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Abstract

This paper investigates if the impact of uncertainty shocks on the US economy has changed over time. To
this end, we develop an extended Factor Augmented VAR model that simultaneously allows the estimation
of a measure of uncertainty and its time-varying impact on a range of variables. We find that the impact of
uncertainty shocks on real activity and financial variables has declined systematically over time. In contrast, the
response of inflation and the short-term interest rate to this shock has remained fairly stable. Simulations from
a non-linear DSGE model suggest that these empirical results are consistent with an increase in the monetary
authorities’ anti-inflation stance and a ‘flattening’ of the Phillips curve.
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1 Introduction

The recent financial crisis and ensuing recession have led to a renewed interest in the possible relationship between
economic uncertainty and macroeconomic variables. A number of proxies for uncertainty have been proposed in the
recent literature and several papers use VAR based analyses to estimate the impact of uncertainty shocks (see for
example Bloom (2009) and Jurado et al. (2013) ). In addition, a growing DSGE based literature has documented
the transmission mechanism of these shocks from a theoretical point of view (see for example Fernandez-Villaverde
et al. (2011)and Fernández-Villaverde et al. (2011)).

Overall, the empirical literature on this subject provides strong evidence that uncertainty shocks can have a
significant adverse impact on the economy. For example, the analysis in Bloom (2009) suggests that a unit increase
in uncertainty leads to a 1% decline in US industrial production and similar results are reported in related papers.
However, the estimates reported in these papers are typically based on data that spans the last three or four decades
and thus cover periods potentially characterised by changing dynamics, policy regimes and economic shocks.
There has been limited focus on exploring whether the impact of uncertainty shocks has changed over time and

identifying the factors that can possibly explain any temporal shifts. An exception is Beetsma and Giuliodori (2012)
who focus on shocks to US stock market volatility and show that the impact of these shocks on GDP has declined
over time. However, the results in Beetsma and Giuliodori (2012) relate to stock market volatility rather than
the impact of macroeconomic volatility. In addition, and perhaps more importantly, the authors do not provide a
theoretical explanation for the identified change in the transmission mechanism.1

This paper attempts to fill these gaps and to introduce a general framework for exploring this issue. First, we
propose an extended factor augmented VAR (FAVAR) model that allows the estimation of a measure of uncertainty
that encompasses volatility from the real and financial sector of the economy and is a proxy for macroeconomic
uncertainty. The proposed FAVAR allows for time-varying parameters and simultaneously provides an estimate
of the time-varying response of macroeconomic variables to shocks to this uncertainty measure, thus allowing the
investigation of temporal shifts in a coherent manner. We estimate this model using a comprehensive dataset for

∗The views expressed in this paper are those of the authors, and not necessarily those of the Bank of England.
†Queen Mary College. Email: h.mumtaz@qmul.ac.uk
‡Bank of England. Email: Konstantinos.Theodoridis@bankofengland.co.uk
1Benati (2014) uses a time-varying VAR to examine the importance of policy uncertainty shocks, but focusses on the great recession

rather than structural changes over a longer time-period. Caggiano et al. (2014) and Alessandri and Mumtaz (2014) consider the
possibility of non-linearities in the impact of uncertainty shocks but do not investigate if the impact may have changed gradually across
time.
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the US. Second, we use a non-linear DSGE model to explore the possible reasons behind the identified shifts in
impulse responses and thus attempt to provide a structural explanation for the empirical results.
Our results suggest that impact of uncertainty shocks on measure of real activity, asset prices and indicators of

financial conditions has declined systematically over time. For example, the magnitude of the impact of this shock
on GDP and the corporate bond spread at the two year horizon over the current period is estimated to be half
of that prevalent during the 1970s and the 1980s. In contrast, the estimated response of inflation and short-term
interest rates has been fairly constant over time. We also find a negative co-movement between output and inflation
conditional on uncertainty shocks which supports the conclusions reached in Fernández-Villaverde et al. (2011).
Simulations from the DSGE model suggest that a possible explanation for these changes may be the structural
shifts highlighted in Fernandez-Villaverde and Rubio-Ramirez (2008)— i.e. an increase in the Federal Reserve’s
anti-inflationary stance and a change in the parameters of the Phillips curve that imply a rise in price stickiness
and a fall in indexation to past inflation. An increase in the magnitude of the Taylor rule inflation coefficient implies
that inflation responds less to an increase in uncertainty as agents become less concerned about expected inflation.
This in-turn allows the monetary authority to reduce interest rates more quickly than otherwise possible to tackle
the adverse real activity effects of the uncertainty shock and thus reduces the magnitude of the decline in output
and asset prices. The simultaneous increase in price stickiness and decrease in the degree of indexation in the model
increases the positive response of inflation to the uncertainty shock (as agents hedge against being locked into a
contract with an unfavourable price) and thus dampens the initial impact of a rise in the Fed’s anti-inflation stance.
This implies that the inflation and interest rate response remains fairly constant at short and medium horizons.
The analysis in the paper adds to the literature on uncertainty by systematically investigating how the impact

of uncertainty has changed over time and provides a structural explanation for the estimated shifts. The empir-
ical model proposed in the paper builds upon exisiting VAR and FAVAR models by simultaneously allowing the
estimation of time-varying volatility and the time-varying impact of this volatility on the endogenous variables. In
addition, the theoretical analysis in the paper contributes to the DSGE applications to this issue by showing how
the impact of uncertainty shocks varies with the parameters of various key sectors in the model.
Our results have important implications. Our empirical findings suggest that uncertainty remains an important

concern for inflation developments. This is particularly important in the current climate where uncertainty has
been elevated after the financial crisis and this may go some way in explaining the puzzling persistence of inflation
noted by Watson (2014). However, our results suggest that with the decline of the output response to uncertainty,
the negative trade-off between inflation and output conditional on uncertainty has declined. This suggests that Fed
has additional leeway in dealing with the adverse effects of an uncertainty shock than would be suggested by a fixed
coefficient model.
The paper is organised as follows: Sections 2 and 3 introduce the empirical model and discuss the estimation

method. The results from the empirical model are presented in Section 4. We introduce the DSGE model and
present the model simulations in Section 5.

2 Empirical model

The core of the empirical model is the following time-varying parameter vector autoregression (TVP VAR):

Zt = ct +
P∑
j=1

βtjZt−j +
J∑
j=0

γtj lnλt−j +Ω
1/2
t et (1)

where Zt is a matrix of endogenous variables that we describe below. The law of motion for the VAR coefficients
is given by:

B = vec([c;β; γ]) (2)

Bt = Bt−1 + ηt, V AR (ηt) = QB

As in Primiceri (2005), the covariance matrix of the residuals is defined as:

Ωt = A
−1
t HtA

−1′
t

where At is lower triangular. Each non-zero element of At evolves as a random walk

at = at−1 + gt, V AR(gt) = G (3)

where G is block diagonal as in Primiceri (2005).
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Following Carriero et al. (2012) the volatility process is defined as

Ht = λtS (4)

S = diag(s1, .., sN )

The overall volatility evolves as an AR(1) process

lnλt = α+ F lnλt−1 + η̄t, V AR(η̄t) = Qλ (5)

The structure defined by equation 4 suggests that the specification is characterised by two features. First, the
model does not distinguish between the common and idiosyncratic component in volatility and λt is a convolution
of both components. While seperating these unobserved components may be interesting in its own right, it is not
directly relevant for our application where the key aim is to estimate overall volatility which, by definition, is a
combination of the two components. Secondly equation 4 implies that λt is a simple average of volatility of each
shock with equal weights given to each individual volatility. As we show below, this simple scheme produces volatility
estimates that are plausible from a historical perspective and compare favourably to non-parametric estimates of
uncertainty recently suggested in the literature.
The formulation presented in equations 4 and 5 is related to a number of recent empirical contributions. For

example, the structure of the stochastic volatility model used above closely resembles the formulations used in
time-varying VAR models (see Cogley and Sargent (2005) and Primiceri (2005)). Our model differs from these
studies in that it allows a direct impact of the volatilities on the level of the endogenous variables. The model
proposed above can be thought of as a multivariate extension of the stochastic volatility in mean model proposed
in Koopman and Uspensky (2000) and applied in Berument et al. (2009), Kwiatkowski (2010) and Lemoine and
Mougin (2010). In addition, our model has similarities with the stochastic volatility models with leverage studied
in Asai and McAleer (2009) and the non-linear model proposed in Aruoba et al. (2011). Finally, the model is
based on the VAR with stochastic volatility introduced in Mumtaz and Theodoridis (n.d.). While Mumtaz and
Theodoridis (n.d.) focus on the impact of volatility associated with the output shock, we focus on an overall measure
of uncertainty that incorporates the variance of all shocks in the model. In addition the model proposed above
incorporates time-variation, a feature missing from the studies that consider stochastic volatility in mean models.
In our application of this model, we attempt to incorporate a large number of macroeconomic and financial

variables in Zt. This allows us to account for the possibility of omitted variables and implies that the estimate of
λt captures a broad range of economic and financial uncertainty. As is well known in the TVP-VAR literature,
the stability of the VAR coefficients at each point in time is difficult to achieve when the number of endogenous
variables exceeds 4 (see Koop and Potter (2011)). We deal with this issue by incorporating a factor structure into
the model. In particular, we define an observation equation

Xit = ΛtZt +R
1/2εit (6)

In other words, Zt are assumed to be a set of K unobserved factors that summarise an underlying dataset Xit via
the factor loading matrix Λt. We allow for time-variation in the factor loadings as in Delnegro and Otrok (2005)
which evolve as

Λt = Λt−1 + η̄t, V AR (η̄t) = QΛ

The idiosyncratic components are defined by εit with a diagonal covariance matrix R. As described below, Xit
contains key real activity variables, measures of inflation, short and long-term interest rates, money and credit
growth and financial variables such as corporate bond spreads, stock market variables and other asset prices.
Therefore, the factors Zt contain a large amount of information and as a consequence, the measure of uncertainty
λt spans the volatility across the key sectors of the US economy.

