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Abstract

This paper employs a Zero Lower Bound (ZLB) consistent shadow-rate model to decom-

pose UK nominal yields into expectation and term premia components. Compared to a

standard affine term structure model, it performs relatively better in a ZLB setting and

effectively captures the countercyclical nature of term premia. The ZLB model is then

exploited to estimate inflation expectations and risk premia. This entails jointly pricing

and decomposing nominal and real UK yields. We find evidence that medium- and long-

term inflation expectations are contained within narrower bounds since the early 1990s,

suggesting monetary policy credibility improved after the introduction of inflation target-

ing.
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1. Introduction

In March 2009, the Monetary Policy Committee announced a cut of the policy rate to 0.5%,

from a level of 4.5% six months earlier. This decision was accompanied by an economic

stimulus amounting to a running total of £375bn. Since 2009, UK short yields stemming

from conventional and index-linked gilts reached historically low levels.1

These considerations lead to question the use of standard affine Gaussian dynamic term

structure models as the expectations implied by these models might be violating the inherent

asymmetry of nominal yields. As a result, these models can generate, on the one hand,

implausible nominal risk premia (as seen in Kim and Singleton (2012)), and on the other

hand, imprecise future long-term expected inflation projections. Thus, it becomes of crucial

importance to refine these models and equip them with the ability to restrain nominal yields.

In recent years, many models circumventing this issue have been proposed. Those include

shadow-rate models, Gaussian quadratic models, square-root processes as well as AutoRe-

gressive Gamma (ARG) zero processes.2

In addition to very low nominal yield levels, policymakers have also been preoccupied by

inflation expectations. Break-Even Inflation (BEI) rates 3 provide policymakers with market

expectations of future inflation levels. Nonetheless, assuming conventional and index-linked

gilts are equally liquid, this measure is an imperfect representation of inflation expectations

as it is polluted by an inflation risk premium.

This paper considers two main issues. First, it aims at analyzing whether traditional mod-

els produce different results than ZLB-consistent models. Second, it provides decompositions

of the UK term structure which allow us to assert the response of inflation expectations and

inflation risk premia.

We address both these issues by using the model recently proposed by Christensen and

Rudebusch (2013a), which builds on Black (1995)’s and Krippner (2012)’s shadow rate frame-

1Negative nominal yields remain a possibility in periods of crisis, when bondholders require an insurance
to safe-guard their investments, however it seems that an effective lower bound does exist and is a by-product
of the level of the policy rate and the convenience yield.

2The latter, proposed by Monfort et al. (2015), develops a conditional distribution with zero point mass
which allows a ZLB-consistent closed-form pricing of bonds.

3Defined as the difference between nominal and real yields.
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work. The model is a shadow-rate Arbitrage-Free Nelson Siegel (AFNS) term structure model

that imposes the non-negativity of interest rates. Unlike Kim and Singleton (2012)’s model,

this particular representation has the benefit of being capable of encompassing more than two

factors, concurrently preserving the simplicity of standard Gaussian models. Additionally, the

factor loadings, borrowed from Nelson and Siegel (1987)’s model, facilitate the tractability of

the no-arbitrage model and offer a reasonable interpretation of level, slope and curvature to

the factors.

Our methodological contribution is to extend the shadow-rate model to allow for the joint

pricing of conventional and indexed-linked gilts such that only nominal yields are bound to

be non-negative. As far as future inflation projections are concerned, the benefits of using a

no-arbitrage model come into play by enabling the disentanglement of inflation risk premia

from BEI rates, thus providing estimates of pure inflation expectations.

In recent years, there have been a considerable number of papers examining inflation

expectations and risk premia using affine models (see Chen et al. (2005), Christensen et al.

(2010)4, D’Amico et al. (2010), Chun (2011), Chernov and Mueller (2012), Grishchenko and

Huang (2012) and Hordahl and Tristani (2014)). However, limited literature is available for

UK yields, despite the fact that the UK linker market is one of the most liquid ones and

the UK Debt Management Office - an Executive Agency of HM Treasury - is committed

to maintain this liquidity with regular issuance of inflation-linked bonds. A few exceptions

include Joyce et al. (2010) that study UK inflation using affine models. Specifically, they

obtain inflation projections up to 2009, thus before unconventional monetary policies were

put in place. Similarly, Abrahams et al. (2015) use an affine term structure for the joint

pricing of nominal and real yields that accounts for illiquidity on US and UK data.

Our analysis of UK yield curves from January 1986 to August 2014 indicates that tra-

ditional and ZLB-consistent models generate different results at the ZLB. Compared to a

standard affine term structure model, a ZLB-consistent model performs relatively better in

4This paper is the most affiliated with our study. They use a joint AFNS model for nominal and real yields
to extract US inflation expectations. Our paper mainly differs in our use of the property of the zero lower
bound in the fitting of nominal yields as well as our choice in the use of UK data. Unlike Christensen et al.
(2010), we use a five-factor model (rather than a four-factor model) to jointly fit the term structure of nominal
and real yields, due to the peculiarity of the shape of the UK yield curve.
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a ZLB setting and effectively captures the countercyclical nature of term premia. The ZLB

model is then exploited to estimate inflation expectations and risk premia. This entails jointly

pricing and decomposing nominal and real UK yields using a joint shadow-rate model that

restricts nominal yields to be non-negative whilst allowing real rates to be unconstrained.

The paper is structured as follows. In Section 2 we estimate individual models, particularly,

an AFNS model enforcing non-negativity for nominal yields and a standard AFNS model for

real yields. In Section 3 we estimate a joint term structure model of nominal and real curves

using an AFNS model that restricts solely nominal yields in a positive domain. No-arbitrage

conditions allow us to further decompose BEI rates into two components, inflation risk premia

and expectations, which can be found in Section 4. We provide concluding remarks in Section

5. An appendix provides further details on the derivation of the instantaneous forward rate

and the extended Kalman filter.

2. Empirical affine models for nominal and real yields

This Section aims at comparing the fit of the standard AFNS model and its ZLB-consistent

counterpart as well as the behaviour of nominal yields’ decompositions, namely the expecta-

tion and term premium components. The findings incline us to support the use of shadow-rate

models in fitting nominal yields at the ZLB. Furthermore, we estimate a standard AFNS model

on real yields. These individual estimations on nominal and real yields are essential in the

construction of the joint model. More particularly, the choice of the number and selection of

the factors highly relies on these results.

2.1. Shadow-rate AFNS model for nominal yields

This Section discusses the estimation of standard (Gaussian) and shadow-rate AFNS models,

and provides a comparison of the results obtained using nominal zero-coupon UK yields. The

data set consists of continuously-compounded monthly nominal yields spanning from October

1986 to August 2014 and includes a set of seven maturities, namely 6, 12, 24, 36, 60, 84 and
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120 months.5 Interestingly, the time period incorporates three main changes in monetary

policy practices in the UK: the introduction of inflation targeting in September 1992, the

Bank of England’s independence in May 1997, and the introduction of ‘Quantitative Easing’

in March 2009.

Before proceeding to the estimation, we need to go through two preliminary stages to best

specify our model. First, we conduct a principal components analysis (PCA) to determine how

many pricing factors are required to explain the cross-sectional variation of nominal yields.

Second, we use a general-to-specific method in order to impose the relevant restrictions to our

model.

Table 1 displays the loadings from the principal components analysis for the set of ma-

turities and the percentage of variation of yields that is being captured by each component.

We notice that the first component is characteristic of a level factor due to its homogene-

ity, the second component incorporates a sign switch between shorter and longer maturities

hence displaying a slope feature and finally the third component, being parabolic, has the

behaviour of a curvature factor. Additionally, the first three components explain 99.99% of

the cross-sectional yield variation. The PCA results validate our use of three factors bearing

the interpretation of level, slope and curvature.

We use the three factor AFNS model proposed by Christensen et al. (2011). The latent

state variables given by XN
t =

(
LN
t , S

N
t , C

N
t

)′
solve the following system of stochastic differ-

ential equations under the risk-neutral Q measure, where λN is the mean reversion parameter,

W
Q
t denotes a three dimensional Wiener process and the diffusion is diagonal.

