems important to understand some basic properties of

different ways of categorizing. This is what we aim to do here.

There are many alternative ways in which people can organize past experiences into

categories. In particular, they could divide them into many fine categories, each category

containing a small number of experiences. Or they could use just a few coarse categories

instead, each category containing a large number of experiences. Whether they choose

fine or coarse categories may matter for the predictions that they make. More specifically,

coarse categorization has been linked to a number of biased economic outcomes ranging

from discrimination against minorities (Fryer and Jackson, 2008) to empirical anomalies in

financial markets (Barberis and Shleifer, 2003) to persuasion in advertising (Mullainathan

et al., 2008). These potentially important economic implications of the use of coarse

categories constitute a second empirical motivation for our paper, in which we will focus

in particular on investigating economic rationales for choosing coarse categorizations.1

A third empirical motivation for our paper comes from observing that coarse

categorization often occurs in situations in which people try to coordinate with each

other. For example, people may use coarse categories and stereotypes when talking to

others, even though they may individually not think in terms of such crude stereotypes.2

Similarly, we often describe political beliefs in rather coarse terms, such as ‘left’ and

‘right’, even when our views are much more subtle. More generally, the language we use to

interact with other people is often vague (Lipman, 2009), and within firms employees tend

to use relatively generic jargon (Cremer et al., 2007). People also typically refer to colors

using relatively coarse categories, such as e.g. ‘red’, ‘green’, ‘blue’, even though many

well-defined, very fine color schemes exist (Steels et al., 2005; Komarova et al., 2007).

Our model of categorization is meant as a tool for investigating the basic properties of

different ways of categorizing in a relatively abstract setting, without aiming to capture

1We focus on deriving economic rationales for coarse categorization rather than on cognitive
limitations. It may well be that people categorize coarsely because they are born with a limited number
of ‘boxes’ in their brain, or because the more categories they use the higher the cognitive costs of
accessing an individual category. Our analysis derives economic rationales that are complementary to
such cognitive limitations factors.

2We thank Matt Jackson for suggesting this example.
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any of these complex situations closely. The focus of our analysis is on gaining some more

formal economic understanding of the questions why and when motives to coordinate with

others may create incentives to categorize coarsely.

Starting point for our analysis is the following standard decision problem. A decision

maker observes some characteristics of an object and has to predict its unobserved

value.3 There is an underlying function that relates the unobserved value to the observed

characteristics, but the agent does not know this function. In our framework the tool for

prediction available to the agent are her past experiences, which are sorted into categories.

She puts the object into a particular category based on its observed characteristics. She

makes a prediction that the object’s unobserved value is equal to the average value of all

objects in the respective category.4

We refer to a way of categorizing as a categorization. A categorization is a set

of categories that the individual splits her past experiences into. Every category is

associated with a belief about the unobserved value of objects placed in it. We thus

think of a categorization as containing a set of estimators that an individual uses to

make predictions. Our focus is on the properties of alternative sets of estimators the

decision maker could use, and on the factors that affect their suitability for prediction in

different environments.

We present two complementary frameworks to analyze the properties of alternative

possible categorizations - a static and a dynamic model. In the static model we assume

that the agent has already accumulated a certain number of past experiences and

faces a one-off prediction task. We analyze the factors that determine which ways of

categorizing these past experiences will help her make the best prediction on the next

object encountered. That is, comparing all possible ways of categorizing, we analyze

which ways of categorizing will help her minimize the expected prediction error.

We consider several variants of the prediction task. First, we examine the properties

of alternative ways of categorizing past experiences in the case of a decision maker who

is only interested in predicting the true unobserved value of an object (i.e. the situation

described above). Second, and this is a key feature of our paper, we examine the properties

of different ways of categorizing in the case of decision makers who want to coordinate

their predictions with each other. Reality abounds with cases in which people have some

motive to coordinate their predictions with each other, and it thus seems important

to study how this may affect the way individuals categorize. The desire to coordinate

predictions may stem, on the one hand, from strategic considerations in situations in

which people have to make a common decision later on. On the other hand, the desire

3We will use the term object broadly to denote any observation or any experience a decision maker
may have. It may stand, for example, for an applicant faced by an employer. In that case observed
characteristics may be education, age, race, gender, etc. The unobserved value that the agent is trying
to predict may be the applicant’s suitability for a particular job.

4Thus, we are assuming that decision makers categorize. For a discussion and some rationalization of
why decision makers may want to use categories at all to make predictions, see Mohlin (2014) and Peski
(2011). Using the average of the observations in a category as a prediction is a standard assumption in
economic models of categorization; see e.g. Fryer and Jackson (2008), Al-Najjar and Pai (2014), Peski
(2011), or Mohlin (2014).
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to coordinate may be due to reputation concerns that lead people to conform.5 To gain

a basic understanding of how the attempt to coordinate predictions with others may

affect the way an individual categorizes in a simple setting, we consider a benchmark

case of two individuals, each of whom has accumulated a number of past experiences,

and we assume that their goal is simply to coordinate predictions on the next object

encountered and that they use categorizations to make predictions. We analyze this

situation as a one-shot game in which each player chooses a categorization to use. We

characterize some equilibrium properties of this game, and we explore the connection

between a categorization’s optimality for individual prediction and the possibility that

the corresponding symmetric categorization profile constitutes a NE in the categorization

game. Third, we look at the convex combination of the two benchmark cases, i.e. when

decision makers are interested both in correctly predicting the true value of an object

and in coordinating their prediction with another person.

In the complementary dynamic framework, an agent encounters a stream of objects,

one in each period. Every period, from period one onwards, she has to make a prediction

about the unobserved value of the object she encounters. We consider the learning

dynamics, with the agent learning which categorization to use on the basis of her past

experiences. In the dynamic model we relax some assumptions of the static model, and

this allows us to analyze categorization also in a non-stationary environment. Just as in

the static model, we consider the three variants of individual prediction, coordination,

and the convex combination of the two.

Our main results can be summarized as follows. In the static analysis we show

that the expected prediction error of a categorization in individual prediction can be

decomposed into a bias and a variance component. Focusing on a symmetric setting to

facilitate analytical tractability of the model, we show the following. In a deterministic

environment, the best the decision maker can do is to use the finest possible categorization

as its estimators are unbiased and there is no noise, hence no variance. In a stochastic

environment, assuming the agent has a limited number of past experiences, comparative

statics show that as the level of noise increases, or as the sample size available to

the agent decreases, coarse categorizations become increasingly better compared to fine

categorizations as their estimators are more consistent. Note that this is true without

assuming any exogenous costs of using many fine categories and without assuming any

bounded computational powers of the agent. Coarse categorizations may be optimal

simply because they help the agent make better predictions. The intuition behind the

benefit of using a coarser categorization is that in a coarser categorization there are on

5As an example of decision makers who need to coordinate predictions in order to make a common
decision, consider members of a committee that have to decide whether an applicant is suitable for a
particular job. Or firms that produce complementary products and want to coordinate predictions about
the profitability of competing technologies in order to be able to establish future industry standards. The
idea that professional forecasters (e.g. equity researchers) may want to have their predictions coordinated
with others’ due to reputation concerns has been put forward in various papers in finance (Scharfstein
and Stein, 1990; Bizer et al., 2014). The same argument applies also to product reviewers, for example,
on websites reviewing products for the entertainment industry; see e.g. Swisher (2013) for an analysis of
reviewers on the Metacritic website. See also Morris and Shin (2002).
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average more objects per category, and hence the expected variance of the category beliefs

will be lower. That is, a coarser categorization has more consistent estimators compared

to a finer categorization.6

In the case that two players simply want to coordinate their predictions, we find that

in equilibrium they will not use categorizations at different levels of coarseness. In a

deterministic environment all symmetric categorization profiles constitute a NE. What

is interesting is that in a stochastic environment, finer categorization profiles may be

NE only at sufficiently low levels of noise. As noise level increases, a player eventually

has an incentive to deviate to a coarser categorization. Furthermore, both players using

the coarsest possible categorization is always a Nash equilibrium, and it is the Pareto-

superior one in any stochastic environment. Moreover, symmetric categorization profiles

can be Pareto-ranked on their coarseness, with any coarser symmetric categorization

profile always being more efficient than any finer symmetric categorization profile for

any positive noise level. The intuition is that by using symmetric categorization profiles

players have no bias from one another, and by using coarser categorizations, they reduce

the variance in their predictions. These results suggest that in case people want to

coordinate predictions with others in noisy environments, there is pressure to categorize

more coarsely as this helps them coordinate more reliably.

Our analysis of the dynamic model shows that agents starting with a random set of

categorizations can learn which categorizations to use depending on the environment.

Comparing the coarseness of the categorizations an agent learns if she cares only about

predicting the true object values correctly with the coarseness of the categorizations she

learns if she (also) wants to coordinate predictions with others, we find that the higher

the weight on coordination, the coarser the categorizations the individual learns. The

properties of the categorizations that the agents learn in the dynamic model are in line

with those predicted by our analysis of the static model for the different environments.

Our paper makes several contributions to the literature. In terms of the questions

we consider, we are to the best of our knowledge the first to analyze the properties of

optimal categorization if players want to coordinate predictions. In terms of methodology,

our contribution consists of developing a unified framework to analyze the properties

of optimal categorization for the cases of individual prediction, coordination, and the

convex combination of the two. We view categorizations as consisting of sets of

estimators, and we use basic statistics to decompose the expected prediction error of

alternative categorizations into a bias and a variance component, and basic game theory

to characterize Nash equilibria in categorizations for the case when players want to

coordinate predictions. In terms of new insights, the main message of our paper is

that the attempt to coordinate predictions with others may be a further rationale for

coarse categorization, additional and complementary to those hitherto considered in the

literature.

The structure of the paper is the following: In section 2 we discuss this paper’s relation

to the literature. Section 3 describes our static model, and in section 4 we set out in detail

6This result is in line with Al-Najjar and Pai (2014) and Mohlin (2014).
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our main analytical results. In section 5 we present our dynamic model, followed by its

numerical analysis in section 6. Section 7 concludes.

2 Relation to the Literature

This paper is most closely related to some recent papers studying categorization as a

model of individual decision making (Al-Najjar and Pai, 2014; Mohlin, 2014; Peski, 2011),

and more distantly to some papers on categorization in games (Azrieli, 2009; Jehiel, 2005;

Jehiel and Samet, 2007; Heller and Winter, 2014; Mengel, 2012a,b; Grimm and Mengel,

2012). Our work complements both lines of research by analyzing strategic considerations

not studied in these strands of the literature. We start this section by discussing the

literature that is most directly related to this paper, explaining our similarities and

differences from it. We then place the paper in a broader context.

While coarse categorization has previously been viewed as a form of bounded

rationality (resulting from innate limitations on the number of available categories or

bounded computational power making fine categorization costly), both our and the above

papers on categorization as a model of individual decision making, in particular Al-Najjar

and Pai (2014) and Mohlin (2014), show that coarse categorization may result even

without restrictions and costs on categorizing finely. An economic rationale to categorize

coarsely is that while by using fine categories a decision maker may fit past observations

more precisely, coarse categorization avoids overfitting in prediction in noisy environments

when decision makers have a limited number of past observations. The paper most similar

to ours in terms of analyzing categorization as a tool for individual prediction is Mohlin

(2014). He also considers the question which categorizations minimize expected prediction

error and independently from us formulates the costs and benefits of using fine and coarse

categories in terms of bias and variance components of expected prediction error for a

slightly different decision situation. Al-Najjar and Pai (2014) look at categorization as

an example of coarse decision making and use different methodology (statistical learning

theory) to show that coarse categorization is useful if the decision maker is operating

in a noisy environment and has a limited number of observations. Mullainathan (2002)

compares the accuracy of predictions of an agent who categorizes with the accuracy

of predictions of a Bayesian decision maker. Peski (2011) shows that in a symmetric

environment (if the agent has the same prior over all objects and over all properties he is

making a prediction about) categorization is an optimal method for making predictions.

Azrieli and Lehrer (2007) develop a complementary model in which a categorization is

generated by extended prototypes.

This paper complements the papers discussed above by considering an additional class

of situations. While they focus on properties of categorizations if an individual wants to

make optimal predictions or decisions with respect to objects she encounters, we develop

a unified framework under which we also consider the properties of categorizations if

agents want to coordinate predictions about these objects with one another. We add to

the above literature by showing that there may be another economic rationale for coarse
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categorization - the attempt to coordinate with others. Additionally, we consider making

predictions on the basis of categories as a dynamic problem and we show that agents

learn different ways of categorizing depending on the environment they are in and in line

with the results from our static model. In our dynamic model, we are also able to relax

a number of assumptions of the static model that are standard in the literature. For

example, as we will explain in detail later on, we can analyze hierarchical and incomplete

categorizations, and the model is applicable to a non-stationary environment.

While we also consider the role of categorization in strategic interactions, we pose a

different question from those studied in the existing papers on categorization in games

(Azrieli, 2009, 2010; Heller and Winter, 2014; Jehiel, 2005; Jehiel and Samet, 2007;

Mengel, 2012b; Grimm and Mengel, 2012). We analyze a situation in which players use

categories to make predictions about objects that they encounter and want to coordinate

these predictions with one another as well as the situation in which they care both

about predicting the true value correctly and about coordinating their predictions with

the other. This complements the questions analyzed in other game-theoretic papers

on categorization. Azrieli (2009) and Azrieli (2010) consider the use of categories to

categorize opponents in games. Jehiel (2005) analyzes multi-stage games in which players

bundle nodes at which other players move into analogy classes. In Jehiel and Samet

(2007) each player partitions her own moves into similarity classes. Mengel (2012a) takes

an evolutionary perspective and shows that populations relying on coarser partitions

have higher fitness. Mengel (2012b) considers players who categorize games. Grimm and

Mengel (2012) present an experiment in which they find that players learn to play games

that are strategically equivalent (i.e. they fall in the same category) in the same way.

Players categorizing games is also the underlying idea of Heller and Winter (2014).

Further economic papers related to categorization include Manzini and Mariotti (2012)

who develop a model in which agents categorize alternatives before making a choice and

Mandler et al. (2012) who analyze decision making on the basis of a checklist. More

generally, categorization can be viewed as an example of decision making on the basis

of heuristics as discussed by Gigerenzer and Brighton (2009), who also argue that less

information can improve accuracy in prediction. Gilboa and Samuelson (2009) present

a model of how a preference for simplicity can improve efficiency in inductive reasoning.

The question of how many categories to use is related to the question of specifying the

right number of parameters in econometric models for out-of-sample predictions. Making

decisions on the basis of categories is also related to making decisions on the basis of

analogies (Mitchell and Hofstadter, 1996; Hofstadter, 1996) and to decision making on

the basis of similar past experiences as in Case Based Decision Theory (Gilboa and

Schmeidler, 1995). All of these papers focus on models for individual decision making

only. A crucial difference of our model with Case Based Decision Theory is that in their

paper when making decisions on the basis of past cases, the decision maker considers

how similar the current case is to each of the previous cases using a predefined measure

of similarity. In our model of categorization, all observations in the same category are

treated in the same way; as is the case in other economic models of categorization, i.e.
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Mohlin (2014), Peski (2011), and Al-Najjar and Pai (2014). Thus, within a category there

is no weighing of which observation is more similar to the new experience. Also, a basic

assumption underlying decision making on the basis of categories is that experiences from

other categories are not taken into account.

There have been some papers in the economic literature studying the implications

of categorization. Fryer and Jackson (2008) show that discrimination against minorities

may result if a decision maker has a limited number of categories available. Mullainathan

et al. (2008) show that advertisers may use the tendency of people to think coarsely to

persuade them to buy a certain product. Barberis and Shleifer (2003) show that style

investing (the tendency to invest in classes of stocks rather than individual stocks) may

be an explanation of some biases observed in financial markets. While we focus only

on analyzing the basic theoretical properties of different ways of categorizing, we believe

that our insight that links coordination and coarse categorization may have implications

for real world situations that could be analyzed further.

There is an enormous number of empirical studies as well as procedural models by

cognitive scientists and psychologists on how people categorize. For some overviews of

cognitive science models, see Ashby and Maddox (2005), Zaki et al. (2003), and Smith and

Medin (1981). The discussion is typically centered around the question which procedural

model best describes the way humans categorize - comparing prototype (Rosch, 1975,

1978), exemplar (Nosofsky, 1986), and mixture models. As economists we are less

interested in the exact physical and mental mechanisms of categorizing. Our focus is

on explaining which ways of categorizing would be most useful in a given environment

and why. The details of what actually goes on in the human brain in the process of

categorizing is beyond the scope of our analysis.

Finally, categorization is also related to clustering and classification algorithms in

machine learning; see e.g. Bishop (2007) or Murphy (2012). Clustering algorithms

partition objects into groups in a way such that objects assigned to the same group are

more similar to each other according to some distance metric than objects from different

groups. Classification algorithms are used to predict which class a new observation

belongs to. The algorithm is given a set of training data from which it learns. While

the goal of clustering algorithms is to form the best clusters according to some measure

of similarity, in economic analyses and in our model the driving force of categorization

is the goal to make the best predictions on some unobserved attribute. This also differs

from classification where the goal is to use past experiences to predict whether an object

belongs to a certain class of objects or not.

An adaptive framework for learning categories to make predictions has also been

developed by Anderson (1990, 1991). In contrast to our learning model in his framework

there are exogenous costs of searching for the best categorization and the search is

discontinued when the costs exceed some predefined threshold. We offer a more flexible

model in which the agent is not constrained to neighboring categorizations as in Anderson

(1990, 1991), but can search the entire space of possible categorizations.
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3 Static Model

In our static model we consider the following situation. An individual who has already

accumulated a number of past experiences faces a one-off prediction task. She encounters

an object and has to make a prediction about its unobserved value. She places it in

a category based on its observable characteristics and makes a prediction about its

unobserved value equal to the average of the unobserved values of all objects in the

respective category. Note that we assume that the unobserved values of all objects

experienced in the past have been revealed to the agent.

There are many alternative ways in which the agent could divide her past experiences

into categories. She could use just a few coarse categories, lumping many different

past experiences together in one category. Or she could use many fine categories, each

containing a small number of experiences. Since the new object will be treated according

to the category average, her prediction would generally differ depending on which way

of categorizing past experiences she chooses. Our focus is on studying the properties of

different ways of categorizing. More precisely, we want to gain some understanding of

the factors that determine which way of categorizing will help the agent minimize her

expected prediction error on the next object depending on the environment she is in.

We also consider a second variant of this one-off prediction task. There are two

agents who observe the same object and each of them independently makes a prediction

about its unobserved characteristics. We assume that these agents are only interested in

coordinating their predictions with each other. We formulate this situation as a one-off

game in which each agent chooses a categorization to use and we analyze the equilibrium

properties of this game.

Finally, we extend our analysis to consider a situation in which agents care both about

predicting the true object value correctly and about coordinating their prediction with

one another. But first we introduce some definitions and notation.

3.1 Objects and Categories

Individuals make predictions about objects. An object o consists of an l-dimensional

vector of observed binary attributes x together with an unobserved real-valued feature

y that the individual is trying to predict, that is o = (x, y) ∈ X × Y with x ∈ {0, 1}l

and y ∈ R.7 We denote the set of all objects the individual has experienced in the past

by O. This is the set of past experiences she draws upon when making a prediction

about a new object. An object’s type is determined by its observable attributes, that

is by x only. Let OT denote the set of all possible object types. The number of all

possible object types is |OT | = 2l, where l is the length of the vector of observable

attributes of an object. Thus, for example, if l = 1, then OT = {0, 1} and if l = 2, then

7Note that the fact that the x-vector is binary does not constitute a restriction as its length may always
be increased to approximate an object with continuous attributes. One could also make the assumption
that y is a real-valued vector instead of a real-valued scalar, but we prefer to keep the analysis of the
static model as simple as possible. We relax this assumption in our dynamic model.
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OT = {11, 10, 01, 00}. Throughout the analysis we assume for simplicity that the agent

has sampled an equal number of objects n from each possible object type.8 Thus, the

total number of experiences the individual has is |O| = 2ln.