3 Estimation and model specification

The model defined in equation 1 and 6 is estimated using an MCMC algorithm. In this section we summarise
the key steps of the algorithm and provide the details in the technical appendix.2 The appendix also presents the
details on the prior distributions which are standard. It is worth noting that we follow Cogley and Sargent (2005)

2The appendix presents a small Monte-Carlo experiment that shows that the algorithm displays a satisfactory performance.
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in setting the prior for the variance of the shock to the transition equations for the time-varying parameters (QB
and Qλ). The prior for these covariance matrices is assumed to be inverse Wishart:

P (QB) ˜IW (QB,OLS × T0 ×K,T0)
P (Qλ) ˜IW (Qλ,OLS × T0 ×K,T0)

where T0 = 40 is the length of the training sample and QB,OLS and QλOLS are the OLS estimate of the coefficient
covariances using the training sample where Zt is approximated by principal components. The prior scale matrix is
multiplied by the factor K which is set to 3.5×10−4 as in Cogley and Sargent (2005), but as shown in the sensitivity
analysis, the key results also hold for smaller values of K. As noted in Bernanke et al. (2005), the FAVAR model
is subject to rotational indeterminancy of the factors and factor loadings. Following Bernanke et al. (2005), we
impose a normalisation under which the first K ×K block of Λt is fixed to an identity matrix for all time periods.

The MCMC algorithm consists of the following steps:

1. Conditional on a draw for the stochastic volatility λt, the factors Zt and the time-varying matrix At, and the
variances S and QB equation (1) represents a VAR model with time-varying coefficients. The algorithm of
Carter and Kohn (2004) is used to draw Bt from their conditional posterior density and rejection sampling
is employed to ensure that the VAR coefficients are stable at each point in time. Conditional on Bt the
covariance matrix QB can be drawn from the inverse Wishart (IW) density.

2. Conditional on a draw for the stochastic volatility Zt, λt, Bt and G the time-varying elements of At are drawn
equation by equation using the Carter and Kohn (2004) algorithm. Conditional on at, the respective blocks
of G are drawn from the IW density.

3. Given At and λt, The elements of S have an inverse Gamma posterior and these parameters can be easily
simulated from this distribution.

4. Conditional on λt, the constant α, autoregressive parameter F and variance Qλ can be drawn using standard
results for linear regressions.

5. Conditional on a draw for the factors Zt, QΛ and R, the algorithm of Carter and Kohn (2004) is used to draw
Λt. Conditional on Λt the covariance matrix QΛ can be drawn from the inverse Wishart (IW) density.

6. Conditional on a draw for the factors Zt and the factor loadings Λt, standard results for linear regressions can
be used to draw from the posterior distribution of the variance of the idiosyncratic components R.

7. Conditional on Zt, Bt, At, S, α, F and Qλ, the stochastic volatility λt is simulated using a date by date in-
dependence Metropolis step as described in Cogley and Sargent (2005) and Jacquier et al. (1994) (see also
Carlin et al. (1992)).

8. Given the parameters of the observation equation 6 and the transition equation 1, the Carter and Kohn (2004)
algorithm is used to draw from the conditional posterior distribution of the factors Zt.

In the benchmark specifications, we use 500,000 replications and base our inference on the last 5,000 replications.
The recursive means of the retained draws (see technical appendix) show little fluctuation providing support for
convergence of the algorithm.

3.1 Model specification

We consider models with 2 to 4 factors and select the model which minimises the Bayesian Deviance Information
Criterion (DIC). Note that for models with more than 4 factors it is difficult to ensure stability of the VAR
coefficients at each point in time and step 1 of the algorithm described above becomes largely infeasible. Therefore
the maximum number of factors is limited to 4. We show in the sensitivity analysis below that the key results
remain the same across models with different number of factors.
Introduced in Spiegelhalter et al. (2002), the DIC is a generalisation of the Akaike information criterion — it

penalises model complexity while rewarding fit to the data. As shown in the appendix, the DIC can be calculated
as DIC = D̄+pD where D̄ measures goodness of fit and pD approximates model complexity. A model with a lower
DIC is preferred. Table 1 shows that the DIC is minimised for the model with 2 factors. Therefore, we select 2
factors in our benchmark model. We show in the sensitivity analysis below that the key results are preserved in a
3 factor model.
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DIC
2 factors 15447.5
3 factors 17873.9
4 factors 20589.5

Table 1: Model Comparison via DIC. Best fit indicated by lowest DIC

Following Cogley and Sargent (2005) and Primiceri (2005) the lag length P is set equal to 2 and we set j = 2 in
the benchmark specification. This choice of P reflects the fact that as the number of lags increase, the stability of
the VAR model is adversely affected. Given that we employ quarterly data, we allow the possibility of an impact
of λt within a three-month period. We show in the sensitivity analysis below, that the key results are similar when
longer lags are employed and when the contemporaneous impact of volatility is set to zero.

3.2 Data

The dataset is quarterly and runs from 1950Q1 to 2014Q2. We employ a panel of 39 variables listed in section
1.7 of the technical appendix. These variables include the key aggregates from the dataset of Stock and Watson
(2012) that are available from 1950 onwards. We include real activity series such as consumption, investment, GDP,
taxes, government spending, employment, unemployment, hours and surveys of economic activity. Data on prices
is covered by CPI, consumption and GDP deflator and the producer price index. The dataset includes short-term
and long term interest rates, various corporate bond spreads and series on money and credit growth. Finally, data
on stock market variables, commodity prices and exchange rates is included. In summary, the dataset covers the
key sectors of the US economy and incorporates a wide range of information.

4 Empirical results

4.1 Estimated volatility

Figure 1 plots the estimated volatility λt for the US. The figure also plots the uncertainty measure recently proposed
in Jurado et al. (2013) for comparison. The estimated volatility is high during the early and the mid-1970s with
a large peak during the early 1980s. The mid-1980s saw the onset of the great moderation and volatility declined
and remained low until the recession during the early years of the last decade. The recent financial crisis saw a
substantial increase in volatility with the level of λt during 2008/2009 matching the highs in volatility seen during
the early 1980s. It is interesting to note that the estimate of λt is highly correlated with the measure of uncertainty
proposed in Jurado et al. (2013). This reflects the fact that the underlying method of capturing uncertainty has a
number of similarities with the calculation in Jurado et al. (2013). The uncertainty measure in Jurado et al. (2013)
is the average time-varying variance in the unpredictable component of a large set of real and financial time-series.
The volatility specification in equations 4 and 5 has a similar intepretation— it attempts to capture the average
volatility in the shocks to Zt where the factors summarise real and financial conditions. In the section below we
consider how innovations to this measure affect the variables included in our dataset and whether the impulse
responses display time-variation.
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Figure 1: Estimated measure of uncertainty. The non-parametric measure proposed by Jurado et al. (2013) is
plotted for comparison.
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Figure 2: Impulse response of real activity series to a one standard deviation uncertainty shock. The left panels show the time profile of the cumulated
response at the 2 year horizon. The right panels show the joint distribution of the cumulated response at the one year horizon in 1970 and 2010 along with
the 45-degree line.
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Figure 3: Impulse response of inflation series to a one standard deviation uncertainty shock. The left panels show the time profile of the cumulated response
at the 2 year horizon. The right panels show the joint distribution of the cumulated response at the one year horizon in 1970 and 2010 along with the
45-degree line.
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Figure 4: Impulse response of earnings series to a one standard deviation uncertainty shock. The left panels show the time profile of the cumulated response
at the 2 year horizon. The right panels show the joint distribution of the cumulated response at the one year horizon in 1970 and 2010 along with the
45-degree line.
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Figure 5: Impulse response of interest rate series to a one standard deviation uncertainty shock. The left panels show the time profile of the cumulated
response at the 2 year horizon. The right panels show the joint distribution of the cumulated response at the one year horizon in 1970 and 2010 along with
the 45-degree line.
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Figure 6: Impulse response of asset price series to a one standard deviation uncertainty shock. The left panels show the time profile of the cumulated
response at the 2 year horizon. The right panels show the joint distribution of the cumulated response at the one year horizon in 1970 and 2010 along with
the 45-degree line.
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4.2 Impulse response to uncertainty shocks