⎛
⎜⎜⎜⎜⎝
dLN

t

dSN
t

dCN
t

⎞
⎟⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎜⎝
0 0 0

0 λN −λN

0 0 λN

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
LN
t

SN
t

CN
t

⎞
⎟⎟⎟⎟⎠ dt+

⎛
⎜⎜⎜⎜⎝
σ11,N 0 0

0 σ22,N 0

0 0 σ33,N

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
dW

LN ,Q
t

dW
SN ,Q
t

dW
CN ,Q
t

⎞
⎟⎟⎟⎟⎠ (1)

The instantaneous risk-free rate is an affine function of the state variables and is specifically

5The UK DMO issues bonds that have maturities of up to around 55 years. The aim of this study is to
only analyse rate dynamics from short to medium horizons.
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defined as the sum of the level and slope factors:

rNt = LN
t + SN

t . (2)

As shown in e.g. Ang and Piazzesi (2003), nominal zero-coupon bond prices are exponen-

tially affine functions of the state variables. As an immediate consequence, the representation

of nominal zero-coupon yields with maturity T at time t is given by an affine function of the

state variables, as shown below.

yN (t, T ) = −A
N (t, T )

T − t
− BN (t, T )′

T − t
XN

t

= LN
t +

(
1− e−λN (T−t)

λN (T − t)

)
SN
t +

(
1− e−λN (T−t)

λN (T − t)
− e−λN (T−t)

)
CN
t − AN (t, T )

T − t
,

(3)

where AN (t, T ) and BN (t, T ) are the unique solutions to a system of Riccati equations.

AN (t, T ) is known as the adjustment term (see Christensen et al. (2011) for the derivation)

and BN (t, T ) matches the Nelson-Siegel factor loadings.

The AFNS model is formulated in continuous time and Girsanov’s theorem ensures the

change from the physical to the risk-neutral measure, as such, dWQ
t = dW P

t +ΓN
t dt, where Γ

N
t

is the market price of risk and under essentially affine risk premium specifications (see Duffee

(2002) and Cheridito et al. (2007)), it takes the form below, with γN0 being a three-dimensional

vector and γN1 a 3x3 matrix:

ΓN
t = γN0 + γN1 X

N
t . (4)

Having all the tools necessary, we can now extract the latent state variables XN
t =(

LN
t , S

N
t , C

N
t

)′
under the physical measure. The key parameters are κN,P and θN,P which

are unrestricted and σN which has a diagonal structure. The dynamics are given by the

following stochastic differential equation:

dXN
t = κN,P (t)

[
θN,P (t)−XN

t

]
dt+ σNdW

XN ,P
t . (5)
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It is at this point that the general-to-specific strategy comes into play, as we implement

it to find the best specification for the κN,P matrix. The procedure goes as follows. First,

we estimate an unrestricted AFNS and set the least significant element of κN,P to zero. We

then re-estimate the model with this restriction imposed, and so forth. At each iteration,

we compute the Akaike Information Criterion (AIC) and Bayes Information Criterion. We

repeat this process until we are left with a diagonal κN,P. Both the AIC and BIC are provided

on Table 2, and we will rule our decision by minimizing the AIC (when the AIC and BIC

decision rules do not coincide). The preferred specification is thus given by specification 6

in the Table, which is consistent with Christensen and Rudebusch (2012)’s findings. Table 3

and Table 4 indicate the parameter estimates and fit of the model, respectively.

Having estimated the standard AFNS model, we move on to the implementation of the

shadow-rate AFNS which restricts nominal yields in the positive domain. The most striking

difference will stem from the introduction of a shadow-rate which will have the same dynamics

as the instantaneous risk-free rate under the standard AFNS, whilst the new dynamics for

the instantaneous rate will consist of the maximum between the shadow-rate and zero 6. The

latent shadow-rates and instantaneous rates are respectively defined as:

sNt = LN
t + SN

t , (6)

rNt = max
{
0, sNt

}
. (7)

As in the standard AFNS, the state dynamics under the risk-neutral Q measure and the

physical P measure are given by equation (1) and (5), respectively. We will now use a few

important concepts borrowed from the bond option price literature. Recently, Krippner (2012)

developed a shadow-rate framework in which a representation for the Zero Lower Bound (ZLB)

instantaneous forward rate is provided. This representation is valid for all Gaussian models,

6The same analysis can be conducted with a different threshold. Recent developments in Denmark and
Switzerland have shown that despite the existence of physical cash, interest rates can go negative; nonetheless,
rates seem to be bound below by a threshold known as the convenience yield. In the case of the UK, we opt
for zero (rather than 50 basis points which is the current bank rate level) as we want to reflect an “effective”
lower bound for the UK that accounts for the convenience yield as well as the possibility of future downward
revisions of the policy rate.
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including the AFNS, and depends on the instantaneous forward shadow-rates as well as an

additional component which is a function of the conditional variance of a European call. In

the case of the shadow-rate AFNS, analytical solutions for the instantaneous forward shadow-

rates and the conditional variance are provided by Christensen and Rudebusch (2013a). Their

results can be found in the Appendix. Let us now denote by yN (t, T ), the Zero Lower Bound

(ZLB) zero-coupon bond yields. In the Appendix, we derive the following expression for

yN (t, T ).7

yN (t, T ) =
1

T − t

∫ T

t

[
f(t, s)Φ

(
f(t, s)

ω(t, s)

)
+ ω(t, s)

1√
2π
exp

(
−1

2

[
f(t, s)

ω(t, s)

]2)]
ds (8)

It is important to note at this stage that y(t, T ) is no longer a linear function of the

state variables, unlike in the standard AFNS model. This non-linearity is translated in the

estimation procedure, whereby a conventional Kalman Filter cannot be used and is replaced

by an Extended Kalman Filter.8

We then apply the same general-to-specific strategy to this specification. The results of

the general-to-specific method applied to the shadow-rate AFNS model are found on Table

5 and indicate that the preferred specification is thus given by specification (5). As in the

standard AFNS case, the change of measure dWQ
t = dW P

t +ΓN
t dt combined with the essentially

affine specification of risk ΓN
t = γN0 + γN1 X

N
t allow us to have the preferred specification’s

representation of the state dynamics under the physical measure:

⎛
⎜⎜⎜⎜⎝
dLN

t

dSN
t

dCN
t

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
κ
N,P
11 0 0

κ
N,P
21 κ

N,P
22 κ

N,P
23

0 0 κ
N,P
33

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝
θ
LN ,P
t

θ
SN ,P
t

θ
CN ,P
t

⎞
⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎝
LN
t

SN
t

CN
t

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ dt+

⎛
⎜⎜⎜⎜⎝
σ11,N 0 0

0 σ22,N 0

0 0 σ33,N

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
dW

LN ,P
t

dW
SN ,P
t

dW
CN ,P
t

⎞
⎟⎟⎟⎟⎠ .

(9)

The results of the estimated parameters can be found in Table 6, whilst the in-sample fit

results, in Table 7, report a good fit for all maturities, particularly for medium-term maturities.

7This is done by setting the vector (X1, X2, X3)
′ found in the Appendix equal to (LN

t , SN
t , CN

t )′ and the
variables (σ11, σ22, σ33) equal to (σ11,N , σ22,N , σ33,N ).

8Alternatives to that procedure are the Iterated Extended Kalman Filter and the Unscented Kalman Filter,
however the use of the Extended Kalman Filter is rather conventional in this literature.
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The in-sample fit is comparable to the one obtained using a standard AFNS model and we do

observe an improvement of roughly two basis points in the long-end of the curve. However,

straying away from the performance throughout the entire sample and focusing only the

ZLB period, our findings indicate that the ZLB-consistent model performs better than the

traditional model. These findings reaffirm recent claims that shadow-rate models feature a

superior performance (both in-sample and out-of-sample) during the ZLB, relative to standard

affine and quadratic term structure models (see Christensen and Rudebusch (2013b), Kim

and Priebsch (2013), Andreasen and Meldrum (2014) and Bauer and Rudebusch (2014)).

Moreover, it is important to stress that the log-likelihood of the ZLB-consistent model is

higher for all specifications (including the preferred specification), providing further evidence

in favour of this specification.