The unobserved feature y that the individual is trying to predict is a function of the

observed attributes of the object, i.e. y = f(x) + ε with ε ∼ N(0, σ2). The noise term

is drawn from the normal distribution and is i.i.d. for each object. For simplicity our

analysis focuses on the case when the variance of the objects σ2 is independent of the

object type.9 A deterministic environment is defined by σ2 = 0, that is all objects that can

be described by the same vector of observable attributes have the same unobserved value.

In a stochastic environment σ2 > 0, i.e. the unobserved value is a noisy function of the

observed attributes. A stochastic environment represents the more realistic case in which

observable characteristics do not completely reflect the unobserved value of an object (e.g.

same gender, race, or having studied at the same institution do not mean people have the

same suitability for a particular job) or in which some variable of interest is not observed

by the decision maker (e.g. ability is not observed when the agent makes a prediction

about someone’s suitability for a particular job). We do not make assumptions on f(x).

The agent does not know the data generating process (the relation between observed and

unobserved attributes) and predicts the unobserved value of the object by assigning it to

a category. We assume that after the individual has made a prediction the true object

value is revealed to her. For example, after having predicted how suitable a person is for

a particular job, the individual observes the true productivity of this person. Thus, the

agent knows the true unobserved values of all objects she has experienced in the past.

Each category has a category type CT ⊆ OT , which determines which objects can be

put in it. The assignment of objects to categories is based on the objects’ observed

attributes. For example, for the one attribute case there are three category types:

{0} , {1} , {1, 0}. The first category can contain only objects of type 0, the second category

only objects of type 1, and the third category both objects of type 0 and of type 1. If there

are two attributes, there are 15 category types: {11}, {10}, {01}, {00}, {11, 10}, {11, 01},
{11, 00}, {10, 01}, {10, 00}, {01, 00}, {11, 10, 01} {11, 10, 00}, {11, 01, 00}, {10, 01, 00},
{11, 10, 01, 00}.10 A category C is a collection of objects such that the x attributes of the

objects in this category are covered by the category type, i.e. C =
{

(xi, yi)|xi ∈ CT
}

.

3.2 Category Belief and Categorizations

As the individual assigns a newly encountered object to a category, she predicts that the

y-value of the object equals the average of the y-values of all past experiences in this

category. We call this average the category belief. The category belief for category C

8The analysis can be extended to allow for objects of each type to be sampled from some probability
distribution. We leave this extension for future research.

9The analysis could also be extended to allow for objects of different object types to have different
variance.

10Overall, the number of category types is given by |CT | =
∑|OT |
i=1

(|OT |
i

)
=
∑|OT |
i=1

|OT |!
i!(|OT |−i)! where

|OT | is the number of different object types.
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is defined as Ŷ C = 1
|C|
∑

(xi,yi)∈C yi. Category beliefs are the estimators on the basis of

which the individual makes predictions. Note that a category belief is capitalized as it is

a random variable which depends on the exact realization of the y-values of the objects

in the category.

A categorization is a decision maker’s complete model of the world on the basis

of which she makes predictions. A categorization P is a set of categories that form

a disjoint partitioning of the object set (the set of the agent’s past experiences), i.e.

P = {C1, C2, ..., Ck} such that (
⋃
iCi = O) and (Ci ∩ Cj = ∅) for all i 6= j. No two

categories in the same categorization can cover the same object type CT
i ∩CT

j = ∅ for all

i 6= j.11 Using a categorization to make predictions amounts to using a set of estimators,

one for each category of objects.

There can be different possible ways to partition the object set into categories.12

And these categorizations differ in coarseness. The coarseness of the categorization is

determined by the number of categories k in which the set of objects O is partitioned.

The smaller the number of categories for a given O, i.e. the smaller the k, the coarser

the categorization. The larger the number of categories for a given O, i.e. the larger the

k, the finer a categorization.

The finest possible categorization is a partitioning such that each object type has

a separate category.13 The coarsest possible categorization is a partitioning such that

all object types are assigned to a single category. There is always one finest and

one coarsest possible categorization. Depending on the number of different attributes

describing an object and therefore on the number of different object types, there can be

many categorizations between the finest and the coarsest possible.14 These intermediate

levels of coarseness of categorizations can be reached by (consecutive) coarsening of

the finest possible categorization or by (consecutive) refining of the coarsest possible

categorization. A coarsening of a categorization consists of merging two or more of its

categories. A categorization formed through coarsening of a finer categorization will

have a smaller number of categories and a greater number of object types in at least

one category, compared to the categorization it was formed from. A refinement of an

existing categorization consists of splitting one or more of its categories into two or more

11This assumption is relaxed in the dynamic model in which we also consider hierarchical
categorizations.

12The set of possible categorizations P is equal to the set of all possible disjoint partitionings of the
object set. Its cardinality will be given by the Bell number Bd with d = |OT | (see Rota (1964)).

13Note that using the finest possible categorization is not the same as not categorizing. If the individual
uses the finest possible categorization, experiences with objects that have different observable attributes
and are therefore placed in another category under the finest possible categorization will have no effect
on her prediction. If the individual does not categorize, then such experiences may affect her prediction.

14For example, for the case of l = 2 (two observable attributes, four object types), we have the following
categorizations. The finest possible categorization, with four categories, is

{
{11} {10} {01} {00}

}
. There

are the following six categorizations with three categories:
{
{11, 10} {01} {00}

}
,
{
{11, 01} {10} {00}

}
,{

{11, 00} {10} {01}
}

,
{
{10, 01} {11} {00}

}
,
{
{10, 00} {11} {01}

}
,
{
{01, 00} {11} {10}

}
. And the

following seven categorizations with two categories:
{
{11, 10} {01, 00}

}
,
{
{11, 01} {10, 00}

}
,{

{11, 00} {10, 01}
}

,
{
{11, 10, 01} {00}

}
,
{
{11, 10, 00} {01}

}
,
{
{11, 01, 00} {10}

}
,
{
{10, 01, 00} {11}

}
.

The coarsest possible categorization is
{
{11, 10, 01, 00}

}
. See also Figure 1.
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categories with the restriction that all objects of the same type have to be assigned to the

same category. A categorization formed through refinement of a coarser categorization

will have a larger number of categories and a smaller number of object types in at least

one category, compared to the categorization it was formed from.

Note that there may be different ways to coarsen or to refine an existing categorization.

Thus, there may be different paths from the finest to the coarsest possible categorization.

Figure 1 illustrates the different paths from the finest to the coarsest categorization in

the case of four object types. We say that two categorizations are connected by a path

if one may be reached through only coarsening (only refining) of the other. Depending

on which categories of a finer categorization are merged together at the next level, one

may not be able to reach a particular coarser categorization through combining of two or

more existing categories only. For example, from the categorization
{
{11, 10} {01} {00}

}
one can directly reach the coarser categorization

{
{11, 10, 01} {00}

}
by merging the first

and the second category. However, it is not possible to reach the coarser categorization{
{11, 01, 00} {10}

}
only by merging existing categories from

{
{11, 10} {01} {00}

}
. The

latter is an example of categorizations that are not connected by a path. Note that

in Figure 1 there is a line connecting
{
{11, 10} {01} {00}

}
to
{
{11, 10, 01} {00}

}
, but

there is no line connecting
{
{11, 10} {01} {00}

}
to
{
{11, 01, 00} {10}

}
. Distinguishing

categorizations that are connected by a path from categorizations that are not connected

by a path will be useful for our proofs later on.

We denote a categorization at some level of coarseness L by PL, a categorization

that is coarser than PL by PL+
, and a categorization that is finer than PL by PL−

. A

categorization PL+
is coarser than PL if and only if the number of categories of PL+

is

smaller than the number of categories of PL. We then write PL+ � PL. A categorization

PL−
is finer than PL if and only if the number of categories of PL−

is greater than

the number of categories of PL. We denote this case as PL− ≺ PL. Analogically, we

use PL++
to indicate a categorization that is coarser than PL+

and we use PL−−
to

indicate a categorization that is finer than PL−
. Furthermore, where necessary we use

an index in parenthesis to indicate a specific categorization. That is, PL(i) indicates a

categorization i that has level of coarseness L. We denote the set of all categorizations

that are connected by a path to categorization PL(i) as R(PL(i)). Thus, a categorization

PL+
(j) ∈ R(PL(i)) is a categorization that is coarser than PL(i) and is connected by a

path to it. A categorization PL+
(k) 6∈ R(PL(i)) is a categorization that is coarser than

PL(i) and is not connected by a path to it. To indicate that two different categorizations

have the same level of coarseness, we write PL(i) ∼ PL(j).

3.3 Expected Prediction Error

The goal of the agent is to make the best possible prediction on the next object she

encounters.15 For simplicity, we assume that the next object is drawn from a discrete

15Note that considering prediction on the next object only is without loss of generality in this set up.
We could also consider prediction on the next string of objects, but since the model is static the results
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{{11,01,00} {10}} 

 
{{11,00} {10,01}} 

 
  {{10,01,00} {11}} 

Figure 1: Paths connecting categorizations for the case of four object types

uniform distribution of all possible object types. The indicator we use to measure how

good a categorization P is for individual prediction is the expected prediction error the

individual would make on the next object she encounters by using this categorization:

EPEIP (P ). As we can see from Definition 1, the expected prediction error on an object

type j is the expected mean squared error between the object’s unobserved value and the

category belief of the category the object is assigned to.16 The expected prediction error

of a categorization combines the expected prediction error on all object types weighing

them by the probability that an object of a given type is observed. Note that Ŷ Ck and

Yj are capitalized as they denote random variables. The category belief Ŷ Ck depends on

the random realization of the y-values of past experiences the individual has made in this

category and Yj depends on the realization of the y-value of the next object.

Definition 1. Expected Prediction Error Individual Prediction

EPEIP (P ) =
∑
Ck∈P

∑
xj∈CT

k

pjE[(Ŷ Ck − Yj)2] (1)

The indicator that we use to measure how good a given categorization profile is

for the coordination of the two players’ predictions on the next object is the expected

prediction error from coordination of the two categorizations from each other. We denote

it by EPEC(P1, P2) where P1 denotes the categorization Player 1 uses and P2 denotes

the categorization Player 2 uses. As Definition 2 shows, the expected prediction error

between the two players’ predictions on an object type j is equal to the mean squared

would not change. In our dynamic model we consider an agent who experiences a sequence of objects
and learns from her experience with each object.

16The mean squared error is a standard way of measuring how good an estimator is; see any statistics
textbook, e.g. Berry and Lindgren (1996).
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error between the category beliefs that the players use on object type j. The expected

prediction error of two categorizations from each other combines the expected prediction

errors on all object types, weighing them by the probability that an object of a given type

is observed. As in this case both players only care about coordinating, the EPEC(P1, P2)

is the same for both of them.

Definition 2. Expected Prediction Error Coordination

EPEC(P1, P2) =
∑
Ck∈P1

∑
Cl∈P2

∑
xj∈(CT

k ,C
T
l )

pjE[(Ŷ Ck
1 − Ŷ Cl

2 )2]
(2)

The expected prediction error for the case when decision makers care both about

individually predicting the true object value correctly and about coordinating their

prediction with each other is denoted by EPEIP&C(P1, P2) and is given by the convex

combination of the expected prediction errors from Definition 1 and from Definition 2.

Let w denote the weight the individual places on making correct predictions about the

true object value and (1−w) denote the weight she places on coordinating her predictions

with the other (0 ≤ w ≤ 1). We assume that both players place the same weight w on

individual prediction.17 Note that if the two players use different categorizations then

their EPEIP&C(P1, P2) will be generally different, as although they would be making the

same error with respect to each other, they would be generally making different mistakes

with respect to the true object value.

Definition 3. Expected Prediction Error Individual Prediction and Coordination

The EPEIP&C
1 (P1, P2) of Player 1 is:

EPEIP&C
1 (P1, P2) = wEPEIP (P1) + (1− w)EPEC(P1, P2)

= w
∑
Ck∈P1

∑
xj∈CT

k

pjE[(Ŷ Ck − Yj)2] + (1− w)
∑
Ck∈P1

∑
Cl∈P2

∑
xj∈(CT

k ,C
T
l )

pjE[(Ŷ Ck − Ŷ Cl)2]

The EPEIP&C
2 (P1, P2) of Player 2 is:

EPEIP&C
2 (P1, P2) = wEPEIP (P2) + (1− w)EPEC(P1, P2)

= w
∑
Cl∈P2

∑
xj∈CT

l

pjE[(Ŷ Cl − Yj)2] + (1− w)
∑
Ck∈P1

∑
Cl∈P2

∑
xj∈(CT

k ,C
T
l )

pjE[(Ŷ Ck − Ŷ Cl)2]

(3)

4 Analysis of the Static Model

In this section we present the analysis of the static model. We first analyze the properties

of optimal ways of categorizing in the two benchmark cases - on the one hand, when an

17The analysis can be extended to allow for the players to place different weights on individual
prediction.
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individual cares only about predicting the true value correctly, and on the other hand,

when agents care only about coordinating with each other. We then combine our insights

from these cases in order to analyze their convex combination. All results and where

relevant a sketch of the proof and some intuition are given in the text, while the technical

proofs are in Appendix B.

4.1 Individual Prediction

We first consider the case of an individual who is only interested in predicting the true

unobserved object value correctly. We develop some preliminary results in Lemma

1 and build upon them to derive our main results in this section in Proposition 1

and in Proposition 3. In Lemma 1 we show that the Expected Prediction Error of a

categorization P in individual prediction, i.e. EPEIP (P ) can be decomposed into two

components - a bias component and a variance component.18 These two components are

crucial for understanding the costs and benefits of using fine and coarse categorizations,

respectively.

Lemma 1. Bias-Variance Decomposition of EPEIP (P )

EPEIP (P ) =
∑
Ck∈P

∑
xj∈CT

k

pjE[(Ŷ Ck − Yj)2]

=
∑
Ck∈P

∑
xj∈CT

k

pjV ar(Ŷ
Ck) +

∑
Ck∈P

∑
xj∈CT

k

pjV ar(Yj) +
∑
Ck∈P

∑
xj∈CT

k

pj(E[Ŷ Ck ]− µj)2

= V ar(P ) + V ar(Y ) +Bias2(P )

(4)

Lemma 1 shows that the EPEIP (P ) of a categorization can be decomposed into

the expected variance of the category beliefs of the categorization V ar(P ), the expected

variance of the underlying object types in the population V ar(Y ), and the expected bias

of the category beliefs in the categorization Bias2(P ). The EPEIP (P ) will increase if

any of these underlying components increases.

As a reminder note that the bias and the variance are standard properties describing

how good an estimator is for prediction. The variance shows how sensitive the estimator

is to the particular sample. The lower the variance of one estimator compared to another,

the more consistent the first estimator is compared to the second. The bias is the

difference between the expected value of an estimator and the true population mean of

the object the prediction is about. Note that Lemma 1 is a bias-variance decomposition of

the EPE of a categorization, i.e. of a set of estimators rather than of one estimator. Thus,

the variance component is the expected variance of the category beliefs of all categories

in the categorization and the expected variance of all object types in the population. The

18A bias-variance decomposition of the mean squared error of an estimator is shown in many statistical
textbooks; e.g. Berry and Lindgren (1996). As we show, a bias-variance decomposition will be
particularly useful to analyze the EPE of a categorization, when we view a categorization as a set
of estimators.
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bias component of a categorization is equal to the expected bias of its category beliefs.

The bias of a category belief is the squared difference between its expected value E[Ŷ Ck ]

and the population mean of a particular object type j, µj, averaged over all object types

that enter this category. Note that although the category belief is a sample average, in

the case of a category that contains more than one object type, this category belief is not

generally an unbiased estimator.

In Proposition 1 we derive results on the implications of the coarseness of a

categorization for the expected bias and the expected variance components of its

EPEIP (P ). For expositional simplicity from now on we write bias and variance instead

of expected bias and expected variance component of the expected prediction error.19

We also show how the stochasticity of the environment and the sample size of the agent

affect the variances of the category beliefs of the categorization.

Proposition 1. Comparative Statics Bias and Variance Components EPEIP (P )

Part 1. Variances

The variance component of the EPEIP (P ) of a categorization V ar(P ) + V ar(Y ) =

f(k, σ2, n) is increasing in the noise level σ2, increasing in the number of categories k,

and decreasing in the sample size n. The difference in variance between a finer and a

coarser categorization V ar(PL)−V ar(PL+
) = g(m,σ2, n) is increasing in the noise level

σ2, increasing in the difference in the number of categories in the two categorizations m,

and decreasing in the sample size n.

Part 2. Biases

Let PL(i) be a categorization of some level of coarseness L and PL+
(j) be any coarser

categorization such that PL+
(j) ∈ R(PL(i)), i.e. such that PL+

(j) and PL(i) are

connected by a path. Then it is always true that Bias2(PL+
(j)) ≥ Bias2(PL(i)).

We now explain the intuition behind Part 1. Lemma 1 showed that the variance

component of EPEIP is equal to the variance of the category beliefs in the categorization

plus the variance of the object types in the population V ar(P ) + V ar(Y ). Under the

assumption of an equal variance of all object types in the population and an equal number

of objects from each type in the agent’s sample, we show in Appendix B that the latter

term is equal to: V ar(Y ) = σ2. We thus focus our attention on the first term, i.e. on

the expected variance of the category beliefs in a categorization V ar(P ). Each category

belief Ŷ Ck is the average of the y-values of the objects in the respective category Ck.

The y-values of these objects are normally distributed and thus the category belief is

also normally distributed, with a variance that will be equal to the population variance

19Note, however, that the variance that we refer to is always the variance component of the EPE of a
categorization, which is based on the EPE of its category beliefs. This is not to be confused with the
variance of a category, i.e. with the variance of a sample. As we are interested in characterizing how
good estimators are for prediction, our focus is on the bias and variance components of the EPE of the
estimators, i.e. of the category beliefs.
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divided by the number of objects in the category.20 Thus, the intuition behind the benefit

of using a coarser categorization is that in a coarser categorization there are on average

more objects per category and the variance of the category beliefs will be lower. That is, a

coarser categorization has more consistent estimators compared to a finer categorization.

Note also that the variance of all categorizations of equal coarseness is the same.21

Proposition 1 Part 1 implies that the more noise there is in the environment and/or

the smaller the sample size of an agent, the greater the difference in variance between

a finer and a coarser categorization and hence the greater the benefits of using a coarse

rather than a fine categorization. Table 2 in Appendix A provides a numerical illustration

of this part of the proposition.

We now look at Part 2. The bias component of EPEIP (P ) of a categorization

used for individual prediction is equal to the bias of its category beliefs Bias2(P ) =∑
Ck∈P

∑
xj∈CT

k
pj(E[Ŷ Ck ]− µj)2. The bias of each category belief is the expected mean

squared error between the expected value of the category belief (the estimator E[Ŷ Ck ])

and the true population mean of each object type in the category. Note that the category

belief of a category in which there is only one object type will be an unbiased estimator of

the true value of this object type in the population, as the expected value of the estimator

will be equal to the true population mean of this object type. However, the category belief

of a category which contains object types with different underlying population means will

be generally a biased estimator for a particular object type as its expected value will be

equal to the average of the population means and thus the estimator will be making a

mistake towards at least some of the population means.22 In the Proof of Proposition 1

Part 2 in Appendix B we show that any coarser category formed through merging of two

finer categories will have a higher bias than the sum of the biases of the finer categories

that were merged to form it. As a result, a coarser categorization will always have a higher

bias than a finer categorization that is connected to it by a path.23 Table 2 in Appendix

A provides a numerical illustration of the bias of finer and coarser categorizations.

