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Abstract

A relatively simple frequency-type testing procedure for unit root potentially contaminated
by an additive stationary noise is introduced, which encompasses general settings and allows for
linear trends. The proposed test for unit root versus stationarity is based on a finite number of
periodograms computed at low Fourier frequencies. It is not sensitive to the selection of tuning
parameters defining the range of frequencies so long as they are in the vicinity of zero. The test does
not require augmentation, has parameter-free non-standard asymptotic distribution and is correctly
sized. The consistency rate under the alternative of stationarity reveals the relation between the
power of the test and the long-run variance of the process. The finite sample performance of the
test is explored in a Monte Carlo simulation study, and its empirical application suggests rejection
of the unit root hypothesis for some of the Nelson-Plosser time series.
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1 Introduction

A common starting point in time series analysis is the assessment of whether a stationary or non-

stationary type of statistical/econometric model best characterises the properties of the data under

investigation. This has strong methodological and statistical implications. There exists a broad and

still evolving literature aimed at determining the presence of a unit root in economic data sets.

One of the most widely employed unit root testing procedures is the classical Dickey Fuller (DF)

test (Dickey and Fuller (1979)), and its augmented (ADF) version (Said and Dickey (1984)). The

DF method has undergone numerous refinements, enabling its deep theoretical understanding and

practical use. The most prominent ones include Phillips (1987), Phillips and Perron (1988), Elliot

et al. (1996) and Ng and Perron (2001) while useful surveys on issues associated with unit root testing

can be found in Stock (1994), Maddala and Kim (1998) and Phillips and Xiao (1998). For more recent

developments on unit root testing see e.g. Westerlund (2014) and Shelef (2015).

At the core of these tests lie assumptions about the structural form of the times series studied,

say yj , j = 1, ..., n. For example, the simplest form of the DF test examines the null hypothesis that

{yj} has pure unit root against an AR(1) stationary alternative. Other settings allow for inclusion

of an intercept or intercept and time trend which yield different, complex asymptotic distributional

representations, and hence altered critical values (MacKinnon (1991)). In turn, the Augmented Dickey

Fuller (ADF) test centres on the null hypothesis of an ARIMA(p, 1, 0) process against the stationary

ARMA(p+ 1, 0, q) alternative, see e.g. Cheung and Lai (1995) or Lopez (1997). Augmentation or

selection of the appropriate lag order p is needed to absorb the additional dependence structure as

well as computing adjusted critical values, see e.g. Cheung and Lai (1995), Ng and Perron (1995),

Elliot et al. (1996), Ng and Perron (2001), Perron and Qu (2007) where these issues are studied
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thoroughly. Breitung (2002), on the other hand, suggests a different type of unit root test which

is based on the variance-ratio statistic. The key advantage of this test is that it does not require

specification of the short-run dynamics (augmentation).

Alternative approaches that focus on testing for stationarity versus unit root are inherently adapt-

able to a wide range of dependence structures of an underlying stationary time series (residuals), from

short to long or negative memory. The most prominent of these is the KPSS test by Kwiatkowski et al.

(1992), and its subsequent developments, see e.g. Giraitis et al. (2006). The non-standard asymptotic

distributions of the corresponding test statistics are again complex and rather intractable, and require

estimation of the long-run variance of the associated series. The need for augmentation arises again,

this time in the context of estimation of the long-run variance, which may complicate the practical

implementation of these tests.

This paper suggests a new and relatively simple frequency-type method for testing for a unit

root (potentially contaminated by an additive stationary noise) versus stationarity, which makes use

of fundamental properties of the spectrum and periodogram in the vicinity of zero frequency. More

precisely, under unit root the periodogram has a sharp peak at zero frequency, and therefore testing can

be based on a finite number of periodograms computed at low Fourier frequencies, ul, ..., uk; up, ..., uq.

Theory points out the need for k, q to be small, but it does not require data based selection of tuning

parameters l, k, p, q, different values of which yield similar size/power performance of the test. Hence,

the range of frequencies can be selected a priori. Furthermore, the frequency-type method allows

testing for a unit root contaminated by an additive stationary noise, which constitutes the main

structural novelty of the paper. The method is easily implemented and does not require augmentation.

Under the null it has a parameter-free, tractable asymptotic distribution with critical values that do

not require finite sample adjustment and yield correct size for sample sizes n = 64, 128, 256, 1024.

Monte Carlo simulation results show that the test is well-sized and has satisfactory power under

different data specifications.

The rest of the paper is organised as follows. In Section 2 we introduce the low-frequency-type

testing procedure for a unit root (Q test) and derive its theoretical properties. In its current format,

the differenced unit root ∇xt is required to be a stationary linear process but an extension to a non-

linear framework can be considered as well. The consistency rate under the alternative of stationarity

reveals the relation between the power of the test and the long-run variance of ∇xt. In Section 3 we

analyze the finite sample properties of the Q test for a number of data generating models. Of particular

interest is the case of a pure unit root augmented by an additive stationary noise, where we compare

performance the Q test with the ADF and Breitung tests. Finally, Section 4 contains the empirical

application of the Q test to the popular set of time series studied in Nelson and Plosser (1982) and

Schotman and van Dijk (1991). Results indicate that for some time series the null hypothesis of unit

root can be rejected. Proofs of the main results are contained in the Appendix.

2 Low-Frequency-Periodogram-Type Test

In this section we present a new frequency domain procedure for testing for a unit root in a time

series potentially contaminated by an additive stationary noise. The idea behind such an approach

is based on the observation that the periodogram (‘spectrum’) of a unit root process has high-order

singularity at zero frequency. Construction of the test takes into account the fundamental asymptotic

properties of a vector of the periodograms
(
I(u1), ...., I(uq))

)
and the discrete Fourier transforms

(DFT) computed at low Fourier frequencies u1, ..., uq for a fixed q. The main advantages of frequency-

type methods are well documented in Choi and Phillips (1993): (i) no explicit structural form of

the error terms is required, (ii) the resulting limiting distributions are parameter-free, (iii) a strong
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peak of the periodogram at zero frequency under unit root is taken into account, (iv) such tests are

predominantly correctly sized. Our objective in this section is to devise a test with parameter-free

asymptotic distribution, the tuning parameters of which do not require data based selection. Compared

to spectral-type testing procedures by Choi and Phillips (1993) or Fan and Gençay (2010), this is a

very different type of test with a different limit distribution. It does not require estimation of the

spectral density, uses a preselected finite number of Fourier frequencies and is easy to compute.

To proceed with the definition of the test and its theoretical properties, we set up the null and

alternative hypotheses. A process {ξj , j ∈ Z} is said to be a short memory process if it has absolutely

summable autocovariances γξ(k) = Cov(ξk, ξ0),

∞∑
k=−∞

|γξ(k)| < ∞,
∞∑

k=−∞
γξ(k) > 0. (1)

We describe first the hypotheses of unit root with no trend.

Hypothesis H0 (unit root). We say that the random variables yj , j = 1, . . . , n satisfy the null

hypothesis H0 of unit root with an additive noise if

yj = xj + εj , j ≥ 1, where xj = xj−1 + ξj , (2)

and {ξj} and {εj} are zero mean short memory processes, as defined above in (1).

The alternative hypothesis to H0 includes a stationary process with unknown mean.

Alternative HS (stationarity). We say that the random variables yj , j = 1, . . . , n satisfy the alter-

native hypothesis HS of stationarity if

yj = μ+ ξj , (3)

where {ξj} is a zero mean short memory stationary ergodic process, and μ = Eyj is unknown.

