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Abstract

Based on recent evidence of fractional cointegration in commodity spot and futures
markets, we investigate whether a fractionally cointegrated model can provide statisti-
cally and/or economically significant forecasts of commodity returns. Specifically, we
propose to model and forecast commodity spot and futures prices using a fractionally
cointegrated vector autoregressive model that generalizes the more well-known cointe-
grated vector autoregressive model to allow fractional integration. We derive the best
linear predictor forecast for this model and perform an out-of-sample forecast compar-
ison with forecasts from the more standard (non-fractional) model. In our empirical
analysis to daily data on 15 commodity spot and futures markets, the fractional model
is found to be superior in terms of in-sample fit and also out-of-sample forecasting
based on statistical metrics of forecast comparison. We then analyze the economic
significance of the forecasts through a dynamic trading strategy based on a portfolio
with weights derived from a mean-variance utility function. This analysis leads to sta-
tistically significant and economically meaningful profits in the commodity markets,
and also shows that the fractional model generates higher profits on average compared
with the non-fractional model.
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1 Introduction

The forecastability of commodity market returns is a very active area of research in financial
economics. In particular, recent research has shown that commodity spot and futures prices
are fractionally cointegrated; see, inter alia, Baillie and Bollerslev (1994), Lien and Tse
(1999), Maynard and Phillips (2001), Coakley, Dollery, and Kellard (2011), and Dolatabadi,
Nielsen, and Xu (2014). The implication is that a fractionally cointegrated model may
provide a better statistical fit when modeling and forecasting commodity prices and returns.
Relatedly, the understanding of how commodity market return forecasts can be used to
devise trading strategies appears as of yet to be rather limited.
In this paper, we make two contributions to this literature. Our first contribution is

methodological. We propose to model and forecast commodity spot and futures prices using
the recently developed fractionally cointegrated vector autoregressive (FCVAR) model of
Johansen (2008) and Johansen and Nielsen (2012). Specifically, we derive the best linear
predictor for the FCVAR model and show that it takes a relatively simple form. We thus
demonstrate how to forecast commodity spot and futures prices and returns based on the FC-
VAR model, and we evaluate these using statistical measures of forecast performance. Our
second contribution is to investigate the economic significance of the FCVAR model fore-
casts through a dynamic trading strategy based on a portfolio of two assets with portfolio
weights derived from a mean-variance utility function and from returns forecasts. Through-
out, we compare with forecasts from the more standard (non-fractional) cointegrated vector
autoregressive (CVAR) model of Johansen (1995).
We apply the FCVAR model to spot and futures prices of 15 commodities and demon-

strate that it provides superior statistical in-sample fit compared with the more standard
CVAR model. We also estimate price discovery from both models, see Hasbrouck (1995),
Gonzalo and Granger (1995), Figuerola-Feretti and Gonzalo (2010), and Dolatabadi, Nielsen,
and Xu (2015). This tells us whether price discovery is by the commodity spot or futures
market, which may be important from a forecasting point of view since historical infor-
mation from the dominant market could be useful in forecasting prices and returns in the
non-dominant market. In any case, both the FCVAR and CVAR models are joint models of
the two prices series, and as such are able to take into account the price discovery information
in modeling and forecasting. With the FCVAR model we find that for 12 commodities the
futures market dominates price discovery, as much theory predicts (e.g., Hasbrouck, 1995),
whereas using the CVAR model price discovery is dominated by the futures market for only
10 commodities. In both cases, the empirical evidence favors price discovery in the spot
market for soybean, sugar, and crude oil.
In our empirical analysis we consider both short horizon (h = 1) and long horizon (h = 5

and h = 21) forecasting. Using a variety of out-of-sample statistical forecasting evaluation
metrics, we see that the FCVAR model tends to outperform the CVAR model in terms of
tests of forecast superiority, although these are not always significant. Thus, the FCVAR
model has superior statistical in-sample fit, and the out-of-sample forecasting results are less
strong but still suggest a slight advantage to the FCVAR model.
As an additional metric of forecast performance and comparison, we examine the economic–