Figure 2 shows the response of real activity variables to a 1 standard deviation positive shock to uncertainty. The
left panels of the figure show the cumulated response at the two year horizon. The right panels display the joint
distribution of this response in the early and later part of the sample and compare this with the 45-degree line. A
systematic difference across time can be detected if the points on the scatter plot deviate from the 45-degree line.3

Figure 2 shows that the response of real activity to uncertainty has declined over time. Consider the response
of GDP growth. GDP growth fell by 0.5%-0.6% in response to the uncertainty shock over the 1970s and the early
1980s. In contrast, after the mid-1990s, the decline in this variable in response to the uncertainty shock is closer to
0.3%. The right panel shows that that this decline in the magnitude of the response is systematic—the points in the
joint distribution mostly lie above the 45-degree line suggesting that the response in 2010 was less negative than in
the earlier period. Similarly, the response of consumption growth, investment and the unemployment rate shows a
systematic decline after the mid-1980s.
Figure 3 shows the response of a number of inflation series to the uncertainty shock. Note that the response of

inflation to the uncertainty shock is estimated to be positive and thus supports the existence of pricing bias channel
postulated in Fernández-Villaverde et al. (2011). In contrast to the real activity responses, there is little evidence
of any systematic decline in the magnitude of the response. The estimated joint distribution in 1970 and 2010 is
clustered evenly around the 45-degree line. Similarly figure 4 shows that a similar conclusion holds for unit labour
costs and earnings—the response of these variables is fairly stable across time.
Figure 5 plots the time-varying response of the short term interest rate and spreads. While the response of the

short term rate and the the term spread is fairly constant over time, there appears to be a systematic decline in
the response of the corporate bond spread to this shock with the cumulated response falling from about 0.3% in
the early part of the sample to around 0.1% over the last decade. The bottom right panel provides some evidence
that the change in this response is systematic.
The time-varying response of various asset prices to this shock is shown in figure 6. The response of stock

returns at the 2 year horizon was about -2% during the 1970s and the 1980s. In contrast, stock returns declined
by about 1% in response to the uncertainty shock after 2000. Similarly, the response of the commodity price index
has declined over time. Note, however, that the error bands are wide for this response over the entire sample.
In summary, the estimates suggest that the response of real activity indicators (GDP growth, consumption

growth, investment and unemployment) and some financial variables (corporate spread and stock returns) to un-
certainty shocks has declined over time. In contrast, the the response of inflation and the short-term interest rate
to this shock is estimated to have been fairly stable.
We show in section 1.6 of the technical appendix that these conclusions are robust to various changes in the

specification of the empirical model. In particular, these results survive if the lag structure of the model is changed—
we estimate versions of the model where (a) four lags of λt are allowed to affect the endogenous variables and (b)
where the assumption that the volatility has a contemporaneous effect on the endogenous variables is relaxed. In
both cases, we find that the response of real activity and financial variables declines while the response of inflation
and the short-term rate is stable. Similarly, expanding the number of factors to 3 has little impact on these
conclusions. Finally, we employ a tighter prior on the parameters governing the degree of time-variation in the
coefficients (QB and Qλ) and find that the conclusions reached above are largely unaffected.
The sensitivity analysis,therefore, supports the following main conclusion: There is evidence that the response

of real activity and some financial indicators to the uncertainty shock has declined over time. In contrast, the
response of inflation and interest rates to this shock has remained largely stable. We now turn to a DSGE model
in order to explore the possible reasons behind the estimated temporal change in the impact of uncertainty shocks.

5 Explaining the results. A DSGE model

5.1 Summary of the model

The model used in this study is the one developed by Fernandez-Villaverde and Rubio-Ramirez (2008) (which in
turn is a close relative to those developed by Christiano et al. (2005) and Smets and Wouters (2007)). Following
Christiano et al. (2014), we augmented this model with Bernanke et al. (1999) type financial frictions. Briefly, the
model features risk-averse consumers who supply labour to differentiated and sticky wage labour unions. There are
risk-neutral entrepreneurs who borrow from perfectly competitive banks, build capital goods that they rent to the

3We focus on the two year horizon for simplicity. The full three-dimensional plots of the time-varying impulse responses can be
found in the appendix to the paper.

12



imperfectly competitive (sticky price) producers of intermediate goods. Entrepreneurs, who are monitored by the
banks, are subject to an idiosyncratic productivity shock. For an idiosyncratic shock below a threshold value, they
declare bankruptcy and have everything taken from them. To prevent entrepreneurs from accumulating net-worth
up to the point where the financial frictions become irrelevant, we assume that a fraction of them dies and the
complementary fraction is born. There are perfectly competitive retailers selling the aggregated intermediate goods
as a composite final good to the consumers. The final good is transformed to consumption and investment goods
via linear technologies. However, the latter is subject to a non-stationary productivity shock. This stochastic
trend is in addition to a labour augmented non-stationary shock. Government in this model runs a balanced
budget in every period and the central bank sets monetary policy according to a Taylor-like rule. The model
features a number of real (monopolistic competition, investment adjustment cost, capital utilisation and habits in
consumption and asymmetric information between borrowers and lenders) and nominal (price and wage stickiness)
frictions. In addition to the two non-stationary shocks, this economy is also subject to a preference, labour disutility
and interest rate policy stationary shocks. These shocks are conditionally heteroscedastic and (consistently with the
empirical model) subject to a common stochastic volatility shock. Note that we assume that this shock represents
the uncertainty shock in the DSGE model.
The parametrization of the model is based on Fernandez-Villaverde and Rubio-Ramirez (2008) and Christiano

et al. (2014). The model is solved using a third order perturbation and generalised impulse responses are computed.
Details of model equations, the solution algorithm and impulse response calculation are provided in section 2 of the
technical appendix.
The blue lines in figure 7 show the response to an uncertainty shock under the benchmark calibration of the

model. We see in these simulations that as the uncertainty rises, agents respond by lowering (consumption and
investment) demand and increase (precautionary) savings. Furthermore, agents expand their labour supply (see
(Basu and Bundick, 2011)) pushing wages down and this offsets the increase in the rental rate of capital causing
marginal cost to fall. Although, the marginal cost decreases, inflation rises because forward looking firms bias
their pricing decision upwards in order to avoid supplying goods when demand and costs are high. Monetary
authorities set policy according to a Taylor type rule and this constrains their ability to expand policy significantly
and mitigate the adverse consequences from the uncertainty shock. This re-enforces agents’ precautionary saving
motives inducing a further reduction on demand. This in turn results in a fall in net worth and a rise in credit
spreads.

5.2 DSGE interpretation of the empirical results

The empirical evidence suggests that the effect from an increase in the aggregate uncertainty on measures of real
activity, asset prices and indicators of financial conditions has declined systematically over time. In contrast, the
estimated response of inflation and short-term interest rates has been fairly constant. In this section we use the
DSGE model discussed earlier to identify what ‘constellation’ of structural parameters that could be consistent with
this pattern. We do this by considering a set of simulations under which key parameters in the model are changed
and examine if the resulting shift in the response to uncertainty shocks matches the temporal pattern of impulse
responses estimated using the FAVAR model. Note that this approach is similar in spirit to estimating model
parameters by matching empirical and theoretical impulse responses, albeit less formal. We prefer this approach for
two reasons. First, the non-linearity of the DSGE model implies that the computation of the (generalised) impulse
responses is time-consuming and this hinders the use of numerical optimisation to minimise the distance between
responses. Secondly, as argued forcefully in Canova and Sala (2009), weak or partial identification is a major issue
in this approach and may lead to misleading results.
There are several existing DSGE studies that offer robust evidence regarding changes in the policy reaction

function (see Lubik and Schorfheide (2004) and Davig and Leeper (2007) among others) and changes in the price
and wage setting behavior of firms and households, respectively (see Fernandez-Villaverde and Rubio-Ramirez
(2008) and Hofmann et al. (2012) among others). It seems, therefore, natural to initiate our investigation from
those parameters and ask whether they could also explain changes in the pattern of uncertainty responses predicted
by the empirical model. In addition we also consider the possibility that the economy has been subject to a process
of financial liberalisation.