Note that the increments of unit root process (2) have zero mean which may be a restrictive

assumption in applications. To relax this restriction, we introduce next the HT
0 hypothesis of a unit

root with a drift.

Hypothesis HT
0 (trending unit root). We say that the random variables yj , j = 1, . . . , n satisfy the

null hypothesis HT
0 if

yj = μ+ βj + xj + εj , j ≥ 1, where xj = xj−1 + ξj , (4)

μ is an unknown constant, β is unknown drift parameter, and {ξj} and {εj} are zero mean short

memory processes.

We test it against the hypothesis of trend stationarity.

Alternative HT
S (stationarity). We say that the random variables yj , j = 1, . . . , n satisfy the

alternative hypothesis HT
S if

yj = μ+ βj + ξj , (5)

where μ and β are unknown parameters of the linear trend, and {ξj} is a zero mean short memory

stationary ergodic process.

In the latter case when the unit root with a drift hypothesis HT
0 is tested against trend-stationarity

HT
S , we compute the test using de-trended data

ŷj = yj − β̂j, j = 1, . . . , n,
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where

β̂ =

∑n
j=1(yj − ȳ)j∑n
j=1(j − j)2

, j = n−1
n∑

s=1

s =
(n+ 1)

2
. (6)

By Theorem 2.1 of Abadir et al. (2011), the OLS estimator β̂ under HT
S has the following consistency

rate,

E(β̂ − β)2 = O(n−1/2), under HT
0 ,

= O(n−3/2), under HT
S . (7)

To derive the asymptotic distribution of the test statistic under H0 we have to impose additional

conditions.

Assumption A. Processes {ξj} and {εj} are linear short memory processes,

ξj =

∞∑
k=0

αkζj−k, εj =

∞∑
k=0

α′
kζ

′
j−k, j ∈ Z, (8)

such that
∑∞

k=0 |αk| < ∞,
∑∞

k=0 |α′
k| < ∞, with i.i.d. innovations {ζj}, {ζ ′j} having zero mean and

unit variance. Noises {ζj}, {ζ ′j} can be mutually dependent. Assumption of positive long-run variance

of {ξj} in (1) requires
∑∞

k=0 αk > 0.

We write an ∼ bn to denote that an/bn → 1 as n → ∞, and→D denotes convergence in distribution.

Testing under no trend. To proceed with the testing of H0 against HS , first we discuss the basic

properties of the periodogram and the Discrete Fourier Transform (DFT), which clarify the idea of

the test and allow to establish its asymptotic null distribution and consistency.

Basic properties of periodogram and DFT. Let there be a sample x1, · · · , xn. Denote by

wX(uj) = (2πn)−1/2
n∑

k=1

eikujxk, j = 0, 1, · · · , n

the discrete Fourier transform computed at Fourier frequencies uj = 2πj/n, j = 0, 1, · · · , n, and by

IX(uj) = |wX(uj)|2, j = 0, 1, · · · , n

the periodogram at frequency uj .

The concepts of periodogram and DFT are usually related to a stationary time series {xj}. If {xj}
is a stationary sequence with spectral density fX , then the periodogram IX(uj) is a sample version

of the spectral density fX(uj) at the frequency uj . In addition, if {xj} has short memory then its

spectral density fX is continuous, and fX(uj) → fX(0), uj → 0. Consequently, at low frequencies,

u1, u2, · · · , uk, the spectral density fX(uj) is approximately equal to fX(0), in the following sense:

fX(uj) ∼ fX(0) > 0, n → ∞. (9)

Since periodogram IX(uj) is only a mean consistent estimator of fX , i.e. EIX(uj) ∼ f(uj), as

n → ∞, the same pattern will be observed in the mean EIX(uj) and the periodogram itself. In the

case of a unit root, as we will see below, for low frequencies j = 1, 2, · · · , k the mean EIX(uj) peaks at

zero frequency u0, and then sharply decreases when j rises. We use this fact to discriminate between

a unit root and a stationary process.

The periodogram and DFT have the following tractable distributional properties.
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Let xj = ξj , j ∈ Z be a stationary process as in (8). Below we denote fξ,0 := fξ(0) and fζ,0 := fζ(0).

Recall that the standardized i.i.d. sequence {ζj} has the spectral density fζ(u) = 1/2π. Then, by

Lemma 3, see Appendix II,

{wξ(u0), wξ(u1), · · · , wξ(up)} = (fξ,0/fζ,0)
1/2{wζ(u0), wζ(u1), · · · , wζ(up)}+ op(1), (10)

{Iξ(u1), · · · , Iξ(up)} = (fξ,0/fζ,0){Iζ(u1), · · · , Iζ(up)}) + op(1).

By (40) of Lemma 4,

f
−1/2
ζ,0 {wζ(u0), wζ(u1), · · · , wζ(up)} →D

{
Z0,

Z1 + iZ2√
2

, · · · , Z2p−1 + iZ2p√
2

}
,

f−1
ζ,0 {Iζ(u1), · · · , Iζ(up)} →D

{
Z2
1 + Z2

2

2
, · · · , Z

2
2p−1 + Z2

2p

2

}
=: {τ1, · · · , τp}, (11)

where Z0, · · · , Z2p is a vector of independent standardized normal r.v.’s. This implies

{Iξ(u1), · · · , Iξ(up)} →D fξ,0{τ1, · · · , τp}.

Suppose now that the sample x0, x1, · · · , xn comes from a unit root model

xj = xj−1 + ξj , j = 1, · · · , n, (12)

where {ξj} is a stationary short memory process as shown in (8) with the spectral density fξ. Firstly,

recall the algebraic relation which first was observed in Phillips (1999).

Lemma 1 (Phillips 1999) For j = 1, · · · , n− 1, with ∇xj = xj − xj−1,

wX(uj) = (1− eiuj )−1{w∇X(uj)− eiujw∇X(0)}, (13)

IX(uj) = |1− eiuj |−2|w∇X(uj)− eiujw∇X(0)|2.

Note that in (13), for any fixed j ≥ 1, as n → ∞,

eiuj = 1 +O(n−1), eiuj − 1 = iuj(1 +O(n−1)). (14)

Hence, for xj as in (12), by (13)-(14) , we can write

wX(uj) = (1− eiuj )−1{wξ(uj)− eiujwξ(0)} = −(iuj)
−1(fξ,0/fζ,0)

1/2{wζ(uj)− wζ(0)}(1 + op(1)).

Thus, by (13)-(14) and (11), for a fixed number p of low frequencies,

u21{IX(u1), · · · , IX(up)} = fξ,0f
−1
ζ,0 {1−2|wζ(u1)− wζ(0)|2, · · · , p−2|wζ(up)− wζ(0)|2}+ op(1)

→D fξ,0

{
1−2 (Z1 − Z0)

2 + Z2
2

2
, · · · , p−2

(Z2p−1 − Z0)
2 + Z2

2p

2

}

=: fξ,0
{
1−2U1, · · · , p−2Up

}
, (15)

where Z0, Z1, · · · , Z2p is a vector of independent standardized normal r.v.’s.

Testing H0 vs HS . From the above it becomes clear that by using the periodogram one can test the

hypothesis both for existence of unit root and stationarity. In this respect, we introduce a test, the

power of which tends to 1 as the sample size increases. We define the test statistic as

Q̂Y ; l···k;p···q :=
n2

(2π)2
I∇Y (ul) + · · ·+ I∇Y (uk)

IY (up) + · · ·+ IY (uq)
,
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where the integers 1 ≤ l ≤ k and 1 ≤ p ≤ q specify the range of frequencies, and the periodograms in

the numerator are computed using the differenced series ∇yt = yt − yt−1. Note that in our test l, k, p

and q are fixed a priori and the test based on Q̂Y ; l···k;p···q is well sized so long as uk and uq are close

enough to zero.