Figure 1 displays the state variables, namely the level, slope and curvature, estimated

with the AFNS and shadow-rate AFNS models, respectively. The Figure shows that prior to

the ZLB period state variables stemming from the two models roughly coincide and have a

correlation of approximately 0.99. During the ZLB, this feature persists for both the level and

the slope; however the curvature factor exhibits a significant change in behaviour from one

model to another, with the correlation now dropping to roughly 0.84. This could be explained

by the fact that the ZLB imposes a non-linear restriction, which potentially is best translated

into effects on the non-linear curvature state variable.

Nominal yields are further decomposed into two components: the so called risk-neutral

yields and the term premia. The latter can be computed through numerical methods and

given by:

TPN (t, T ) = yN (t, T )− 1

T − t

∫ T

t

EP
t

[
rNs
]
ds. (10)

In Panel (a) of Figure 2, we provide estimates of the 10-year fitted term premia of nominal

yields, with and without the ZLB assumption. At first glance, we notice the two series

do not coincide even prior to the ZLB period. This finding is consistent with a similar

comparison conducted by Ichiue and Ueno (2013). This difference can be justified by the

highly sensitive nature of term premia to different preferred specifications used by each of
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these models. More importantly, prior to the ZLB, both term premia track each other and

move in the same direction. Conversely, in recent years, models neglecting the ZLB restriction

tend to underestimate term premia. With the ZLB specification, term premia now display

a countercyclical nature, after 2009, thus corroborating Malik and Meldrum (2014)’s result

whereby UK bond term premia are positively related to uncertainty about future inflation. It

is interesting to note that the correlation between the two term premia prior to 2009 is equal

to 0.99 while after 2009 this correlation drops to 0.85, which gives rise to the belief that at

the ZLB, the curvature factor is of particular importance. In order to assess the effect of the

incorporation of the ZLB in the model on expectations, in Panel (b) of Figure 2 we plot the

expectation components of the ten-year nominal yield obtained using a Gaussian and shadow-

rate model. We observe that models neglecting the ZLB restriction tend to overestimate the

fitted expectation term of the ten-year yield by up to 1%. This is consistent with Christensen

and Rudebusch (2012)’s result which states that declines in US treasury yields mainly reflect

lower expectations; however our result is at odds with their finding that declines in UK yields

reflect reduced term premium. Our results indicate that term premia have maintained a

countercyclical behaviour.9Moreover, it is worth mentioning that the expectation component

under the Gaussian model is typically higher than under the shadow-rate model due to the fact

that Gaussian models have a tendency to revert back to the mean relatively fast. In contrast,

shadow-rate models are designed to maintain model-implied yields and their expectation terms

relatively low for prolonged periods of time.

In order to assess how binding the ZLB is, in Figure 3 we depict the shadow-rate process.

The latter displays a strong negativity after 2009, often reaching levels of -1%; thus supporting

the use of a ZLB-consistent model. It is widely suggested in the literature that strongly

negative shadow-rates may be interpreted as a largely accommodative stance of the central

bank.

9The countercyclicality of risk premia paired with the fact that they increase with maturity suggest that in
times of a recession - below trend growth -, issuing more short maturity bonds and rolling them over is likely
to be more cost effective over the long horizon than issuing long maturity bonds. On the other hand, when
the economy is in expansion, it could become more favorable to issue longer maturity bonds, as the premium
paid to investors, relative to short maturity bonds, is lower, and the hedging of refinancing risk is cheaper on
a relative scale.
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The constraint posed by the ZLB is also evident in forward rates. As an example we

consider forward rates and risk-neutral expected short-rates at two different dates: the first

date is June 2012, where the shadow-rate is at its lowest and the second date is August

2014 which is the last date of our sample. This will enable us to understand how forward

rates respond relative to risk-neutral expected short-rates as the ZLB becomes less binding.

Figure 4 plots the one year maturity forward and risk-neutral expected forward rates along

with the shadow rate, in June 2012 (when the ZLB restriction is binding) and August 2014

(when the ZLB restriction is no longer binding), respectively. It is clear that the omission

of the ZLB assumption can generate negative nominal short yields at times where the ZLB

restriction is binding. As noted earlier, market demand can drive short maturity yields to

negative territories, especially if bonds are perceived by investors as a ‘safe haven’. However, a

prolonged period of negative short nominal rates, or equivalently, a negative policy rate, might

not be reasonable for monetary policy objectives and would result in price tensions in market

dynamics. Here, we note that shadow rates can turn significantly negative when modeled

using the standard linear Gaussian AFNS mapping. What is observed in reality is that short

rates are rather anchored at zero, hence capping the theoretical price of a zero coupon bond

at 100 (see Krippner (2012)). If short rates were to go negative (Gaussian assumption), the

price of a theoretical zero coupon bond (’shadow bond’) would float anywhere above par. To

summarise, with the use of the properties of bond option pricing, it is now possible to uncover

the non-linear relationship between prices, yields, and volatilities, and to price convexity

effects in short maturity rates. This relationship becomes evident when rates are at the zero

lower bound and the option is in/at the money.10

2.2. Empirical AFNS model for real yields

We now proceed to the estimation of a standard AFNS model for real zero-coupon UK bond

yields. The data set consists of continuously-compounded monthly yields spanning from

October 1986 to August 2014 and includes a set of six fixed maturities: 60, 72, 84, 96, 108

10Moneyness is the difference between strike price and future expected price. If the option is significantly
in the money, the shadow bond price is well above par.
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and 120 months. It is important to note that we have chosen longer maturities for real yields,

in comparison to nominal yields, due to a reduced liquidity of index-linked bonds in the

short-end.

Table 8 displays the results of a principal components analysis on the set of real yields. It

is clear that the first principal component that bears attributes of a level factor, explains a

greater cross-sectional variation in real yields, in contrast to the case of nominal yields. One

could argue that 2 factors suffice in the modelling of this set of real yields given they explain

99.99% of the variation. However, we take a closer look at the third component and notice

that the typical U-shaped behaviour of a curvature factor persists. Moreover, our ultimate

goal lies in estimating long term inflation expectations and it is common knowledge that the

curvature factor is of high importance to longer maturity yields. Hence these two arguments

justify our choice of using a three-factor AFNS model to fit real yields. More importantly, it is

crucial to identify that the second component bears a positive sign for shorter maturities and

a negative sign for longer maturities, indicating the UK real yield curve has been inverted.

We denote by XR
t =

(
LR
t , S

R
t , C

R
t

)′
, the latent state variables. Under the risk-neutral

measure Q, where λR is the mean reversion parameter, WQ
t denotes a three dimensional

Wiener process and the diffusion is diagonal, the state dynamics are given by the following

system of stochastic differential equations:

⎛
⎜⎜⎜⎜⎝
dLR

t

dSR
t

dCR
t

⎞
⎟⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎜⎝
0 0 0

0 λR −λR

0 0 λR

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
LR
t

SR
t

CR
t

⎞
⎟⎟⎟⎟⎠ dt+

⎛
⎜⎜⎜⎜⎝
σ11,R 0 0

0 σ22,R 0

0 0 σ33,R

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
dW

LR,Q
t

dW
SR,Q
t

dW
CR,Q
t

⎞
⎟⎟⎟⎟⎠ . (11)

The instantaneous risk-free real rate is an affine function of the state variables and is

defined as the sum of the level and slope factors:

rRt = LR
t + SR

t . (12)

Real zero-coupon bond yields have the following structure, where AR (t, T ) is the adjust-
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ment term and BR (t, T ) are the Nelson Siegel loadings:

yR(t, T ) = −A
R (t, T )

T − t
− BR (t, T )′

T − t
XR

t

= LR
t +

(
1− e−λR(T−t)

λR(T − t)

)
SR
t +

(
1− e−λR(T−t)

λR(T − t)
− e−λR(T−t)

)
CR
t − AR (t, T )

T − t
.

