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1 Introduction

The core is an anchoring concept in game theory going back, in its origins,
to Edgeworth’s contract curve, and the contributions of Debreu and Scarf
(1963) and Aumann (1964). The core remains a central concept in economics
and most recently, in market design; see, for example, Roth (2002). Even in
games with many, but finite numbers of players, however, the core may be
empty. The addition of a single player to a large game with a nonempty core
may result in a game with an empty core. The problem of the emptiness
of the core is especially salient in economies with public goods subject to
congestion and exclusion (local public goods) or in economies with clubs.
Even in pure exchange economies, the nonemptiness of the core can depend
on whether commodities are infinitely divisible. It is, however, a remarkable
fact that, as established by Wooders (1983), in games with many players
satisfying apparently mild conditions approximate cores are nonempty.

In this paper, inspired by the payoff dependent balancedness notion2

of Herings and Predtetchinski (2004) and Bonnisseau and Iehle (2007), we
demonstrate nonemptiness of approximate cores for sequences of games with
arbitrary distributions of players. Recall that much of the literature on ap-
proximate cores of NTU games, beginning with Wooders (1983) and most
recently Kovalenkov and Wooders (2001, 2003) and Wooders (2008), estab-
lishes nonemptiness of approximate cores of large games by showing that
payoffs in the cores of derived “balanced cover” games can be approximated
by feasible payoffs of the original games. Quite surprisingly, a modification of
a key construct from the literature on payoff dependent balancedness, a cor-
respondence from limiting feasible payoffs to distributions of players types3

achieving them, enables us to establish that for large games limiting payoffs
vary continuously with the distribution of player types. With such a corre-
spondence in hand, we can bypass approximation of the original games by
balanced cover games and simply appeal to a fixed point argument rather
than to approximating balanced games.

More specifically, for sequence of games with growing numbers of players
of each of a finite number of types and arbitrary distributions of player types
we introduce a set of limiting equal treatment payoffs, denoted by Γ, and

2Payoff dependent balancedness generalizes the well-known notion of Scarf balancedness
for NTU games.

3In interpretation a distribution of player types reflects a player set á la Aubin (1979),
where players have different participation rates (see also Florenzano (1990)).
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a correspondence from payoffs in Γ to distributions of players types able to
achieve them. A limiting equal treatment payoff is approximately feasible
for some group, possibly large, described by the distribution of player types
in the group. We require essentially three conditions for our results:

1. Superadditivity: Any coalition S of players can realize at least the
payoffs achievable by cooperation only within coalitions in a partition
of S;

2. Small group effectiveness (SGE): All or almost all gains to coalition
formation can be realized by coalitions bounded in size (an apparently
mild condition); and

3. Quasi-transferable utility (QTU): It is possible to make small transfers
from one player to another player, not necessarily at a one-to-one rate;
payoff sets are uniformly bounded away from having level segments
(sometimes called “non-leveledness”).

Our result differs from Wooders (1983) primarily in that we allow se-
quences of games with player sets converging to distributions of player types
with possibly non-rational components, and with distributions having pos-
itive measures of players of each type. This is enabled by the assumptions
of SGE and, in a secondary way, QTU4. Recall that Wooders (2008, Theo-
rem 2) uses these same conditions as employed in this paper to demonstrate
that, for games with a compact metric space of player types, given ε > 0
there is an integer η0(ε) such that all games with more than η0(ε) players
have nonempty equal-treatment ε-cores. As demonstrated in a concluding
section of this paper, our result is a Corollary of Wooders earlier result; our
contribution is our new proof.