Theorem 1 (H0) Suppose that yj = xj + εj, j = 1, · · · , n is as in (2) and {ξj} and {εj} satisfy

Assumption A. Let τj, Uj be defined as in (11) and (15).

Then for fixed k ≥ l ≥ 1 and q ≥ p ≥ 1, as n → ∞,

Q̂Y ; l···k;p···q →D QU
l···k;p···q :=

τl + · · ·+ τk
p−2Up + · · ·+ q−2Uq

, (16)

where the limit has parameter-free distribution.

(HS) Suppose that yj = μ+ ξj, j = 1, · · · , n is as in (3) and ξj’s satisfy Assumption A. Then for

fixed k ≥ l ≥ 1 and q ≥ p ≥ 1, as n → ∞,

{n(yn − y0)
2}−1Q̂Y ; l···k;p···q →D

k

(2π)3fξ,0

1

τp + · · ·+ τq
. (17)

Testing leads to a parameter-free null distribution QU
l···k;p···q that depends only on the range of

Fourier frequencies (integers l, k, p, q) used in the test. For example,

QU
1;1...2 :=

τ1
U1 + 2−2U2

, QU
2;1...3 :=

τ2
U1 + 2−2U2 + 3−2U3

,

QU
3...5;2...3 :=

τ3 + τ4 + τ5
2−2U2 + 3−2U3

.

The consistency rate under alternative HS equals n.

The test QU
l...k;p...q is not sensitive to selection of tuning parameters l, k, p, q which define the Fourier

frequencies used in the test as long they are relatively small. In our simulation study we tried a number

of frequency combinations in the vicinity of zero and the testing results were little changed.

The test for a unit root is conducted as follows. For a given significance level α ∈ (0, 1), find the

critical value c̄Ulk;pq defined by

P (QU
l···k;p···q ≥ c̄Ulk;pq) = α.

Rule: reject H0 (unit root, no drift) in favor of HS (stationarity, no drift), if Q̂Y ; l···k;p··· ,q ≥ c̄Ulk;pq.

Such a test has asymptotic size α, and asymptotic power 1 with consistency rate n. Critical values

c̄Ulk;pq are parameter-free and for specific l, k, p, q can be computed using Monte Carlo simulations. For

the different choices of frequencies of the Q test used in our simulation study, the respective critical

values based on 10, 000 replications and n = 2014 are given in Table 1.

Table 1: Critical values at 5% and 10% significance level for unit root Q testing
H0: unit root, no trend C.V. (5%) C.V. (10%) H0: unit root, with trend C.V. (5%) C.V. (10%)

Q̂Y ;3...10;1...2 27.80 19.01 Q̂Ŷ ;3...10;1...2 78.53 51.61

Q̂Y ;3...8;1...3 14.63 10.83 Q̂Ŷ ;3...8;1...3 33.37 23.99

Q̂Y ;3...7;1...4 10.55 8.01 Q̂Ŷ ;3...7;1...4 20.84 15.97

Testing with detrending. Next, we discuss testing of hypothesis HT
0 against HT

S . Under HT
0 we

assume that a sample y0, · · · , yn is generated by a unit root model with a drift (4). Such a test is

based on statistic Q̂Ŷ ; l···k;p···q computed using residuals ŷj = yj − β̂j, j = 0, · · · , n where β̂ is the OLS
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estimator (6). Detrending will affect the limit distribution of the test statistic Q̂Ŷ ; l···k;p···q under the

null: instead of (16) it is now described by distribution of a random variable

QU
T, l···k;p···q :=

τl + · · ·+ τk
p−2U ′

p + · · ·+ q−2U ′
q

. (18)

The variables τj , U
′
j are defined as follows. Let Z ′

0, Z1, Z2 · · · , be a vector of zero mean normal r.v.’s,

such that Z1, Z2 · · · , are independent standardized normal r.v.’s, while Z ′
0 has variance EZ ′ 2

0 = 1/5,

and is uncorrelated with Z2j but correlated with Z2j−1: EZ2jZ
′
0 = 0 and EZ2j−1Z

′
0 = 3/(πj)2 for

j ≥ 1. We set τj := (Z2
2j + Z2

2j−1)/2 and U ′
j := ((Z2j − Z ′

0)
2 + Z2

2j−1)/2, j ≥ 1.

To define asymptotic distribution of the test statistic under alternativeHT
S , introduce a normal zero

mean random variable Z ′′
0 with variance EZ ′′ 2

0 = 3, such that EZ2jZ
′′
0 = 3(πj)−1 and EZ2j−1Z

′′
0 = 0

for j ≥ 1, and set U ′′
j :=

(
Z2j + (Z2j−1 − (πj)−1Z ′′

0 )
2
)
/2, j ≥ 1.

Theorem 2 (HT
0 ) Suppose that yj = μ + βj + xj + εj, j = 1, · · · , n is as in (4) and {ξj} and {εj}

satisfy Assumption A. Then, for fixed k ≥ l ≥ 1 and q ≥ p ≥ 1, as n → ∞,

Q̂Ŷ ; l···k;p···q →D QU
T ; l···k;p···q, (19)

where QU
T, l···k;p···q is as in (18) and has parameter-free distribution.

(HT
S ) Suppose that yj = μ + βj + ξj, j = 1, · · · , n is as in (5) and {ξj} satisfy Assumption A.

Then for fixed k ≥ l ≥ 1 and q ≥ p ≥ 1, as n → ∞,

{n(yn − y0)
2}−1Q̂Ŷ ; l···k;p···q →D

k

(2π)3fξ,0

1

U ′′
p + · · ·+ U ′′

q

. (20)

Testing HT
0 vs HT

S . To construct a test for HT
0 against HT

S , for a given significance level α ∈ (0, 1)

define the critical value c̄UT,lk;pq by

P (QU
T ;l···k;p···q ≥ c̄UT ;lk;pq) = α.

Since the limit distribution is parameter-free, the critical value for different choices of l, k, p, q can be

found using Monte Carlo simulations.

Rule: reject HT
0 (unit root with a drift) in favor of HS (stationarity with a drift), if Q̂Ŷ ; l···k;p···q ≥

c̄UT ;lk;pq. Such a test has asymptotic size α, and asymptotic power 1. For the different choices of l, k, p, q

used in our simulation study, the respective critical values based on 10, 000 replications are given in

Table 1.

3 Monte Carlo study

This section contains Monte Carlo simulations illustrating the finite sample performance of the unit

root frequency-type Q test. Under the null hypothesis we consider the following data generating

process

yj = μ+ βj + xj +
√
ςεj , for j = 1, ..., n, (21)

where a unit root process xj =
∑j

k=1 ξj is contaminated by the noise
√
ςεj , and {ξj}, {εj} are two

independent stationary short memory processes. We consider three specifications for {ξj}:
(s1) AR(1) ξj = ρξj−1 + ηj ,

(s2) MA(1) ξj = ηj − θηj−1,

(s3) ARMA(1,1) ξj = ρξj−1 + ηj − θηj−1,
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and assume that {εj} is a stationary AR(1) process εj = rεj−1 + uj , where {ηj} and {uj} are two

independent standard normal iid(0, 1) processes, with a burn-in period of 500 observations. Parameters

ρ, θ and r control the strength of dependence the AR or MA processes {ξj} and {εj}, β and μ define

a linear trend and the scaling parameter ς controls contamination of the unit root by the noise.

We consider two broad settings of process (21).