To further illuminate the underlying relationship between categorization coarseness

and EPEIP (P ) consider the following two cases. Assume the individual uses the finest

possible categorization, i.e. each category contains only one type of objects. In that

case, the expected value of category belief for each category will be equal to the true

mean of the respective type of objects in the population. Therefore, each category

belief is an unbiased estimator and the bias term in EPEIP (P ) will be zero. Unless

the environment is deterministic (σ2 = 0), however, the finest categorization will have

a positive EPEIP (P ) due to the variance component. Assume to the contrary that the

20Let Y1, Y2, ...Ym be normal random variables which are independent and for which Yi ∼ N(µi, σ
2).

We know from the basic properties of normal random variables that
∑
i Yi ∼ N(

∑
i µi,

∑
i σ

2). Thus, the

average of these normal random variables will also be normally distributed with
∑

i Yi

m ∼ N(
∑
µi

m , σ
2

m ).
21As we are interested in deriving economic rationales for coarse categorization, our focus is not on

the asymptotics but on the finite sample properties of different ways of categorizing.
22Apart from the trivial case when the population means of all object types are equal.
23The biases of categorizations that are not connected by paths are not directly comparable without

making additional assumptions.
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individual uses the coarsest possible categorization, i.e. all types of objects are put in one

category. In that case, if the different types of objects have different population means,

the prediction made using the category belief will be biased. However, EPEIP (P ) may

be smaller in the case of the coarsest possible categorization as Proposition 1 Part 1

tells us that the variance component of EPEIP (P ) for the coarsest categorization will

be smaller than the variance component of EPEIP (P ) for the finest categorization for

any positive noise level. While the category beliefs of the finest categorization are the

unbiased estimators, the category belief of the coarsest categorization will be the more

consistent estimator, as it will have the smallest variance due to the fact that it contains

the largest number of objects.

As we assume that the goal of an economic agent is to make optimal predictions, we

next characterize what an optimal categorization means.

Definition 4. Characterization of Optimal Categorization for IP

A categorization PL(i) is optimal for individual prediction if and only if the following

three conditions hold: i) its EPEIP is smaller or equal to the EPEIP of all categorizations

that are finer than it; ii) its EPEIP is smaller or equal to the EPEIP of all categorizations

that are equally coarse; iii) its EPEIP is smaller or equal to the EPEIP of all

categorizations that are coarser than it. Using the bias-variance decomposition from

Lemma 1, this is equivalent to:

i) For all PL− ≺ PL(i) it has to hold that:

EPEIP (PL(i)) ≤ EPEIP (PL−
)

⇔ V ar(PL(i)) + V ar(Y ) +Bias2(PL(i)) ≤ V ar(PL−
) + V ar(Y ) +Bias2(PL−

)

⇔ V ar(PL(i))− V ar(PL−
) ≤ Bias2(PL−

)−Bias2(PL(i))

(5)

ii) For all PL(j) ∼ PL(i) it has to hold that:

EPEIP (PL(i)) ≤ EPEIP (PL(j))

⇔ V ar(PL(i)) + V ar(Y ) +Bias2(PL(i)) ≤ V ar(PL(j)) + V ar(Y ) +Bias2(PL(j))

⇔ V ar(PL(i))− V ar(PL(j)) ≤ Bias2(PL(j))−Bias2(PL(i))
(6)

iii) For all PL+ � PL(i) it has to hold that:

EPEIP (PL(i)) ≤ EPEIP (PL+

)

⇔ V ar(PL(i)) + V ar(Y ) +Bias2(PL(i)) ≤ V ar(PL+

) + V ar(Y ) +Bias2(PL+

)

⇔ V ar(PL(i))− V ar(PL+

) ≤ Bias2(PL+

)−Bias2(PL(i))

(7)

The representation of the comparison of EPEIP of two categorizations in terms of

differences in variances on the LHS and differences in squared biases on the RHS is useful

for proving some of our later results. These conditions show that for a categorization

PL(i) to be optimal for IP, the difference between its variance and the variance of any
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other categorization the agent could use has to be smaller or equal to the difference in

squared biases between the other categorization and PL(i).

Proposition 2. Existence of Optimal Categorization for Individual Prediction

There always exists an optimal categorization for individual prediction.

The proof of the above result is trivial as the set of possible categorizations is finite.

A key question we are interested in is how the optimal way of categorizing depends

on the environment the agent is in - whether it is deterministic or stochastic. Proposition

3 describes how the coarseness of the categorization(s) that minimize(s) the EPEIP ,

depends on the exogenously given noise level and on the sample size of each object type.

These are two of the key parameters describing the environment, i.e. the amount of

stochasticity in the environment and the amount of information from past experiences

that the agent has.

Proposition 3. Coarseness of the Optimal Categorization(s) for Individual Prediction

The coarseness of the optimal categorization(s) for IP is increasing in the noise level σ2

and decreasing in the sample size n.

Proposition 3 establishes that the higher the noise in the environment and the smaller

the sample size of past experiences, the coarser the optimal categorization(s). The sketch

of the proof is as follows. We examine the effect of the noise on the fulfillment of

the optimality conditions for a categorization given in Definition 4. A change in the

noise will only affect the differences in variances (i.e. the LHS of the three conditions).

In Proposition 1 Part 1 we showed that as noise increases the difference in variance

between a finer and a coarser categorization increases. Therefore as noise increases coarser

categorizations become relatively more attractive compared to finer categorizations than

before. We use this to show that an increase in the noise will never lead to a finer or an

equally coarse categorization becoming optimal if it was not optimal before, but it can

lead to a coarser categorization becoming optimal.

The proof for an increase in sample size is analogical. The increase in sample size

also affects only the LHS of the conditions in Definition 4. More precisely, an increase

in sample size means that the difference in variance between a finer and a coarser

categorization becomes smaller. We use this insight from Proposition 1 Part 1 to show

that as n increases only a finer categorization can become optimal if it was not optimal

before. To sum up, the intuition is that noisy environments in which the sample size

is limited make coarse categorizations attractive as coarse categorizations decrease the

variance in prediction. The smaller the sample size, the greater the benefit of categorizing

coarsely. Tables 2 and 3 in Appendix A illustrate the proposition.

4.2 Coordination

In this section we consider the case when players care only about coordinating their

predictions with each other (see Definition 2). The setup is as follows. We assume that
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there are two players. Each of them has independently accumulated n experiences of

each object type in the past. That is, in general each of them has sampled different

objects. The two individuals face a one-off prediction problem in which they both

observe the same object. They see the object’s observable characteristics and have to

make a prediction about the object’s unobserved value. For simplicity, we assume that

this next object is drawn from the discrete uniform distribution of object types. Each

individual makes a prediction about the object’s unobserved value equal to the average

value in the category of past experiences she puts the object in. The goal of the two

players is simply to coordinate their prediction on the next object, i.e. to minimize their

expected prediction error from each other. In this setting the individual is not interested

in the true unobserved value, but only in the other person’s prediction. As before there

are many alternative ways in which each of the two players can categorize her past

experiences. Which way each of them chooses matters because it will determine their

expected prediction error from each other. We represent the above situation formally as

a one-shot game in which each player independently chooses a categorization. We then

analyze the equilibrium properties of this game.

We begin by introducing Lemma 2 which extends our approach of bias-variance

decomposition of expected prediction error to the case of coordination. Our main result

in this section is Proposition 4 in which we analyze the equilibrium properties of the

coordination game. In Proposition 5 we establish sufficient conditions for a connection

between optimality for individual prediction and existence of Nash equilibria in the

coordination game.

Lemma 2 shows that the EPEC(P1, P2) can be decomposed into a bias and a variance

component.

Lemma 2. Bias-Variance Decomposition of EPEC(P1, P2)

EPEC(P1, P2) =
∑
Ck∈P1

∑
Cl∈P2

∑
xj∈(CT

k ,C
T
l )

pjE[(Ŷ Ck − Ŷ Cl)2]

=
∑
Ck∈P1

∑
xj∈CT

k

pjV ar(Ŷ
Ck) +

∑
Cl∈P2

∑
xj∈CT

l

pjV ar(Ŷ
Cl)

+
∑
Ck∈P1

∑
Cl∈P2

∑
xj∈(CT

k ,C
T
l )

pj(E[Ŷ Ck ]− E[Ŷ Cl ])2

= V ar(P1) + V ar(P2) +Bias2(P1, P2)

(8)

That is, the EPEC(P1, P2) is equal to the sum of the expected variance of the category

beliefs of the categorization P1 that Player 1 uses, the expected variance of the category

beliefs of the categorization P2 that Player 2 uses, and the expected bias of the category

beliefs of the two players from each other. It is increasing in each of these terms. Note

that whenever both players use the exact same categorization, they will have the same

expected value for each category belief and the bias of their categorizations from each
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other will be zero.

We want to understand the determinants of optimal categorizations when players

want to coordinate their predictions.

Definition 5. Coordination Game

Our coordination game is a two-player game in which each player independently

chooses a categorization from the set of available categorizations P .24 Note that all

possible categorizations are available to each player, so that P is the same for both

players. The preference relations of the players are represented by the EPEC(P1, P2),

which is a function f : P × P → R mapping from the set of possible categorization

profiles to the set of real numbers.

Next, focusing on pure strategy NE, we consider the relevant equilibrium conditions

for the coordination game. Let (PL
1 (i), PM

2 (j)) denote a categorization profile such that

PL
1 (i) is the categorization that Player 1 uses and PM

2 (j) is the categorization that Player

2 uses. The subscripts 1,2 denote the players. The two categorizations could be the same

or different. The level of coarseness M could be a finer level of coarseness than L, it could

be the same one, or it could be a coarser one.

Definition 6. NE Conditions of the Coordination Game

For (PL
1 (i), PM

2 (j)) to be a Nash Equilibrium (NE) the following conditions have to

hold. Given the categorization of the opponent: i) no player should have an incentive to

deviate to a finer categorization than the one she is currently using; ii) no player should

have an incentive to deviate to another categorization at the same level of coarseness as

the one she is currently using; and iii) no player should have an incentive to deviate to a

coarser categorization than the one she is currently using.

Using the bias-variance decomposition from Lemma 2 this leads to the following

conditions from the perspective of Player 1. The conditions for Player 2 are analogical.

For a complete derivation and all conditions for both players, see Appendix B.

For all PL−
1 ≺ PL

1 (i) it has to hold that:

EPE(PL
1 (i), PM

2 (j)) ≤ EPE(PL−

1 , PM
2 (j))

⇔ V ar(PL
1 (i))− V ar(PL−

1 ) ≤ Bias2(PL−

1 , PM
2 (j))−Bias2(PL

1 (i), PM
2 (j))

(9)

For all PL
1 (k) ∼ PL

1 (i) it has to hold that:

EPE(PL
1 (i), PM

2 (j)) ≤ EPE(PL
1 (k), PM

2 (j))

⇔ V ar(PL
1 (i))− V ar(PL

1 (k)) ≤ Bias2(PL
1 (k), PM

2 (j))−Bias2(PL
1 (i), PM

2 (j))
(10)

24Whether our game is a coordination game in the usual sense of a game with multiple equilibria is
something to be analyzed in this section.
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For all PL+

1 � PL
1 (i) it has to hold that:

EPE(PL
1 (i), PM

2 (j)) ≤ EPE(PL+

1 , PM
2 (j))

⇔ V ar(PL
1 (i))− V ar(PL+

1 ) ≤ Bias2(PL+

1 , PM
2 (j))−Bias2(PL

1 (i), PM
2 (j))

(11)

A categorization profile is a NE in the coordination game if for each player the variance

of her categorization minus the variance of any categorization she could deviate to is

smaller or equal to the difference in squared bias between the two players’ categorizations,

if she were to deviate minus the respective squared bias if she does not deviate. Note

that this representation of EPEC(P1, P2) has its LHS (i.e. the difference in variance

before and after a deviation) in common with our representation of EPEIP (P ). This

will be useful in our proofs connecting optimality in IP with equilibrium existence in the

coordination game.

In Proposition 4 we analyze some equilibrium properties of the coordination game.

This is one of our main Propositions. In Part 1 we rule out the possibility that a large

class of asymmetric categorization profiles constitute NE. In Part 2 we show which

symmetric equilibrium always exists in the coordination game and what the existence

of other symmetric equilibria depends on. And in Part 3 we Pareto-rank all symmetric

categorization profiles.

Proposition 4. Equilibrium Properties of the Coordination Game

Part 1. Ruling Out Existence of Asymmetric Equilibria

Categorization profiles such that the coarseness of the categorization of Player 1 is

different from the coarseness of the categorization of Player 2 cannot be a NE for any

σ2 > 0. Categorization profiles such that the two players use different categorizations

at the same level of coarseness cannot be a NE if the two categorizations have different

expected values of the estimators for least one object type.

Part 2. Existence of Symmetric Equilibria

The number of symmetric categorization profiles that constitute a NE is a decreasing

function of σ2. Both players using the coarsest possible categorization profile is always a

NE and may be the only one if σ2 is sufficiently high.

Part 3. Pareto-ranking of Symmetric Categorization Profiles

The efficiency of symmetric categorization profiles increases with coarseness.

We now sketch briefly the proofs for Part 1. We first rule out the existence of

asymmetric equilibria in which players use categorizations at different levels of coarseness.

To rule out the existence of such equilibria it is sufficient to show that for all categorization

profiles such that players use categorizations at different levels of coarseness, there exists

at least one profitable deviation for at least one player. We show that the player who

uses a finer categorization than the opponent always has an incentive to deviate to using

the exact same categorization as the opponent (same coarseness and same categorization

at that level). The intuition is that this is profitable because by moving to a coarser
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categorization this player decreases her variance in prediction. Moreover, using the same

categorization as the opponent means that they will have no bias in their predictions from

each other. Thus, both the bias and the variance components of EPEC(P1, P2) decrease

if the player who uses a finer categorization switches to using the same categorization as

the opponent.

The argument to rule out the existence of asymmetric equilibria in which players use

different categorizations at the same level of coarseness is similar. Again one needs to

show that there exists at least one profitable deviation. It is guaranteed that whenever

the two categorizations have different expected values of the estimators for least one

object type it is profitable for a player to deviate to using the same categorization as the

opponent, as this will reduce their bias from each other to zero.

We now turn to Part 2. We consider all symmetric categorization profiles, i.e. all

categorization profiles such that both players use the exact same categorization. We have

shown in Part 1 that for any positive noise level no player ever has an incentive to use

a categorization that is finer than the one the opponent is using. Likewise no player has

an incentive to deviate to another equally coarse categorization different from the one

the opponent is using, as this would create a bias in their predictions from each other

without changing either person’s variance in prediction. What remains to be considered

is the question whether a player has an incentive to deviate to a coarser categorization

than the one the opponent is using and if so, in what cases. In Appendix B we show

that this depends on the noise level. We know from Proposition 1 Part 1 that keeping all

else equal, the higher the noise level, the greater the decrease in variance from moving

to a coarser categorization (note that the bias is not affected by a change in the noise

level). Thus, even if a categorization profile constitutes a NE at some noise level, it

might not be a NE at a higher noise level, as a deviation to a coarser categorization may

become profitable. The only exception is the coarsest possible categorization because at

the coarsest possible level there is no coarser categorization to deviate to. Thus, both

using the coarsest possible categorization is always a NE. If noise is sufficiently high, it

may be the only NE.

The proof of Part 3 proceeds in the following way. For all symmetric profiles, since

players are using the exact same categorizations their bias of prediction from each other is

always Bias2(PL
1 (i), PL

2 (i)) = 0. Thus, the EPEC(P1, P2) of these categorization profiles

depends only on the variances of the category beliefs: EPEC(P1, P2) = V ar(PL
1 (i)) +

V ar(PL
2 (i)). We know from Proposition 1 that the coarser a categorization, the smaller its

variance. This means that for any positive noise level a coarser symmetric categorization

profile always has a smaller EPEC(P1, P2) than a finer symmetric categorization profile.

Symmetric categorization profiles are therefore Pareto-ranked with coarser profiles being

more efficient than finer profiles for any positive noise level. In the case of σ2 = 0,

we have V ar(P ) = 0 and hence all symmetric categorization profiles are equally good.

Note also that as all categorizations at the same level of coarseness have an equal variance

(Proposition 1 Part 1), if there are multiple symmetric categorization profiles at the same

level of coarseness, then they will be equally efficient.
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The result that the categorization profile in which both players use the coarsest

possible categorization is always a NE and that it is the Pareto-superior NE for any

positive noise level is perhaps somewhat counterintuitive, as the prediction error with

respect to the true object value may be large if both players use the coarsest possible

categorization. However, if players only want to coordinate their predictions, what

matters for them is their prediction error with respect to each other. By both using

the same categorization they minimize the bias component of EPEC(PL
1 , P

L
2 ), and by

both using the coarsest categorization they minimize its variance component. Note that

whether there is a unique NE in the coordination game depends on the noise level and

the sample size.

We now analyze the connection between optimality for individual prediction and NE

in the coordination game. In Proposition 5 we identify sufficient conditions under which

we can connect optimality for individual prediction with NE existence in the coordination

game. In particular, we identify a set of sufficient conditions under which all NE such that

players use categorizations at a finer level of coarseness than the individually optimal one

are ruled out and in NE players will always categorize equally coarsely or more coarsely

than the optimal level for individual prediction.

Proposition 5. Connection Optimality IP and NE in Coordination Game

Part 1. NE if Both Use Individually Optimal Categorization

If PL(i) is optimal in IP and Bias2(PL+(l))− Bias2(PL(i)) ≤ Bias2(PL+(l), PL(i))

for all PL+(l) � PL(i) such that PL+
(l) /∈ R(PL(i)) then (PL(i), PL(i)) is a NE in the

coordination game.

Part 2. No Equilibria in Categorizations Finer than Individually Optimal25

If PL(i) is the finest optimal categorization in IP, then there exists no symmetric

equilibrium (PL−
(j), PL−

(j)) at any level finer than PL(i) involving any categorization

that is connected by a path to PL(i), i.e. for any PL−
(j) ∈ R(PL(i)). Additionally,

if Bias2(PL(i)) − Bias2(PL−
(k)) ≥ Bias2(PL−

(k), PL(i)) for all PL−
(k) ≺ PL(i) such

that PL−
(k) /∈ R(PL(i)) then there exists no symmetric equilibrium (PL−

(k), PL−
(k)) at

any level finer than PL(i) involving any categorization that is not connected by a path to

PL(i).

Part 3. Symmetric Equilibria at Levels Coarser than the Individually Optimal

If PL(i) is optimal in IP and the condition V ar(PL+
(j)) − V ar(PL++

) ≤
Bias2(PL++

, PL+
(j)) holds for each PL++ � PL+

(j), then (PL+
(j), PL+

(j)) is a NE

in the coordination game.

Proposition 5 Part 1 provides a sufficient (though not necessary) condition for the

optimality of a categorization for individual prediction to imply that a categorization

25Note that by ruling out existence of equilibria in symmetric categorizations at a level of coarseness
below that of the finest individually optimal categorization, we are ruling out the existence of any
equilibrium that involves a level of coarseness finer than the finest individually optimal, as the existence
of asymmetric equilibria was ruled out in Proposition 4 Part 1.
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profile such that both players use this same individually optimal categorization is a NE

in the coordination game. The sketch of the proof is the following. For (PL(i), PL(i))

to be a NE we need that no player has an incentive to deviate to a finer, to another

equally coarse or to a coarser categorization. Proposition 4 Part 1 implies that no player

ever has an incentive to deviate to a finer categorization than the one his opponent uses

or to another categorization that is equally coarse but different than the one the other

player uses. So to show that (PL(i), PL(i)) is a NE we need to show that no player has

a profitable deviation to a coarser categorization. There are two cases that we need to

consider: a deviation to a coarser categorization that is connected by a path to PL(i)

and a deviation to a coarser categorization that is not connected by a path to PL(i).