(13)

Exactly as in the nominal case, the market price of risk takes an essentially affine specifi-

cation seen below:

dWQ
t = dW P

t + ΓR
t dt, (14)

ΓR
t = γR0 + γR1 X

R
t . (15)

We can now apply the change of measure to obtain the latent state variables XR
t =(

LR
t , S

R
t , C

R
t

)′
under the physical measure. The key parameters are κR,P and θR,P which are

unrestricted and σR which has a diagonal structure.

dXR
t = κR,P (t)

[
θR,P (t)−XR

t

]
dt+ σRdW

XR,P
t (16)

Considering the fact that we use a three-factor AFNS model to fit real yields which, at

first glance, do not seem to necessitate so many factors, it is very likely that some parameters

may not be statistically significant. To accommodate for this possibility, we use a general-to-

specific method, as before, to find the optimal specification of the κR,P matrix. The results

-reported in Table 9- indicate that the diagonal specification (6) is the one that minimises

both information criteria, and consequently is our preferred specification. The dynamics are

given by the following stochastic differential equation:

⎛
⎜⎜⎜⎜⎝
dLR

t

dSR
t

dCR
t

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
κ
R,P
11 0 κ

R,P
13

0 κ
R,P
22 0

0 0 κ
R,P
33

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝
θ
LR,P
t

θ
SR,P
t

θ
CR,P
t

⎞
⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎝
LR
t

SR
t

CR
t

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ dt+

⎛
⎜⎜⎜⎜⎝
σ11,R 0 0

0 σ22,R 0

0 0 σ33,R

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
dW

LR,P
t

dW
SR,P
t

dW
CR,P
t

⎞
⎟⎟⎟⎟⎠ .

(17)
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The parameter estimates and in-sample fit can be found on Tables 10 and 11, respectively.

3. Empirical joint shadow-rate AFNS model for nominal and

real yields

In this Section, we estimate a joint AFNS model for nominal and real yields. We impose

the non-negativity assumption solely on nominal yields without restricting real yields. We

consider a data set combining the two panels studied in the previous Section. Therefore,

the data consists of continuously-compounded monthly nominal and real yields spanning

from October 1986 to August 2014 and includes a set of seven maturities for nominal yields,

namely, 6, 12, 24, 36, 60, 84 and 120 months, and an additional set of six maturities for

real yields: 60, 72, 84, 96, 108 and 120 months.11 Nonetheless, before proceeding to our

joint shadow-rate AFNS model, we need to establish the number of factors to be considered,

as well as the interpretation we wish to give to these factors. To do so, we first perform

a principal components analysis, results are displayed in Table 12. At first glance, we can

see that the use of six factors would be somewhat of a stretch. By the same token, the

use of three factors seems, a priori, far too restrictive to be able to fit the term structure

of nominal and real yields appropriately. We now face the dilemma between using four or

five factors. On the one hand, our nominal yields’ data set includes short, medium and

long term maturities, which implies the need for a level, slope and curvature factor. On the

other hand, real yields comprise solely of medium and long term maturities, which ultimately

give a greater weight to the level and curvature factors. One could hence argue that an

appropriate model could have a level, slope and curvature for nominal yields, a curvature

for real yields and finally a common level and slope factor, as it is the case in Christensen

et al. (2010). However, this model would be unfeasible as it would violate the no-arbitrage

assumption imposed on the AFNS model in order to retrieve the Nelson-Siegel factor loadings

11The data set is provided by the DMO. In line with the Bank of England, Variable Roughness Penalty
(VRP) estimates of nominal and real spot rates are computed following Anderson and Sleath (2001). However,
unlike the Bank of England, the DMO does not use GC rates for the estimation of nominal VRP zero rates
but only gilt data with maturity greater than 3 months. Further details regarding the data set are available
upon request.
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(see Christensen et al. (2009)). The assumption of no-arbitrage is os key to our approach, as it

requires both the risk-neutral and physical measure in order to retrieve inflation risk premia.

In addition, we find that, empirically, the correlation between long nominal and real yields,

representing the level, has been historically very stable over time and that nominal yields

moved very much in line with real yields, thus supporting the choice of using one single level

factor to explain both nominal and real rates. We find that nominal and real rates’ slopes,

especially at 5 and 10-year maturities, also display a historically stable correlation, however,

this pattern changes after 2008. This coincides with the timing of the sudden decrease in

nominal rates and the significant increase in the steepness of the nominal curve, resulting in

the sharp increase in BEI at 5 and 10-year maturities. In practice, if we were to use a single

slope factor, we would misestimate the short real rate consequently also affecting inflation

expectations after 2008. We therefore choose to use a five factor model which consists of an

extension of the Svensson model. This model has the capacity to capture the inversion of

real yields, by allowing their slope to vary independently from the slope of nominal yields.

The first five principal components explain 99.99% of the cross-sectional variation of nominal

and real yields, therefore the choice of five factors is reasonable. We are hence left with a

single interpretation for our factors, whereby the first three factors represent the level, slope

and curvature of nominal yields, whilst the fourth and fifth factors represent the slope and

curvature of real yields, respectively. By deduction, the level factor will be common across the

two sets of yields. We denote by αR the weight of real yields on the level of nominal yields.

As in the nominal case, before enforcing the zero lower-bound on nominal yields, we

need to first find the preferred specification of our mean reversion matrix κJ,P. Using the

so-called preferred specification is of great importance due to the sensitivity of results to

different specifications (see Joslin et al. (2014), Joslin et al. (2011) and Christensen and

Rudebusch (2013a)). The issue of sensitivity is of greater importance when considering the

estimation of risk premia, given they rely heavily on the estimation of κJ,P. We hence proceed

in conducting such a strategy on a joint shadow-rate AFNS model which imposes the non-

negativity assumption solely on nominal yields 12.

12A similar analysis is conducted on a joint standard AFNS model. Results of the general-to-specific method,
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We first consider the structure of our joint shadow-rate AFNS model. The joint latent state

vector is given by XJ
t =

(
Lt, S

N
t , C

N
t , S

R
t , C

R
t

)′
and solves the following stochastic differential

equations under the risk-neutral measure Q:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dLt

dSN
t

dCN
t

dSR
t

dCR
t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε 0 0 0 0

0 λN −λN 0 0

0 0 λN 0 0

0 0 0 λR −λR

0 0 0 0 λR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lt

SN
t

CN
t

SR
t

CR
t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
dt+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ11,J 0 0 0 0

0 σ22,J 0 0 0

0 0 σ33,J 0 0

0 0 0 σ44,J 0

0 0 0 0 σ55,J

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dW
L,Q
t

dW
SN ,Q
t

dW
CN ,Q
t

dW
SR,Q
t

dW
CR,Q
t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(18)

where λNand λR are scalars that represent the speed of mean-reversion for nominal and real

yields respectively, and dWQ
t is a five-dimensional Wiener process.

The joint shadow-rate AFNS model restricts nominal yields in the positive domain whilst

simultaneously keeping real yields unrestricted. The instantaneous risk-free nominal and real

rates are thus given respectively by:

rNt = max
{
0, Lt + SN

t

}
, (19)

rRt = αRLt + SR
t . (20)

We note that the nominal instantaneous risk-free rate is the maximum between zero and

the nominal shadow-rate, whilst the real instantaneous risk-free rate coincides with the fic-

tif real shadow-rate. Let us now denote by yN (t, T ) and yR (t, T ), the ZLB nominal zero-

coupon bond yields and the real zero coupon yields, respectively. In the Appendix we derive

yN (t, T ).13 Their representations are given as follows:

parameter estimates and fit of the model are available upon request
13This is done by setting the vector (X1, X2, X3)

′ found in the Appendix equal to (Lt, S
N
t , CN

t )′ and the
variables (σ11, σ22, σ33) equal to (σ11,J , σ22,J , σ33,J ).
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yN (t, T ) =
1

T − t

∫ T

t

[
fN(t, s)Φ

(
fN (t, s)

ωN (t, s)

)
+ ωN (t, s)

1√
2π
exp

(
−1

2

[
fN(t, s)

ωN (t, s)

]2)]
ds,

(21)

yR (t, T ) = αRLt +

(
1− e−λRτ

λRτ

)
SR
t +

(
1− e−λRτ

λRτ
− e−λRτ

)
CR
t − AR(τ)

τ
. (22)

This model can be written in state-space representation and estimated through maximum

likelihood. It is crucial to observe that nominal yields are non-linear functions of the state

vector and real yields are affine function of the latent state variables. As a consequence, to

accommodate for the non-linearity, the computation of the likelihood requires the use of an

Extended Kalman Filter.