Experiment A (No additive noise, ς = 0). This setup corresponds to the classical specification

(21) of the unit root (non-drift and with a drift) hypothesis H0 and HT
0 . Under the null we set

ρ = 0.0, 0.3, 0.5, 0.8 in (s1), θ = 0.0, 0.3, 0.5, 0.8 in (s2), ρ = 0.3 and θ = 0.0, 0.4, 0.5, 0.8 in (s3).

Under trend stationary alternatives HS and HT
S , yj = μ + βj + ξj , we set ρ = 0.8, 0.9, 0.95, 0.99

in (s1), θ = 0.0, 0.5, 0.8, 0.9 in (s2), and ρ = 0.3 and θ = 0.0, 0.5, 0.8, 0.9 in (s3). Selection of trend

parameters β = 0, μ = 0 and β = 0.5, μ = 1 covers non-trended and trended alternatives. Notice that

the Q test statistic in invariant with respect to the values of parameters β and μ.

Experiment B (Additive noise, ς > 0). This setup corresponds to a unit root process xt contam-

inated by noise {εj}. It covers the unit root hypothesis H0, yj = xj +
√
ςεj , where xj = xj−1 + ηj

is a random walk, {ηj} is the standardized normal iid(0, 1) noise, {εj} follows an AR(1) model with

r = 0.5, and the scale parameter takes values ς = 0.0, 1.0, 3.0, 4.0. It also covers the trend stationary

alternative HT
S , yj = 1 + 0.5j + ξj +

√
ςεj where {ξj} is AR(1) process (s1) with parameter ρ = 0.5

and {εj} are the same as under the null.

Cochrane (1991) raised the issue of susceptibility of unit root testing procedures to size and power

distortions when a unit root is contaminated by an additive stationary noise. We use Experiment B

to analyze such distortions for the Q test, conventional Dickey Fuller test with 0 and 4 lags and the

variance-type unit root test of Breitung (2002) which does not impose any structural form assumptions

on the unit root process. In addition, we have conducted ADF test with 0,1,2,3,4,5 of lags to cover a

sufficiently large range of lags that potentially could be used by lag selection criteria. These testing

results are available upon request.

In both experiments we apply the Q test Q̂Y ;3...10;1...2 based on frequencies 3-10 in the numerator

and 1-2 in the denominator, and asymptotic critical values given in Table 1. Different combinations of

frequencies, have been tried, e.g. Q̂Y ;3...7;1...4 or Q̂Y ;3...8;1...3 and results are little changed. The results

are available upon request. The relevant critical values are given in Table 1. Testing for a unit root

with a drift, in line with Theorem 2, statistic Q̂Ŷ ;3...10;1...2 is applied to de-trended data ŷj = yj − β̂j.

We consider sample sizes n = 64, 128, 256, 1024 and 2, 000 replications.

The 5% critical values (no drift) for Q̂Y ;3...10;1...2, ADF and Breitung tests are 27.8, 1.94 and 0.02,

respectively. The 5% critical values (with drift) for these tests are 78.5, 3.41 and 0.0035.

3.1 Simulation results

Table 2 reports size and power results for the Q̂Y ;3...10;1...2 test for Experiment A. We consider the

non-drift unit root hypothesis yj = xj and its stationary alternative, yj = ξj , as well as a unit root

with a drift hypothesis yj = 1 + 0.5j + xj with the trend-stationary alternative yj = 1 + 0.5j + ξj ,

where xj − xj−1 = ξj is a stationary process as in (s1)-(s3).

Under AR(1) specification (s1) of {ξj}, the Q test applied to a unit root process yj = xj has correct

size for all sample sizes n studied when {ξj} is a random walk (ρ = 0), but when persistence in ξj
increases (ρ approaches to 0.8) the test becomes slightly under-sized for small n. Under the stationary

alternative, yj = ξj , the power of the Q test increases with n, and it starts loosing power in the near
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unit root region as ρ approaches to 1 which is in line with the existing literature on unit root testing.

For a unit root with a drift, yj = 1 + 0.5j + xj , Table 2 reports similar size results as for a unit root

with no drift, while under the trend-stationary alternative the test suffers some loss of power for small

n but it recovers as the sample size increases.

Next, we look at size and power under MA(1) specification (s2) of {ξj}. In the non-drift case

Q̂Y ;3...10;1...2 test is correctly sized for small θ and for all n, and only becomes significantly over-sized

when ξj approaches non-invertibility, e.g. for θ = 0.8. Under stationary MA(1) alternative the power

is universally strong and close to 1, reflecting the fact that the spectral density of an MA(1) process

{ξj} is relatively flat at zero frequency. Size and power of the Q test allowing for a drift are similar as

in the non-drift case.

Under ARMA(1,1) specification (s3) of {ξj}, the Q test has similar size properties as those obtained

for MA(1) process {ξj}, while power remains strong for both specifications of the Q test, excluding

and allowing for a drift.

Table 2: Rejection rates of Q3...10;1...2 unit root test (5%)
Model: yj = xj , no trend Model: yj = 1 + 0.5j + xj , with trend

Size: xj = xj−1 + ξj Power: xj = ξj Size: xj = xj−1 + ξj Power: xj = ξj
ξj ∼ AR(1)

ρ = 0.00 0.30 0.50 0.80 0.80 0.90 0.95 0.99 0.00 0.30 0.50 0.80 0.80 0.90 0.95 0.99

n = 64 0.05 0.04 0.02 0.01 0.53 0.20 0.11 0.06 0.04 0.03 0.02 0.01 0.25 0.11 0.07 0.05
n = 128 0.05 0.04 0.03 0.01 0.87 0.48 0.20 0.07 0.05 0.05 0.04 0.01 0.55 0.23 0.11 0.05
n = 256 0.04 0.04 0.04 0.03 0.98 0.85 0.47 0.09 0.05 0.05 0.05 0.03 0.80 0.53 0.23 0.06
n = 1024 0.05 0.05 0.05 0.05 1.00 0.99 0.97 0.36 0.05 0.05 0.05 0.04 0.93 0.90 0.79 0.17

ξj ∼ MA(1)

θ = 0.00 0.30 0.50 0.80 0.00 0.50 0.80 0.90 0.00 0.30 0.50 0.80 0.00 0.50 0.80 0.90

n = 64 0.05 0.07 0.13 0.61 1.00 1.00 1.00 1.00 0.04 0.06 0.12 0.54 0.93 1.00 1.00 1.00
n = 128 0.06 0.06 0.08 0.28 1.00 1.00 1.00 1.00 0.05 0.06 0.07 0.26 0.94 0.99 1.00 1.00
n = 256 0.05 0.06 0.06 0.11 1.00 1.00 1.00 1.00 0.05 0.05 0.06 0.12 0.95 0.98 1.00 1.00
n = 1024 0.05 0.05 0.05 0.06 1.00 1.00 1.00 1.00 0.05 0.05 0.05 0.06 0.97 0.98 1.00 1.00

ξj ∼ ARMA(1,1)

ρ = 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
θ = 0.00 0.40 0.50 0.80 0.00 0.50 0.80 0.90 0.00 0.40 0.50 0.80 0.00 0.50 0.80 0.90

n = 64 0.03 0.06 0.09 0.47 0.99 1.00 1.00 1.00 0.03 0.06 0.08 0.41 0.86 0.98 1.00 1.00
n = 128 0.04 0.05 0.07 0.24 0.99 1.00 1.00 1.00 0.05 0.06 0.07 0.21 0.92 0.96 1.00 1.00
n = 256 0.04 0.05 0.05 0.10 1.00 1.00 1.00 1.00 0.05 0.05 0.05 0.09 0.94 0.95 0.99 1.00
n = 1024 0.05 0.05 0.05 0.05 1.00 1.00 1.00 1.00 0.05 0.05 0.05 0.05 0.95 0.97 0.99 1.00