In Appendix B we use Proposition 1 to show that if PL(i) is optimal for individual

prediction, no player has an incentive to deviate to any coarser categorization that is

connected by a path to PL(i). We cannot show that in general a player would not

have a profitable deviation to a categorization that is not connected by a path to PL(i).

We establish a sufficient condition under which individual optimality of a categorization

implies that no player has a profitable deviation to another categorization that is not

connected by a path to PL(i). This sufficient condition for no profitable deviation to a

coarser categorization not connected by a path to PL(i) is that the difference in bias for

individual prediction of any coarser categorization that is not connected by a path and

the bias of the categorization that is optimal for individual prediction is smaller than

or equal to the bias of the two players’ predictions from each other in the coordination

game if they use the above categorizations, respectively. Note that this is a sufficient

(but not necessary) condition for individual optimality to imply that both players using

the individually optimal categorization is a NE in the coordination game.

Proposition 5 Part 2 guarantees that there is no symmetric NE in the coordination

game in which players use a categorization that is finer than the finest individually

optimal categorization PL(i) and connected by a path to it. It also gives a sufficient

condition under which, if PL(i) is the finest individually optimal categorization, there

are also no NE in symmetric categorizations that are finer than the finest individually

optimal categorization and not connected by a path to it. We present a brief sketch

of the proof. We need to show that if PL(i) is the finest optimal categorization for

individual prediction, then there exists a profitable deviation for at least one player from

any symmetric categorization profile at a finer level of coarseness that is connected by

a path to PL(i). For that purpose we consider the deviation to the finest individually

optimal categorization and show that this is always profitable. This proves the first part

of the claim. We then derive sufficient conditions for individual optimality of PL(i) to

imply the ruling out of existence of any equilibria in finer symmetric categorizations that

are not connected by a path to PL(i).

Proposition 5 Part 3 gives a sufficient condition to for the existence of NE in symmetric

categorizations at levels of coarseness above the individually optimal one. To show the

existence of a symmetric equilibrium we need to show that no player has an incentive to

deviate to a finer, to another equally coarse or to a coarser categorization. The first two
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conditions are guaranteed to hold, as we have shown in Proposition 4 Part 1. For the last

condition to hold it is necessary and sufficient that the difference in variance between the

categorization PL+
(j) and any categorization coarser than it is smaller or equal to the

bias of the two players from using the respective categorizations.

Thus, Proposition 5 gives us conditions that are sufficient to ensure that if a

categorization is optimal for IP, then both players using this categorization is a NE; both

players using any finer symmetric categorization profile cannot be a NE; and there exist

NE in symmetric categorizations at levels of coarseness above the individually optimal

one.

4.3 Individual Prediction and Coordination

In the previous two sections we analyzed the properties of optimal categorizations in case

an individual is interested only in making a correct prediction about the true unobserved

value of the object and the properties of different categorization profiles in the game

in which players are only interested in coordinating their predictions. In many cases

economic agents will care both about making correct predictions and about coordinating

their predictions with each other. In this section we represent this situation formally with

what we call an IP&C game and we discuss the properties of different categorization

profiles in this game. In Lemma 3 we extend the bias-variance decomposition to the

EPEIP&C . Below we present it from the perspective of Player 1.

Lemma 3. General Bias-Variance Decomposition EPEIP&C
1 (P1, P2)

EPEIP&C
1 (P1, P2) = w

[ ∑
Ck∈P1

∑
xj∈CT

k

pj(V ar(Ŷ
Ck) + V ar(Yj) + (E[Ŷ Ck ]− µj)2)

]
+ (1− w)

[ ∑
Ck∈P1

∑
Cl∈P2

∑
xj∈(CT

k ,C
T
l )

pj(V ar(Ŷ
Ck) + V ar(Ŷ Cl) + (E[Ŷ Ck ]− E[Ŷ Cl ])2)

]

= wV ar(P1) + wV ar(Y ) + wBias2(P1)

+ (1− w)V ar(P1) + (1− w)V ar(P2) + (1− w)Bias2(P1, P2)
(12)

The EPEIP&C
2 (P1, P2) of Player 2 can be written in an analogical way. The EPEIP&C

is the convex combination of the EPEIP and the EPEC with a weight w on individual

prediction and (1 − w) on coordination, respectively. It is increasing in the variance of

the categorization the player uses, in the variance of the underlying object types in the

population, in the bias of the categorization that the player uses, in the variance of the

other player’s categorization, and in the biases of their predictions from each other. We

now formalize the situation described above and we call it an IP&C game.

Definition 7. IP&C game

An IP&C game is a version of the coordination game such that the preference relations

of the two players are represented by EPEIP&C
1 and EPEIP&C

2 , respectively, with each

player i placing a weight wi on individual prediction and a weight (1−wi) on coordination.
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We now describe the NE conditions in the IP&C game. For simplicity we assume in

the analysis below that w1 = w2 = w, i.e. the two players have identical preferences.

Definition 8. NE conditions of the IP&C game

For (PL
1 (i), PM

2 (j)) to be a Nash Equilibrium (NE) in the IP&C game the following

conditions have to hold. Given the categorization of the opponent: i) no player should

have an incentive to deviate to a finer categorization than the one she is currently using;

ii) no player should have an incentive to deviate to another categorization at the same

level of coarseness as the one she is currently using; and iii) no player should have an

incentive to deviate to a coarser categorization than the one she is currently using. Using

the bias-variance decomposition from Lemma 3 to write the above conditions, we get the

following from the perspective of Player 1. The conditions for Player 2 are analogical.

For a complete derivation and all conditions for both players, see Appendix B.

i) For all PL−
1 ≺ PL

1 (i) it should hold that:

EPEIP&C
1 (PL

1 (i), PM
2 (j)) ≤ EPEIP&C

1 (PL−
1 , PM

2 (j))

⇔ V ar(PL
1 (i))− V ar(PL−

1 )

≤ w
[
Bias2(PL−

1 )−Bias2(PL
1 (i))

]
+ (1− w)

[
Bias2(PL−

1 , PM
2 (j))−Bias2(PL

1 (i), PM
2 (j))

] (13)

ii) For all PL
1 (k) ∼ PL

1 (i) it should hold that:

EPEIP&C
1 (PL

1 (i), PM
2 (j)) ≤ EPEIP&C

1 (PL
1 (k), PM

2 (j))

⇔ V ar(PL
1 (i))− V ar(PL

1 (k))

≤ w
[
Bias2(PL

1 (k))−Bias2(PL
1 (i))

]
+ (1− w)

[
Bias2(PL

1 (k)), PM
2 (j))−Bias2(PL

1 (i), PM
2 (j))

] (14)

iii) For all PL+

1 � PL
1 (i) it should hold that:

EPEIP&C
1 (PL

1 (i), PM
2 (j)) ≤ EPEIP&C

1 (PL+

1 , PM
2 (j))

⇔ V ar(PL
1 (i))− V ar(PL+

1 )

≤ w
[
Bias2(PL+

1 )−Bias2(PL
1 (i))

]
+ (1− w)

[
Bias2(PL+

1 , PM
2 (j))−Bias2(PL

1 (i), PM
2 (j))

] (15)

For a categorization profile to be a NE in the IP&C game, the change in variance

from deviating to any other categorization has to be smaller or equal to the weighted

sum of the difference between the new and the old squared bias in individual prediction

and the difference between the new and the old squared bias in the coordination game.

In Proposition 6 we characterize some equilibrium properties of the IP&C game.

Parts 1 and 2 deal with the connection between a categorization’s optimality in IP with

NE existence in the IP&C game. In Part 3 we present a condition under which we can
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Pareto rank all symmetric categorization profiles in the IP&C game.

Proposition 6. Equilibrium Properties of the IP&C game

Part 1. Ruling Out Existence of Some Asymmetric Equilibria

If PL(i) is the finest optimal categorization for IP, then any categorization profile

(PL−
, PL(i)) can never be a NE in the IP&C. Furthermore, if PL(i) is the finest

optimal categorization for IP and Bias2(PL−
(j), PL−−

(k)) ≤ Bias2(PL(i), PL−−
(k)), any

categorization profile (PL−
(j), PL−−

(k)) such that PL−
(j) ∈ R(PL(i)) and PL−−

(k) ∈
R(PL(i)) and PL−−

(k) ∈ R(PL−
(k)) can never be a NE in the IP&C game.

Part 2. Symmetric Equilibria

If PL(i) is optimal for IP and (PL(i), PL(i)) is a NE in C, then (PL(i), PL(i)) is

a NE in IP&C. Furthermore, if PL(i) is the finest optimal categorization for IP, then

any (PL−
(k), PL−

(k)) such that PL−
(k) ≺ PL(i) and PL−

(k) ∈ R(PL(i)) is not a NE in

IP&C.

Part 3. Pareto-ranking of Symmetric Profiles

Any coarser symmetric categorization profile (PL+
(j), PL+

(j)) is Pareto-superior to

any finer symmetric categorization profile (PL(i), PL(i)) in the IP&C game if and only

if the following condition holds for any PL+
(j) � PL(i):

w ≤
2
[
V ar(PL(i))− V ar(PL+

(j))
]

Bias2(PL+(j))−Bias2(PL(i)) + V ar(PL(i))− V ar(PL+(j))
(16)

Proposition 6 Part 1 says that if a categorization PL(i) is the finest optimal

categorization for individual prediction, then there exists no asymmetric equilibrium

in the IP&C game such that one player uses the categorization that is optimal for

individual prediction and the other player uses a finer categorization. Moreover, it

provides a sufficient (but not necessary) condition to ensure that there exists no

asymmetric equilibrium in the IP&C game such that the two players use categorizations

at different levels of coarseness both finer than the finest individually optimal one if those

categorizations are linked by a path to each other as well as to the finest individually

optimal categorization. The sketch of the proof is the following. To rule out the existence

of an equilibrium we need to show that there always exists a profitable deviation from the

respective categorization profile for at least one player. In the case of any categorization

profile such that one player uses the individually optimal categorization and the other

player uses a finer one, we show that it is always profitable for the player using the finer

categorization to deviate to the individually optimal one. Deviating to the individually

optimal categorization is profitable both because the player then makes a smaller error

in individual prediction and because by using the same categorization as the other player

there will be no bias in their predictions with respect to each other. To show that

there exists no NE such that players use categorizations at different levels of coarseness

below the finest individually optimal one, we show that it is always profitable for the
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player who uses the finer categorization of the two to deviate to the individually optimal

categorization.

The first statement in Part 2 says that if a categorization is optimal for individual

prediction and if both players using this categorization is also a NE in the coordination

case, then it will also be a NE in the IP&C game. The proof is straightforward as

optimality in individual prediction and NE existence in the coordination game imply that

there is no rationale to deviate from this categorization profile in the IP&C game, neither

from an individual prediction perspective nor from a coordination point of view. The next

statement is that if a categorization is the finest optimal for individual prediction, then

both players using a finer symmetric categorization profile that is connected by a path

to the individually optimal categorization is not a NE in the IP&C case. This follows

because from the individual perspective it is profitable to deviate to the individually

optimal categorization, and from a coordination perspective we established in Proposition

5 Part 2 that there is no finer symmetric NE in categorizations connected by a path to

the individually optimal categorization.

Part 3 of Proposition 6 gives us necessary and sufficient conditions under which

any coarser symmetric categorization profile is Pareto-superior to any finer symmetric

categorization profile in the IP&C case. As w is the weight placed on individual

predictions, this result means that symmetric categorization profiles can be Pareto ranked

on their coarseness, with coarser profiles being the more efficient, also in the IP&C case

as long as individuals assign sufficient weight to being coordinated with each other.

4.4 Summary of the Static Model

In our static model we considered the following one-off prediction problem. An individual

encounters an object and has to make a prediction of its unobserved value. The individual

makes this prediction by placing the object in a category based on its observable

characteristics and predicts that its unobserved value will be equal to the average

unobserved value of all past experiences she has in this category. In our static framework,

we assumed that the agent has already accumulated a number of past experiences, for

simplicity, we take this to be n observations of each object type. She has many alternative

ways of organizing her past experiences into categories. We considered what determines

which categorization of her past experiences will help her make the best prediction on

the next object encountered. We analyzed three variants of this problem.

First, we considered the case when the individual is only interested in predicting

the true values of the next object. We find that the level of coarseness of the optimal

categorization(s) for IP depends on the noise level in the environment and on the sample

size of past experiences the agent has available. In deterministic environments the finest

categorization is the best as its category beliefs are unbiased and there is no variance in

prediction, so they are also as consistent as the beliefs of any other categorization. In

a stochastic environment in which the agent has a limited amount of past experiences,

however, the higher the noise and the smaller the sample size, the coarser the optimal
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categorization. In such situations coarse categorizations might perform better than fine

categorizations as by lumping together a larger number of objects per category they

decrease the variance in prediction. Thus, although their category beliefs are biased

estimators, they may have a lower EPEIP as their beliefs are more consistent estimators

than the category beliefs of finer categorizations. The above result suggests one rationale

for why economic agents may use coarse categorizations even if there are no costs of

categorizing finely and no bounds on computational power. That is, they may categorize

coarsely as coarse categorization leads to better predictions in stochastic environments.

Second, we considered a one-off coordination problem in which two agents want to

coordinate their predictions on the next object encountered. We find that if players

have an incentive to coordinate, using categorizations at different levels of coarseness is

not optimal. There can be only NE in which players use categorizations at the same

level of coarseness. But a given symmetric categorization profile may or may not be

a NE depending on the noise level. If the environment is deterministic, all symmetric

categorization profiles are NE and are equally efficient. The higher the noise in the

environment, the greater the incentive to deviate to a coarser categorization. Thus,

as noise increases, finer symmetric categorization profiles gradually stop being NE. If

noise is sufficiently high, the unique NE is both categorizing at the coarsest possible

level. Interestingly, both using the coarsest possible categorization is a NE for any noise

level. Moreover, coarser symmetric categorization profiles are Pareto-superior to finer

symmetric categorization profiles for any positive noise level. The intuition is that, on

the one hand, by using a symmetric categorization profile, players have no bias from

one another. On the other hand, by using coarse categorizations, they minimize their

variance in prediction. These two results suggest pressure to use coarse categorization in

environments in which players want to coordinate their predictions. When analyzing the

connection between optimality of a categorization for individual prediction and NE in the

coordination game, we establish sufficient conditions under which if a given categorization

is optimal for IP, there are no NE in categorizations finer than the finest individually

optimal one but only NE at the same level of coarseness or coarser. These results together

suggest that the attempt to coordinate predictions with others may be a further rationale

for coarse categorization, additional and complementary to those so far discussed in the

literature.

Third, we considered the case when players want both to predict the true object

value correctly and to coordinate their predictions with each other. Naturally, the

analysis of this case is much more complex. We analyzed some equilibrium properties

and showed that we can rule out some classes of profiles involving categorizations below

the individually optimal level of coarseness.

5 Dynamic Model

There are many alternative approaches to analyzing categorization. Our static model

presented and analyzed in sections 3 and 4 provides one possible perspective. In it
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we made some assumptions in order to facilitate analytical tractability. In this section

we present a complementary dynamic framework based on a number of alternative

assumptions. The basic underlying problem that we consider is the same. An agent

observes some characteristics of an object and has to predict its unobserved value. She

uses her past experiences stored in categories to make predictions. Our focus is again

on analyzing the properties of different alternative ways of categorizing and the tension

between fine and coarse categorization. And as before we consider three variants of this

problem: individual prediction, coordination, and individual prediction and coordination.

The main conceptual differences between the static and the dynamic model are the

following. The first one relates to the nature of the prediction situation we consider. In

the static model we assumed that the agent has already accumulated a number of past

experiences and faces the task of making a one-off prediction. In the dynamic model, we

consider a dynamic situation instead. The agent faces a stream of objects, one in each

period. She has to make a prediction of the object’s unobserved value each period as she

encounters it. Second, in the static model we compared the expected prediction error

of all possible categorizations without considering how an agent learns to categorize. In

the dynamic model we consider the question whether an agent can learn to adapt by

learning the most appropriate categorization for a given environment. The agent starts

out with a random set of possible categorizations and searches for the best categorizations

to use. This makes the dynamic framework also suitable to analyze adaptation in non-

stationary environments. Third, a further assumption that we relax here is that we

allow not only for disjoint partitionings of the object set but also for hierarchical and

incomplete categorizations. Hierarchical categorization abound in the real world. For

example, someone could distinguish the category ‘any workers’ as a possible input factor,

and at the same time the subordinate category ‘British workers’ and the category ‘other

workers’. An incomplete categorization is one that lacks a category for some type of

objects, e.g. the categorization containing only categories ‘European food’ and ‘Asian

food’.

5.1 Basic setup

We now present the basic setup of the dynamic model that is used in all three cases

of individual prediction, coordination, and IP&C.26 An agent starts out with a pool

containing a limited number of different categorizations. This number is much smaller

than the number of all possible categorizations. At the outset the agent starts with a

random set of categorizations. Each period she encounters an object. She chooses a

categorization from the pool to use and a category within this categorization. She makes

a prediction of the unobserved values of the object equal to the category belief for the

respective category. Afterwards the true object values are revealed and the agent uses

them to calculate her payoff, to update her beliefs for the category and categorization

26Our dynamic model is non-Bayesian. For discussions and comparisons of the predictions of
categorical and Bayesian decision makers, we refer to Peski (2011) and Mullainathan (2002).
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she has used, and to update her valuation of their performance.

To analyze the properties of the categorizations that agents learn if they are only

interested in coordinating their predictions with each other, we additionally assume that

there are a number of agents and that two of them are randomly matched each period.

The two matched agents encounter the same object and each of them independently

chooses some categorization and category to use as described above, and makes her

prediction about the unobserved value of the object. After predictions are made both

the true object values and the prediction of the other are revealed to the agent. Agents

use the true object value to update their beliefs. As they only care about coordinating

their predictions with each other, they use their prediction error from the other agent’s

prediction to update their valuation of how good the category and categorization used

are for coordination.

The set up for the case when they care both about predicting the true object value

and about coordinating their prediction with each other is analogical. The only difference

is that each agent uses a weighted average of the prediction error from the true object

value and the prediction error from the other agent to update her valuation of how good

the category and categorization used are.

5.2 Using Categories to Predict

The agent encounters an object each period. The object’s observable characteristics are

described by a vector x ∈ {0, 1}l and the object’s unobservable characteristics by a vector

y ∈ Rm. The agent makes a prediction about the object’s unobservable characteristics

by putting the object in a category based on its observable characteristics. A category is

represented as a rule consisting of a filter string and a belief attached to it. The category

filter can consist of 1, 0, and #, where # means that the attribute in this position is

not taken into account.27 As an example, in the case of two object attributes, the set

of possible filters is given by F = {11, 10, 01, 00, 1#, 0#,#1,#0,##}.28 The filter 11

can only be used on objects of type 11. The filter 1# is equivalent to the category type

{11, 10} from our static model and can be applied both to objects type 11 and 10. The

filter ## is applicable to all four object types: {11, 10, 01, 00}. Thus, the more # signs in

the category filter, the more object types will be matched by this category and therefore

the coarser it is.29

A categorization is a finite set of rules. For example, the categorization {0#, 01, 1#}
27The use of filter strings is convenient for the computational model. For a similar use of filters, see

Arthur et al. (1997).
28The number of possible categories here is different than in the static model. This is due to the well-

known linear separability issue discussed in Minsky and Papert (1969) and Rumelhart and McClelland
(1986). That is, it is impossible to have a filter that places two objects that differ on all possible object
attributes together without including all other objects. E.g. the objects 01 and 10 cannot be put in one
separate category without including 11 and 00. It is easy to solve this by adding an additional dimension
that is a nonlinear combination of the present features. We simply abstract from this issue as solving it
would unnecessarily complicate the model without adding new insights.