The market price of risk under the essentially affine risk premium specifications takes the

form:

dWQ
t = dW P

t + ΓJ
t dt, (23)

ΓJ
t = γJ0 + γJ1X

J
t . (24)

By applying the change of measure, we extract the latent state variable vector XJ
t =(

Lt, S
N
t , C

N
t , S

R
t , C

R
t

)′
which solves the stochastic differential equations below under the phys-

ical measure:

dXJ
t = κJ,P (t)

[
θJ,P (t)−XJ

t

]
dt+ σJdW

XJ ,P
t . (25)

We can now implement a general-to-specific method to find the best specification for the

κJ,P matrix. We first start by estimating an unrestricted model and continue by setting the

least significant element of κJ,P to zero. We then re-estimate the model with this restriction

imposed, and so forth. This process is repeated until we are left with a diagonal κJ,P. For

each step, the log-likelihood, AIC and BIC are reported in Table 13. We aim to minimise

the information criteria, in this case the decision rule of the AIC and BIC coincide, and

thus designate specification (21) as our preferred specification. The latent state variable
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XJ
t =

(
Lt, S

N
t , C

N
t , S

R
t , C

R
t

)′
solves the following stochastic differential equation under the

physical measure, for our preferred specification:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dLt

dSN
t

dCN
t

dSR
t

dCR
t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ
J,P
11 0 0 0 0

0 κ
J,P
22 0 0 0

0 0 κ
J,P
33 0 0

0 0 0 κ
J,P
44 0

0 0 0 0 κ
J,P
55

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θLt

θS
N

t

θC
N

t

θS
R

t

θC
R

t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lt

SN
t

CN
t

SR
t

CR
t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dt+ diag

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ11,J

σ22,J

σ33,J

σ44,J

σ55,J

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dW
L,P
t

dW
SN ,P
t

dW
CN ,P
t

dW
SR,P
t

dW
CR,P
t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(26)

The estimated parameters comprising the equation above are reported in Table 14 and the

in-sample fit is displayed in Table 15. The findings under the joint model are consistent with

the individual models’ results. The fit of both nominal and real yields is very satisfactory and

further allows us to explore, inflation expectations and risk premia, which we discuss in the

next Section.

4. Inflation expectations and risk premia

In this Section we address the decomposition of BEI rates into inflation risk premia and

expectations. The no-arbitrage condition so far imposed on all AFNS models gains further

importance in this Section as it is precisely the existence of a risk-neutral and physical measure

that eventually provides us this decomposition. We denote by
dMN

t

MN
t

and
dMR

t

MR
t

, the nominal

and real pricing kernel dynamics, respectively, and provide their expressions below:

dMN
t

MN
t

= −rNs dt− ΓJ ′

t dW
J,P
t , (27)

dMR
t

MR
t

= −rRt dt− ΓJ ′

t dW
J,P
t . (28)

By manipulating the two stochastic discount factors above, (see Christensen et al. (2010)
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for further details), one can extract the following system of equations:

BEI(t, T ) ≡ yN
t
(t, T )− yRt (t, T ) (29)

= πet (t, T ) + φt(t, T ), (30)

πet (t, T ) = − 1

T − t
ln

{
EP
t

[
exp

(
−
∫ T

t

(rNu − rRu )du

)]}
, (31)

where πet (t, T ) and φt(t, T ) denote respectively the inflation expectations and inflation risk

premia for maturity T, estimated at time t. Moreover, the solution to the expression in

curly brackets is obtained through numerical procedures. It is worth noting that πet (t, T ) is

implicitly a function of the common level factor as well as the two individual nominal and

real slope factors and that it is a continuous process, hence it is not directly comparable to

observed inflation.

In Panel (a) of Figure 5, we display the 5- and 10-year inflation expectations. We identify

a handful of key monetary policy events over the sample, including the adoption of infla-

tion targeting in September 1992 (sparked by the withdrawal of the pound sterling from the

European Exchange Rate Mechanism), the independence of the Bank of England in setting

monetary policy in May 1997, the cut of the bank rate to 0.5% and launch of the asset pur-

chase programme in March 2009, the asset purchase programme reaching a running total of

£375bn in July 2012 (thus amounting to roughly 30% of debt at the time), and finally forward

guidance in August 2013 and February 2014. We note that since 1992 inflation expectations

have decreased, possibly as a result of investors’ confidence in the new monetary policy frame-

work that was reinforced in the Bank of England Act 1998; similar results are found in Joyce

et al. (2010) and Andreasen (2012). Since the mid-2000s, there is a tendency for the 5- and

10-year spot inflation projections to be below the current inflation level, while at a 10-year

horizon, inflation projections systematically undershoot target inflation after 2008.14 In 2008,

inflation expectations decreased significantly, perhaps overly so, relatively to the magnitude

14We took into account that inflation expectations are RPI based since index-linked gilts differ from con-
ventional gilts in that payments are adjusted in line with movements in RPI. It is worth mentioning that in
December 2003, the Bank of England changed its inflation target from a 2.5% level of RPIX to a 2% level of
CPI.
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of change observed in CPI inflation thereafter. Historically, this occurred in conjunction with

large volatility in the inflation-linked bond market, which suffered reduced liquidity. At that

time, inflation-linked gilt asset swap spreads sharply widened to historical highs. As a result,

it is possible that our estimation has been affected by this event and that inflation expecta-

tions and risk premia require an adjustment for liquidity premia, especially at longer horizons.

Linkers are typically less liquid than conventional bonds of similar maturity. We tested the

drop in 2008 against alternative data sources, including inflation survey forecast data.15 Our

results confirm the fall in 2008 is likely to be the product of a distortion in market prices.

Subsequently to this sharp drop, expectations have picked up and have reached, once again,

post-1997 average levels.

Panel (b) of Figure 5 depicts 5- and 10-year inflation risk premia. We observe that the

compensation for inflation risk significantly dropped after the independence of the Bank of

England, suggesting a gained credibility in inflation-targeting practices and conveying a period

of lower uncertainty. Moreover, there are indications that the fall in term premia observed in

Figure 2 might very well be driven by lower inflation risk premia during that period, whilst the

sharp increase in inflation risk premia in the late 2008 is likely driven by liquidity and pricing

distortions in the linker market. Though inflation premia dropped soon after March 2009,

they have been steadily increasing since August 2013 as investors might have been placing

more weight on future inflation uncertainty.

The dcomposition in Figure 5 is based on model-implied BEI rates. We now focus on

actual BEI rates which allows us to evaluate the fit of the model. This is shown in Figure 6

where the 5- and 10-year actual BEI rates are decomposed into inflation expectations, inflation

risk premia and a residual which represents the discrepancy between actual and model-implied

BEI rates. The residuals being very close to zero provides evidence that our model fits well

BEI rates.

15From Consensus Economics.
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5. Conclusion

This paper first examined how the performance of a standard AFNS model fairs against its

shadow-rate model counterpart. Our findings indicate that accounting for the ZLB improves

the in-sample goodness of fit of the estimated yields (in terms of RMSE) and allows replicating

some of the stylized facts yields feature at the ZLB. In addition, it is found that the standard

AFNS model overestimates the expectation term of yields, thus leading to an undershooting

of term premia. In contrast, the shadow-rate AFNS model is able to feature a countercyclical

nominal term premium.

Having argued for the superior performance of shadow-rate models at the ZLB (vis-à-vis

standard Gaussian affine term structure models), we subsequently exploited this result to

build a ZLB-consistent model that jointly prices nominal and real yields.

We specified and estimated a joint shadow-rate AFNS model that is able to impose the

zero lower bound restriction on nominal yields whilst allowing real yields to fall below zero.

The model proposed features benefits from the Nelson Siegel factor loadings which induce

a robust estimation procedure and tractability. The no-arbitrage restrictions enhance the

theoretical grounds whilst simultaneously allowing the decomposition of BEI rates into in-

flation expectations and risk premia. When estimated using UK data, the proposed model

successfully fits both nominal and real yields as well as BEI rates.