Settings of Experiment B in Table 3 reflect more closely real unit root data which can be con-

taminated by additional stationary noise. They cover unit root model with no drift, yj = xj +
√
ςεj ,

and with a drift, yj = 1 + 0.5j + xj +
√
ςεj , and corresponding stationary, yj = ξj +

√
ςεj , and

trend-stationary, yj = 1+0.5j+xj +
√
ςεj , alternatives, where xj is a random walk, {εj} is an AR(1),

r = 0.5, noise, and {ξj} is an AR(1), ρ = 0.5, process. Table 3 shows that for a random walk free

of additional noise (ς = 0.0), the Q test, the ADF test based on the lags 0 and 4 and Breitung test

all have correct size (both non-drift and drift versions). All tests become over-sized, when the domi-

nance of the noise {εj} over the unit root process xj increases, especially for smaller n. Overall, the

variance-ratio test of Breitung shares similar properties with the Q test. In the non-drift case size of

the Breitung test remains more stable for small n when ς changes, however, for those n its power is

compromised considerably, while the power of the Q test is universally high across ς and n. For a unit

root model with a drift, the Breitung and Q tests suffer similar size distortions in small samples when
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ς rises, but the size of the Q test improves somewhat faster when n increases. In turn, testing for a

unit root contaminated by a noise using ADF test, it is not clear how to justify the additional lags in

the augmentation of the test given that the observed process is a pure random walk plus a stationary

AR(1) noise. The DF test (ADF with 0 lags) has incorrect size which improves when the number of

lags increases to 4. However, the ADF test with 4 lags still records incorrect size as ς rises even as n

increases. Further, while under the stationary alternative the standard DF test has universally high

power, the augmented ADF test with 4 lags suffers more gravely than either the Q or Breitung tests

when n is small.

Overall, the Monte Carlo results support the theoretical findings of Section 2 about asymptotic

properties of the Q test. They also highlight an important problem of noise contamination that

potentially arises in empirical work and suggest that those tests that do not impose structural form

assumptions on the data generating process seem to perform better asymptotically.

Table 3: Size and power of Q, ADF and Breitung tests (5%) for a unit root model xj = xj−1+ ξj with
an additive noise and a (trend)stationary alternative xj = ξj where ξj ∼ AR(1), ρ = 0, 0.5 and εj ∼

AR(1), r = 0.5

Model: yj = xj +
√
ςεj , no trend Model: yj = 1 + 0.5j + xj +

√
ςεj , with trend

Size: xj = xj−1 + ξj Power: xj = ξj Size: xj = xj−1 + ξj Power: xj = ξj
Parameters

ρ = 0.00 0.00 0.00 0.00 0.50 0.50 0.50 0.50 0.00 0.00 0.00 0.00 0.50 0.50 0.50 0.50
ς = 0.00 1.00 3.00 4.00 0.00 1.00 3.00 4.00 0.00 1.00 3.00 4.00 0.00 1.00 3.00 4.00

Q3...10;1...2 test

n = 64 0.05 0.12 0.24 0.28 0.96 0.96 0.96 0.96 0.04 0.10 0.20 0.24 0.74 0.74 0.73 0.73
n = 128 0.05 0.08 0.15 0.17 0.99 1.00 1.00 1.00 0.05 0.07 0.12 0.15 0.89 0.89 0.89 0.89
n = 256 0.04 0.06 0.07 0.09 1.00 1.00 1.00 1.00 0.05 0.06 0.07 0.08 0.93 0.93 0.93 0.93
n = 1024 0.05 0.05 0.05 0.05 1.00 1.00 1.00 1.00 0.05 0.05 0.05 0.05 0.96 0.95 0.95 0.95

ADF test - 0 lags

n = 64 0.07 0.21 0.40 0.48 1.00 1.00 1.00 1.00 0.06 0.28 0.59 0.67 0.99 0.99 0.99 0.99
n = 128 0.06 0.21 0.44 0.51 1.00 1.00 1.00 1.00 0.05 0.35 0.75 0.83 1.00 1.00 1.00 1.00
n = 256 0.07 0.23 0.47 0.54 1.00 1.00 1.00 1.00 0.06 0.39 0.81 0.89 1.00 1.00 1.00 1.00
n = 1024 0.06 0.23 0.46 0.54 1.00 1.00 1.00 1.00 0.05 0.43 0.85 0.92 1.00 1.00 1.00 1.00

ADF test - 4 lags

n = 64 0.08 0.08 0.13 0.15 0.96 0.96 0.96 0.95 0.08 0.10 0.14 0.16 0.46 0.46 0.46 0.46
n = 128 0.06 0.08 0.13 0.15 1.00 1.00 1.00 1.00 0.06 0.09 0.18 0.22 0.96 0.96 0.97 0.97
n = 256 0.06 0.07 0.13 0.17 1.00 1.00 1.00 1.00 0.05 0.09 0.20 0.27 1.00 1.00 1.00 1.00
n = 1024 0.06 0.08 0.14 0.17 1.00 1.00 1.00 1.00 0.05 0.09 0.22 0.30 1.00 1.00 1.00 1.00

Breitung Variance-type test

n = 64 0.05 0.06 0.08 0.09 0.63 0.63 0.65 0.64 0.05 0.10 0.22 0.25 0.76 0.76 0.77 0.77
n = 128 0.04 0.05 0.06 0.07 0.82 0.82 0.82 0.82 0.05 0.09 0.17 0.20 0.96 0.96 0.97 0.97
n = 256 0.05 0.06 0.07 0.07 0.95 0.95 0.95 0.95 0.05 0.08 0.13 0.15 1.00 1.00 1.00 1.00
n = 1024 0.05 0.05 0.05 0.05 1.00 1.00 1.00 1.00 0.05 0.06 0.07 0.08 1.00 1.00 1.00 1.00

4 Empirical application

In this section we apply the Q test for unit root to the popular macroeconomic data set analysed by

Nelson and Plosser (1982) and its extended version used in Schotman and van Dijk (1991). The original

Nelson-Plosser data set contains 14 annual aggregated U.S. macroeconomic time series, recorded over

62 to 111 years, and all ending in 1970, and its extended version includes observations up to 1988.

List of the variables and sample sizes is given in Table 4. Nelson and Plosser (1982) found that apart

from the unemployment rate the DF test failed to reject the null hypothesis of existence of a unit root

in every other case. Since then this data set has been subject to extensive scrutiny. While numerous
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empirical studies support the notion that the majority of macroeconomic time series do in fact contain

a unit root, others suggest that failure to reject a unit root lies in the nature of testing procedure,

and that the Nelson and Plosser (1982) results might be questionable, see Perron (1988), Dejong et al.

(1992), Phillips (1991), Kwiatkowski et al. (1992), Lucas (1995) and references therein.

To compare the Q testing results for unit root with existing findings in the literature, we apply the

Q̂Y ;3...10;1...2 test (as in the simulation study) to the log-transformation of the 14 Nelson -Plosser series

and their extended versions. (Note that money stock (M2) series is not considered in the extended data

set.) Table 4 panel I shows that Q̂Y ;3...10;1...2 falls consistently below the 5% and 10% critical values of

27.8 and 19.01, respectively, failing to reject a unit root in all but the unemployment rate series in the

original and extended data sets. This is in line with the findings by Nelson and Plosser (1982) using

the DF test, and Kwiatkowski et al. (1992) employing the KPSS test who reject the hypothesis of

stationarity for bond yields as well. Interestingly, the value of the test statistic Q̂Y ;3...10;1...2 for bond

yields is the most elevated after the unemployment rate in the original and extended data sets, though

well below the 5% and 10% critical values.