5.2.1 Hawkish Central Banker

We start by considering what happens when monetary policy authorities increase the weight placed on inflation
(Figure 7). The dashed red line represents the scenario under which the policymaker’s reaction coefficient to inflation
( γπ) in the monetary policy rule increases — γπ rises from 1.01 to 1.5. The exercise suggests that the economic
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effects of an exogenous increase in uncertainty diminish as the policymaker fights inflation aggressively. When γπ
rises and authorities react strongly to inflation, future inflation is expected to be on target. This reduces firms’
concerns about expected inflation and makes them less forward looking. In other words, the pricing bias decreases
and the link between inflation and marginal cost is renewed. In this case authorities are able to cut the policy rate
by more and for a longer period, which helps them to address the adverse effects from elevated uncertainty. The
resulting amelioration in the fall in investment improves the entrepreneurs’ leverage position and the increase in
the credit spread is smaller.
The changes in the impulse responses predicted by the rise in γπ go in the direction of the empirical results—

the fall in the magnitude of the real activity and credit spread response is consistent with the estimates from the
FAVAR. Note, however, that unlike the empirical estimates, the model simulations also predicts a decline in the
response of inflation and the policy rate at all horizons.
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Figure 7: The solid (blue) line has been produced by using benchmark calibration. The dashed (red) line illustrates what happens when γπ increases from
1.01 to 1.5.
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Figure 8: The solid (blue) line has been produced by using benchmark calibration. The dashed (red) line illustrates what happens when θw and χw decrease
from 0.700 and 0.800 to 0.05 and 0, respectively.
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Figure 9: The solid (blue) line has been produced by using benchmark calibration.The dashed (red) line illustrates what happens when θp and χ decrease
from 0.550 and 0.400 to 0.05 and 0, respectively.
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Figure 10: The solid (blue) line has been produced by using benchmark calibration.The dashed (red) line illustrates what happens when μE and the annual
credit steady state spread decrease from 0.210 and 300bps to 0.05 and 50bps, respectively.

18



Figure 11: The solid (blue) line has been produced by using benchmark calibration. The dashed (red) line illustrates what happens when γπ increases from
1.010 to 1.500, π̄ decreases from 1.010 to 1.005, χ reduces from 0.400 to 0.100 and θp increases from 0.550 to 0.650.
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5.2.2 Flexible Wages or prices

Next we study the effects on the economy after an uncertainty shock when nominal wages are not subject to frictions
(Figure 8 ). This simulation assumes that the Calvo probability of re-setting wages θw and the wage indexation
parameter χw decrease from 0.700 and 0.800 to 0.05 and 0, respectively. Relative to the benchmark case we see that
flexible wages do not lead to large changes in the impact of uncertainty on aggregate demand. Agents in the flexible
wage case respond by supplying more labour causing wages to fall by more. This turns out to have an impact on
the marginal cost and inflation as they fall in the first two years by more in the flexible wage case. However, the
pricing bias channel is still present—inflation does not fall as much as the marginal cost and after two years inflation
response closely tracks the benchmark inflation profile. This implies positive policy rates for a large period that
offset the majority of the short lasting stimulus (via negative short term rates) and explain why demand contracts
by a very similar amount under both scenarios.
Following Christiano et al. (2010) we investigate the economic effects after an uncertainty shock when prices are

able to adjust freely (Figure 9)— the Calvo probability θp and indexation χ decrease from 0.550 and 0.400 to 0.05
and 0, respectively. Although the effects on (aggregate) demand and prices appear to be very similar to the flexible
wages case, the transmission mechanism is very different. With flexible prices, the prices Philips curve drops from
the system and real wages equal zero for all t. Thus price inflation becomes a function of the nominal wage inflation
and not a function of the marginal cost. Given that real wages equal zero for all t, nominal wage inflation is just a
function of the real marginal cost of work (namely consumption and labour demand) which is falling.

The change in real activity response implied by these simulations is consistent with what we find using the
FAVAR model. Note, however, that these experiments suggest that an increase in wage or price flexibility has
little impact on the magnitude of the credit spread response and leads to a change in the inflation response. The
time-varying FAVAR responses offer little evidence to support these changes.

5.2.3 Financial liberalisation

In this simulation we assume that the asymmetry between borrower and lender has been reduced (Figure 10) — the
entrepreneur auditing cost μE and the annual credit steady state spread decreases from 0.210 and 300bps to 0.05
and 50bps, respectively. After this change in these parameters, an uncertainty shock has almost no effect on credit
spreads and net-worth. This is due to the low value of entrepreneur auditing cost (μE = 0 implies no asymmetry
between borrowers and lenders). As a consequence, investment does not collapse in this case as agents face a tiny
external finance premium. Note also that the dynamics of inflation and the policy rate are quite different under
financial liberalisation and this feature does not match the FAVAR results.

5.3 Discussion

The simulations presented above indicate that the estimated changes in the response of real activity and credit
spreads to uncertainty shocks can be consistent with a shift in Taylor rule parameters, wage/price rigidity and
easing of financial frictions. In contrast, it seems harder to replicate closely the empirical result that the response
of inflation and the short-term rate has been stable over time. Comparing figures 7 to 10, it appears that one
can get closest to the empirical results by increasing γπ from 1.010 to 1.500. While, the increase in the Federal
Reserve’s anti-inflationary stance after the mid-1980s has been documented and supported by several studies (see
Lubik and Schorfheide (2004)), it seems reasonable to suppose that the US economy has been subject to other
structural changes at the same time. For example, using a time-varying DSGE model, Fernandez-Villaverde and
Rubio-Ramirez (2008) provide evidence for a decrease in the inflation target and the ‘flattening’ of the Phillips
curve on top of an increase in the Taylor rule inflation coefficient.
In figure 11 we consider changes in a number of parameters that match the findings of Fernandez-Villaverde and

Rubio-Ramirez (2008). In particular, this figure compares the benchmark impulse responses from those obtained
under the scenario where monetary authorities fight inflation more aggressively (γπ increases from 1.010 to 1.500),
the steady-state inflation is reduced (π̄ decreases from 4% to 2%), firm rely less on indexation rules of thumb (χ
reduces from 0.400 to 0.100) and reset prices less frequently due to price stability (θp increases from 0.550 to 0.650).
Figure 11 shows that the changes in the impulse responses are close to the empirical results. Under the alternative
scenario, the response of real activity and spreads to the uncertainty shocks is weaker. However, the response
of inflation and the short-term interest rate is fairly similar, especially at short and medium term horizons. The
increase in price stickiness and a decrease in indexation has an upward effect on the pricing bias which counteracts
the decrease in this channel induced by the rise in γπ. With inflation closer to a lower target, firms find it optimal
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not to rest prices very often. However, this reduction in price re-setting leads them to account more for the risk of
being locked in a contractual agreement to supply goods at a price lower than the aggregate price.
In contrast, a combination of financial liberalisation and changes in the Phillips curve parameters outlined above

would lead to large changes in the inflation and the interest rate response. Notice from figure 10 that as financial
frictions ease, the response of inflation to uncertainty shock is larger in magnitude. This channel is further magnified
with a fall in indexation and an increase in price stickiness.

Therefore, a change in Taylor rule and Phillips curve parameters provides a candidate explanation for the
temporal shift in the responses estimated using the FAVAR model. As noted above, the fact that the change in
these model parameters has been reported by other studies provides an argument for believing this explanation to
be a plausible one.

6 Conclusions

This paper considers whether the impact of uncertainty shocks on the US economy has changed over time. Using
an extended FAVAR model that allows the estimation of the time-varying impact of uncertainty shocks we find
that the response of real activity series such as GDP growth and financial series such as the BAA credit spread
to this shock has declined over time. In contrast, the estimated response of inflation and short-term interest rates
has remained fairly constant over time. We use a non-linear DSGE model with stochastic volatility to gauge the
possible factors behind these changes. The DSGE simulations suggest that the empirical results can be closely
replicated when we incorporate an increase in the monetary authorities anti-inflation stance and simultaneously
allow the degree of price stickiness to rise and indexation to fall. This highlights the importance of monetary policy
and inflation dynamics in determining the role played by uncertainty and the importance of this shock for economic
fluctuations.
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Abstract

Technical Appendix

1 Estimation of the FAVAR model

The TVP VAR model is defined as

Zt = ct +
P∑
j=1

βtjZt−j +
J∑
j=0

γtj lnλt−j +Ω
1/2
t et (1)

where Zt is a matrix of endogenous variables describe below.

B = vec([c;β;λ]) (2)

Bt = Bt−1 + ηt, V AR (ηt) = QB

Ωt = A
−1
t HtA

−1′
t

where At is lower triangular. Each non-zero element of At evolves as a random walk

at = at−1 + gt, V AR(gt) = G (3)

where G is block diagonal as in Primiceri (2005).
Following Carriero et al. (2012) the volatility process is defined as

Ht = λtS (4)

S = diag(s1, .., sN )

The overall volatility evolves as an AR(1) process

lnλt = α+ F lnλt−1 + η̄t, V AR(η̄t) = Qλ (5)

1.1 Priors and Starting values

1.1.1 Factors

We use a principal component estimator to calculate an initial value for the factors Z̃t. The initial conditions for

the Kalman filter employed in the Carter and Kohn (2004) step are set as Z0˜N
(
Z̃1, I

)
.