Although both this paper and Predtetchinski (2005) and Allouch and
Predtetchinski (2008) use the payoff dependent balancedness notion, their
approaches differ in many aspects from that of the current paper. First, as
in Wooders (1983), the current paper deals with a sequence games defined in
characteristic form with possibly ever-increasing equal-treatment payoff sets.
Our framework can accommodate a general class of exchange economies in-
cluding ones with (local) public goods and clubs. In contrast, Predtetchinski

4We could have, for example, required convexity instead of QTU. Or we could have
used a less restrictive notion of approximate cores, ignoring small percentages of players
of some types (cf., Wooders 2008, Theorem 1).
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(2005) and Allouch and Predtetchinski (2008) treat a pure exchange econ-
omy, where equal-treatment payoff sets are identical under replications of
the total player set. As a result, in our approach both feasible payoffs and
core concepts are defined approximately, in contrast to Predtetchinski (2005)
and Allouch and Predtetchinski (2008) where feasible payoffs and core con-
cepts are exact. Moreover, the crucial argument in our paper, based on small
group effectiveness, is to show that payoffs achieved in the limit by a distribu-
tion of player types vary continuously with the distribution of player types.
However, in Allouch and Predtetchinski (2008) such a continuity argument
is inferred directly from the upper semi-continuity of utility functions over
feasible allocations. Finally, in our approach we seek a fixed point for an arbi-
trary limiting distribution of player types, (both rational and non-rational),
unlike Allouch and Predtetchinski (2008) where the distribution of players
type is fixed and rational.

The paper is organized as follows. In Section 2, we present the basic
features of NTU games. In Section 3, we present our main result on the
nonemptiness of approximate cores of a sequence of games with a finite num-
ber of types of players.

2 NTU games

We follow Scarf’s (1967) classic paper in our definition of a game. An NTU
game (in coalitional function form) is a pair (N, V ) where N is a finite
set (the set of players) and V is a set-valued function that assigns to each
nonempty subset S of N (a group or coalition) a nonempty subset V (S) of
RN , called a payoff possibilities set or simply a payoff set, with the following
properties:

V (S) is a closed subset of RN ;
0 ∈ intV (S);
V (S) is comprehensive (that is, x ∈ V (S) if and only if there is some

y ∈ V (S) ∩ (RS
+ × RN\S) such that y ≥ x).

V (S) ∩ (RS
+ × 0N\S) is bounded above.

A payoff vector for a game (N, V ) is a vector x in RN . A payoff vector x is
feasible for N if x ∈ V (N). Let x be a payoff vector. We assume that, if there
exists a partition {Sk} of N into groups with the property that x ∈ V (Sk)
for each k, then x ∈ V (N) (superadditivity). This implies that any payoff
vector that can be realized by groups in a partition of the total player set is
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feasible for the entire game.
A payoff vector x is in the ε-core of a game (N, V ) if it is feasible for N

and if, for every subset S of N , x + ε1S /∈ int V (S).5 Informally, a feasible
payoff vector x is in the ε-core if no set of players can improve upon x by
more than ε for each player in the set.

For NTU games our definition of substitutes requires that if i and j are
substitutes then they make the same contribution to any group they might
join and, if they both belong to one group and a payoff vector x is feasible
for the group, then x′ is also feasible for the group, where x′ is derived from
x by interchanging the payoffs of i and j.6 More formally, consider an NTU
game (N, V ). Two players i, j ∈ N are substitutes if

1. For any S ⊂ N such that i, j /∈ S if x ∈ V (S∪{i}) then x′ ∈ V (S∪{j})
where x′ is defined by x′j = xi and x′` = x` for all ` ∈ S.

2. For any S ⊂ N such that i, j ∈ S if x ∈ V (S) then x′ ∈ V (S) where x′

is defined by x′j = xi , x′i = xj and x′` = x` for all ` ∈ S, ` 6= i, j.

3 The limiting utility possibilities set for NTU

games with a finite number of types of play-

ers

We investigate sequences of games with finite sets of player types t = 1, . . . , T.
A typical player set is denoted by

N = {(t, q) | t = 1, . . . , T and q = 1, . . . , rt},

and the profile of N , denoted by pro(N), defined as follows:

pro(N) = (pro1(N), . . . , proT (N)),

where
prot(N) = |{q : (t, q) ∈ N}| = rt.

5It would be possible to include the requirement that x is Pareto-optimal in the sense
that there does not exist another feasible payoff y for N with y ≥ x, y 6= x. We do not
do so, however, since it does not seem consistent with the notion of an approximate core.

6The notion of substitute players in NTU games is introduced in Wooders (1983).
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The set of players {q : (t, q) ∈ N} consists of players of type t.
We assume that there is a correspondence V mapping all player sets N

into RN . With every set of players N we associate an NTU game (N, V ). In
the game (N, V ) we assume that all players of the same type are substitutes.