There is evidence of potential existence of a trend in all macroeconomic variables of the Nelson-

Plosser data set, see Harvey et al. (2009) for a comprehensive analysis of the uncertainty of presence of

a linear deterministic trend in data. Therefore, we also test the hypothesis of existence of a unit root

with a drift using statistic Q̂Ŷ ;3...10;1...2 based on residuals ŷj = yj− β̂j with 5% and 10% critical values

of 78.53 and 51.61 respectively. Table 4 panel II shows that at 5% significance level the hypothesis of

unit root with a drift is again rejected only for the unemployment rate while all other series appear to

have a unit root, as suggested in Nelson and Plosser (1982). This holds both for the series ending in

1970 and 1988. Closer inspection shows that the value of Q̂Ŷ ;3...10;1...2 becomes significantly higher for

real per capita GNP and employment when the extended data set is used. At 10% significance level

the Q test indicates that real per capita GNP, employment and the unemployment rate are trend-

stationary processes. Kwiatkowski et al. (1992) and Phillips (1991) obtain similar results using their

respective methods. Unlike the Q test they find trend-stationarity for the GNP deflator, wages and

money as well.

In the context of Nelson and Plosser (1982) and Kwiatkowski et al. (1992), Q test results support

the notion that the unemployment rate is stationary and that real GNP, nominal GNP, consumer

prices, real wages, velocity, bond yields and stock prices contain a unit root, while evidence on real

per capita GNP and employment containing a unit root remains inconclusive.
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Table 4: QY ;3...10;1...2 test results for unit root in Nelson-Plosser data set (5% and 10% significance
levels). All variables are in levels (log transformed).

Panel I: no trend Panel II: with trend
Data up to 1970 Data up to 1988 Data up to 1970 Data up to 1988

Macro Variables n Q-test Reject H0 n Q-test Reject H0 n Q-test Reject H0 n Q-test Reject H0

Real GNP 62 0.99 no 80 0.49 no 62 28.76 no 80 45.76 no
Nominal GNP 62 0.73 no 80 0.25 no 62 9.72 no 80 13.97 no
Real per capita GNP 62 2.69 no 80 1.33 no 62 29.36 no 80 52.36 yes1

Industrial production 111 0.36 no 129 0.24 no 111 36.00 no 129 32.89 no
Total employment 81 0.90 no 99 0.52 no 81 25.32 no 99 57.99 yes1

Total unemployment rate 81 79.18 yes 99 79.97 yes 81 83.39 yes 99 79.52 yes
GNP deflator 82 0.79 no 100 0.60 no 82 14.39 no 100 9.61 no
Consumer Price Index 111 2.17 no 129 0.96 no 111 5.84 no 129 3.10 no
Nominal wages 71 0.49 no 89 0.32 no 71 12.25 no 89 13.91 no
Real wages 71 0.49 no 89 0.29 no 71 22.29 no 89 11.07 no
Money stock 82 0.26 no - - - 82 24.52 no - - -
Velocity of money 102 1.26 no 120 1.56 no 102 5.45 no 120 3.15 no
Bond yields 72 5.13 no 89 4.46 no 72 4.85 no 89 6.53 no
Stock prices 100 1.90 no 118 0.94 no 100 10.17 no 118 8.50 no

Panel I: 5% and 10% critical values are 27.8 and 19.0 respectively.
Panel II: 5% and 10% critical values are 78.5 and 51.6 respectively.
1At 10% significance level.

Appendix I: Proofs of Theorems

This section contains proofs of the theorems.

Proof of Theorem 1. Let H0 be true. First we verify that for a fixed j ≥ 0,

w∇ε(uj) = Op(n
−1/2), j ≥ 0, (22)

I∇Y (uj) = (fξ,0/fζ,0)|wζ(uj)|2 + op(1), u21IY (uj) = (fξ,0/fζ,0)j
−2|wζ(uj)− wζ(0)|2 + op(1), j ≥ 1.

To verify (22) for j ≥ 1, use (13) to write

w∇ε(uj) = (1− eiuj )wε(uj) + eiujw∇ε(0)

= Op(n
−1) + (1 +Op(n

−1/2))(2πn)−1/2(εn − ε0) = Op(n
−1/2), (23)

by (10)–(11) and (14). Notice that for j = 0, w∇ε(u0) = (2πn)−1/2(εn − ε0) = Op(n
−1/2).

To prove the second claim in (22), notice that w∇Y (uj) = w∇X(uj) +w∇ε(uj) = wξ(uj) + op(1) =

(fξ,0/fζ,0)
1/2wζ(uj)+op(1), j ≥ 0, by (22) and (10). To show the third claim, use Lemma 1, (22), (15)

and (10), to obtain u21IY (uj) = u21|1 − eiuj |−2|wξ(uj) − eiujwξ(0) + op(1)|2 = (fξ,0/fζ,0)j
−2|wζ(uj) −

wζ(0)|2 + op(1).

Hence, by (22),

Q̂Y ; l···k,p···q =
I∇Y (ul) + · · ·+ I∇Y (uk)

u21
(
IY (up) + · · ·+ IY (uq)

)
=

|wζ(ul)|2 + · · ·+ |wζ(uk)|2 + op(1)

p−2|wζ(up)− wζ(0)|2 + · · ·+ q−2|wζ(uq)− wζ(0)|2 + op(1)
→D QU

l···k;p···q,

by (11), proving (16).

Let HS be true. Then yj = μ + ξj , where {ξj} is a stationary short memory process. First we

verify that for a fixed j ≥ 1,

I∇Y (uj) = (2πn)−1(ξn − ξ0)
2 +Op(n

−3/2), IY (uj) = (fξ,0/fζ,0)|wζ(uj)|2 + op(1). (24)

The first claim follows noting that by (23) w∇Y (uj) = w∇ξ(uj) = Op(n
−1) + (2πn)−1/2(ξn − ξ0). The

second claim follows from equality IY (uj) = Iξ(uj), using (10). Thus, (24) implies

Q̂Y ; l···k,p···q =
I∇Y (ul) + · · ·+ I∇Y (uk)

u21
(
IY (up) + · · ·+ IY (uq)

) =
k (2πn)−1(ξn − ξ0)

2 +Op(n
−3/2)

(2π/n)2(fξ,0/fζ,0)(|wζ(up)|2 + · · ·+ |wζ(uq)|2 + op(1))
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which together with (11) proves (17). �

Proof of Theorem 2. Let HT
0 be true. Define approximating variable

w′
ζ,0 :=

n∑
j=1

ζjznj , znj := (2πn)−1/2
(
1− n

n∑
s=j

bns), (25)

where bnj := (j − j̄)/dn and dn :=
∑n

j=1(j − j̄)2. First we show that for a fixed j ≥ 1,

w∇Ŷ (uj) = (fξ,0/fζ,0)
1/2wζ(uj) + op(1), I∇Ŷ (uj) = (fξ,0/fζ,0)|wζ(uj)|2 + op(1), (26)

u21IŶ (uj) = (fξ,0/fζ,0)j
−2|wζ(uj)− w′

ζ,0|2 + op(1). (27)

To show (26), observe that w∇Ŷ (uj) = w∇X(uj) + w∇ε(uj), for j ≥ 1, because
∑n

s=1 e
iujs = 0, which

in view of (22) and (10) implies (26).