∗The views expressed in this paper are those of the authors, and not necessarily those of the Bank of England.
†Queen Mary College. Email: h.mumtaz@qmul.ac.uk
‡Bank of England. Email: Konstantinos.Theodoridis@bankofengland.co.uk
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1.1.2 Factor Loadings and error variances

The initial conditions for the factor loadings are obtained via an OLS estimate of the factor loadings using the first 40
observations of the sample period and employing the principal components Z̃t. Let Λols denote the OLS estimate of
the factor loadings estimated using the pre-sample data described above. The prior is set as Λ0˜N(Λols, var(Λols)).
The prior on QΛ is assumed to be inverse Wishart QΛ,0 ∼ IW

(
Q̄Λ,0, T0

)
where Q̄Λ,0 is assumed to be T0 ×

var(Λols)× 10−4 × 3.5 and T0 is the length of the sample used to for calibration. This follows Cogley and Sargent
(2005).
The prior for the diagonal elements of R is assumed to be IG (R0, VR) where the scale parameter R0 = 0.001

and VR = 5.

1.1.3 VAR Coefficients

The initial conditions for the VAR coefficients B0 are obtained via an OLS estimate of a fixed coefficient VAR
using the first 40 observations of the sample period. The VAR is estimated using the principal components Z̃t.
Let B̂olsand v̂ols denote the OLS estimate of the VAR coefficients and the covariance matrix estimated on the
pre-sample data described above. The prior for B0˜N(B̂ols, var(B̂ols)). The prior on QB is assumed to be inverse
Wishart QB,0 ∼ IW

(
Q̄B,0, T0

)
where Q̄B,0 is assumed to be T0 × var(B̂ols) × 10−4 × 3.5 and T0 is the length of

the sample used to for calibration.

1.1.4 Elements of the A matrix

The prior for the off-diagonal elements At is A0 ∼ N
(
âols, V

(
âols

))
where âols are the off-diagonal elements of

v̂ols, with each row scaled by the corresponding element on the diagonal. V
(
âols

)
is assumed to be diagonal with

the elements set equal to 10 times the absolute value of the corresponding element of âols. The prior distribution for
the blocks of G is inverse Wishart: Gi,0 ∼ IW (Ḡi,Ki) where i = 1..N − 1 indexes the blocks of S. Ḡi is calibrated
using âols. Specifically, Ḡi is a diagonal matrix with the relevant elements of âols multiplied by 10−3.

1.1.5 Elements of S and the parameters of the transition equation

The elements of S have an inverse Gamma prior: P (si)˜IG(S0,i, V0). The degrees of freedom V0 are set equal to
1. The prior scale parameters are set by estimating the following regression: λ̄it = S0,iλ̄t + εt where λ̄t is the first
principal component of the stochastic volatilities λ̄it obtained using a univariate stochastic volatility model for the
residuals of each equation of a VAR estimated via OLS using the endogenous variables Z̃t.

We set a normal prior for the unconditional mean μ = α
1−F . This prior is N(μ0, Z0) where μ0 = 0 and

Z0 = 10.The prior for Qλ is IG (Q0, VQ0) where Q0 is the average of the variances of the transition equations of
the initial univariate stochastic volatility estimates and VQ0 = 5. The prior for F is N (F0, L0) where F0 = 0.8 and
L0 = 1.

1.1.6 Common Volatility λt

The prior for the initial value of λt is defined as lnλ0 ∼ N(lnμ0, I) where μ0 is the initial value of λ̄t.

1.2 MCMC algorithm

The MCMC algorithm is based on drawing from the following conditional posterior distributions (Ξ denotes all
other parameters):

1. G(Λt\Ξ). Given a draw for the factors the variances R and the variance of the shock to the transition equation
QΛ, the following TVP regression applies for the ith Xit :

Xit = ΛitZt +R
1/2
i εit

Λit = Λit−1 + η̄it, V AR (η̄it) = QΛ,i

As this is a linear and Gaussian state space model, the Carter and Kohn (2004) algorithm can be ap-
plied to draw from the conditional posterior of Λit. The distribution of the time-varying loadings condi-
tional on all other parameters is linear and Gaussian: Λit\Xit,Ξ ∼ N

(
ΛT\T , P̄T\T

)
and Λt\Λt+1,Xit,Ξ ∼

N
(
Λt\t+1,Λt+1 , P̄t\t+1,Λt+1

)
where t = T − 1, ..1, Ξ denotes a vector that holds all the other VAR parameters.
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As shown by Carter and Kohn (2004) the simulation proceeds as follows. First we use the Kalman filter to
draw ΛT\T and P̄T\T and then proceed backwards in time using Λt|t+1,Λt+1 = Λt|t + P̄t|tP̄

−1
t+1|t

(
Λt+1 − Λt|t

)
and P̄t|t+1,Λt+1 = P̄t|t− P̄t|tP̄−1t+1|tP̄t|t. Note that in order to deal rotational indeterminancy of the factors and
factor loadings, we fix the first K factor loadings where K is the number of factors. In particular, the first
K ×K block of Λit is equal to an identity matrix for all time periods (see Bernanke et al. (2005)).

2. G(QΛ,i\Ξ). Given a draw for Λit, the conditional posterior for QΛ,i is inverse Wishart with scale matrix and
degrees of freedom defined as: IW

(
η̄′itη̄it + Q̄Λ,0, T + T0

)
.

3. G(R\Ξ). The diagonal elements of R have an inverse Gamma conditional posterior:

G(Ri\Ξ)˜IG (ε′itεit +R0, T + VR)

4. G (Z\Ξ). Given the parameters of the observation equation (Λt, R) and the transition equation (Bt,Ωt),
equations ?? and 1 constitute a linear Gaussian state space model and the Carter and Kohn (2004) algo-
rithm can be employed to draw from the conditional posterior distribution of the factors. Carter and Kohn

(2004) show that the conditional posterior is defined as ZT \Xit,Ξ ∼ N
(
ZT\T , P̃T\T

)
and Zt\Zt+1,Xit,Ξ ∼

N
(
Zt\t+1,Zt+1 , P̃t\t+1,Zt+1

)
where t = T − 1, ..1, Ξ denotes a vector that holds all the other VAR parameters.

A run of the Kalman filter delivers ZT\T and P̃T\T as the filtered states and its variance at the end of the

sample. Then one proceeds backwards in time to obtain Zt\t+1,Zt+1 = Zt|t+ P̃t|tF̃
′
t P̃

−1
t+1|t

(
Zt+1 − μ̃t − F̃Zt|t

)
and P̃t|t+1,Zt+1 = P̃t|t − P̃t|tF̃ ′tP−1t+1|tF̃tP̃t|t. Note that F̃t and μ̃t denote the coefficients on the lags and the
coefficients on pre-determined variables in the transition equation 1 respectively in companion form.

5. G(Bt\Ξ). Given a draw for the factors and variances Ωt, QB , 1 and 2 constitute a VAR with time-varying para-
meters and the Carter and Kohn (2004) algorithm can again be applied to draw from the conditional posterior
of the VAR coefficients. The distribution of the time-varying VAR coefficients Bt conditional on all other para-
meters is linear and Gaussian: Bt\Zt,Ξ ∼ N

(
BT\T , PT\T

)
and Bt\Bt+1,Zt,Ξ ∼ N

(
Bt\t+1,Bt+1

, Pt\t+1,Bt+1

)
where t = T−1, ..1, Ξ denotes a vector that holds all the other VAR parameters. As shown by Carter and Kohn
(2004) the simulation proceeds as follows. First we use the Kalman filter to draw BT\T and PT\T and then pro-
ceed backwards in time using Bt|t+1,Bt+1

= Bt|t+Pt|tP
−1
t+1|t

(
Bt+1 −Bt|t

)
and Pt|t+1,Bt+1

= Pt|t−Pt|tP−1t+1|tPt|t.
Rejection sampling is used to ensure that the draws satisfy stability at each point in time.

6. G(QB\Ξ). The draw for QB is standard with conditional distribution IW
(
η′tηt + Q̄B,0, T + T0

)
.

7. G(At\Ξ). Given a draw for the VAR parameters and the model can be written as A′t (vt) = et where vt denotes
the VAR residuals. This is a system of linear equations with time-varying coefficients and a known form of
heteroscedasticity. The jth equation of this system is given as vjt = −ajtv−jt + ejt where the subscript j
denotes the jth column of v while −j denotes columns 1 to j−1. Note that the variance of ejt is time-varying
and given by λtsj . The time-varying coefficient follows the process ajt = ajt−1 + gjt with the shocks to
the jth equation gjt uncorrelated with those from other equations. In other words the covariance matrix
var (g) is assumed to be block diagonal as in Primiceri (2005). With this assumption in place, the Carter and
Kohn (2004) algorithm can be applied to draw the time varying coefficients for each equation of this system
seperately.