Let λ ∈ R, 0 < λ < 1 be given. The correspondence V satisfies the λ-
QTU property if it is possible to decrease the payoff of one player by ε while
increasing the payoff to another player by λε.7 This ensures that payoff
sets are uniformly bounded away from being level.8 That is, V satisfies the
λ-QTU property if, for any set of players N , for any x ∈ V (N), given any
ε > 0 it holds that x′ ∈ V (N) where, for some (t′, q′), (t′′, q′′) ∈ N

x′tq =


xtq if (t, q) 6= (t′, q′), (t′′, q′′)

xtq − ε if (t, q) = (t′, q′)
xtq + λε if (t, q) = (t′′, q′′)

.

For each player set N , we define the subset of payoff vectors that represent
equal treatment payoffs for the game (N, V ) :

V etp(N)
def
= {v ∈ RT | ΠT

t=1(Πvt)
rt ∈ V (N)},

If v ∈ V etp(N) we say that v represents an (equal treatment) payoff in V (N).
Note that since it always contains the 0 payoff the set of equal treatment
payoffs is non-empty. When the meaning is clear, we will simply say that v
is an equal treatment payoff for the game.

The correspondence V satisfies small group effectiveness if for every ε >
0 there is a positive integer τ(ε) such that each group N has a partition
P(N) = (Nk)

K
k=1 with the properties that |Nk| ≤ τ(ε) for each k, and

V etp(N) ⊂
K⋂
k=1

V etp(Nk) + ε1,

7It would suffice to make require λ-QTU’ness only for payoffs with the equal treatment
property, but this would require more complex notation.

8Non-levelness of payoff sets has played a role in the theory of large games since Wooders
(1983). It has also appeared in a number of economic models, for example, Mas-Colell
(1977) on private goods exchange economies and Wooders (1980) on economies with clubs
or local public goods. Uniform non-levelness, as in this paper, appears in Kaneko and
Wooders (1994) and in Wooders (2008), where it is called compensation.
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where 1 = (1, . . . , 1) ∈ RT . This property ensures that almost all (within ε,
for ε arbitrarily small) gains to group formation can be realized by a partition
of the total player set into groups uniformly bounded in size (given ε).9

During the proof of the following Theorem, we will use the following
notation: Denote by |·| the sum-metric in RT ; that is, for s ∈ RT we have
|s| =

∑T
t=1 |st|. Let ∆ denote the simplex in RT : ∆={s ∈ RT

+ | |x| = 1} and
int∆ denote its interior. For each point s in ∆ let supp(s) denote the set
{t ∈ T | st > 0}, called the support of s.

THEOREM. Assume V satisfies small group effectiveness and the λ-QTU
property. Let {(Nn, V )} be a sequence of games such that |Nn| → ∞ and

lim
n→+∞

pro(Nn)

|Nn|
= s∗ ∈ int∆.

Then there exists v∗ ∈ RT satisfying the property: for every ε > 0 there is
an integer rε such that for each n ≥ rε, (v∗ − ε1) is in the ε-core of (Nn, V ).

Proof of the Theorem.

Define a subset Γ of RT as follows:

Γ
def
=

v ∈ RT

∣∣∣∣∣
There exists s ∈ ∆ ∩QT such that

for each ε > 0 there exists a group Sε satisfying
pro(Sε)
|Sε| = s and (v − ε1) ∈ V etp(Sε)

 .

The set Γ represents equal treatment payoffs that are feasible or approxi-
mately feasible for some group, possibly large, described by the fixed dis-
tribution of player types in the group. When (v − ε1) ∈ V etp(Sε) we say
that s approximately achieves v. Note that given v ∈ Γ it may be that there
does not exist a group S that can fully achieve v, that is, there need not
exist a group S such that v ∈ V etp(S). Note also that if (v − ε1) ∈ V etp(Sε)
then (v − ε1) ∈ V etp(S ′ε) for every group S ′ε containing a positive integer
multiple of players of each type as Sε, that is, for every group S such that
pro(S ′ε) = k pro(Sε) for any positive integer k.10

9This property, for NTU games, originates in Wooders (2008).
10This is an easy consequence of superadditivity. See Wooders (1983) for details.
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Given v ∈ Γ, there are multiple groups with different distributions that
can all approximately achieve v. Thus, we define the correspondence Π : Γ ⇒
∆ as follows:

Π(v)
def
=

s ∈ ∆ ∩QT

∣∣∣∣∣
For each ε > 0

there exists a group Sε satisfying
pro(Sε)
|Sε| = s and (v − ε1) ∈ V etp(Sε)

 .