29The number of category filters is given by |F| = 3l.
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has three categories. In contrast to the static model, a categorization here is not

necessarily a disjoint partitioning of the object set. For example, in the categorization

{0#, 01, 1#}, both 0# and 01 can be used to make predictions about objects type of

01. The agent can also have incomplete categorizations, i.e. such that do not completely

cover the set of object types. For example, the categorization {1#, 00} does not contain

a rule for objects type 01. We assume that a categorization cannot contain the same rule

filter twice.30

At any given time the agent has a pool containing a number of categorizations.

The agent keeps track of the performance of each categorization using a measure called

strength. Each period she chooses a categorization from the pool using the standard

discrete choice framework known as the logit rule (McFadden, 1973). The probability of

choosing a categorization i in period t is:

pt(i) =
eβst(i)∑
j e

βst(j)
, (17)

where st(i) (st(j)) is the strength of categorization i (j) in period t and β is a parameter

determining the sensitivity of choice to categorization strength. For β = 0 choice is

uniform random, i.e. independent of strength. If β > 0 stronger categorizations have a

higher probability of being selected. If β is sufficiently large, the strongest categorization

is selected with probability 1.

If there is only one category filter in the selected categorization that is applicable

to the object’s observed attributes, the respective category is used. If more than one

category filter fits the object’s attributes, the agent selects among them with the logit

rule and is more likely to choose the one that has made better predictions in the past

(positive β).

The agent makes a prediction of the unobserved values of the object equal to the

belief of the selected category. If no category filter in the categorization fits the object’s

attributes, the agent makes a prediction of the unobserved value of the object using the

belief of the categorization. If the object has been put in a category that did not contain

any observations yet, the agent makes a random prediction (drawn from the distribution

of objects for this object type in the environment).

5.3 Learning

After the prediction is made the true unobserved values of the object are revealed. She

uses this true value to update the beliefs of the categorization and category she has

30Allowing for non-disjoint partitionings of the object set means that there are even more
categorizations or models of the world that the agent could use to make predictions than in the case
considered in our static model. If we restrict attention to those categorizations whose number of categories
is smaller or equal to the number of different object types in the population, the number of possible

categorizations including those that are not a disjoint partitioning of the object set is: |P| =
∑2l

i=1

(
3l

i

)
.

For example, with l = 2 attributes and |OT | = 2l = 4, the number of possible categorizations is:

|P| =
∑4
i=1

(
9
i

)
=
(
9
1

)
+
(
9
2

)
+
(
9
3

)
+
(
9
4

)
.
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used. The belief of a category (or categorization, respectively) in period t is a weighted

average of the y values of the objects experienced with this category (or categorization,

respectively) in the past, putting more weight on recent experiences. It is equal to:

ŷt =
ŷt−1(1− d) + yt
nt−1(1− d) + zt

, (18)

where ŷt−1 is the category (categorization) belief from the previous period; nt−1 is the

number of objects that have been put in this category (categorization) in the past; yt
is the y-value of the object in period t if it is put in this category (categorization); and

zt ∈ {0, 1} is an indicator variable showing whether the category (categorization) was

used in period t. We discount past observations with a factor d, 0 < d < 1. The discount

factor d is crucial for adaptation in changing environments, as it allows the agent to forget

old irrelevant experiences. Note that effectively the discount factor operates as a proxy

for sample size. The higher the value of d the smaller the weight of previous experiences

and thus the smaller the sample size that the agent uses. A d = 0 would be equivalent

to no discounting.

We discount the observations in each category and categorization each period. This

means that if a category is not used, its category belief stays the same (yt = 0 and zt = 0),

but the information in it is discounted. Note that if a category is more general it will

be used more often. The more often a category is used, the greater the sample size the

category belief is based on and thus the smaller its variance in prediction (as in the static

model).

The prediction error of an agent in period t is equal to the mean squared error between

the predicted values and the true unobserved values of the object, i.e.:

PEt =
∑
i

(ŷti − yti)2 , (19)

where ŷti is the predicted value of the i-th unobserved attribute of the object encountered

in period t and yti is the respective true value. The agent receives a payoff in each period

that is equal to

πt = c− PEt , (20)

where c is a constant. If the prediction error is 0, the category and categorization get

the highest possible payoff c. As prediction error increases, payoff decreases.31 The agent

uses the payoff to update her valuation of how good the category/categorization used is:

st(i) = st−1(i)(1− α) + πtα , (21)

where st(i) is the strength of category/ categorization i in period t, st−1(i) is the strength

of the category/ categorization i in period t−1, πt is the payoff in period t, and 0 ≤ α ≤ 1

is a learning rate parameter. The higher the α, the greater the weight placed on how

31The constant is chosen so that the payoff is non-negative.
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useful the category and categorization were for the most recent experience relative to

previous experiences.32

Besides the updating of beliefs and the reinforcement of the categorizations and

categories currently considered by the agent, she also uses her experience to update

the set of categorizations that she considers. The agent learns from experience which

categorizations are useful in a given environment. That is, at any given time the

agent has a pool containing a limited number of categorizations that she uses. At the

outset the categorizations in this pool are random. She tries them out for a number of

periods, updating her valuation of how good they are. Every e periods she throws the

weakest categorization (the one with the lowest strength) out of the pool and creates

a new one to experiment with. To create a new categorization she chooses two of the

existing categorizations from the pool with the logit rule (positive β). She randomly

picks categories from these selected categorizations to incorporate them in the new

categorization. Each bit in a new category may be mutated with some small probability

pm. The new category receives the strength of the category it is derived from. If the

sum of the number of categories in the two original categorizations is odd, then the new

categorization consists of the average number of categories in the two old categorizations,

rounded up or down with equal probability. If the sum of the number of categories in the

two original categorizations is even, then the new categorization consists of the average

number of categories in the two old categorizations, rounded up or down by one with

some small probability pc. The strength of the new categorization is equal to the average

of the strengths of the two categorizations it is derived from.33

This search mechanism allows the agent to adapt her view of the world to the

environment. The idea is that as the agent gathers experiences she reevaluates her way of

looking at the world. Periodically she looks at the experience that she has gathered and

she abandons views of the world that performed bad in the past. She forms new views of

the world by combining useful information that she has obtained and by experimenting.

For example, if categorizations in the pool consisting of few categories have been more

successful in the past, the agent is more likely to choose them as a basis for forming a

new categorization. This new categorization is then also more likely to consist of few

categories.

6 Analysis of the Dynamic Model

In this section we present a numerical analysis of the dynamic model. The analysis

focuses on the dynamics of some properties of the categorizations that an agent learns

32Placing a higher weight on recent experiences is useful for the agent when she knows that the
environment she is in is changing. It helps her adapt her view of the world more quickly.

33The above mechanism is a form of a genetic algorithm, closely related to rule-based systems; see e.g.
Holland et al. (1989). A main difference to commonly used rule-based systems however is that while in
rule-based systems the genetic step is performed with respect to rules, in our algorithm it is performed
with respect to categorizations, i.e. sets of rules.

35



over time. We investigate how the categorizations that the agent learns are determined

by the situation she is in. To facilitate tractability we consider the case of two object

attributes and four object types, but the model is applicable to higher numbers of object

attributes. There are a number of general parameters that we keep fixed throughout the

analysis. They are shown in Table 1. At any given time the agent has eight categorizations

in the pool to choose from. The evolution step is performed every e = 800 periods.

All categorizations and categories are initialized with a strength of 0.5 and we rescale

strengths between 0 and 1 each period. The β for the categorization choice is 5 both for

the choice of categorization to use each period and for the choice of categorizations in the

genetic step. The β for category choice is 2. The learning rate α both for updating the

strength of categories and categorizations is 0.001. All results reported are based on an

average of 1000 runs. We use a moving average window of 1000 periods. In the analysis

we report we use the function yi = xi + ε.

Table 1: Parameters Dynamic Model

Parameter Value

Number of categorizations in the pool 8
Number of periods between evolution steps 800
Initial categorization strength 0.5
Initial category strength 0.5
Rescaling of strength [0, 1] yes
β categorization choice 5.0
β category choice 2.0
α 0.001
pm 0.333
pc 0.066
Number of runs 1000
Number of periods moving average window 1000
σ2 0.00 - 2.25 (see details in text)
Discounting 0.05 - 0.50 (see details in text)
Function y = f(x) + ε yi = xi + ε

We begin by analyzing the case when the agent cares only about individual prediction,

followed by the case when she cares only about coordination. Finally, we present the case

when agents care about both.

6.1 Individual Prediction

We first consider the case of an individual who is only interested in predicting the true

object values correctly. We analyze the effect of the stochasticity of the environment

and of the discounting parameter on the coarseness of the categorizations that the agent

learns.
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Figure 2a represents the coarseness of the categorizations that the agent learns over

time for various levels of noise in the environment and for a fixed discounting factor.

The indicator of coarseness on the y-axis is the average number of categories in the

categorizations in the agent’s pool. The higher the average number of categories in a

categorization, the finer it is. Thus, a low average number of categories in a categorization

in the agent’s pool indicates coarse categorizing. We focus on the long horizon as we are

interested in the properties of the categorizations that the agent learns in alternative

environments in the long term. Figure 2b illustrates the corresponding dynamics of the

prediction error that the agent makes with respect to the true values of the object. The

parameters used in these figures are the same as in Table 1. In Figure 2 we vary the level

of σ2 keeping the discount factor fixed at 0.3.
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Figure 2: Effect of noise on coarseness

A noise level of σ2 = 0 corresponds to a deterministic environment. We can see in

Figure 2a that in such an environment the categorizations that the agent learns consist

on average of the maximum possible number of categories. As the noise level increases

to σ2 = 0.64, the categorizations that the agent learns become coarser with an average

number of categories around 2.6. For even higher noise levels of σ2 = 1 and σ2 = 2.25,

the categorizations that the agent learns at the end of a large number of periods converge

towards an average number of categories just above and below 2, respectively. In Figure

2b we can see that in a deterministic environment the agent learns to make no prediction

error by using categorizations with the highest possible number of categories. As the

noise level increases, it is not possible for the agent not to make any prediction errors,

but the prediction error she makes decreases as she learns categorizations which are more

suitable for the respective type of environment.

Numerical Result 1. For a given (positive) level of discounting, the categorizations that

the agent learns are coarser the higher the noise level.

Figure 3a represents the effect of the discounting factor on the coarseness of the

categorizations that the agent learns over time for a given noise level. The discounting is

a proxy for sample size. Thus, we see that the higher the discounting, i.e. the smaller the

sample size of past experiences the agent has available, the coarser the categorizations
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that the agent learns. Under a discount factor of d = 0.05 the agent learns categorizations

that consist on average of more than three categories. Under a discount factor d = 0.5

she learns categorizations that consist on average of less than two categories. In Figure

3b we see the corresponding prediction error that the agent makes. The prediction error

is higher the higher the discounting, but in each case it decreases over time as the agent

learns the categorizations that are suitable. The parameters used are again the ones

shown in Table 1. The noise is fixed at σ2 = 0.64.
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Figure 3: Effect of discounting on coarseness

Numerical Result 2. For a given (positive) level of noise, the categorizations that the

agent learns are coarser the higher the discounting.

In the static model we developed earlier we showed that the higher the noise

level and the smaller the sample size the agent has available, the coarser the optimal

categorization(s) (Proposition 3). Our Numerical Results 1 and 2 are in line with this

finding. We have shown that the agent of our dynamic model learns to categorize finely

in a deterministic environment and to categorize more and more coarsely as the noise

level increases and as her discounting of past observations increases.

6.2 Coordination

Next, we consider the case when agents are only interested in coordinating their

predictions with each other. We would like to understand better whether if they are

only interested in coordinating, they will learn ways of categorizing that are similar to

each other. We consider two alternative indicators of similarity. The first one is a measure

of the similarity of the categorizations that the agents learn, i.e. of the categorizations

in their pools. The second one measures similarity of the categories that they use.

The analysis was conducted with a total number of 20 agents in the pool, two of

whom are randomly matched each period. We used a σ2 = 0.25 and a discount factor of

0.05. In Figure 4a, we present our first measure, the absolute difference in the number of

categories in the categorizations in the pools of the agents that are matched in a given

period. Figure 4a shows that over time the absolute difference in the number of categories
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Figure 4: Similarity of categorizations in case of coordination

in the categorizations in the pools of the players declines substantially and reaches a value

of 0.2. This indicates that over time players learn categorizations of more or less similar

level of coarseness. This is interesting as it is in line with Proposition 4 Part 1 in which

we showed that in the static setup if players are only interested in coordinating there are

no NE in which the two players use categorizations of different levels of coarseness.

Figure 4b presents our second indicator, similarity of the categories used by the

players. The similarity of two categories is calculated as the ratio of the number of

objects that can be categorized by both categories to the number of objects that can be

categorized by either category. Similarity ranges between 0 and 1. In case one player

has a category for the object encountered and the other does not, similarity is 0. In

case both players do not have a category for the object encountered, similarity is 1. We

see that over time the similarity measure almost doubles reaching a level of 0.8 out of

1. It does not reach the maximum value of 1, which is related to the fact that under

these parameters players learn to use relatively coarse categorizations and there can be

different coarse categorizations that make similar predictions (see Figure 4c). Figure 4c

shows the average number of categories in the categorizations that players use. Note that

in a pool containing a large number of agents, agents need to use coarse categorizations

in order to coordinate, as each of them has had different experiences in the past. There

are many coarse categorizations with which agents can minimize their prediction error
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from one another. Thus, they do not necessarily need to use the same categorization.

Figure 4d shows the dynamics of prediction error from the other’s prediction. We see

that prediction error from the other decreases over time as the agents learn to use more

similar categories.34

Numerical Result 3. If agents aim to coordinate predictions they learn more similar

ways of categorizing.

6.3 Individual Prediction and Coordination

Finally, we consider the properties of the categorizations the players learn if they are

interested both in predicting the true object value correctly and in coordinating their

predictions with each other. More precisely we are interested in how the attempt to

coordinate with another person affects the way an individual categorizes.
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Figure 5: Effect of higher weight on coordination

The analysis was conducted with a pool of 20 agents, two of whom were matched each

period. We used a σ2 = 0.25 and a discount factor d = 0.05.

34In Figure 4d there is an initial increase in prediction error from other’s prediction. This is related to
the fact that there are a large number of agents in the pool, two of whom are matched each period. As
each agent in the pool has different past experiences, it takes time for agents to find the optimal level of
coarseness.
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Figure 5a shows the average number of categories in a categorization in the agent’s

pool over time for alternative weights on individual prediction and coordination. A

weight of w = 1 means that an agent is only interested in IP. A weight of w = 0.75

indicates that this is the respective emphasis on individual prediction with the remaining

1 − w = 0.25 weight placed on coordination. We see that the higher the weight agents

place on coordination, the coarser the categorizations that they learn. Figures 5b and

5c show the prediction errors from the true value and from the other player’s prediction,

respectively. We observe that the higher the weight on IP, the lower the error with respect

to the true object value in the long term. There is a non-monotonicity of the dependence

of prediction error from the other on the weight w.

Numerical Result 4. The higher the weight on coordination, the coarser the

categorizations that players learn.

6.4 Summary of the Results of the Dynamic Model

In sections 5 and 6 we presented a dynamic framework for analyzing categorization. We

considered the following problem. There is an agent who observes some characteristics

of an object each period and has to predict its unobserved value. The agent searches

for the best categorizations or models of the world to use in a given environment. She

starts out with a random set of categorizations and learns through trial and error which

categorizations are useful in a given environment by searching the space of possible

categorizations. We find that if the agent is only interested in predicting the true object

value correctly, the higher the noise in the environment and the higher the discounting

of past observations, the coarser the categorizations that she learns. If players are only

interested in coordinating their predictions with each other, they learn similar ways of

categorizing. These results are in line with the intuition developed in the static model.

The dynamic model allowed us to analyze how the categorizations that the agent learns

depend on how much the agent cares about individual prediction and about coordination,

respectively. We observe that the attempt to coordinate with others changes the way an

individual categorizes. We find that the more an agent is interested in coordinating

with others, the coarser the categorizations that she learns. This is consistent with

the intuition developed in the static model regarding higher efficiency of categorization

profiles at a higher level of coarseness. Agents can coordinate with each other better if

they use coarser categorizations because by lumping more objects together in a single

category each of them is better able to decrease her variance in prediction. The lower the

variance in prediction of each agent, the less the players’ predictions are going to differ

from one another and hence the better the coordination.

7 Concluding Remarks

This paper investigates the usage of categories to make decisions. We focused on the basic

properties of different ways of categorizing - addressing in particular the question which
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factors influence whether it is more useful to categorize finely or to categorize coarsely. We

construct two complementary models to analyze the above described problem - a static

and a dynamic model. We consider three different variants of the problem - individual

prediction, coordination, and the convex combination of the two.

Our findings on individual prediction are in line with some recent literature in

economics, which shows that coarse categorization may be optimal in stochastic

environments in which agents have a limited number of past observations. Thus, avoiding

overfitting in prediction might be one rationale for agents to categorize coarsely. The key

contribution of this paper consists of considering properties of categorization if players

want to coordinate predictions with each other, or if they care both about predicting the

true value correctly and about coordinating their predictions with each other. Our results

show that incentives to coordinate may be a further rationale for coarse categorization,

additional and complementary to those hitherto discussed in the literature.

Given that the use of categorization seems to be widespread, that the literature

has shown that coarse categorization may be linked to biased outcomes ranging from

discrimination against a minority group to biases in financial markets, and that the world

abounds with situations requiring some coordination, this finding seems important.
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A Appendix: Examples

This appendix provides a numerical illustration of a number of aspects of Proposition

1 and Proposition 3. Assuming a specific function relating unobservable to observed

attributes, a given sample size n, and a given noise level σ2, Table 2 shows the V ar(P ),

V ar(Y ), Bias2(P ), and EPE(P ), calculated according to the formula in Lemma 1, for

different categorizations with a range of coarseness levels.35 Table 3 provides the same

information, but for a higher noise level. Column 2 shows that a coarser categorization

has a smaller variance than a finer categorization. Column 4 illustrates that the bias of

coarser categorizations connected by a path to a finer categorization is always greater

or equal to the bias of the finer categorizations. Comparing column 5 in Tables 2 and

3 shows that an increase in σ means that only a categorization that is coarser than the

original can become optimal (if it was not optimal before).

Table 2: Example l = 2, y = 2x1 + x2 + ε with σ2 = 0.5, n = 2

(1) (2) (3) (4) (5)
Categorization V ar(P ) V ar(Y ) Bias2(P ) EPE(P ){
{11} {10} {01} {00}

}
0.2500 0.5000 0.0000 0.7500{

{11, 10} {01} {00}
}

0.1875 0.5000 0.1250 0.8125{
{11, 10, 01} {00}

}
0.1250 0.5000 0.5000 1.1250{

{11, 10} {01, 00}
}

0.1250 0.5000 0.2500 0.8750{
{11, 10, 01, 00}

}
0.0625 0.5000 1.2500 1.8125

Table 3: Example l = 2, y = 2x1 + x2 + ε with σ2 = 4.0, n = 2

(1) (2) (3) (4) (5)
Categorization V ar(P ) V ar(Y ) Bias2(P ) EPE(P ){
{11} {10} {01} {00}

}
2.000 4.000 0.000 6.000{

{11, 10} {01} {00}
}

1.500 4.000 0.125 5.625{
{11, 10, 01} {00}

}
1.000 4.000 0.500 5.500{

{11, 10} {01, 00}
}

1.000 4.000 0.250 5.250{
{11, 10, 01, 00}

}
0.500 4.000 1.250 5.750

35Only a subset of the possible categorizations is included for reasons of clarity.
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B Appendix: Proofs

Lemma 1. Bias-Variance Decomposition of EPEIP (P )

Proof.