8. G(S\Ξ). Given a draw for the VAR parameters the model in can be written as A′ (vt) = et. The jth equation
of this system is given by vjt = −ajtv−jt + ejt where the variance of ejt is time-varying and given by λtsj .
Given a draw for λt this equation can be re-written as v̄jt = −ajtv̄−jt+ ējt where v̄jt = vjt

λ
1/2
t

and the variance

of ējt is sj . The conditional posterior is for this variance is inverse Gamma with scale parameter ē′jtējt + S0,j
and degrees of freedom V0 + T.

9. G(λt\Ξ).Conditional on the VAR parameters, and the parameters of the transition equation, the model has a
multivariate non-linear state-space representation. Carlin et al. (1992) show that the conditional distribution
of the state variables in a general state-space model can be written as the product of three terms:

h̃t\Zt,Ξ ∝ f
(
h̃t\h̃t−1

)
× f

(
h̃t+1\h̃t

)
× f

(
Zt\h̃t,Ξ

)
(6)
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where Ξ denotes all other parameters and h̃t = lnλt. In the context of stochastic volatility models, Jacquier
et al. (1994) show that this density is a product of log normal densities for λt and λt+1 and a normal density
for Zt.Carlin et al. (1992) derive the general form of the mean and variance of the underlying normal density

for f
(
h̃t\h̃t−1, h̃t+1,Ξ

)
∝ f

(
h̃t\h̃t−1

)
× f

(
h̃t+1\h̃t

)
and show that this is given as

f
(
h̃t\h̃t−1, h̃t+1,Ξ

)
∼ N (B2tb2t, B2t) (7)

where B−12t = Q−1λ + F ′Q−1λ F and b2t = h̃t−1F ′Q−1λ + h̃t+1Q
−1
λ F. Note that due to the non-linearity of the

observation equation of the model an analytical expression for the complete conditional h̃t\Zt,Ξ is unavailable
and a metropolis step is required. Following Jacquier et al. (1994) we draw from 6 using a date-by-date
independence metropolis step using the density in 7 as the candidate generating density. This choice implies

that the acceptance probability is given by the ratio of the conditional likelihood f
(
Zt\h̃t,Ξ

)
at the old and

the new draw. To implement the algorithm we begin with an initial estimate of h̃ = ln λ̄t We set the matrix
h̃old equal to the initial volatility estimate. Then at each date the following two steps are implemented:

(a) Draw a candidate for the volatility h̃newt using the density 6 where b2t = h̃newt−1 F
′Q−1λ + h̃oldt+1Q

−1
λ F and

B−12t = Q
−1
λ + F ′Q−1λ F

(b) Update h̃oldt = h̃newt with acceptance probability
f(Zt\h̃newt ,Ξ)
f(Zt\h̃oldt ,Ξ)

where f
(
Zt\h̃t,Ξ

)
is the likelihood of the

VAR for observation t and defined as |Ωt|−0.5−0.5 exp
(
ẽtΩ

−1
t ẽ′t

)
where ẽt = Zt−

(
ct +

∑P
j=1 βtjZt−j +

∑J
j=0 γtj lnλt−j

and Ωt = A
−1
t

(
exp(h̃t)S

)
A−1

′
t

Repeating these steps for the entire time series delivers a draw of the stochastic volatilties.1

7. G(α, F\Ξ).We re-write the transition equation in deviations from the mean

h̃t − μ = F
(
h̃t−1 − μ

)
+ η̄t (8)

where the elements of the mean vector μi are defined as
αi
1−Fi . Conditional on a draw for h̃t and μ the transition

equation 8 is a simply a linear regression and the standard normal and inverse Gamma conditional posteriors
apply. Consider h̃∗t = Fh̃

∗
t−1+ η̄t, V AR (η̄t) = Qλand h̃

∗
t = h̃t−μ, h̃∗t−1 = h̃t−1−μ. The conditional posterior

of F is N (θ∗, L∗) where

θ∗ =

(
L−10 +

1

Qλ
h̃∗′t−1h̃

∗
t−1

)−1(
L−10 F0 +

1

Qλ
h̃∗′t−1h̃

∗
t

)

L∗ =

(
L−10 +

1

Qλ
h̃∗′t−1h̃

∗
t−1

)−1

The conditional posterior of Qλ is inverse Gamma with scale parameter η̄′tη̄t+Q0 and degrees of freedom T + VQ0.
Given a draw for F , equation 8 can be expressed as Δ̄h̃t = Cμ + η̄t where Δ̄h̃t = h̃t − Fh̃t−1 and C = 1 − F.

The conditional posterior of μ is N (μ∗, Z∗) where

μ∗ =

(
Z−10 +

1

Qλ
C ′C

)−1(
Z−10 μ0 +

1

Qλ
C ′Δ̄h̃t

)

Z∗ =

(
Z−10 +

1

Qλ
C ′C

)−1

Note that α can be recovered as μ (1− θ)
1 In order to take endpoints into account, the algorithm is modified slightly for the initial condition and the last observation. Details

of these changes can be found in Jacquier et al. (1994).
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1.3 A Monte-Carlo experiment

In order to evaluate the MCMC algorithm we conduct a simple Monte Carlo experiment. 400 observations are
generated from the following DGP with the number of variables N = 40 and the number of factors k = 2. The first
100 observations are discarded to remove the impact of initial conditions.

Xit = ΛtFkt + uit, uit˜N(0, 1)

Zt = βtZt−1 + γt lnλt + ct +Ω
1/2
t et, et˜N(0, 1)

Ht = λtS

S =

(
1 0
0 1

)

λt = −0.1 + 0.75λt−1 + (0.5)
1
2 vt

βt =

(
β11,t β12,t
β21,t β22,t

)
, γt =

(
γ11,t
γ21,t

)

where λt is generated once using vt˜N(0, 1) and fixed for all iterations of the experiment. Following Gamble and
LeSage (1993) we assume that a one time shift defines the change in the factor loadings, the VAR coefficients and

the non-zero element of At. During the first 100 observations the VAR coefficients equal βt =
(
0.5 0.05
0.05 0.5

)
, γt =( −0.5

0.5

)
and A = −1. The factor loading matrix Λt is equal to Λ1˜ N(0, 1). During the next 300 observations,

the coefficients change to βt =
(
0.5 0.05
0.05 0.5

)
, γt =

( −1.5
1.5

)
, A = 1 and Λt = Λ2˜ N(0, 1). Note that the factor

loadings are generated once and held fixed over the Monte-Carlo iterations.
The data is generated 100 times. For each replication, the MCMC algorithm described above is run using 5000

iterations and the last 1000 draws are used to compute the impulse response to a one standard deviation shock to
the volatility λt. Note that we use the first 20 observations to calibrate priors and starting values.
Figure 1 plots the median estimate of the cumulated impulse response of Xit (for i = 1, 2, ..40) at the 4-period

horizon across Monte-Carlo replications and compares these with the true underlying values of the response (solid
black lines). The figure shows that in the case of most variables, the Monte-Carlo estimates of the shift in the
response matches the change in the response assumed in the DGP.

1.4 DIC Calculation

In practical terms, the DIC can be calculated as: DIC = D̄+pD. The first term is defined as D̄ = E (−2 lnL (Ξi)) =
1
M

∑
i (−2 lnL (Ξi)) where L (Ξi) is the likelihood evaluated at the draws of all of the parameters Ξi in the MCMC

chain. This term measures goodness of fit. The second term pD is defined as a measure of the number of effective
parameters in the model (or model complexity). This is defined as pD = E (−2 lnL (Ξi)) − (−2 lnL (E(Ξi))) and
can be approximated as pD = 1

M

∑
i (−2 lnL (Ξi)) −

(
−2 lnL

(
1
M

∑
i

Ξi

))
. The likelihood function of the model

is evaluated using a particle filter with 2000 particles.
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Figure 1: Estimates of the cumulated impulse response at the 4-period horizon. The figure presents the median (red line ) across the 100 Monte-Carlo
replications. The black line represents the true time-varying cumulated response at the 4-period horizon.
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1.5 Impulse responses from the benchmark model (full 3-D figures)
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Figure 2: Three dimensional version of the impulse responses from the benchmark model
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1.6 Sensitivity analysis

The top row of figure 3 in section 1.6 presents the impulse response of key series to a 1 standard deviation uncertainty
shock using a version of the benchmark model where the four lags of λt are allowed to affect the endogenous variables.
As in the benchmark case, the response of GDP the corporate bond spread and stock market returns show a decline.
In contrast, the decline in the inflation and the short term interest rate response is estimated to be weaker.
The second row of figure 3 shows the impulse response from a version of the benchmark model where the

assumption that the volatility has a contemporaneous affect on the endogenous variables is relaxed. In contrast,
only the coefficients on lagged values of λt are allowed to have non-zero coefficients. The temporal pattern of the
estimated impulse responses support the benchmark results— while the response of GDP growth and the financial
variables declines over time, the response of inflation and the short-term rate is fairly stable.
The third row of the figure shows that the responses from a three factor model support the key conclusions

reached using the benchmark model.
The bottom row of the figure considers a version of the benchmark model where an alternative prior imposed

on the variance of the shock to the transition equations for the time-varying parameters (QB and Qλ). In the
benchmark model, the prior for these covariance matrices is assumed to be inverse Wishart:

P (QB) ˜IW (QOLS × T0 ×K,T0)

where T0 = 40 is the length of the training sample and QOLS is the OLS estimate of the coefficient covariance using
the training sample. The prior scale matrix is multiplied by the factor K which is set to 3.5×10−4 following Cogley
and Sargent (2005). In the alternative specification, we set K = 1 × 10−4 and thus incorporate a belief of lower
time-variation in the VAR coefficients and factor loadings. The bottom panel of figure 3 shows that while the change
in impulse responses is smoother, there is evidence that the estimated response of GDP growth, the corporate bond
spread and stock price index declines over time. In contrast, the response of inflation and interest rates remains
largely constant. Thus, the results from this model with a tighter prior support the benchmark conclusions.
In summary, the benchmark results and the sensitivity analysis suggests the following main conclusion: There

is evidence that the response of real activity and some financial indicators to the uncertainty shock has declined
over time. In contrast, the response of inflation and interest rates to this shock has remained largely stable. We
now turn to a DSGE model in order to explore the possible reasons behind the estimated change in the impact of
uncertainty shocks.
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Figure 3: Sensitivity Analysis
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1.7 Data
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Table 1: List of Data series. GFD refers to Global Financial data. FRED is the St Louis Fed database. LD denotes 100 times the log difference while N
denotes no transformation

No. Variable Source Code Transformation
1 Industrial Production FRED INDPRO LD
2 Dow Jones Industrial Total returns index GFD _DJITRD LD
3 GDP Deflator FRED GDPDEF LD
4 ISM Manufacturing: New Orders Index FRED NAPMNOI N
5 ISM Manufacturing: Inventories Index FRED NAPMII N
6 ISM Manufacturing: Supplier Deliveries Index FRED NAPMSDI N
7 All Employees: Total nonfarm FRED PAYEMS LD
8 Business Confidence Index GFD BCUSAM N
9 Real Imports FRED IMPGSC96 LD
10 Real Exports FRED EXPGSC1 LD
11 Government Spending to GDP ratio BEA see Mumtaz and Surico (2013) LD
12 Net Taxes to GDP ratio BEA seeMumtaz and Surico (2013) LD
13 Real Gross Private Domestic Investment FRED GDPIC96 LD
14 Real Personal Consumption Expenditures FRED PCECC96 LD
15 Real GDP FRED GDPC96 LD
16 Unemployment Rate FRED UNRATE N
17 Average Hours FRED AWHMAN LD
18 Civilian Labour Force FRED CLF16OV LD
19 Civilian Labor Force Participation Rate FRED CIVPART LD
20 Nonfarm Business Sector: Unit Labor Cost FRED ULCNFB LD
21 Nonfarm Business Sector: Real Compensation Per Hour FRED COMPRNFB LD
22 M2 Money Stock Fred M2 LD
23 Total Consumer Credit Owned and Securitized, Outstanding FRED TOTALSL LD
24 Producer Price Index GFD WPUSAM LD
25 CPI FRED CPIAUCSL LD
26 Personal Consumption Expenditures: Chain-type Price Index FRED PCECTPI LD
27 3-Month Treasury Bill: Secondary Market Rate FRED TB3MS N
28 10 year Govt Bond Yield minus 3 mth yield GFD IGUSA10D (minus TB3MS) N
29 6-month Treasury bill minus 3 mth yield GFD ITUSA6D (minus TB3MS) N
30 1 year Govt Bond Yield minus 3 mth yield GFD IGUSA1D (minus TB3MS) N
31 5 year Govt Bond Yield minus 3 mth yield GFD IGUSA5D (minus TB3MS) N
32 Reuters/Jeffries-CRB Total Return Index (w/GFD extension) GFD _CRBTRD LD
33 West Texas Intermediate Oil Price GFD _WTC_D LD
34 BAA Corporate Spread GFD MOCBAAD (minus IGUSA10D) N
35 AAA Corporate Bond Spread GFD MOCAAAD (minus IGUSA10D) N
36 S&P500 Total Return Index GFD _SPXTRD LD
37 NYSE Stock Market Capitalization GFD USNYCAPM LD
38 S&P500 P/E Ratio GFD SYUSAPM N
39 US Canada exchange rate] GFD USDCAD LD
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1.8 Recursive means

Figure 4 presents the mean of the Gibbs draws for key model parameters calculated every 100 draws. These are
fairly stable which provides evidence of convergence of the Gibbs algorithm.

2 Details on the DSGE model

2.1 Calibration

The benchmark calibration is listed in table 3. The parametrization of the non-financial block of the of the model is
based on Fernandez-Villaverde and Rubio-Ramirez (2008), while the calibration of the financial block of the model
relies on Christiano et al. (2014). In both studies full information Bayesian estimation techniques have been used
to decide about the structural parameter and this is what drives our selection. However, for the purposes of the
simulation experiments discussed in the main text we have changed the values of γπ, π̄, θp, χ, ΛA, η and ε relative to
the numbers reported by Fernandez-Villaverde and Rubio-Ramirez (2008) (Table 2.1). To be precise, the discount
factor is set equal to 0.999 and combined with the inflation target π̄ = 1.010, the growth rates of the investment
specific technological change Λμ = 1.010 and of the neutral technology ΛA = 1.0013, implies that the steady-state
value of the annual real rate is 6.40%. The degree of habit persistence is 0.88, this value is higher than the estimates
reported by Smets and Wouters (2007) and Justiniano et al. (2010), however, due to log consumption preferences
a high degree of habit persistence is needed so demand does not display excess sensitivity to the real interest rate
(via the Euler consumption equation). Similar to Smets and Wouters (2007) the inverse Frisch elasticity of labour
supply is equal to 1.36 and the investment adjustment is equal to 7.68 suggesting very little response of investment
to changes in Tobin’s q. The Calvo parameters imply that prices and wages are reset every 2.22 and 3.33 quarters
respectively, while households rely on indexation (χw = 0.80) more heavily than firms (χ = 0.40). The elasticities
of substitution ε for firms and η for households imply an average markup of around 5% and 30%, respectively. The
Taylor rule parameters are γπ = 1.010, γy = 0.190 and γR = 0.79. The steady-state probability of defaults is 2.24%
and slightly smaller than the value 3% used in the literature (see Bernanke et al. (1999)). The value of entrepreneur
auditing cost is 0.21 and the fraction of survival entrepreneurs is 0.985, again these values are higher than those
used in the literature (3% and 0.976 Bernanke et al. (1999)).

2.2 Solution

The model is solved using third-order perturbation methods (see Judd (1998)) as for any order lower than three,
uncertainty shocks (our main objects of interest) do not enter into the decision rule as independent components.
One difficulty of using these higher-order solution techniques is that paths simulated by the approximated policy
function often explode. This is because regular perturbation approximations are polynomials that have multiple
steady states and could yield unbounded solutions (Kim et al., 2008). This means that the approximation is valid
only locally and along the simulation path we may enter into a region where its validity is not preserved anymore.
To avoid this problem Kim et al. (2008) suggest to ‘prune’ all those terms that have an order that is higher than

the approximation order, while Andreasen et al. (2013) show how this logic can be applied to any order. Although
there are studies that question the legitimacy of this approach (see Haan and Wind (2010)), it has by now been
widely accepted as the only reliable way to get the solution of nth order approximated DSGE model (where n > 1).

Finally, we follow Fernández-Villaverde et al. (2011) and generate the responses of model variables to stochastic
volatility shocks using generalised impulse responses developed by Koop et al. (1996).