The set Π(v) consists of those distributions s of player types that ap-
proximately support v, those distributions of player types that are required
to exist in the definition of Γ. Note that the nonemptiness of the set Π(v)
follows immediately from the definitions of Γ and Π.

The graph of the correspondence Π is denoted by G(Π) and defined by

G(Π) = {(v, s) ∈ Γ× (∆ ∩QT ) | s ∈ Π(v)}.

Obviously, given that the domain of the graph G(Π) is Γ× (∆ ∩QT ), there
are some converging sequences {(vn, sn)}n with each element in the sequence
contained in the graph but the limits of the sequences are not. The following
proposition is crucial to be able to use a fixed point argument, since it will
allow us to show that the closure of the graph of G(Π) equals the graph of
the closure of the correspondence Π.

Proposition 1. Let (v, s) ∈ RT × ∆. Let {(vn, sn)}n be a sequence in
Γ× (∆ ∩QT ) converging to (v, s) such that sn ∈ Π(vn) for each n. That is,
(vn, sn) ∈ G(Π) for each n.

(1). s ∈ cl(Π(v)).

(2). For any sequence of groups {Nn}n satisfying limn→+∞
pro(Nn)
|Nn| = s (with

possibly pro(Nn)
|Nn| 6= sn) and |Nn| → ∞, for every ε > 0 there exists rε

such that for each n ≥ rε, it holds that (v − ε1) ∈ V etp(Nn).

(3). If s ∈ int∆ there exists Bs ∈ R∗+ such that vt ≤ Bs, for each t =
1, . . . , T.

Before the proof of Proposition 1 below, we provide an example that
illustrates some of the issues.

Proof of Proposition 1 .
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(1). Let us fix ε > 0. Since sn ∈ Π(vn), there exists a group Snε such that

pro(Snε )

|Snε |
= sn and (vn − ε

3
1) ∈ V etp(Snε ).

If the sequence |Snε | is bounded, then passing to a subsequence if necessary,
we may assume that there is a group S such that pro(Snε ) = pro(S) for each
n. Then, obviously it holds that

pro(S)

|S|
= s and (v − ε

3
1) ∈ V etp(S).

Thus, s ∈ Π(v).
If the sequence |Snε | is unbounded then, since V satisfies small group

effectiveness, there is an integer τ(ε) and a partition P(Snε ) = (Snε,k)
K(ε)
k=1 of

Snε such that

V etp(Snε ) ⊂
K(ε)⋂
k=1

V etp(Snε,k) +
ε

3
1,

with the property |Snε,k| ≤ τ(ε), for each Snε,k ∈ P(Snε ). Since there is only a
finite number of possible profiles for any group S satisfying |S| ≤ τ(ε), we can
define M(ε) as the cardinality of these profiles and let p1, . . . , pm, . . . , pM(ε)

denote these profiles. Thus, one can write

pro(Snε ) =

M(ε)∑
m=1

αnmpm.

for some non-negative real numbers αnm. Since the sequence {sn}n converges
to s, without loss of generality we can assume that ( α

n
m

|Sn
ε |

) converges to a real

number βm, for each m = 1, . . . ,M(ε). Let

M∗
ε = {m | βm > 0}, and

P∗(Snε )
def
= {Snε,k ∈ P(Snε ) | there exists m ∈M∗

ε such that pro(Snε,k) = pm}.

Since M∗
ε is finite there exists n∗ such that for all n ≥ n∗ and m ∈ M∗

ε

we have αnm > 0. Thus, for every coalition S ∈ P∗(Snε ) it holds that for all
n ≥ n∗

(vn − ε

3
1) ∈ V etp(S) +

ε

3
1.
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Rearranging terms, it follows that

(vn − 2ε

3
1) ∈ V etp(S).