We find that imposing the zero lower bound in the model specification allows to correct

for the unreasonably low term premia projections stemming from a standard AFNS model

after 2009.

Our decompositions provide evidence supporting the conclusion that the Bank of England

Act 1998 established credibility in inflation-targeting. Finally, we find that inflation premia

have been steadily increasing since August 2013, suggesting investors might be placing more

weight on future inflation uncertainty.
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Appendix A: Shadow-rate AFNS model à la Krippner

The instantaneous shadow forward rates are obtained by deriving the logarithmic bond prices

P(t,T) with respect to the maturity T, as follows:

f(t, T ) = − ∂

∂T
lnP (t, T )

= X1 + e−λ(T−t)X2 + λ(T − t)e−λ(T−t)X3 +Af (t, T ),

(32)

where Af (t, T ) is obtained below:

Af (t, T ) = −∂A(t, T )
∂T

= −1

2
σ211(T − t)2 − 1

2
σ222

(
1− e−λ(T−t)

λ

)2

− 1

2
σ233

(
(T − t)e−λ(T−t) − 1− e−λ(T−t)

λ

)2

.

(33)

We denote by v(t, T, T + ε) the conditional variance of a European call option maturing

at time T, contingent on the zero-coupon bond with maturity T + ε.

v(t, T, T + ε) = σ211ε
2(T − t) + σ222

(
1− e−λε

λ

)2
1− e−2λ(T−t)

2λ
+ σ233

[(
1− e−λε

λ

)2
1− e−2λ(T−t)

2λ

+ e−2λε

[
ε2 − (T − t+ ε)2e−2λ(T−t)

2λ
+
ε− (T − t+ ε)e−2λ(T−t)

2λ2
+

1− e−2λ(T−t)

4λ3

]

− 1

2λ
(T − t)2e−2λ(T−t) − 1

2λ2
(T − t)e−2λ(T−t) +

1− e−2λ(T−t)

4λ3

−
(
1− e−λε

)
e−λε

λ2

[
ε− (T − t+ ε)e−2λ(T−t) +

1− e−2λ(T−t)

2λ

]

+

(
1− e−λε

)
λ2

[
1− e−2λ(T−t)

2λ
− (T − t)e−2λ(T−t)

]

+
εe−λε

λ

[
(T − t)e−2λ(T−t) − 1− e−2λ(T−t)

2λ

]

+
εe−λε

λ

[
(T − t)2e−2λ(T−t) +

1

λ
(T − t)e−2λ(T−t) − 1− e−2λ(T−t)

2λ2

]]

(34)
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The conditional variance is further transformed to obtain a representation of ω(t, T )2:

ω(t, T )2 =
1

2
lim
ε→0

∂2v(t, T, T + ε)

∂ε2

= σ211(T − t) + σ222

(
1− e−2λ(T−t)

2λ

)

+ σ233

[
1− e−2λ(T−t)

4λ
− 1

2
(T − t)e−2λ(T−t) − 1

2
λ(T − t)2e−2λ(T−t)

]
.

(35)

Let us now denote by f(t, T ), the Zero Lower Bound (ZLB) instantaneous forward rate.

Setting Φ(.) to be the standard normal cumulative probability, we obtain a representation for

f(t, T ):

f(t, T ) = f(t, T )Φ

(
f(t, T )

ω(t, T )

)
+ ω(t, T )

1√
2π
exp

(
−1

2

[
f(t, T )

ω(t, T )

]2)
. (36)

Appendix B: Extended Kalman filter

The estimation of a shadow rate term structure model resembles the one of a Gaussian model

in many ways. Specifically, the state equation of the state-space representation remains intact

and the sole change in the algorithm stems from the non-linearity in the space equation.

Therefore, rather than using a Kalman filter routine, an Extended Kalman filter is used,

whereby the algorithm remains identical in all the steps that relate to the state equation, and

the only change that occurs is to perform a Taylor expansion in order to approximate the

space equation and linearize it.

First, let us disclose the details pertaining to the state equation, which are identical to

the standard Kalman filter. Below is the transition equation in its discretized form.

XT =
[
I − exp(−κP(T − t))

]
θP + exp(−κP(T − t))Xt + ηt (37)
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The standard moments conditions are displayed below:

EP [XT |Ft] =
[
I − exp(−κP(T − t))

]
θP + exp(−κP(T − t))Xt, (38)

VP [XT |Ft] =

∫ T

t

exp(−κP(T − s))ΣΣ′exp(−κP′
(T − s))ds. (39)

The initial conditions for the Extended Kalman filter are set to the unconditional mean and

covariance matrix, given in equation (40) and (41), as in the standard case.

X̂0 = θP (40)

Σ̂0 =

∫ ∞

0
exp(−κPs)ΣΣ′exp(−κP′

s)ds (41)

Now, proceeding to the differences that stem from the non-linearity of the measurement

equation, let us denote by ψ the parameters of the model and assume the error terms ηt and

εt are orthogonal and εt is i.i.d. The space equation can be written as follows, where the

function k is non-linear.

yt = k(Xt;ψ) + εt (42)

This equation is now linearized using a first-order Taylor expansion as shown below. The

approximation is performed around the optimal guess of Xt within the prediction step of the

algorithm, given by Xt|t−1.

k(Xt;ψ) ≈ k(Xt|t−1;ψ) +
∂k(Xt;ψ)

∂Xt

|Xt=Xt|t−1
(Xt −Xt|t−1) (43)

The space equation takes the following form:

yt = At(ψ) + Bt(ψ)Xt + εt. (44)
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where At(ψ) and Bt(ψ) are provided below.

At(ψ) = k(Xt|t−1;ψ) −
∂k(Xt;ψ)

∂Xt

|Xt=Xt|t−1
Xt|t−1 (45)

Bt(ψ) =
∂k(Xt;ψ)

∂Xt

|Xt=Xt|t−1
(46)
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Table 1: First three principal components in nominal yields.

Maturity First PC Second PC Third PC

6 months 0.4212 -0.4861 0.5232

12 months 0.4120 -0.3699 0.0981

24 months 0.3971 -0.1723 -0.3303

36 months 0.3841 -0.0029 -0.4839

60 months 0.3622 0.2596 -0.3315

84 months 0.3428 0.4339 0.0451

120 months 0.3146 0.5844 0.5113

% explained 97.90 1.95 0.14

NOTE: We provide the loadings of the yields of the set of maturities on the first three principal components. The

percentage of all nominal bond yields’ cross-sectional variation accounted for by each component is displayed on the

final row. The data comprises of monthly nominal zero coupon bonds from October 1986 to August 2014.
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Table 2: Evaluation of alternative specifications of the three factor standard AFNS model for
nominal rates.

Alternative specifications logL k p-value AIC BIC

(1) Unrestricted κP 13324.1389 23 -26602.2779 -26514.5529

(2) κP

31
= 0 13324.1386 22 0.9803 -26604.2773 -26520.3664

(3) κP

31
= κP

32
= 0 13324.1379 21 0.9993 -26606.2759 -26526.1791

(4) κP

31
= κP

32
= κP

21
= 0 13324.1174 20 0.9978 -26608.2347 -26531.9521

(5) κP

31
= ... = κP

12
= 0 13324.0991 19 0.9998 -26610.1982 -26537.7297

(6) κP

31
= ... = κP

13
= 0 13323.8107 18 0.9890 -26611.6215 -26542.9671

(7) κP

31
= ... = κP

23
= 0 13321.4142 17 0.5706 -26608.8284 -26543.9882

NOTE: We estimate and evaluate seven alternative specifications of the individual standard AFNS model on nominal

yields. For each specification, we record its log-likelihood (LogL), number of parameters (k) and the p-value of a

likelihood ratio test of the hypothesis that a specification with (k-i) parameters is different from the one with (k-i+1)

parameters. The information criteria (AIC and BIC) are reported and we display their minimum in bold.
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Table 3: Three factor standard AFNS estimates for nominal rates.