2.3 IRFs

The exact simulation steps to produce the impulse responses reported here are as follows:

1. We draw 5 × 1040 structural shocks ωj,t from the standard normal distribution (where j = 1, .., 5 and t =
1, .., 1040)

2. We simulate the model using the shocks from step 1, we denote the simulated data by yt

3. We simulate the model using again the structural shocks ωj,t from step 1 but now we increase the value of the
structural shock of interest in period 1001 by an amount necessary to rise uncertainty by 1 times the standard
devition of the uncertainty shock, namely

ω̃j,1001 = ωj,1001 + x (9)
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Figure 4: Recursive means of the Gibbs draws calculated at every 100 draws.
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We denote the data obtained from this simulation by ỹt

4. Steps 1 to 3 are repeated 1000 times

5. The IRF is calculated as follows

IRF =
1

1000

1000∑
i=1

(
ỹit − yit

)
(10)

All calculations have been produced using Dynare 4.4.2 and Matlab 2012b.
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Table 2: DSGE Model Variables
Description Mnemonic

dt Preference Shock
ct Consumption
μz,t Trend Growth Rate of the Economy
μI,t Growth rate of Investment-Specific Technology Growth
μA,t Growth rate of Neutral Technology
λt Lagrange multiplier
Rt Nominal Interest rate
πt Inflation
rt Rental Rate of Capital
xt Investment
ut Capacity Utilization
qt Tobin’s Marginal Q
ft Variable for Recursive Formulation of Wage Setting
ldt Aggregate Labor Demand
wt Real Wage
w∗t Optimal Real Wage
πw,∗t Optimal Wage Inflation
π∗t Optimal Price Inflation
g1t Variable 1 for Recursive Formulation of Price Setting
g2t Variable 2 for Recursive Formulation of Price Setting
ydt Aggregate Output
mct Marginal Cost
kt Capital
vpt Price Dispersion Term
vwt Wage Dispersion Term
lt Aggregate Labor Bundle
φt Labor Disutility Shock
Ft Firm Profits
σt Aggregate Uncertainty
ω̄t Bankruptcy Cutoff Value
Rkt Return of Capital
nt Net worth
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Table 3: DSGE Model Parameters

Description Mnemonic Value

Λμ Steady State Growth Rate of Investment-Specific Technology 1.010
ΛA Steady State Neutral Technology Growth 1.005
β Discount Factor 0.999
h Consumption Habits 0.877
γ1 Capital Utilization, Linear Term 0.039
γ2 Capital Utilization, Quadratic Term 0.001
δ Depreciation Rate 0.015
κ Capital Adjustment Cost Parameter 7.679
η Elasticity of Substitution between Labor Varieties 4.20
ε Elasticity of Substitution between Goods Varieties 21.00
ψ Labor Disutility Parameter 9.340
γ Inverse Frisch Elasticity 1.359
χw Wage Indexation Parameter 0.800
χ Price Indexation 0.400
θp Calvo Probability Prices 0.550
θw Calvo Probability wages 0.700
α Capital Share 0.255
π̄ Steady State Inflation 1.010
γR Interest Smoothing Coefficient Taylor Rule 0.790
γπ Feedback Inflation Coefficient Taylor Rule 1.010
γy Feedback Output Coefficient Taylor Rule 0.190
Φ Firms Fixed Cost 0.025

Financial Friction Parameters
F (ω̄) Steady State Probability of Default 0.006
γ Fraction of Survival Entrepreneurs 0.985
μE Entrepreneur Auditing Cost 0.210
ω̄ Steady State Bankruptcy Cutoff Value 0.568
σω Standard Deviation Entrepreneur’s Idiosyncratic Productivity Shock 0.214
Θ Fraction of Assets Consumed During Exit 0.005

Shock Process Parameters
ρd Autocorrelation Preference Shock 0.951
ρφ Autocorrelation Labor Disutility Shock 0.942
ρσ Autocorrelation Uncertainty Shock 0.950
σd standard deviation preference shock 0.060
σφ Standard Deviation labor Disutility Shock 0.070
σμ Standard Deviation Investment-Specific Technology 0.151
σA Standard Deviation Neutral Technology 0.070
σm Standard Deviation Policy shock 0.003
σσ Standard Uncertainty Shock 1.000

Notes: The parametrization of the model is based on Fernandez-Villaverde and Rubio-Ramirez (2008), while the values of
the financial friction parameters are those estimated by Christiano et al. (2014). We refer to this version of the model in the
text as ‘benchmark’ and for the purposes of the simulation experiments discussed in Section xxx we have changed the values
of γπ, π̄, θp, χ, ΛA, η and ε relative to the numbers reported by Fernandez-Villaverde and Rubio-Ramirez (2008) (Table 2.1).
γ1 is selected to deliver a steady-state (annual) credit spread is equal to 300bps, ψ ensures the steady-state value of labour
is equal to 1/3, Φ is selected so the steady-state value of profits is equal to zero, ω̄ and σω have been also selected in order
to be consistent with F (ω̄) = 0.0056 and μE = 0.210.
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Table 4: DSGE Model Equations

Description Equation

Marginal Utility of Consumption dt

(
ct − h ct−1zt

)−1
− hβEtdt+1 (ct+1zt+1 − hct)−1 = λt

Euler Equation λt = βEt

(
λt+1Rt

zt+1πt+1

)
Rental Rate of Capital rt = α

′(ut+1)

Return of Capital Rk
t

πt
≡ rtut+(1−δ)qt−a(ut)

qt−1μt

Investment Equation 1 = qt

{
1− S

(
xtzt
xt−1

)
− S′

(
xtzt
xt−1

)
xtzt
xt−1

}
+βEt

λt+1
λtzt+1

S′
(
xt+1zt+1

xt

)(
xt+1zt+1

xt

)2
Wages Equation 1 ft =

η−1
η (w∗t )

(1−η)λtw
η
t l
d
t + βθwEt

(
π
χw
t

πt+1

)(1−η) (w∗t+1zt+1
w∗t

)(η−1)
ft+1

Wages Equation 2 ft = ψdtφt(π
w,∗
t )−η(1+γ)(ldt )

1+γ

+βθwEt

(
π
χw
t

πt+1

)−η(1+γ) (w∗t+1zt+1
w∗t

)η(1+γ)
ft+1

Wages Equation 3 1 = θw

(
π
χw
t−1
πt

)1−η (
wt−1
wtzt

)1−η
+ (1− θw)(πw,∗t )1−η

Prices Equation 1 g1t = λtmcty
d
t + βθpEt

(
πχt
πt+1

)−ε
g1t+1

Prices Equation 2 g2t = λtπ
∗
t y
d
t + βθpEt

(
πχt
πt+1

)1−ε
π∗t
π∗t+1

g2t+1
Prices Equation 3 εg1t = (ε− 1)g2t
Prices Equation 4 1 = θp

(
πχt−1
πt

)1−ε
+ (1− θp)(π∗t )1−ε

Demand for Capital utkt−1
ldt

= α
1−α

wtztμt
rt

Marginal Cost mct =
(

1
1−α

)1−α (
1
α

)α
w1−αt rαt

Taylor Rule Rt

R =
(
Rt−1
R

)γR {(πt
π̄

)γπ ( ydt zt

ydt−1Λ
1

1−α
A Λ

α
1−α
μ

)γy}1−γR
emt

Goods Market Clearing ydt =
1
zt
At(utkt−1)α(ldt )

1−α−Φ
vpt

Aggregate Demand ydt = ct + xt +
α(ut)kt−1
ztμt

+
μEG(ω̄t)R

k
t qt−1kt−1

ztπt
+Θ 1−γ

γ (nt − wE)
Labour Market Clearing lt = v

w
t l
d
t

Price Dispersion vpt = θp

(
πχt−1
πt

)−ε
+ (1− θp) (π∗t )−ε

Wage Dispersion vwt = θw

(
wt−1
wtzt

π
χw
t−1
πt

)−η
+ (1− θw)

(
πw,∗t

)−η
Capital Accumulation kt = (1− δ) kt−1ztμt

+
(
1− S

(
xtzt
xt−1

))
xt

Bank zero profit condition [Γ (ω̄t)− μEG (ω̄t)]Rkt qt−1kt−1nt−1
= Rt−1

(
qt−1kt−1
nt−1

− 1
)

Optimality loan contract condition Et

⎧⎨
⎩[1− Γ (ω̄t+1)] R

k
t+1

Rt
+

∂Γ(ω̄t+1)
∂ω̄t+1

[
[Γ(ω̄t+1)−μEG(ω̄t+1)]

Rkt+1
Rt

−1
]

[
∂Γ(ω̄t+1)
∂ω̄t+1

−μE
∂G(ω̄t+1)
∂ω̄t+1

]
⎫⎬
⎭ = 0

Net-worth accumulation nt = γ
Rt−1
πtzt

nt−1 +
γ[Rk

t−(Rt−1+μEG(ω̄t)R
k
t )]

πtzt
qt−1kt−1 + wE

Exogenous States
Preference shock log (dt) = (1− ρd) log(d) + ρd log (dt−1) + σtσdωdt
Labour disutility shock log (φt) =

(
1− ρφ

)
log(φ) + ρφ log

(
φt−1

)
+ σtσφω

φ
t

Policy Shock log(mt) = σtσmω
m
t

TFP Shock log (At) = log(ΛA) + σtσAω
A
t

IST Shock log (μt) = log(Λμ) + σtσμω
A
t

Uncertainty Shock log (σt) = ρσ log (σt−1) + σσω
σ
t

Notes: G (ω, σω) = 1 − Φ
(
0.5σω−logω

σω

)
, Γ (ω̄t) = ω̄t [1− F (ω̄t)] + G (ω̄t), where Φ is the CDF of a normal distribution.

∂Γ(ω̄t)
∂ω̄t

and ∂G(ω̄t)
∂ω̄t

denote the partial derivatives of Γ (ω̄t) and G (ω̄t) with respect to ω̄t.
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