Since V etp(S) is a closed set it holds that

(v − 2ε

3
1) ∈ V etp(S). (1)

Let
Sn,∗ε

def
=

⋃
Sn
ε,k∈P∗(Sn

ε )

Snε,k.

Then, by superadditivity, it holds that

(v − 2ε

3
1) ∈ V etp(Sn,∗ε ).

Given that

lim
n→∞

|Snε \ Sn,∗ε |
|Snε |

= 0 (2)

Therefore, by the λ-QTU property and the fact that for a large enough n,
one could “subsidize” the reminders (Snε \ Sn,∗ε ) so that

(v − ε1) ∈ V etp(Snε ).

That is, we can make small transfers from the set of players in Sn,∗ε to the
players in Snε \Sn,∗ε so that no group of players can improve on v− ε by more
then ε.11 Hence,

pro(Snε )

|Snε |
= sn ∈ Π(v),

which implies that s ∈ cl(Π(v)).

(2). Consider an arbitrary sequence of groups {Nn}n satisfying limn→+∞
pro(Nn)
|Nn| =

s (with possibly pro(Nn)
|Nn| 6= sn) and |Nn| → ∞. Then taking ε (and other

11This idea has been used in a number of papers so we spare the reader the details; see,
for example, Wooders (2008) and Allouch and Wooders (2008). As a simple illustration,
suppose that any two players can earn $1.00 and that all other groups can only achieve
the payoffs attainable by splitting into two-person groups. Suppose that there is a large,
but odd, number of players, say 1,000,001. Then it is obvious that by imposing a small
”tax” on 1,000,000,players and subsidize one player so that no player has a strong (greater
than ε) incentive for try to form am improving coalition.
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definitions) as given in the proof of (1) above, let Nn
ε denote the projection

of Nn on the convex cone C spanned by (pm)m∈M∗ε (by the definition of the
projection on a convex set Nn

ε exists and is unique). Thus, one can write

Nn = Nn
ε +Nn \Nn

ε , where Nn
ε ∈ C.

Since

lim
n→+∞

pro(Nn)

|Nn|
= s = lim

n→∞

pro(Sn,∗ε )

|Sn,∗ε |
∈ C,

it follows that

lim
n→∞

|Nn \Nn
ε |

|Nn|
= 0.

Note that one can write pro(Nn
ε ) =

∑
m∈M∗ε

ξnmpm, for some real numbers

ξnm ∈ R+. Let Nn,∗
ε =

∑
m∈M∗ε

[ξnm]pm, where [u] denotes the integer part of u.
Then,

lim
n→∞

|Nn \Nn,∗
ε |

|Nn|
= lim

n→∞

|Nn \Nn
ε |+ |Nn

ε \Nn,∗
ε |

|Nn|
≤ 0 + lim

n→∞

|M∗
ε|

|Nn|
τ(ε) = 0.

Moreover, given that from (1)

(v − 2ε

3
1) ∈ V etp(S).

if pro(S) = pm for some m ∈M∗
ε it follows that for a large enough n

(v − 2ε

3
1) ∈ V etp(Nn,∗

ε ).

Therefore, by the λ-QTU property, one could subsidize the reminders (Nn \
Nn,∗
ε ) so that

(v − ε1) ∈ V etp(Nn).

3. Given s ∈ int∆ define

Bs = maxt max
{v′∈V etp(S)|S∈P∗(Sn

ε ), t∈S}
(v′t +

2ε

3
).

Because s ∈ int∆, for each type t there exists S ∈ P∗(Snε ) such that
t ∈ S, it holds that Bs ∈ R+, that is, Bs is finite. The remainder of the proof
follows from the fact that

(v − 2ε

3
1) ∈ V etp(Sn,∗ε ) = V etp(

⋃
Sn
ε,k∈P∗(Sn

ε )

Snε,k).
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Now, we define the correspondence Π̃ : Γ ⇒ ∆ as follows: for each v ∈ Γ

Π̃(v)
def
= cl(Π(v)).