To verify (27), use Lemma 1 and (14), to obtain IŶ (uj) = u−2
j |w∇Ŷ (uj)− eiujw∇Ŷ (0)|2(1 + o(1)),

j ≥ 1. We will show that

w∇Ŷ (0) = (fξ,0/fζ,0)
1/2w′

ζ,0 + op(1), (28)

which together with (26) and (14) implies (27): u21IŶ (uj) = (fξ,0/fζ,0)
1/2j−2|wζ(uj)− w′

ζ,0|2 + op(1).

To verify (28), recall that ξj = xj − xj−1. Then ŷj = yj − β̂j = μ+ xj + εj + (β − β̂)j,

w∇Ŷ (0) = (2πn)−1/2(ŷn − ŷ0) = wξ(0) + w∇ε(0)− (2πn)−1/2n(β̂ − β).

By (22), w∇ε(0) = op(1). Moreover, by (6),

β̂ − β = rX,n + rε,n, rX,n :=
n∑

j=1

bnjxj , rε,n :=
n∑

j=1

bnjεj .

Because εj is a short memory sequence, then by (7), rε,n = Op(n
−3/2). Finally, since

∑n
j=1 bnj = 0,

we can write

rX,n =
n∑

j=1

bnj(xj − x0) =
n∑

j=1

(

j∑
k=1

ξk)bnj =
n∑

k=1

ξk(
n∑

j=k

bnj).

Thus,

w∇Ŷ (0) = wξ(0)− (2πn)−1/2nrX,n + op(1) =

n∑
j=1

ξjznj + op(1).

By Lemma 3,
n∑

j=1

ξjznj =

(
fξ,0
fζ,0

)1/2 n∑
j=1

ζjznj + op(1),

which proves (28). Hence, by (26) and (27),

Q̂Ŷ ; l···k,p···q =
I∇Ŷ (ul) + · · ·+ I∇Ŷ (uk)

u21
(
IŶ (up) + · · ·+ IŶ (uq)

)
=

f−1
ζ,0 {|wζ(ul)|2 + · · ·+ |wζ(uk)|2}+ op(1)

f−1
ζ,0 {p−2|wζ(up)− w′

ζ,0|2 + · · ·+ q−2|wζ(uq)− w′
ζ,0|2}+ op(1)

→D QU
T, l···k;p···q,

by (41) of Lemma 4, proving (19).
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Let HT
S be true. Then yj = μ+ βj + ξj , where {ξj} is a stationary short memory process. Denote

w′′
ζ,0 :=

n∑
l=1

z′n,lζl, z′n,j := −(2πn)−1/2(n2/2)bnj . (29)

We show that for a fixed j ≥ 1,

I∇Ŷ (uj) = (2πn)−1(ξn − ξ0)
2 +Op(n

−3/2), IŶ (uj) =
fξ,0
fζ,0

{|wζ(uj)− i(πj)−1w′′
ζ,0|2}+ op(1). (30)

The first claim holds by (23), noting that I∇Ŷ (uj) = I∇ξ(uj) for j ≥ 1. To show the second claim,

notice that wŶ (uj) = wξ(uj) − r∗n where r∗n := (β̂ − β)(2πn)−1/2
∑n

s=1 e
iujss. By (10), wξ(uj) =

(fξ,0/fζ,0)
1/2wζ(uj) + op(1). Hence to prove (30) it suffices to show that

r∗n = i(πj)−1(fξ,0/fζ,0)
1/2w′′

ζ,0 + op(1). (31)

We have that β̂−β =
∑n

l=1 bn,lξl which together with (35) implies that r∗n ∼ −i(2πn)−1/2(β̂−β)nu−1
j =

i(πj)−1
∑n

l=1 z
′
n,lξl. Then, (31) follows from Lemma 3 below. Hence, by (30),

Q̂Ŷ ; l···k,p···q =
I∇Ŷ (ul) + · · ·+ I∇Ŷ (uk)

u21
(
IŶ (up) + · · ·+ IŶ (uq)

)
=

k (2πn)−1(ξn − ξ0)
2 +Op(n

−3/2)

(2π/n)2(fξ,0/fζ,0){|wζ(up)− i(πp)−1w′′
ζ,0|2 + · · ·+ |wζ(uq)− i(πq)−1w′′

ζ,0|2 + op(1)} ,

which by (42) of Lemma 4, implies (20). �

Appendix II: Auxiliary Lemmas

This section contains auxiliary results.

Lemma 2 Let w′
ζ,0 be as in (25) and w′′

ζ,0 as in (29). Then, for a fixed j ≥ 1, as n → ∞,

f−1
ζ,0E(w′

ζ,0)
2 → 1/5, f−1

ζ,0Ewζ(uj)w
′
ζ,0 → 3(πj)−2, (32)

f−1
ζ,0E(w′′

ζ,0)
2 → 3, f−1

ζ,0Ewζ(uj)w
′′
ζ,0 → i 3(πj)−1. (33)

Proof. First, note that n−1j̄ → ∫ 1
0 xdx = 1/2, and

n−3dn →
∫ 1

0
(x− 1/2)2dx = 1/12. (34)

In addition, note that znj = (2πn)−1/2
(
1−n

∑n
s=j bns) = (2πn)−1/2

(
1+n

∑j−1
s=1 bns), because

∑n
s=1 bns =

0. Then,

f−1
ζ E(w′

ζ,0)
2 = 2π

n∑
j=1

z2nj ∼ n−1
n∑

j=1

{
1 +

12

n2

j−1∑
k=1

(k − k̄)

}2

→
∫ 1

0
{1 + 12

∫ x

0
(u− 1/2)du}2dx = 1/5,

which proves the first claim of (32).

To show the second claim of (32), using the equalities 1.352 from Gradshteyn and Ryzhik (1994),

n∑
t=1

t sin(tu) =
sin((n+ 1)u)

4 sin2(u/2)
− (n+ 1) cos((2n+ 1)u/2)

2 sin(u/2)
,

n∑
t=1

t cos(tu) =
(n+ 1) sin((2n+ 1)u/2)

2 sin(u/2)
− 1− cos((n+ 1)u)

4 sin2(u/2)
,
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we obtain

n∑
s=1

seiujs =
n∑

s=1

s cos(ujs) + i
n∑

s=1

s sin(ujs) =
n

2
− i

n

2

cos(uj/2)

sin(uj/2)
∼ n

2
(1− i

2

uj
). (35)

Set Jn,j := f−1
ζ,0Ewζ(uj)w

′
ζ,0. Since

∑n
s=1 e

iujs = 0, j = 1, · · · , n− 1 and
∑n

l=1 bnl = 0, then,

Jn,j = f−1
ζ,0 (2πn)

−1/2
n∑

s=1

eiujszns = n−1
n∑

s=1

eiujs(1− n
n∑

l=s

bnl) = −
n∑

l=1

bnl

l∑
s=1

eiujs.

We have
∑s

j=1 e
iuj = eiu(eius − 1)/(eiu − 1),

∑n
s=1 bns = 0 and eiuj (eiuj − 1)−1 = (iuj)

−1(1 + o(1)).

Thus,

Jn,j := −eiuj (eiuj − 1)−1
n∑

l=1

bnl(e
iuj l − 1) = −(iuj)

−1(1 + o(1))

n∑
l=1

bnle
iuj l.

Since bnj = (j − j̄)/dn, and
∑n

l=1 e
iuj l = 0, then

n∑
l=1

bnle
iuj l = d−1

n

n∑
l=1

jeiuj l ∼ −12n−2iu−1
j , (36)

by (34) and (35). Hence, Jn,j ∼ −(iuj)
−1{−12n−2iu−1

j } ∼ 3(πj)−2, proving (32).