EPEIP (P ) =
∑
Ck∈P

∑
xj∈CT

k

pjE[(Ŷ Ck − Yj)2]

=
∑
Ck∈P

∑
xj∈CT

k

pjE[(Ŷ Ck)2 − 2Ŷ CkYj + (Yj)
2]

=
∑
Ck∈P

∑
xj∈CT

k

pj

[
E[(Ŷ Ck)2]− 2E[Ŷ CkYj] + E[(Yj)

2]
]

=
∑
Ck∈P

∑
xj∈CT

k

pj

[
E[(Ŷ Ck)2]− 2E[Ŷ Ck ]E[Yj] + E[(Yj)

2]
]

=
∑
Ck∈P

∑
xj∈CT

k

pj

[
V ar(Ŷ Ck) + (E[Ŷ Ck ])2 − 2E[Ŷ Ck ]E[Yj] + V ar(Yj) + (E[Yj])

2
]

=
∑
Ck∈P

∑
xj∈CT

k

pj

[
V ar(Ŷ Ck) + V ar(Yj) + (E[Ŷ Ck ]− E[Yj])

2
]

=
∑
Ck∈P

∑
xj∈CT

k

pjV ar(Ŷ
Ck) +

∑
Ck∈P

∑
xj∈CT

k

pjV ar(Yj) +
∑
Ck∈P

∑
xj∈CT

k

pj(E[Ŷ Ck ]− E[Yj])
2

=
∑
Ck∈P

∑
xj∈CT

k

pjV ar(Ŷ
Ck) +

∑
Ck∈P

∑
xj∈CT

k

pjV ar(Yj) +
∑
Ck∈P

∑
xj∈CT

k

pj(E[Ŷ Ck ]− µj)2

= V ar(P ) + V ar(Y ) +Bias2(P )
(22)

In the proof above Line 3 is equivalent to Line 4 since for two independent random

variables X and Y, E[XY ] = E[X]E[Y ]. To see that Ŷ Ck and Yj are independent,

consider the following. Ŷ Ck is the category belief for category Ck. It is a random variable

because its realization depends on the random draws of the y-values of the objects that

have been sampled in this category. Ŷ Ck is therefore based on random draws made in the

past. Yj is a random variable because it depends on the y-value that will be drawn for

the next object of type j. Therefore P (Yj = yj) = P (Yj = yj|Ŷ CK = ŷCK ) for any pair

(ŷCK , yj).

Line 4 is equivalent to Line 5 since for any random variable X, V ar(X) = E[X2] −
(E[X])2 and therefore E[X2] = V ar(X) + (E[X])2 (see e.g. Berry and Lindgren, 1996,

p. 92 and the derivation below). This expression is applied to E[(Ŷ Ck)2] and to E[(Yj)
2]
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to move from line 4 to line 5 above.

V ar(X) = E[(X − µ)2]

= E[X2 − 2Xµ+ µ2]

= E[X2 − 2XE[X] + µ2]

= E[X2]− 2E[X]E[X] + (E[X])2

= E[X2]− 2(E[X])2 + (E[X])2

= E[X2]− (E[X])2

(23)

Proposition 1. Comparative Statics Bias and Variance Components EPEIP (P )

Part 1. Variances

Proof. From the bias-variance decomposition in Lemma 1, we know that the variance

component of the EPEIP (P ) of a categorization is equal to:

V ar(P ) + V ar(Y ) =
∑
Ck∈P

∑
xj∈CT

k

pjV ar(Ŷ
Ck) +

∑
Ck∈P

∑
xj∈CT

k

pjV ar(Yj) , (24)

where pj denotes the probability that the next object encountered is of type j. We

assumed that the next object will be drawn with equal probability from the different

object types, pj = p for all j and therefore p = 1
|OT | . Hence, we can also write the above

as:

V ar(P ) + V ar(Y ) = p
∑
Ck∈P

∑
xj∈CT

k

V ar(Ŷ Ck) + p
∑
Ck∈P

∑
xj∈CT

k

V ar(Yj) (25)

We now look at these two terms separately:

First term: V ar(P ) = p
∑
Ck∈P

∑
xj∈CT

k

V ar(Ŷ Ck)

We know that as the category belief is a random variable equal to the average of

a number of random variables, independently drawn from the normal distribution, the

variance of any category belief is equal to σ2 divided by the number of objects in the

category. The number of objects in the category is equal to the number of different object

types in this category, which we denote by tk for category k times the sample size n of

each object type (as we assumed that an agent has sampled n objects of each type. Then

the above becomes:

p
∑
Ck∈P

∑
xj∈CT

k

V ar(Ŷ Ck) = p
∑
Ck∈P

∑
xj∈CT

k

σ2

tkn
= p

∑
Ck∈P

tkσ
2

tkn
=
pkσ2

n (26)

Thus, under the assumption of equal variance for each object type in the population,

equal probability of observing an object from each type, and of equal number of

observations from each type in the agent’s past experience, the variance of category

belief for each category in a given categorization is the same.

Second term: V ar(Y ) = p
∑
Ck∈P

∑
xj∈CT

k

V ar(Yj)
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We assumed that V ar(Yj) is the same for all j and that it is equal to σ2. Then the

above becomes:

p
∑
Ck∈P

∑
xj∈CT

k

V ar(Yj) = p
∑
Ck∈P

∑
xj∈CT

k

σ2 =
1

|OT |
|OT |σ2 = σ2

(27)

Connecting our results on the two terms, the variance component of the EPE(P ) is

equal to:

V ar(P ) + V ar(Y ) =
pkσ2

n
+ σ2 (28)

This expression shows that the variance component of the EPE(P ) of a categorization

is increasing in the number of categories k, increasing in the noise level σ2, and decreasing

in n.

We now compare the variance of a finer categorization PL with the variance of a

coarser categorization PL+. Assume that the finer categorization has k categories. The

coarser categorization has k −m categories (with m > 0).

V ar(PL)− V ar(PL+) =
pkσ2

n
+ σ2 −

(
p(k −m)σ2

n
+ σ2

)
=
pmσ2

n
(29)

That is, a finer categorization has a greater variance than a coarser categorization

(for any σ2 > 0). Moreover, the difference in variance between a finer and a coarser

categorization is equal to pσ2

n
times the difference in number of categories between the

two (m). We see from the above expression that the difference in variance between a

finer and a coarser categorization is increasing in their difference in coarseness m and in

σ2, and is decreasing in n.

Part 2. Biases

Proof. Part 2 says that the Bias2 of any (coarser) categorization PL+(j) that can be

formed by merging two or more categories of a (finer) categorization PL(i) is always

greater than or equal to the Bias2 of the finer categorization PL(i). To prove this, we

show that the Bias2 of the category belief of any coarser category containing t+ v object

types is always greater than or equal to the sum of the biases of the category beliefs of

any two finer categories with t and with v object types, respectively, through the merging

of which it can be formed. This implies that the Bias2 of any coarser categorization that

was formed by merging two categories of a finer categorization PL(i) is always greater

than or equal to the Bias2 of the finer categorization. Therefore for categorizations that

are connected by a path, the Bias2 of any coarser categorization PL+
(j) is greater than

or equal to the Bias2 of any finer categorization PL(i).

The Bias2 of the category belief of a category with t object types is equal to: Bias2(ŷt) =∑t
i=1 pi(E[ŷt] − µi)2, where E[ŷt] =

∑t
i=1 µi
t

is the expected value of category belief and

µi is the mean of object type i in the population. We assumed that pi = 1
|OT |

= p for all
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i. Therefore
∑t

i=1 pi(E[ŷt] − µi)2 = p
∑t

i=1(E[ŷt] − µi)2. Note that E[ŷt] =
∑t

i=1 µi
t

since

we assumed that the agent has sampled n objects of each object type. Thus, the Bias2

can be rewritten in the following way:

Bias2(ŷt) = p
t∑
i=1

(E[ŷt]− µi)2

= p
t∑
i=1

[
(E[ŷt])

2 − 2E[ŷt]µi + (µi)
2
]

= p
[ t∑
i=1

(E[ŷt])
2 − 2

t∑
i=1

E[ŷt]µi +
t∑
i=1

µ2
i

]
= p
[ t∑
i=1

(E[ŷt])
2 − 2E[ŷt]

t∑
i=1

µi +
t∑
i=1

µ2
i

]
= p
[ t∑
i=1

(E[ŷt])
2 − 2E[ŷt]E[ŷt]t+

t∑
i=1

µ2
i

]
= p
[
t(E[ŷt])

2 − 2t(E[ŷt])
2 +

t∑
i=1

µ2
i

]
= p
[ t∑
i=1

µ2
i − t(E[ŷt])

2
]

= p
[ t∑
i=1

µ2
i −

t(
∑t

i=1 µi)
2

t2

]
⇔ Bias2(ŷt) = p

[ t∑
i=1

µ2
i −

(
∑t

i=1 µi)
2

t

]

(30)

In line 5 we use that E[ŷt]t =
t∑
i=1

µi, which follows directly from the definition of

expected value of category belief.

For a category that has v object types the corresponding expression for the squared

bias of category belief is equal to:

Bias2(ŷv) = p
[ v∑
j=1

µ2
j −

(
∑v

j=1 µj)
2

v

]
(31)

And for a category that has t + v object types the corresponding expression for the

squared bias of category belief is equal to:

Bias2(ŷt+v) = p
[ t+v∑
k=1

µ2
k −

(
∑t+v

k=1 µk)
2

t+ v

]
(32)

We start by considering a finer categorization that has two categories, one with t

and one with v object types, respectively. This categorization may also contain other

categories but we abstract from them. We now show that the Bias2 of a coarser
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categorization that was formed by merging the category with t and the category with v

object types into one category with t+ v object types (keeping all other categories from

the finer categorization unchanged) is greater than the Bias2 of the finer categorization.

We do this by showing that the Bias2 of the coarser categorization is greater than or

equal to the sum of the Biases2 of the two categories from the finer categorization, which

were merged to create it. That is, we show that Bias2(ŷt+v) ≥ Bias2(ŷt) +Bias2(ŷv).

Bias2(ŷt+v) ≥ Bias2(ŷt) +Bias2(ŷv)

⇔
t+v∑
k=1

µ2
k −

(
∑t+v

k=1 µk)
2

t+ v
≥

t∑
i=1

µ2
i −

(
∑t

i=1 µi)
2

t
+

t+v∑
j=t+1

µ2
j −

(
∑t+v

j=t+1 µj)
2

v

⇔
t∑

k=1

µ2
k +

t+v∑
k=t+1

µ2
k −

(
∑t

k=1 µk +
∑t+v

k=t+1 µk)
2

t+ v

≥
t∑
i=1

µ2
i −

(
∑t

i=1 µi)
2

t
+

t+v∑
j=t+1

µ2
j −

(
∑t+v

j=t+1 µj)
2

v

⇔ −(
∑t

k=1 µk)
2

t+ v
−

2(
∑t

k=1 µk)(
∑t+v

k=t+1 µk)

t+ v
−

(
∑t+v

k=t+1 µk)
2

t+ v

≥ −(
∑t

i=1 µi)
2

t
−

(
∑t+v

j=t+1 µj)
2

v

⇔ −(
∑t

k=1 µk)
2

t
+
v(
∑t

k=1 µk)
2

t(t+ v)
−

2(
∑t

k=1 µk)(
∑t+v

k=t+1 µk)

t+ v
−

(
∑t+v

k=t+1 µk)
2

t+ v

≥ −(
∑t

i=1 µi)
2

t
−

(
∑t+v

j=t+1 µj)
2

v

⇔ v(
∑t

k=1 µk)
2

t(t+ v)
−

2(
∑t

k=1 µk)(
∑t+v

k=t+1 µk)

t+ v
−

(
∑t+v

k=t+1 µk)
2

t+ v
≥ −

(
∑t+v

j=t+1 µj)
2

v

⇔ v(
∑t

k=1 µk)
2

t(t+ v)
−

2(
∑t

k=1 µk)(
∑t+v

k=t+1 µk)

t+ v
−
v(
∑t+v

k=t+1 µk)
2

v(t+ v)
+

(t+ v)(
∑t+v

k=t+1 µj)
2

v(t+ v)
≥ 0

⇔ v(
∑t

k=1 µk)
2

t(t+ v)
−

2(
∑t

k=1 µk)(
∑t+v

k=t+1 µk)

t+ v
−
v(
∑t+v

k=t+1 µk)
2

v(t+ v)

+
v(
∑t+v

k=t+1 µk)
2

v(t+ v)
+
t(
∑t+v

j=t+1 µj)
2

v(t+ v)
≥ 0

⇔ v(
∑t

k=1 µk)
2

t(t+ v)
−

2(
∑t

k=1 µk)(
∑t+v

k=t+1 µk)

t+ v
+
t(
∑t+v

j=t+1 µj)
2

v(t+ v)
≥ 0

(33)
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Let
∑t

k=1 µk = A and
∑t+v

j=t+1 µj = B.

vA2

t(t+ v)
− 2AB

t+ v
+

tB2

v(t+ v)
≥ 0

⇔ v2A2 − 2tvAB + t2B2

tv(t+ v)
≥ 0

⇔ (vA− tB)2

tv(t+ v)
≥ 0

⇔
tv
[
(1/t)A− (1/v)B

]2
t+ v

≥ 0

⇔
tv
[
(1/t)

∑t
k=1 µk − (1/v)

∑v
j=1 µj

]2
t+ v

≥ 0

⇔ tv(ŷt − ŷv)2

t+ v
≥ 0

(34)

As t > 0 and v > 0 and the remaining term is squared, this will always be true. Thus,

Bias2(ŷt+v) ≥ Bias2(ŷt) + Bias2(ŷv). This implies that for any two categorizations

that are connected by a path (i.e. such that the coarser categorization was formed only

through merging of two or more categories of the finer categorization), the Bias2 of the

coarser categorization PL+
(j) is greater or equal to the Bias2 of the finer categorization

PL(i).

Proposition 2. Existence of Optimal Categorization for Individual Prediction

Proof. The proof of existence is trivial. The function EPEIP (P ) that maps from the set

of possible categorizations to the set of real numbers is guaranteed to attain a minimum

on the set of all possible categorizations P , as the set of all possible categorizations

is finite (see Sundaram, 2008, p. 90). The set of possible categorizations P is finite

because the number of different object types is finite. The cardinality of the set of

possible categorizations is equal to the number of possible categorizations that form a

disjoint partitioning of the object set. This number is given by the Bell number Bd with

d = |OT |.

Proposition 3. Coarseness of the Optimal Categorization(s) for Individual Prediction

Proof. Denote any optimal categorization by PL(i), any finer than the optimal by PL−,

any equally coarse by PL(j), and any coarser by PL+. Note that there may be more

than one optimal categorization and that the optimal categorizations may be at different

coarseness levels. In Definition 4 we established that the following conditions have to hold

for any optimal categorization: i) the EPEIP of any optimal categorization is smaller or

52



equal to the EPEIP of any categorization finer than it; ii) the EPEIP of any optimal

categorization is smaller or equal to the EPEIP of any categorization that is equally

coarse; iii) the EPEIP of any optimal categorization is smaller or equal to the EPEIP

of any categorization that is coarser than it.

This is equivalent to (see Definition 4):

i) V ar(PL(i))− V ar(PL−
) ≤ Bias2(PL−

)−Bias2(PL(i))

for all PL− ≺ PL(i)

ii) V ar(PL(i))− V ar(PL(j)) ≤ Bias2(PL(j))−Bias2(PL(i))

for all PL(j) ∼ PL(i)

iii) V ar(PL(i))− V ar(PL+
) ≤ Bias2(PL+

)−Bias2(PL(i))

for all PL+ � PL(i)

(35)

We want to derive how the coarseness of the optimal categorization(s) changes with

changes in σ2 and in n. Note that changes in σ2 and in n do not affect the bias terms. This

is because the squared bias term of a categorization’s EPEIP is equal to the expected bias

of its category beliefs. The squared bias of a category belief depends on the differences

between the expected value of category belief and the true population mean for each

object type in this category. Since neither the expected value of category belief nor the

true population mean is affected by changes in σ2 and n, the bias term of a categorization

will not be affected by such changes. Therefore, in the inequalities above only the LHS

will change. To examine the changes on the LHS, we will use our result from Proposition

1 Part 1 where we established how the difference in variance between a finer and a coarser

categorization is affected by changes in σ2 and in n.

We first show how an increase in σ2 will affect the coarseness of the optimal

categorization(s) by examining the effect of an increase in σ2 on the fulfillment of the

above conditions for optimality.

i) In Proposition 1 Part 1 we showed that the difference in the variance between

a finer and a coarser categorization is positive and increases with an increase in

σ2. That is, the difference between a coarser and a finer categorization is negative

and increasingly negative with increases in σ2. If before V ar(PL(i)) − V ar(PL−) ≤
Bias2(PL−) − Bias2(PL(i)), as σ2 increases the LHS becomes even more negative (and

the RHS does not change). Thus, if before using a categorization PL(i) was equally good

or better than using a finer categorization PL−, this will be even more so as σ2 increases.

Therefore, no categorization finer than PL(i) can become optimal after an increase in σ2

if it was not optimal before the increase.

ii) The change in σ2 has no effect on V ar(PL(i)) − V ar(PL(j)) ≤ Bias2(PL(j)) −
Bias2(PL(i)) because V ar(PL(i)) − V ar(PL(j)) = 0, as the variances of all

categorizations at the same level of coarseness are equal. Thus, this equation will continue

to hold after the change in σ2. No categorization that is equally coarse as PL(i) can

become optimal after an increase in σ2 if it was not optimal before the increase.

iii) If before V ar(PL(i))− V ar(PL+) ≤ Bias2(PL+)− Bias2(PL(i)), as σ2 increases
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the LHS increases while the RHS stays the same, so that eventually the LHS has to

become greater than the RHS, thus making use of a coarser categorization profitable.

We have thus shown that as σ2 increases, it cannot become optimal to use a

categorization that was not optimal before and that is finer than or equally coarse as

the initially optimal one(s). Only coarser categorizations can become optimal.

Note that the above result implies that if before the change in σ2 there were several

optimal categorizations at different levels of coarseness, no categorization that was not

optimal before and that is finer than or equally coarse as the coarsest of those that were

initially optimal can become optimal after the increase in σ2.

We now turn to the effect of changes in the sample size n. Let again PL(i) be the

optimal categorization(s) before the increase in n with the same conditions for optimality

as above.

i) If before the increase in n, EPEIP (PL(i)) ≤ EPEIP (PL−
), now this may no longer

be fulfilled. More precisely, we know that for PL(i) to be optimal before the increase in

sample size it has to hold that:

V ar(PL(i))− V ar(PL−
) ≤ Bias2(PL−

)−Bias2(PL(i)).

From Proposition 1 we know that the LHS is negative and equal to: V ar(PL(i)) −
V ar(PL−

) = −pmσ2

n
, where m is the difference in the number of categories in the finer

and in the coarser categorization.