Proposition 2. The graph of Π̃ is closed.

Proof of Proposition 2. Let G(Π̃) denote the graph of the correspondence Π̃.

Let {(vn, sn)}n be a sequence of points in G(Π̃) converging to a point (v, s) in

RT ×∆. For each n, since sn ∈ Π̃(vn) = cl(Π(vn)) it holds that there exists
tn ∈ Π(vn) such that |tn − sn| ≤ 1

n
. Hence tn converges to s. From (1). of

Proposition 1 it holds that s ∈ Π̃(v) = cl(Π(v)) and hence (v, s) belongs to

G(Π̃).�

Proposition 3. For each v ∈ Γ, the set Π̃(v) is nonempty and convex.

Proof of Proposition 3. Let v ∈ Γ. Obviously, the set Π̃(v) is nonempty since
Π(v) is nonempty. Moreover, from superadditivity it holds that

coQ(Π(v)) = Π(v).12

Since coQ(Π(v)) is dense in co(Π(v)) it holds that

clco(Π(v)) = cl(coQ(Π(v))) = cl(Π(v)) = Π̃(v).

Thus, Π̃(v) is convex.�

The set Γ is a nonempty, closed, and comprehensive from below subset of
RT . Note that the set Γ is a proper set of RT . Moreover, it holds from our
assumptions that 0 ∈ intΓ.

Define W as the set

W = Γ ∩ [−∞, Bs∗ + 1]T ,

where Bs∗ is defined as in (3). of Proposition 1. A point v ∈ W belongs to
the boundary of W if and only if either v ∈ ∂Γ or vt = Bs∗ + 1 for some
t = 1, . . . , T .

12The set coQ(A) is the set of all convex combinations of A with rational coefficients.
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Proposition 4. There is a homeomorphism h from the space ∆ to the space
∂W ∩ RT

+ such that ht(s) = 0 whenever s ∈ ∆ and t ∈ T \ supp(s).

Proof of Proposition 4. Let s ∈ ∆ be given. Let R be the ray emanating
from the point 0 = (0, . . . , 0) in the direction of s. Thus, every point r of R
is of the form r = θs for some non-negative real number θ. It is clear that,
since W is closed, comprehensive from below, and bounded from above, R
intersects the boundary of W at exactly one point.

Define the map h from ∆ to ∂W ∩RT
+, by letting h(s) be the unique point

in the intersection of the ray R and the set ∂W . We now demonstrate that
h has an inverse. Let g denote the map from ∂W ∩ RT

+ to ∆ given by the
equation

g(v) =
v

|v|
.

The map g is well defined since the point 0 lies in the interior of W. It is easy
to see that g is indeed the inverse of h, that is, h ◦ g and g ◦ h are equal to
the respective identity maps.

Clearly, g is a continuous map. Furthermore, because its domain is com-
pact and the codomain is Hausdorff, it carries closed sets to closed sets.
Therefore, h is also a continuous map. This proves that h is a homeomor-
phism.

The rest of the proof relies on a version of the well-known Fan’s coinci-
dence theorem, as stated below. Given a nonempty and convex subset Y of
RN and a point y of Y , let N(Y, y) = {z ∈ RN | (y − y′)>z ≥ 0 for each y′ ∈
Y } denote the normal cone of the set Y at the point y. A zero point of a
correspondence Φ : Y ⇒ RN is a point y of Y such that Φ(y) contains the
zero.

Theorem. (Fan, 1972). Let Y be a nonempty compact and convex subset
of RN . Let Φ : Y ⇒ RN be a correspondence with nonempty convex values
having a compact graph. Suppose that for each y ∈ Y and for each z ∈
N(Y, y) there exists a φ ∈ Φ(y) such that z>φ ≤ 0. Then, Φ has a zero
point.

Proposition 5. There exists v∗ ∈ ∂Γ such that s∗ ∈ Π̃(v∗).