κP

t κP

.,1 κP

.,2 κP

.,3 θP σN
i,i

κP

1,. 0.0848 0.0000 0.0000 0.0824 0.0118

(0.031624) (0.031623) (0.033686)

κP

2,. 0.0000 0.3706 -0.2413 -0.0214 0.0174

(0.031623) (0.031623) (0.031631) (0.033907)

κP

3,. 0.0000 0.0000 0.4538 -0.0103 0.0304

(0.031623) (0.031628) (0.031768)

NOTE: The estimated parameters of the κN,P matrix, θN,P vector, and diagonal diffusion matrix σN
i,i are given for our

preferred individual three-factor standard AFNS model for nominal yields. The estimated value of λN is 0.4321 with

standard deviation of 0.031623. The numbers in parentheses are the standard deviations of the estimated parameters.

31



Table 4: Measures of fit for the three factor standard AFNS model for nominal yields.

Maturity in months Mean(in bp) RMSE(in bp)

6 -0.0315 6.3691

12 0.0000 0.0000

24 -0.1829 1.7789

36 0.0000 0.0000

60 0.1765 2.2207

84 -0.0231 1.3562

120 -0.7272 11.9314

NOTE: The mean and RMSE of fitted errors of the preferred individual three-factor standard AFNS model for

nominal yields are given. All values are measured in basis points. The nominal yields span from October 1986 to

August 2014.
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Table 5: Evaluation of alternative specifications of the three factor shadow-rate AFNS model
for nominal rates.

Alternative specifications logL k p-value AIC BIC

(1) Unrestricted κP 13591.3729 23 -27136.7458 -27049.0208

(2) κP

31
= 0 13591.3717 22 0.9614 -27138.7434 -27054.8326

(3) κP

31
= κP

12
= 0 13591.2280 21 0.8661 -27140.4559 -27060.3592

(4) κP

31
= κP

12
= κP

32
= 0 13591.1876 20 0.9940 -27142.3752 -27066.0926

(5) κP

31
= ... = κP

13
= 0 13590.6782 19 0.9069 -27143.3564 -27070.8879

(6) κP

31
= ... = κP

21
= 0 13589.1025 18 0.6767 -27142.2050 -27073.5507

(7) κP

31
= ... = κP

23
= 0 13586.1000 17 0.4226 -27138.1999 -27073.3597

NOTE: We estimate and evaluate seven alternative specifications of the individual shadow-rate AFNS model on

nominal yields. For each specification, we record its log-likelihood (LogL), number of parameters (k) and the p-value

of a likelihood ratio test of the hypothesis that a specification with (k-i) parameters is different from the one with

(k-i+1) parameters. The information criteria (AIC and BIC) are reported and we display their minimum in bold.
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Table 6: Three factor shadow-rate AFNS estimates for nominal rates.

κP

t κP

.,1 κP

.,2 κP

.,3 θP σN
i,i

κP

1,. 0.0362 0.0000 0.0000 0.0513 0.0157

(0.034041) (0.007385) (0.000488)

κP

2,. 0.1103 0.3359 -0.2286 -0.0005 0.0206

(0.072374) (0.047283) (0.032776) (0.012462) (0.000833)

κP

3,. 0.0000 0.0000 0.4507 -0.0164 0.0324

(0.031654) (0.006607) (0.001453)

NOTE: The estimated parameters of the κN,P matrix, θN,P vector, and diagonal diffusion matrix σN
i,i are given

for our preferred individual three-factor shadow-rate AFNS model for nominal yields. The estimated value of λN is

0.4622 with standard deviation of 0.009396. The numbers in parentheses are the standard deviations of the estimated

parameters.
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Table 7: Measures of fit for the three factor shadow-rate AFNS model for nominal yields.

Maturity in months Mean(in bp) RMSE(in bp)

6 -0.5525 6.2018

12 0.2633 1.1375

24 0.2965 2.0152

36 0.3646 1.8497

60 0.5441 3.7132

84 0.4890 3.6883

120 -0.3768 10.0980

NOTE: The mean and RMSE of fitted errors of the preferred individual three-factor shadow-rate AFNS model for

nominal yields are given. All values are measured in basis points. The nominal yields span from October 1986 to

August 2014.
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Table 8: First three principal components in real yields.

Maturity First PC Second PC Third PC

60 months 0.4321 0.6563 0.5152

72 months 0.4199 0.3210 -0.2525

84 months 0.4099 0.0396 -0.4941

96 months 0.4017 -0.1922 -0.3526

108 months 0.3949 -0.3805 0.0350

120 months 0.3893 -0.5320 0.5488

% explained 98.96 1.03 0.01

NOTE: We provide the loadings of the yields of the set of maturities on the first three principal components. The

percentage of all real bond yields’ cross-sectional variation accounted for by each component is displayed on the final

row. The data comprises of monthly real zero coupon bonds from October 1986 to August 2014.
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Table 9: Evaluation of alternative specifications of the three factor standard AFNS model for
real rates.

Alternative specifications logL k p-value AIC BIC

(1) Unrestricted κP 14751.0538 22 -29456.1075 -29374.1966

(2) κP

21
= 0 14751.0537 21 0.9902 -29458.1074 -29380.0106

(3) κP

21
= κP

12
= 0 14750.7779 20 0.7590 -29459.5559 -29385.2732

(4) κP

21
= κP

12
= κP

31
= 0 14750.7777 19 1.0000 -29463.5553 -29391.0869

(5) κP

21
= ... = κP

32
= 0 14750.7593 18 0.9998 -29463.5186 -29396.8643

(6) κP

21
= ... = κP

23
= 0 14750.7287 17 1.0000 -29465.4574 -29402.6172

(7) κP

21
= ... = κP

13
= 0 14747.7547 16 0.4290 -29461.5093 -29402.4832

NOTE: We estimate and evaluate seven alternative specifications of the individual standard AFNS model on real

yields. For each specification, we record its log-likelihood (LogL), number of parameters (k) and the p-value of a

likelihood ratio test of the hypothesis that a specification with k-i parameters is different from the one with k-i+1

parameters. The information criteria (AIC and BIC) are reported and we display their minimum in bold.
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Table 10: Three factor standard AFNS estimates for real rates.

κP

t κP

.,1 κP

.,2 κP

.,3 θP σR
i,i

κP

1,. 0.0856 0.0000 0.0109 0.0122 0.0047

(0.031623) (0.031623) (0.031623) (0.031623)

κP

2,. 0.0000 0.1000 0.0000 0.0006 0.0428

(0.031623) (0.031623) (0.031623)

κP

3,. 0.0000 0.0000 0.0984 -0.0058 0.0460

(0.031623) (0.031623) (0.031623)

NOTE: The estimated parameters of the κR,P matrix, θR,P vector, and diagonal diffusion matrix σR
i,i are given for

our preferred individual three-factor standard AFNS model for real yields. The estimated value of λR is 0.4521 with

standard deviation of 0.031623. The numbers in parentheses are the standard deviations of the estimated parameters.
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Table 11: Measures of fit for the three factor standard AFNS model for real yields.

Maturity in months Mean (in bp) RMSE (in bp)

60 0.1729 1.0881

72 -0.0004 0.0028

84 0.0000 0.0006

96 0.0096 0.1299

108 0.0000 0.0002

120 0.0260 0.4806

NOTE: The mean and RMSE of fitted errors of the preferred individual three-factor standard AFNS model for real

yields are given. All values are measured in basis points. The real yields span from October 1986 to August 2014.
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Table 12: First six principal components in nominal and real yields.