We can see that lim
n→∞

(V ar(PL(i))− V ar(PL−
)) = 0

In other words, as the sample size increases in the limit the LHS will tend to zero

while the RHS stays unchanged. Thus, as n increases, the LHS may no longer be smaller

than the RHS and it may become better to use a finer categorization than the one that

was optimal before the increase in n.

ii) We also know (again from Proposition 1 Part 1) that as n increases the difference

between the EPEIP of the optimal categorization and of others of equal coarseness will

not be affected as V ar(PL(i)) − V ar(PL(j)) = 0. Thus, one will not have an incentive

to switch to another categorization of equal coarseness because of the increase in sample

size.

iii) The condition V ar(PL(i)) − V ar(PL+) ≤ Bias2(PL+) − Bias2(PL(i)), will

continue to hold after the increase in n since before the increase V ar(PL(i)) −
V ar(PL+)) ≥ 0 and as n increases lim

n→∞
(V ar(PL(i)) − V ar(PL+)) = 0. Thus, one will

never have an incentive to move to a coarser or another equally coarse categorization if

n increases. We have thus shown that as n increases only a finer categorization than the

initially optimal one(s) can become profitable.

Note that the above result implies that if before the change in n there were several

optimal categorizations at different levels of coarseness, no categorization that was not

optimal before and that is coarser than or equally coarse as the finest of those that were

initially optimal can become optimal after the increase in n.

Lemma 2. Bias-Variance Decomposition of EPEC(P1, P2)
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Proof.

EPEC(P1, P2) =
∑
Ck∈P1

∑
Cl∈P2

∑
xj∈(CT

k ,C
T
l )

pjE[(Ŷ Ck − Ŷ Cl)2]

=
∑
Ck∈P1

∑
Cl∈P2

∑
xj∈(CT

k ,C
T
l )

pjE[(Ŷ Ck)2 − 2Ŷ Ck Ŷ Cl + (Ŷ Cl)2]

=
∑
Ck∈P1

∑
Cl∈P2

∑
xj∈(CT

k ,C
T
l )

pj

[
E[(Ŷ Ck)2]− 2E[Ŷ Ck Ŷ Cl ] + E[(Ŷ Cl)2]

]
=
∑
Ck∈P1

∑
Cl∈P2

∑
xj∈(CT

k ,C
T
l )

pj

[
E[(Ŷ Ck)2]− 2E[Ŷ Ck ]E[Ŷ Cl ] + E[(Ŷ Cl)2]

]
=
∑
Ck∈P1

∑
Cl∈P2

∑
xj∈(CT

k ,C
T
l )

pj

[
V ar(Ŷ Ck) + (E[Ŷ Ck ])2 − 2E[Ŷ Ck ]E[Ŷ Cl ]

+ V ar(Ŷ Cl) + (E[Ŷ Cl ])2
]

=
∑
Ck∈P1

∑
Cl∈P2

∑
xj∈(CT

k ,C
T
l )

pj

[
V ar(Ŷ Ck) + V ar(Ŷ Cl) + (E[Ŷ Ck ]− E[Ŷ Cl ])2

]
=
∑
Ck∈P1

∑
xj∈CT

k

pjV ar(Ŷ
Ck) +

∑
Cl∈P2

∑
xj∈CT

l

pjV ar(Ŷ
Cl)

+
∑
Ck∈P1

∑
Cl∈P2

∑
xj∈(CT

k ,C
T
l )

pj(E[Ŷ Ck ]− E[Ŷ Cl ])2

= V ar(P1) + V ar(P2) +Bias2(P1, P2)

(36)

Note that line 3 is equivalent to line 4 since for any two independent variables

E[XY ] = E[X]E[Y ]. To see that Ŷ Ck and Ŷ Cl are independent note that Ŷ Ck , the

category belief of category CK of Player 1, is a random variable and its realization

depends on the y-values of the objects that Player 1 has sampled in this category in

the past. The same applies to Ŷ Cl , the category belief for category Cl of Player 2. These

two variables are independent from each other as the y-values of the objects that Player

1 and Player 2 encounter are randomly and independently drawn. Thus, it holds that

P (Ŷ Ck = ŷCk) = P (Ŷ CK = ŷCk |Ŷ Cl = ŷCl) for any pair (ŷCk , ŷCl).

To get from line 4 to line 5 we apply the expression E[X2] = V ar(X) + (E[X])2 for

E[(Ŷ Ck)2] and E[(Ŷ Cl)2]. For a derivation of this expression, see Lemma 1.

Definition 6. NE Conditions of Coordination Game

Let (PL
1 (i), PM

2 (j)) denote a categorization profile such that PL
1 (i) is the categorization

that Player 1 uses and PM
2 (j) is the categorization that Player 2 uses. The two

categorizations could be the same or different. For (PL
1 (i), PM

2 (j)) to be a Nash

Equilibrium (NE) in the coordination game the following conditions have to hold. Given

the categorization of the opponent:

i) No player should have an incentive to deviate to a finer categorization than the one

she is currently using
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- Player 1. For all PL−
1 ≺ PL

1 (i) it has to hold that:

EPE(PL
1 (i), PM

2 (j)) ≤ EPE(PL−

1 , PM
2 (j))

⇔ V ar(PL
1 (i)) + V ar(PM

2 (j)) +Bias2(PL
1 (i), PM

2 (j))

≤ V ar(PL−

1 ) + V ar(PM
2 (j)) +Bias2(PL−

1 , PM
2 (j))

⇔ V ar(PL
1 (i))− V ar(PL−

1 ) ≤ Bias2(PL−

1 , PM
2 (j))−Bias2(PL

1 (i), PM
2 (j))

(37)

- Player 2. For all PM−
2 ≺ PM

2 (j) it has to hold that:

EPE(PL
1 (i), PM

2 (j)) ≤ EPE(PL
1 (i), PM−

2 )

⇔ V ar(PL
1 (i)) + V ar(PM

2 (j)) +Bias2(PL
1 (i), PM

2 (j))

≤ V ar(PL
1 (i)) + V ar(PM−

2 ) +Bias2(PL
1 (i), PM−

2 )

⇔ V ar(PM
2 (j))− V ar(PM−

2 ) ≤ Bias2(PL
1 (i), PM−

2 )−Bias2(PL
1 (i), PM

2 (j))

(38)

ii) No player should have an incentive to deviate to another categorization at the same

level of coarseness as the one she is currently using

- Player 1. For all PL
1 (k) ∼ PL

1 (i) it has to hold that:

EPE(PL
1 (i), PM

2 (j)) ≤ EPE(PL
1 (k), PM

2 (j))

⇔ V ar(PL
1 (i)) + V ar(PM

2 (j)) +Bias2(PL
1 (i), PM

2 (j))

≤ V ar(PL
1 (k)) + V ar(PM

2 (j)) +Bias2(PL
1 (k), PM

2 (j))

⇔ V ar(PL
1 (i))− V ar(PL

1 (k)) ≤ Bias2(PL
1 (k), PM

2 (j))−Bias2(PL
1 (i), PM

2 (j))

(39)

- Player 2. For all PM
2 (l) ∼ PM

2 (j) it has to hold that:

EPE(PL
1 (i), PM

2 (j)) ≤ EPE(PL
1 (i), PM

2 (l))

⇔ V ar(PL
1 (i)) + V ar(PM

2 (j)) +Bias2(PL
1 (i), PM

2 (j))

≤ V ar(PL
1 (i)) + V ar(PM

2 (l)) +Bias2(PL
1 (i), PM

2 (l))

⇔ V ar(PM
2 (j))− V ar(PM

2 (l)) ≤ Bias2(PL
1 (i), PM

2 (l))−Bias2(PL
1 (i), PM

2 (j))

(40)

iii) No player should have an incentive to deviate to a coarser categorization than the

one she is currently using

- Player 1. For all PL+

1 � PL
1 (i) it has to hold that:

EPE(PL
1 (i), PM

2 (j)) ≤ EPE(PL+

1 , PM
2 (j))

⇔ V ar(PL
1 (i)) + V ar(PM

2 (j)) +Bias2(PL
1 (i), PM

2 (j))

≤ V ar(PL+

1 ) + V ar(PM
2 (j)) +Bias2(PL+

1 , PM
2 (j))

⇔ V ar(PL
1 (i))− V ar(PL+

1 ) ≤ Bias2(PL+

1 , PM
2 (j))−Bias2(PL

1 (i), PM
2 (j))

(41)
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- Player 2. For all PM+

2 � PM
2 (j) it has to hold that:

EPE(PL
1 (i), PM

2 (j)) ≤ EPE(PL
1 (i), PM+

2 )

⇔ V ar(PL
1 (i)) + V ar(PM

2 (j)) +Bias2(PL
1 (i), PM

2 (j))

≤ V ar(PL
1 (i)) + V ar(PM+

2 ) +Bias2(PL
1 (i), PM+

2 )

⇔ V ar(PM
2 (j))− V ar(PM+

2 ) ≤ Bias2(PL
1 (i), PM+

2 )−Bias2(PL
1 (i), PM

2 (j))

(42)

Proposition 4. Equilibrium Properties of the Coordination Game

Part 1. Ruling Out Existence of Asymmetric Equilibria

Proof. We first prove that categorization profiles such that the two players use

categorizations at different levels of coarseness cannot be a NE. Consider any

categorization profile (PL
1 (i), PL+

2 (j)) such that Player 2 uses a coarser categorization

than Player 1. We now show that Player 1 always has an incentive to deviate to the

exact same categorization that Player 2 uses. That is, we show that for PL+

1 (j) � PL
1 (i):

EPE(PL
1 (i), PL+

2 (j)) > EPE(PL+

1 (j), PL+

2 (j))

⇔ V ar(PL
1 (i))− V ar(PL+

1 (j)) > Bias2(PL+

1 (j), PL+

2 (j))−Bias2(PL
1 (i), PL+

2 (j))
(43)

Note that the LHS is the difference in variance between a finer and a coarser

categorization. We know from Proposition 1 Part 1 that the difference in variance between

a finer and a coarser categorization will be greater than zero for any σ2 > 0. Therefore, if

σ2 > 0, the LHS is always positive. The RHS is either negative or zero, as the first term

on the RHS is always zero. Hence the above inequality always holds. We have shown

that a categorization profile in which two players use categorizations at different levels of

coarseness cannot be a NE for any σ2 > 0.

We now show that that if Bias2(PL
1 (i), PL

2 (j)) > 0, i.e. if the categorizations that the

two players use have different expected values of the estimators for at least one object

type, then there exists no asymmetric equilibrium (PL
1 (i), PL

2 (j)) such that the two players

use different categorizations at the same level of coarseness. We do this by showing that

it is profitable to deviate to using the exact same categorization at the same level of

coarseness rather than using different categorizations. That is for any PL
1 (i) ∼ PL

1 (j):

EPE(PL
1 (i), PL

2 (j)) > EPE(PL
1 (j), PL

2 (j)) if Bias2(PL
1 (i), PL

2 (j)) > 0

⇔ V ar(PL
1 (i))− V ar(PL

1 (j)) > −Bias2(PL
1 (i), PL

2 (j)))
(44)

We know from Proposition 1 that the variance of any two categorizations at the same

level of coarseness is the same and therefore the LHS = 0. If Bias2(PL
1 (i), PL

2 (j)) > 0,

then LHS > RHS and we have shown that any categorization profile such that the two

players use different categorizations at the same level of coarseness is not a NE.

Part 2. Existence of Symmetric Equilibria
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Proof. To show that a symmetric categorization profile (PL(i), PL(i)) is a NE we need

to show that:

i) EPE(PL(i), PL(i)) ≤ EPE(PL−
, PL(i)) for all PL− ≺ PL(i)

ii) EPE(PL(i), PL(i)) ≤ EPE(PL(j), PL(i)) for all PL(j) ∼ PL(i)

iii) EPE(PL(i), PL(i)) ≤ EPE(PL+

, PL(i)) for all PL+ � PL(i)

(45)

We have omitted the indices for the players, as the categorization profile considered

is symmetric. Note that it is guaranteed that the first two conditions always hold as we

have shown in Part 1 that no player ever has an incentive to use a categorization that is

finer than the one the opponent uses and that no player ever has an incentive to deviate

to using a different categorization at the same level of coarseness as the opponent. We

therefore focus our attention on the third NE condition, which can be rewritten as:

V ar(PL(i))− V ar(PL+

) ≤ Bias2(PL+

, PL(i)) (46)

Observe that the squared bias component of the two players’ EPE from each other will

always be finite and that it is not affected by changes in σ2. From Proposition 1 we know

that the difference in variance between a finer and a coarser categorization is positive and

increasing in σ2. Thus, the LHS of the above equation is positive and increasing in σ2.

For a given Bias2(PL+
, PL(i)), as σ2 increases, the LHS increases and eventually for each

pair of categorizations (PL(i), PL(i)) there will be a point at which the LHS > RHS, i.e.

a player will have an incentive to deviate to a coarser categorization and (PL(i), PL(i))

will no longer be a NE. Thus, the number of symmetric NE is a decreasing function of

σ2. At the coarsest level there is no coarser categorization to deviate to and thus both

players using the coarsest possible categorization is always a NE. If σ2 is sufficiently high,

it will be the only one.

Part 3. Pareto-ranking of Symmetric Categorization Profiles

Proof. We now show that we can Pareto-rank all symmetric profiles in the coordination

game, i.e. all outcomes such that both players use the exact same categorizations. Let us

denote a symmetric categorization profile by (PL
1 (i), PL

2 (i)). For all symmetric profiles,

since players are using the exact same categorizations their bias from each other is always

Bias2(PL
1 (i), PL

2 (i)) = 0. Thus, the EPEC of these categorization profiles depends only

on the variance. It is equal to EPEC(PL
1 (i), PL

2 (i)) = V ar(PL
1 (i)) + V ar(PL

2 (i)). We

know from Proposition 1 that the coarser the categorization, the smaller its variance. This

means that for any positive noise level the EPEC of a coarser symmetric categorization

profile will always have a smaller variance component than the EPEC of a finer symmetric

categorization profile. Symmetric categorization profiles are therefore Pareto-ranked with

coarser outcomes being more efficient than finer outcomes for any positive noise level.

In the case of σ2 = 0, V ar(PL
1 (i)) = V ar(PL

2 (i)) = 0, and therefore all symmetric

categorization profiles are equally efficient.
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Note also that as all categorizations at the same level of coarseness have an equal

variance, all symmetric categorization profiles at the same level of coarseness will be

equally efficient at any noise level in the coordination game (e.g. EPEC(PL(i), PL(i)) =

EPEC(PL(j), PL(j)) for all i, j at a given level of coarseness).

Proposition 5. Connection Optimality IP and NE in Coordination Game

Part 1. NE if Both Use Individually Optimal Categorization

Proof. The statement of the proposition gives a sufficient (though not necessary)

condition for the optimality of PL(i) for IP to imply that the respective symmetric

categorization profile in which both players use the individually optimal categorization

is a NE in the coordination game. Note that to show that (PL(i), PL(i)) is a NE in the

coordination game we need to show that the following conditions hold.

i) No player has a profitable deviation to a finer categorization. This condition is

always fulfilled as we have shown in Proposition 4 Part 1 that it cannot be profitable for

a player to use a categorization finer than the one the opponent uses.

ii) There is no profitable deviation to a different categorization of equal coarseness.

This condition is also always fulfilled as the variance of all categorizations of equal

coarseness is the same and thus from the perspective of the variance there is no benefit

of moving from using the same categorization to using a different categorization than the

opponent at the same coarseness level. Also, deviating to using a different categorization

than the opponent, can only lead to an increase in the bias component of the EPEC .

iii) There is no profitable deviation to a coarser categorization. This last condition

can be decomposed in two parts.

iiia) The first one is that if PL(i) is optimal for IP, there is no profitable deviation to

a coarser categorization PL+
(k) ∈ R(PL(i)) that is connected by a path to PL(i), i.e. a

categorization that can be formed by merging categories that exist in PL(i).

iiib) The second part is that if PL(i) is optimal for IP, there is no profitable deviation

to a coarser categorization PL+
(k) /∈ R(PL(i)), i.e. a coarser categorization that is not

connected by a path to PL(i).

We first consider iiia). We want to show that in the coordination game, if both players

choose PL(i), then no player has an incentive to deviate to a coarser categorization

PL+(k) that is connected by a path to PL(i). That is, for all PL+
(k) � PL(i) such that

PL+
(k) ∈ R(PL(i)):

EPEIP (PL(i), PL(i)) ≤ EPEIP (PL+

(k), PL(i))

⇔ V ar(PL(i))− V ar(PL+

(k)) ≤ Bias2(PL+

(k), PL(i))
(47)

We know that as PL(i) is optimal for IP the following holds:

EPEIP (PL(i)) ≤ EPEIP (PL+

(k)) for all PL+

(k) � PL(i)

⇔ V ar(PL(i))− V ar(PL+

(k)) ≤ Bias2(PL+

(k))−Bias2(PL(i))
(48)

Note that the LHS of the two inequalities is the same. We now compare the RHS.
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We know from Proposition 1 Part 2 that for all PL+1(k) ∈ R(PL(i)):

Bias2(PL+1(k))−Bias2(PL(i)) =
tv(ŷt − ŷv)2

t+ v
(49)

Now consider Bias2(PL+1(k), PL(i)). Assume that one player uses PL(i), which has

two categories, one with t different object types and the other one with v different object

types, with category beliefs ŷt =
∑t

i=1 µi
t

and ŷv =
∑v

j=1 µj

v
respectively. The other player

uses a coarser categorization PL+1(k) which has a category which merges the category

with t and the category with v object types and her category belief is ŷt+v =
∑t+v

k=1 µk
t+v

.

Note that under the assumption of an equal number of objects of each type ŷt+v = tŷt+vŷv
t+v

.

All their other categories are equal. The Bias2 of the two players’ predictions from each

other is:

Bias2(PL+1(k), PL(i)) =
t∑
i=1

(ŷt − ŷt+v)2 +
v∑
j=1

(ŷv − ŷt+v)2

= t(ŷt − ŷt+v)2 + v(ŷv − ŷt+v)2

= t

(
ŷt −

tŷt + vŷv
t+ v

)2

+ v

(
ŷv −

tŷt + vŷv
t+ v

)2

= t

(
ŷ2t − 2ŷt

tŷt + vŷv
t+ v

+
(tŷt + vŷv)

2

(t+ v)2

)
+ v

(
ŷ2v − 2ŷv

tŷt + vŷv
t+ v

+
(tŷt + vŷv)

2

(t+ v)2

)

=
tv(ŷt − ŷv)2

t+ v

(50)

Thus, we have shown that Bias2(PL+1(k), PL(i)) = Bias2(PL+1(k))−Bias2(PL(i)).

This holds for any two categorizations with consecutive coarseness levels. Analogically,

Bias2(PL+c, PL(i)) = Bias2(PL+c)−Bias2(PL(i)) holds for all PL+c � PL(i) such that

PL+c ∈ R(PL(i)), with c ∈ Z+. Hence if PL(i) is optimal for IP there is no profitable

deviation to a coarser categorization PL+c(k) that is connected by a path to PL(i).

We now consider iiib), i.e. deviations to a coarser categorization PL+d(l) /∈ R(PL(i))

that is not connected by a path to PL(i), with d ∈ Z+.

iiib) The following condition guarantees that no player has an incentive to deviate

from the symmetric categorization profile in which both use the individually optimal

categorization to a coarser categorization on a different path.

V ar(PL(i))− V ar(PL+d(l)) ≤ Bias2(PL(i), PL+d(l))

A sufficient (but not necessary) condition for the above inequality to hold is that:

Bias2(PL+d(l))−Bias2(PL(i)) ≤ Bias2(PL+d(l), PL(i))

Without making further assumptions on the biases of different categorizations, this

condition does not necessarily hold for all coarser categorizations that are not connected
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by a path to PL(i). But when it does hold it is sufficient to ensure that the categorization

profile such that both players use the individually optimal categorization is a NE in the

coordination game.