To show the first claim of (33), note that f−1
ζ,0E(w′′

ζ,0)
2 = (2π)

∑n
l=1 z

′ 2
n,l = n3

∑n
l=1 b

2
n,l/4 =

n3/4dn → 3, by (34). To show the second claim, note that

f−1
ζ,0Ewζ(uj)w

′′
ζ,0 = 2π(2πn)−1(−n2/2)

n∑
l=1

eiuj lbnl ∼ − (n/2)(−12n−2iu−1
j ) ∼ i 3(πj)−1,

proving (33). �

Lemma 3 (i) Suppose that {ξj} satisfies Assumption A, and νn,k, k = 1, · · · , n, n ≥ 1 is an array of

(complex) numbers such that

|νn,1|+
n∑

k=2

|νn,k − νn,k−1| = o(1),
n∑

k=1

|νn,k|2 = O(1). (37)

Then, as n → ∞,
n∑

k=1

νn,kξk = (fξ,0/fζ,0)
1/2

n∑
k=1

νn,kζk + op(1). (38)

(ii) Let j ≥ 1 be fixed and znk, z
′
nk be as in (25) and (29). Then {ν(i)n,k}, i = 1, · · · , 5 defined respectively

as {n−1/2 cos(ujk)}, {n−1/2 sin(ujk)}, {n−1/2eiujk}, {(2π)1/2znk} and {(2π)1/2z′nk}, satisfy (37).

Proof. (i) By Assumption A, ξj =
∑∞

k=0 akζj−k where
∑∞

k=0 |ak| < ∞. Notice that ηj = ξj −
(fξ,0/fζ,0)

1/2ζj is a stationary process with the spectral density fη(u) = (2π)−1|∑∞
k=0 ake

i uk−∑∞
k=0 ak|2.

Under Assumption A, fη(u) is a continuous function and fη(u) → 0, u → 0. This and (37) imply (38)

by Proposition 4.3.2 in Giraitis et al. (2012).

(ii) To prove (37), it suffices to verify that for i = 1, · · · , 5,

|ν(i)n,1|+
n∑

k=2

|ν(i)n,k − ν
(i)
n,k−1| = o(1),

n∑
k=1

|ν(i)n,k|2 → ci, (39)
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where c1 = c2 = 1/2, c3 = 1, c4 = 1/5 and c5 = 3.

Let i = 1. Then, for a fixed j ≥ 1, by the mean value theorem, | cos(ujk)−cos(uj(k−1))| ≤ Cn−1,

and so, n−1/2{| cos(uj)|+
∑n

k=2 | cos(ujk)− cos(uj(k − 1))|} ≤ Cn−1/2 → 0, proving the first claim in

(39). To show the second claim, note that n−1
∑n

k=1 cos
2(kuj) = n−1

∑n
k=1(1 + cos(ku2j)/2 = 1/2,

because
∑n

k=1 e
iku2j = 0 and

∑n
k=1 e

−iku2j = 0 imply
∑n

k=1 cos(ku2j) = 0 and
∑n

k=1 sin(kuj) = 0.

For i = 2, 3, (39) follows using a similar argument as for i = 1.

Let i = 4. By (25), zn1 = (2πn)−1/2, bearing in mind that
∑n

k=1 bnk = 0, while for 2 ≤ k ≤ n,

|znk − zn,k−1| = (2πn)−1/2|bn,k−1| = (2πn)−1/2n|k− 1− k̄|/dn ≤ Cn−3/2 by (34). This proves the first

claim in (39), while the second one is shown in (32).

Let i = 5. The proof is similar as for i = 4. From (29) it follows that |z′n1| = (2πn)−1/2(n2/2)|bn1| ≤
Cn−1/2, while for 2 ≤ k ≤ n, |z′nk − z′n,k−1| = (2πn)−1/2(n2/2)|bnk − bn,k−1| = (2πn)−1/2(n2/2)/dn ≤
Cn−3/2. Clearly, this proves the first claim in (39), while the second one is shown in (33). �

Denote Sn,2j−1 = n−1/2
∑n

k=1 cos(ujk)ζk, Sn,2j = n−1/2
∑n

k=1 sin(ujk)ζk for j ≥ 1, Sn,0 = n−1/2
∑n

k=1 ζk,

S′
n,0 = (2π)1/2

∑n
k=1 znkζk and S′′

n,0 = (2π)1/2
∑n

k=1 z
′
nkζk.

Let Z0, Z1, Z2, · · · be standardized i.i.d. normal variables and Z ′
0, Z

′′
0 be the same as in (18) and

Theorem 2.

Lemma 4 Let {ζj} be i.i.d. random variables with zero mean and variance 1. Then, for any fixed

p ≥ 1, as n → ∞,

(Sn,0, Sn,1, Sn,2, . . . , Sn,2p) →D

(
Z0, Z1/

√
2, Z2/

√
2, · · · , Z2p/

√
2
)
, (40)

(S′
n,0, Sn,1, Sn,2, . . . , Sn,2p) →D

(
Z ′
0, Z1/

√
2, Z2/

√
2, · · · , Z2p/

√
2
)
, (41)

(S′′
n,0, Sn,1, Sn,2, . . . , Sn,2p) →D

(
Z ′′
0 , Z1/

√
2, Z2/

√
2, · · · , Z2p/

√
2
)
. (42)

Proof. Write Sn,2i−1 =
∑n

k=1 δ
(2i−1)
nk ζk and Sn,2i =

∑n
k=1 δ

(2i)
nk ζk with δ

(2i−1)
nk := n−1/2 cos(ujk) and

δ
(2i)
nk := n−1/2 sin(ujk), i = 1, · · · , p.

Write Sn,0 =
∑n

k=1 δ
(0,0)
nk ζk, S

′
n,0 =

∑n
k=1 δ

(0,1)
nk ζk and S′′

n,0 =
∑n

k=1 δ
(0,2)
nk ζk with δ

(0,0)
nk = n−1/2,

δ
(0,1)
nk = (2π)1/2znk and δ

(0,2)
nk = (2π)1/2z′nk. Notice the following properties of the above weights:

|δ(l)n1|+
n∑

k=2

|δ(l)nk − δ
(l)
n,k−1| = o(1),

n∑
k=1

(
δ
(l)
nk

)2 → 1/2, l = 1, · · · , 2p, (43)

|δ(0,m)
n1 |+

n∑
k=2

|δ(0,m)
nk − δ

(0,m)
n,k−1| = o(1),

n∑
k=1

(
δ
(0,m)
nk

)2 → vm, m = 0, 1, 2, (44)

where v0 = 1, v1 = 1/5 and v2 = 3. The facts (43) and (44) are shown in (39).

Thus, by Theorem 4.3.2 of Giraitis et al. (2012) to prove (40)-(42) it suffices to verify that the

variance-covariance matrices Σn and Σ of the corresponding vectors on the l.h.s. and the r.h.s. of

(40)-(42) have property

Σn → Σ, n → ∞. (45)

To prove (45) in (40), note that equality eiu = cos(u) + i sin(u) and identity
∑n

k=1 e
iujk = 0,

1 ≤ j < n imply that for any integers j ≥ 0, s ≥ 0, such that j 
= s and j + s < n,

n∑
k=1

cos(ujk) cos(usk) = 0,
n∑

k=1

sin(ujk) sin(usk) = 0,
n∑

k=1

cos(ujk) sin(usk) = 0, (46)

which implies Σn = Σ.

To verify (45) in (41), use (46) and (32). To verify (45) in (42), use (46) and (33). �
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