Maturity First PC Second PC Third PC Fourth PC Fifth PC Sixth PC

Nominal yields

6 months 0.3847 -0.3487 -0.3801 0.4694 0.2793 -0.3865

12 months 0.3770 -0.2730 -0.2974 0.1014 -0.0291 0.2975

24 months 0.3643 -0.1659 -0.1430 -0.2685 -0.2530 0.4030

36 months 0.3530 -0.0934 0.0014 -0.4084 -0.2741 0.0602

60 months 0.3332 -0.0259 0.2525 -0.3253 -0.1044 -0.4754

84 months 0.3151 -0.0143 0.4397 -0.0662 0.1222 -0.3622

120 months 0.2889 -0.0119 0.6081 0.2857 0.3787 0.4846

Real yields

60 months 0.1679 0.4209 -0.2703 -0.3109 0.5017 0.0527

72 months 0.1649 0.3930 -0.1787 -0.1014 0.2335 0.0142

84 months 0.1627 0.3656 -0.1026 0.0621 0.0102 -0.0079

96 months 0.1612 0.3396 -0.0404 0.1856 -0.1708 -0.0186

108 months 0.1601 0.3155 0.0099 0.2764 -0.3135 -0.0208

120 months 0.1593 0.2939 0.0505 0.3421 -0.4230 -0.0163

% explained 95.41 2.86 1.59 0.11 0.03 0.01

NOTE: We provide the loadings of the yields of the set of maturities on the first three principal components. The

percentage of all nominal and real bond yields’ cross-sectional variation accounted for by each component is displayed

on the final row. The data comprises of monthly nominal and real zero coupon bonds from October 1986 to August

2014.
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Table 13: Evalutation of alternative specifications of the five factor joint shadow-rate AFNS
model.

Alternative specifications logL k p-value AIC BIC

(1) Unrestricted κP 26479.9718 51 -52857.9436 -52663.4229

(2) κP

32
= 0 26479.9718 50 0.9997 -52859.9436 -52669.2371

(3) κP

32
= κP

53
= 0 26479.9401 49 0.9688 -52861.8803 -52674.9879

(4) κP

32
= κP

53
= κP

41
= 0 26479.9385 48 1.0000 -52863.8771 -52680.7988

(5) κP

32
= ... = κP

21
= 0 26479.9302 47 1.0000 -52865.8603 -52686.5962

(6) κP

32
= ... = κP

12
= 0 26479.8202 46 0.9989 -52867.6404 -52692.1904

(7) κP

32
= ... = κP

45
= 0 26479.4495 45 0.9936 -52868.8990 -52697.2631

(8) κP

32
= ... = κP

23
= 0 26479.3606 44 1.0000 -52870.7212 -52702.8995

(9) κP

32
= ... = κP

31
= 0 26479.2732 43 1.0000 -52872.5463 -52708.5387

(10) κP

32
= ... = κP

42
= 0 26479.2140 42 1.0000 -52874.4281 -52714.2346

(11) κP

32
= ... = κP

13
= 0 26479.1388 41 1.0000 -52876.2777 -52719.8983

(12) κP

32
= ... = κP

15
= 0 26479.0554 40 1.0000 -52878.1108 -52725.5455

(13) κP

32
= ... = κP

54
= 0 26479.0141 39 1.0000 -52880.0282 -52731.2771

(14) κP

32
= ... = κP

43
= 0 26477.7390 38 0.9991 -52879.4779 -52734.5410

(15) κP

32
= ... = κP

24
= 0 26477.4785 37 1.0000 -52880.9571 -52739.8343

(16) κP

32
= ... = κP

51
= 0 26477.4201 36 1.0000 -52882.8403 -52745.5316

(17) κP

32
= ... = κP

52
= 0 26477.1339 35 1.0000 -52884.2677 -52750.7732

(18) κP

32
= ... = κP

14
= 0 26475.9635 34 1.0000 -52883.9270 -52754.2466

(19) κP

32
= ... = κP

25
= 0 26475.0090 33 1.0000 -52884.0179 -52758.1516

(20) κP

32
= ... = κP

34
= 0 26475.7065 32 1.0000 -52887.4131 -52765.3609

(21) κP

32
= ... = κP

35
= 0 26475.2570 31 1.0000 -52888.5140 -52770.2759

NOTE: We estimate and evaluate thirteen alternative specifications of the joint shadow-rate AFNS model on nominal

and real yields. For each specification, we record its log-likelihood (LogL), number of parameters (k) and the p-value

of a likelihood ratio test of the hypothesis that a specification with (k-i) parameters is different from the one with

(k-i+1) parameters. The information criteria (AIC and BIC) are reported and we display their minimum in bold.
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Table 14: Five factor joint shadow-rate AFNS estimates.

κP

t κP

.,1 κP

.,2 κP

.,3 κP

.,4 κP

.,5 θP σJ
i,i

κP

1,. 0.0311 0.0000 0.0000 0.0000 0.0000 0.0738 0.0127

(0.031623) (0.031624) (0.031891)

κP

2,. 0.0000 0.0458 0.0000 0.0000 0.0000 0.0107 0.0191

(0.031623) (0.031626) (0.031624)

κP

3,. 0.0000 0.0000 0.1163 0.0000 0.0000 -0.0919 0.0291

(0.031623) (0.031628) (0.031627)

κP

4,. 0.0000 0.0000 0.0000 0.1381 0.0000 -0.0006 0.0204

(0.031623) (0.031627) (0.031836)

κP

5,. 0.0000 0.0000 0.0000 0.0000 0.0958 -0.0128 0.0225

(0.031623) (0.031623) (0.031829)

NOTE: The estimated parameters of the κJ,P matrix, θJ,P vector, and diagonal diffusion matrix σJ
i,i

are given for

our preferred joint five-factor shadow-rate AFNS model for nominal and real yields. The estimated value of λN

is 0.5005 with standard deviation of 0.031623 and the estimated value of λR is 0.2209 with standard deviation of

0.031635. The estimated value of αR is 0.5781 with standard deviation of 0.031623. The numbers in parentheses are

the standard deviations of the estimated parameters.

42



Table 15: Measures of fit for the five factor joint shadow-rate AFNS model.

Maturity in months Mean(in bp) RMSE(in bp)

Nominal yield

6 -0.6420 6.0045

12 0.2150 0.9538

24 0.2800 1.8470

36 0.2938 1.3302

60 0.3302 2.6903

84 0.4321 2.3452

120 0.9552 10.3274

Real yield

60 -0.5442 6.3068

72 -0.1748 1.8816

84 0.0000 0.0000

96 0.0000 0.0000

108 -0.1288 1.2824

120 -0.3094 3.3365

NOTE: The mean and RMSE of fitted errors of the preferred joint shadow-rate AFNS model for nominal and real

yields are given. All values are measured in basis points. The nominal and real yields span from October 1986 to

August 2014.
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(c) Curvature factor

Figure 1: Estimated State Variables.

State variables, estimated with the AFNS and shadow-rate AFNS models.
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(a) Fitted Ten-Year Term Premium
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(b) Fitted expectation term of the ten-year yield

Figure 2: Fitted Ten-Year Term Premium and Expectation Component.

Ten-year fitted term premia of nominal yields and fitted expectation term of the ten-year

yield, measured in basis points, estimated with the preferred AFNS and shadow-rate AFNS

models.
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Figure 3: Estimated Shadow Rate.

Shadow rate process, estimated with the preferred shadow-rate AFNS models.
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(a) June 2012
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(b) August 2014

Figure 4: Forward Rates and Expected Short Rates.

Estimated forward rates and the associated short rate path implied by the AFNS and

shadow-rate AFNS models. All curves in subfigures (a) and (b) are extracted as of June

2012 and August 2014, respectively, and are measured in basis points.
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(a) Inflation Expectations, RPI Inflation and RPI Inflation Target Level by Maturity
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Figure 5: Five- and Ten-Year Breakeven Rate Decomposed in Inflation Expecta-

tion and Inflation Risk Premium.

The 5- and 10- year expected inflation rates and inflation risk premia, implied from the

preferred joint shadow-rate AFNS model, historical RPI inflation and RPI inflation target.

The data span from October 1986 to August 2014.
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(a) 5-year maturity
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(b) 10-year maturity

Figure 6: Actual BEI Rates and Model-Implied Decompositions.

The 5- and 10- year actual BEI rates and inflation expectation and risk premia components

implied from the preferred joint AFNS model. The data span from October 1986 to August

2014.

49



This working paper has been produced by
the School of Economics and Finance at
Queen Mary University of London

School of Economics and Finance 
Queen Mary University of London
Mile End Road
London E1 4NS
Tel: +44 (0)20 7882 7356
Fax: +44 (0)20 8983 3580
Web: www.econ.qmul.ac.uk/research/workingpapers/

Copyright © 2015 Andrea Carriero, Sarah Mouabbi
and Elisabetta Vangelista. All rights reserved