Part 2. No Symmetric Equilibria in Categorizations Finer than Individually Optimal

Proof. If PL(i) is the finest optimal categorization for IP this means that all

categorizations finer than PL(i) have a greater EPE in IP. Thus:

EPE(PL−
(j)) > EPE(PL(i)) for all PL−

(j) ≺ PL(i)

⇔ V ar(PL−
(j))− V ar(PL(i)) > Bias2(PL(i))−Bias2(PL−

(j))
(51)

We know from Proposition 5 Part 1 that for any PL−
(j) ∈ R(PL(i)):

Bias2(PL(i))−Bias2(PL−
(j)) = Bias2(PL(i), PL−

(j))

Thus, the above is equivalent to:

V ar(PL−
(j))− V ar(PL(i)) > Bias2(PL(i), PL−

(j))

Now consider that for any (PL−
(j), PL−

(j)) to be a NE it is necessary that no player

has an incentive to deviate to a coarser categorization. That is:

EPE(PL−
(j), PL−

(j)) ≤ EPE(PL(i), PL−
(j))

⇔ V ar(PL−
(j))− V ar(PL(i)) ≤ Bias2(PL(i), PL−

(j))
(52)

But this contradicts that PL(i) is the finest optimal categorization for IP. Therefore

we have shown that if PL(i) is the finest optimal categorization for IP, then there exists

no symmetric NE (PL−
(j), PL−

(j)) at a level finer than the finest individually optimal

categorization such that PL−
(j) is connected by a path to PL(i).

We now give a sufficient condition under which there exists no symmetric equilibrium

(PL−
(k), PL−

(k)) such that PL−
(k) /∈ R(PL(i)). We need to show that:

EPE(PL−
(k), PL−

(k)) > EPE(PL(i), PL−
(k))

⇔ V ar(PL−
(k))− V ar(PL(i)) > Bias2(PL(i), PL−

(k))
(53)

We know from the fact that PL(i) is the finest optimal categorization in IP that:

EPE(PL−
(k)) > EPE(PL(i))

⇔ V ar(PL−
(k))− V ar(PL(i)) > Bias2(PL(i))−Bias2(PL−

(k))
(54)

Whenever the condition

Bias2(PL(i))−Bias2(PL−
(k)) ≥ Bias2(PL−

(k), PL(i))

holds, it must be true that

V ar(PL−
(k))− V ar(PL(i)) > Bias2(PL(i), PL−

(k)).

Thus, a player then always has an incentive to deviate to the individually optimal

categorization.

Part 3. Symmetric equilibria at Levels Coarser than the Individually Optimal
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Proof. For (PL+
(j), PL+

(j)) to be a NE in the coordination game it is necessary that no

player has an incentive to deviate to any finer, to any other equally coarse or to any coarser

categorization. We showed in Proposition 4 Part 1 that no player ever has an incentive

to deviate from a symmetric categorization profile to using a finer or another equally

coarse categorization. If the condition V ar(PL+
(j))−V ar(PL++

) ≤ Bias2(PL++
, PL+

(j))

holds for each PL++ � PL+
(j) then no player has an incentive to deviate to a coarser

categorization.

Lemma 3. General Bias-Variance Decomposition EPEIP&C(P1, P2)

Proof. This follows directly from combining Lemma 1 and Lemma 2.

Definition 8. NE conditions of the IP&C game

For (PL(i), PM(j)) to be a Nash Equilibrium (NE) in the IP&C game the following

conditions have to hold. Given the categorization of the opponent: i) no player should

have an incentive to deviate to a finer categorization than the one she is currently using;

ii) no player should have an incentive to deviate to another categorization at the same

level of coarseness as the one she is currently using; and iii) no player should have an

incentive to deviate to a coarser categorization than the one she is currently using.

Using the bias-variance decomposition from Lemma 3 to write the above conditions,

we can rewrite the conditions in the following way.

i) No player should have an incentive to deviate to a finer categorization than the one

she is currently using

- Player 1: For all PL−
1 ≺ PL

1 (i) it should hold that:

EPEIP&C
1 (PL

1 (i), PM
2 (j)) ≤ EPEIP&C

1 (PL−
1 , PM

2 (j))

⇔ w
[
Bias2(PL

1 (i)) + V ar(PL
1 (i))

]
+ (1− w)

[
V ar(PL

1 (i)) + V ar(PM
2 (j)) +Bias2(PL

1 (i), PM
2 (j))

]
≤ w

[
Bias2(PL−

1 ) + V ar(PL−

1 )
]

+ (1− w)
[
V ar(PL−

1 ) + V ar(PM
2 (j)) +Bias2(PL−

1 , PM
2 (j))

]
⇔ wBias2(PL

1 (i)) + wV ar(PL
1 (i)) + (1− w)V ar(PL

1 (i))

+ (1− w)V ar(PM
2 (j)) + (1− w)Bias2(PL

1 (i), PM
2 (j))

≤ wBias2(PL−

1 ) + wV ar(PL−

1 ) + (1− w)V ar(PL−

1 )

+ (1− w)V ar(PM
2 (j)) + (1− w)Bias2(PL−

1 , PM
2 (j))

⇔ V ar(PL
1 (i))− V ar(PL−

1 )

≤ w
[
Bias2(PL−

1 )−Bias2(PL
1 (i))

]
+ (1− w)

[
Bias2(PL−

1 , PM
2 (j))−Bias2(PL

1 (i), PM
2 (j))

]

(55)
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- Player 2: For all PM−
2 ≺ PM

2 (j) it should hold that:

EPEIP&C
2 (PL

1 (i), PM
2 (j)) ≤ EPEIP&C

2 (PL
1 (i), PM−

2 )

⇔ V ar(PM
2 (j))− V ar(PM−

2 )

≤ w
[
Bias2(PM−

2 )−Bias2(PM
2 (j))

]
+ (1− w)

[
Bias2(PL

1 (i), PM−

2 )−Bias2(PL
1 (i), PM

2 (j))
] (56)

ii) No player should have an incentive to deviate to another categorization at the same

level of coarseness as the one she is currently using

- Player 1: For all PL
1 (k) ∼ PL

1 (i) it should hold that:

EPEIP&C
1 (PL

1 (i), PM
2 (j)) ≤ EPEIP&C

1 (PL
1 (k), PM

2 (j))

⇔ V ar(PL
1 (i))− V ar(PL

1 (k))

≤ w
[
Bias2(PL

1 (k))−Bias2(PL
1 (i))

]
+ (1− w)

[
Bias2(PL

1 (k)), PM
2 (j))−Bias2(PL

1 (i), PM
2 (j))

] (57)

- Player 2: For all PM
2 (l) ∼ PM

2 (j) it should hold that:

EPEIP&C
2 (PL

1 (i), PM
2 (j)) ≤ EPEIP&C

2 (PL
1 (i), PM

2 (l))

⇔ V ar(PM
2 (j))− V ar(PM

2 (l))

≤ w
[
Bias2(PM

2 (l))−Bias2(PM
2 (j))

]
+ (1− w)

[
Bias2(PL

1 (i), PM
2 (l))−Bias2(PL

1 (i), PM
2 (j))

] (58)

iii) No player should have an incentive to deviate to a coarser categorization than the

one she is currently using

- Player 1: For all PL+

1 � PL
1 (i) it should hold that:

EPEIP&C
1 (PL

1 (i), PM
2 (j)) ≤ EPEIP&C

1 (PL+

1 , PM
2 (j))

⇔ V ar(PL
1 (i))− V ar(PL+

1 )

≤ w
[
Bias2(PL+

1 )−Bias2(PL
1 (i))

]
+ (1− w)

[
Bias2(PL+

1 , PM
2 (j))−Bias2(PL

1 (i), PM
2 (j))

] (59)

- Player 2: For all PM+

2 � PM
2 (j) it should hold that

EPEIP&C
2 (PL

1 (i), PM
2 (j)) ≤ EPEIP&C

2 (PL
1 (i), PM+

2 )

⇔ V ar(PM
2 (j))− V ar(PM+

2 )

≤ w
[
Bias2(PM+

2 )−Bias2(PM
2 (j))

]
+ (1− w)

[
Bias2(PL

1 (i), PM+

2 )−Bias2(PL
1 (i), PM

2 (j))
] (60)

Proposition 6. Equilibrium Properties of the IP&C game
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Part 1. Ruling Out Existence of Some Asymmetric Equilibria

Proof. To show that (PL−
1 , PL

2 (i)) can never be an equilibrium in IP&C, we need to

show that there always exists a profitable deviation for at least one player. Consider the

deviation in which the player who uses the finer categorization switches to using the same

individually optimal categorization as the opponent. We now show that this is always

profitable. That is, we show that for all PL− ≺ PL(i):

EPEIP&C
1 (PL−

1 , PL
2 (i)) > EPEIP&C

1 (PL
1 (i), PL

2 (i))

⇔ w
[
V ar(PL−

1 ) +Bias2(PL−
1 )

]
+ (1− w)

[
V ar(PL−

1 ) + V ar(PL
2 (i)) +Bias2(PL−

1 , PL
2 (i))

]
> w

[
V ar(PL

1 (i)) +Bias2(PL
1 (i))

]
+ (1− w)

[
V ar(PL

1 (i)) + V ar(PL
2 (i)) +Bias2(PL

1 (i), PL
2 (i))

]
⇔ wV ar(PL−

1 ) + wBias2(PL−

1 )

+ (1− w)V ar(PL−

1 ) + (1− w)V ar(PL
2 (i)) + (1− w)Bias2(PL−

1 , PL
2 (i))

> wV ar(PL
1 (i)) + wBias2(PL

1 (i))

+ (1− w)V ar(PL
1 (i)) + (1− w)V ar(PL

2 (i)) + (1− w)Bias2(PL
1 (i), PL

2 (i))

⇔ V ar(PL−

1 )− V ar(PL
1 (i))

> w
[
Bias2(PL

1 (i))−Bias2(PL−

1 )
]
− (1− w)Bias2(PL−

1 , PL
2 (i))

(61)

As PL(i) is the finest optimal for IP we know that V ar(PL−
) − V ar(PL(i)) >

Bias2(PL(i))−Bias2(PL−
). This implies that the LHS of the last inequality, V ar(PL−

1 )−
V ar(PL

1 (i)), is greater than w
[
Bias2(PL(i)) − Bias2(PL−

)
]

for any 0 ≤ w ≤ 1. Note

that as the other term on the RHS, (1 − w)Bias2(PL−
1 , PL

2 (i)), is nonnegative, the LHS

is greater than the RHS. We have shown that there exists no asymmetric equilibrium in

the IP&C game such that one player uses the individually optimal categorization and

the other player uses a finer one.

The second statement in Part 1 is that if PL(i) is the finest optimal categorization for

IP, then any categorization profile (PL−
1 (j), PL−−

2 (k)) such that players use categorizations

at different levels of coarseness, both below the finest individually optimal and connected

by a path to each other as well as to the finest individually optimal categorization,

can never be a NE in the IP&C game. To show this, we need to show that there

always exists a profitable deviation from (PL−
1 (j), PL−−

2 (k)) for at least one player.

Consider the deviation such that the first player switches to the individually optimal

categorization PL(i). In the proposition we have given a sufficient condition under

which this is profitable, i.e. under which we show that EPEIP&C
1 (PL−

1 (j), PL−−
2 (k)) >
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EPEIP&C
1 (PL

1 (i), PL−−
2 (k)).

w
[
Bias2(PL−

1 (j)) + V ar(PL−

1 (j))
]

+ (1− w)
[
V ar(PL−

1 (j)) + V ar(PL−−

2 (k)) +Bias2(PL−

1 (j), PL−−

2 (k))
]

> w
[
Bias2(PL

1 (i)) + V ar(PL
1 (i))

]
+ (1− w)

[
V ar(PL

1 (i) + V ar(PL−−

2 (k)) +Bias2(PL
1 (i), PL−−

2 (k))
]

⇔ wBias2(PL−

1 (j)) + wV ar(PL−

1 (j)) + (1− w)V ar(PL−

1 (j))

+ (1− w)V ar(PL−−

2 (k)) + (1− w)Bias2(PL−

1 (j), PL−−

2 (k))

> wBias2(PL
1 (i)) + wV ar(PL

1 (i)) + (1− w)V ar(PL
1 (i))

+ (1− w)V ar(PL−−

2 (k)) + (1− w)Bias2(PL
1 (i), PL−−

2 (k))

⇔ V ar(PL−

1 (j))− V ar(PL
1 (i))

> w
[
Bias2(PL

1 (i))−Bias2(PL−
1 (j))

]
− (1− w)

[
Bias2(PL−

(j), PL−−
(k))−Bias2(PL

1 (i), PL−−

2 (k))
]

(62)

Since PL(i) is the finest optimal for IP we know that:

V ar(PL−
(j))− V ar(PL(i)) > Bias2(PL(i))−Bias2(PL−

(j)).

Therefore the LHS is greater than w
[
Bias2(PL

1 (i))−Bias2(PL−
1 (j))

]
for any 0 ≤ w ≤

1. Since we assumed that Bias2(PL−
1 (j), PL−−

2 (k)) ≤ Bias2(PL
1 (i), PL−−

2 (k)), the LHS

is greater than the RHS. We have thus given a sufficient condition to ensure that there

exists no equilibrium in the IP&C game such that the two players use categorizations

at different levels of coarseness, both finer than the individually optimal one and both

connected by a path to the individually optimal one.

Part 2. Symmetric Equilibria

Proof. We need to show that if PL(i) is optimal for IP and (PL(i), PL(i)) is a NE in the

coordination game, then there exists no profitable deviation from (PL(i), PL(i)) to any

finer, any equally coarse or any coarser categorization in IP&C.

i) We first show that there is no profitable deviation to a finer categorization.

According to Definition 8:

EPEIP&C
1 (PL

1 (i), PL
2 (i)) ≤ EPEIP&C

1 (PL−
1 , PL

2 (i))

⇔ w
[
V ar(PL

1 (i)) +Bias2(PL
1 (i))

]
+ (1− w)

[
V ar(PL

1 (i)) + V ar(PL
2 (i))

]
+Bias2(PL

1 (i), PL
2 (i))

≤ w
[
V ar(PL−

1 ) +Bias2(PL−
1 )
]

+ (1− w)
[
V ar(PL−

1 ) + V ar(PL
2 (i)) +Bias2(PL−

1 , PL
2 (i))

]
⇔ V ar(PL

1 (i))− V ar(PL−

1 )

≤ w
[
Bias2(PL−

1 )−Bias2(PL
1 (i))

]
+ (1− w)Bias2(PL−

1 , PL
2 (i))

(63)
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Note that the LHS ≤ Bias2(PL−
1 )−Bias2(PL

1 (i)) follows directly from the optimality

of PL(i) for IP. LHS ≤ Bias2(PL−
1 , PL

2 (i)) follows directly from (PL(i), PL(i)) being a

NE in the coordination game. Therefore, the LHS is always smaller than the RHS and

no player has a profitable deviation to a finer categorization.

ii) There is no profitable deviation to another equally coarse categorization.

EPEIP&C
1 (PL

1 (i), PL
2 (i)) ≤ EPEIP&C

1 (PL
1 (j), PL

2 (i))

The same reasoning applies as above.

iii) There is no profitable deviation to a coarser categorization.

EPEIP&C
1 (PL

1 (i), PL
2 (i)) ≤ EPEIP&C

1 (PL+
1 , PL

2 (i))

The same reasoning applies as above.

We now consider the second statement from Part 2. We need to show that if PL(i)

is the finest optimal for IP, then (PL−
(k), PL−

(k)) is not a NE in the IP&C game for

any PL−
(k) ∈ R(PL(i)). We show this by showing that a player has a profitable deviation

to PL(i), i.e. EPEIP&C
1 (PL−

1 (k), PL−
2 (k)) > EPEIP&C

1 (PL
1 (i), PL−

2 (k)).

w
[
V ar(PL−

1 (k)) +Bias2(PL−

1 (k))
]

+ (1− w)
[
V ar(PL−

1 (k)) + V ar(PL−

2 (k)) +Bias2(PL−

1 (k), PL−

2 (k))
]

> w
[
V ar(PL

1 (i)) +Bias2(PL
1 (i))

]
+ (1− w)

[
V ar(PL

1 (i)) + V ar(PL−

2 (k)) +Bias2(PL
1 (i), PL−

2 (k))
]

⇔ wV ar(PL−

1 (k)) + wBias2(PL−

1 (k))

+ (1− w)V ar(PL−

1 (k)) + (1− w)V ar(PL−

2 (k))

> wV ar(PL
1 (i)) + wBias2(PL

1 (i)) + (1− w)V ar(PL
1 (i))

+ (1− w)V ar(PL−

2 (k)) + (1− w)Bias2(PL
1 (i), PL−

2 (k))

⇔ V ar(PL−

1 (k))− V ar(PL
1 (i))

> w
[
Bias2(PL

1 (i))−Bias2(PL−
1 (k))

]
+ (1− w)Bias2(PL

1 (i), PL−
2 (k))

(64)

We know from Proposition 5 Part 1 that for categorizations that are connected by a

path Bias2(PL(i))−Bias2(PL−
(k)) = Bias2(PL−

(k), PL(i)).

Thus, the last two lines become:

V ar(PL−
1 (k))− V ar(PL

1 (i)) > Bias2(PL
1 (i))−Bias2(PL−

1 (k)) (65)

We know that if PL(i) is the finest optimal for IP, then the LHS is indeed greater

than the RHS. We have thus shown that there exists no equilibrium in symmetric

categorizations that are finer and that are on the same path as the individually optimal

one in the IP&C game.

Part 3. Pareto-ranking of Symmetric Profiles

Proof. We now derive a necessary and sufficient condition for any coarser categorization
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profile to be Pareto-superior to any finer categorization profile in the IP&C game. That

is, we are interested in when it is true for all PL+
(j) � PL(i) that:

EPE1(P
L+

1 (j), PL+

2 (j)) ≤ EPE1(P
L
1 (i), PL

2 (i))

⇔ w
[
V ar(PL+

1 (j)) +Bias2(PL+

1 (j))
]

+ (1− w)
[
V ar(PL+

1 (j)) + V ar(PL+

2 (j)) +Bias2(PL+

1 (j), PL+

2 (j))
]

≤ w
[
V ar(PL

1 (i)) +Bias2(PL
1 (i))

]
+ (1− w)

[
V ar(PL

1 (i)) + V ar(PL
2 (i)) +Bias2(PL

1 (i), PL
2 (i))

]
⇔ wV ar(PL+

1 (j)) + wBias2(PL+

1 (j)) + V ar(PL+

1 (j))

+ V ar(PL+

2 (j))− wV ar(PL+

1 (j))− wV ar(PL+

2 (j))

≤ wV ar(PL
1 (i)) + wBias2(PL

1 (i)) + V ar(PL
1 (i))

+ V ar(PL
2 (i))− wV ar(PL

1 (i))− wV ar(PL
2 (i))

⇔ wBias2(PL+

1 (j))− wV ar(PL+

2 (j))− wBias2(PL
1 (i)) + wV ar(PL

2 (i))

≤ 2
[
V ar(PL(i))− V ar(PL+

(j))
]

⇔ w
[
Bias2(PL+

(j))−Bias2(PL(i)) + V ar(PL(i))− V ar(PL+

(j))
]

≤ 2
[
V ar(PL(i))− V ar(PL+

(j))
]

⇔ w ≤
2
[
V ar(PL(i))− V ar(PL+

(j))
]

Bias2(PL+(j))−Bias2(PL(i)) + V ar(PL(i))− V ar(PL+(j))

(66)
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