Proof of Proposition 5. Define the correspondence Φ : ∆ ⇒ RT by letting
Φ(s) = Π̃(h(s)) − {s∗} for each s ∈ ∆. Clearly, the correspondence Φ has
nonempty and convex values. Its graph is closed, because h is continuous
and the graph of Π̃ is closed. Since Φ maps a compact set ∆ into a compact
set ∆− {s∗}, its graph is, in fact, a compact set.
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We now verify the boundary condition of Fan’s coincidence theorem. Let
s ∈ ∆ be given. Let v denote the vector h(s) and let H denote the (possibly
empty) set T \ supp(s). Then, the normal cone of ∆ at s is the set

N(∆, s) =
{
z ∈ RT

∣∣ z = a1 +
∑

t∈H ltet, a ∈ R, lt ≤ 0
}
,

where (e1, . . . , eT ) is the standard canonical basis of RT . Let z ∈ N(∆, s) be
given. If s belongs to the relative interior of ∆ so that supp(s) = T , then
every z(∈ N(∆, s)) is proportional to the vector 1. In this case the equality
z>φ = 0 holds for each φ ∈ Φ(s).

Consider now the case where s lies on the relative boundary of ∆, so that
the set H is nonempty. Then, vt = h(s)t = 0 for each t ∈ H. But this

implies that the set Π(v) (and consequently Π̃(v) = cl(Π(v))) contains the
entire face ∆H = {s ∈ ∆ | st = 0 for each t ∈ T\H} of the simplex ∆. In

particular, Π̃(v) contains a k∗ of ∆H defined as follows

k∗ =


k∗t = s∗t +

∑
j∈T\H s∗j
|T\H| if t ∈ H,

0 otherwise.

The vector φ = k∗ − s∗ is therefore an element of Φ(s). Since 0 ≤ φt for
each t ∈ H, the inequality φ>z ≤ 0 holds for each z ∈ N(∆, s). By Fan’s
coincidence theorem, the correspondence Φ has a zero point. Letting v∗ be
equal to h(s∗), we see that v∗ ∈ ∂W and s∗ ∈ Π̃(v∗). Since Bs∗ is the per-
capita bound it follows that v∗t < Bs∗ + 1 for each t = 1, . . . , T and thus
v∗ ∈ ∂Γ.

Finally, Proposition 5, together with (2). in Proposition 1, implies that
for every ε > 0 there exists rε such that for each n ≥ rε, (v∗ − ε1) is in the
ε-core of (Nn, V ).�

4 A Corollary

To further relate our work to Wooders (2008) we provide the following Corol-
lary. Using our notation, following is a version of Wooders (2008, Theorem
2).13

13Wooders (2008) allows a compact metric space of player attributes, so our mdel is a
special case.
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Wooders (2008, Theorem 2). Assume V satisfies small group effectiveness
and λ-QTU. Given ε > 0 there is an integer η0(ε) such that any game (N, V )
with |N | > η0 has a non-empty (equal treatment) ε-core.

Corollary. Assume V satisfies small group effectiveness and λ-QTU. Then
for any sequence of games such that |Nn| → ∞ and

lim
n→+∞

pro(Nn)

|Nn|
= s∗ (3)

there exists v∗ ∈ RT satisfying the property: for every ε > 0 there exists rε
such that for each n ≥ rε, (v∗ − ε1) is in the ε-core of (Nn, V ).

Proof of the Corollary. Let {(Nn, V )} be a sequence satisfying (3). From
Wooders (2008), for each term (Nn, V ) in the sequence with |Nn| > η0(

ε
3
)

the game (Nn, V ) has a non-empty ε
3
-core (and contains an equal-treatment

payoff). Let r ε
3

be sufficiently large so that for every n ≥ rε it holds that

|Nn| > η0(
ε
3
). Let vn ∈ RT be in the ε

3
-core of (Nn, V ). Without loss

of generality we can assume that limn→+∞ v
n exists and equals v∗. Since

limn→+∞ v
n = v∗ there is an integer η1(

ε
3
) ≥ η0(

ε
3
) sufficiently large so that

for all n > η1(
ε
3
) it holds that maxt|vnt −v∗t | < ε

3
. This implies that vnt −v∗t ≥ 0

so (v∗ − ε1) is feasible for all sufficiently large games (Nn, V ). Since vn is in
the ε

3
-core for all n sufficiently large it follows that (v∗ − ε1) is in the ε-core

of (Nn, V ). �
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