as opposed to purely statistical– significance of returns forecasts. We do this by investigating
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whether the returns forecasts can generate significant excess returns when implemented in
a dynamic portfolio trading strategy. For our main empirical analysis we find that using
returns forecasts from both FCVAR and CVAR models in simple mean-variance trading
strategies leads to statistically significant and economically meaningful profits in the com-
modity markets, and furthermore that profits are higher on average when based on forecasts
from the FCVAR model than when based on forecasts from the CVAR model.
Our finding that profits from commodity markets are statistically significant and eco-

nomically meaningful are consistent with a broad range of studies which show, using dif-
ferent approaches, that commodity markets are profitable. For example, Miffre and Rallis
(2007), Szakmary, Shen and Sharma (2010), and Narayan, Ahmed, and Narayan (2014) show
profitability using technical trading and momentum trading strategies. However, given the
profitability of these approaches, limited focus has been on using a forecasting model-based
approach to estimate profits (an exception is Narayan, Narayan, and Sharma, 2013).
In spite of this, there is a clear acceptance of the fact that a forecasting based model

that draws its profitability analysis from a utility function, such as a mean-variance utility
function, has a theoretical appeal, see e.g. Marquering and Verbeek (2004) and Campbell
and Thompson (2008). On the basis of this evidence, commodity markets are treated as
an investment class. As the focus on theoretically motivated profitability analysis gains
momentum, following, for example, the work mentioned above, the emphasis on and hence
demand for appropriate forecasting models will increase.
We note from the outset that, although trading strategies based on commodity spot

prices are not really feasible, because it would be too expensive to take possession of the
commodity, we nonetheless consider simultaneous modeling of commodity spot and futures
prices. In terms of applying these as forecasting models for futures returns, it has no relevance
whether spot prices can be traded on or not, and hence this point is irrelevant for all our
results regarding futures markets, futures price and returns forecasting, and trading strategies
involving commodity futures. For trading strategies involving commodity spot markets,
these can still be considered a useful basis for comparison of forecast performance in terms
of economic significance, even if the trading strategies are infeasible; a related point was also
made in, e.g., Graham-Higgs, Rambaldi, and Davidson (1999), Wang (2000), and Narayan,
Narayan, and Sharma (2013). Thus, even if portfolios involving commodity spot positions
are infeasible, we consider such “artificial portfolios”as a means of forecast evaluation and
comparison.
Finally, to demonstrate the robustness of our empirical results, we repeat our analysis

with several different variations. First, in the forecasting models, we forecast returns over
both short and long horizons. Second, we use more than one out-of-sample forecast evaluation
technique. Third, when estimating profits using the mean-variance investor utility function,
where the choice of the investor’s risk aversion coeffi cient influences portfolio weights, we
consider both low, medium, and high risk-aversion investors. All these results confirm (i)
that portfolio returns are statistically different from zero and economically meaningful and
(ii) portfolio returns derived from FCVAR model forecasts are higher on average than those
obtained from CVAR model forecasts.
The remainder of the paper is organized as follows. The econometric model is explained

in the next section, where, in particular, the best linear predictor is derived and forecasting
is discussed in Section 2.4. In Section 3 we discuss the commodity data and conduct some
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preliminary data analysis. Section 4 contains the empirical results, and is divided into
subsections on estimation, statistical forecast comparison, economic significance of forecasts,
and alternative risk-aversion results. Finally, in Section 5 we provide concluding remarks.

2 Econometric methodology: the fractionally cointe-
grated VAR model

Our empirical analysis applies the FCVAR model, see Johansen (2008) and Johansen and
Nielsen (2012), as well as its non-fractional counterpart. The model is a generalization of
Johansen’s (1995) CVAR model to allow for fractionally integrated (or just fractional) time
series.

2.1 Fractional integration and cointegration

Fractional time series models are based on the fractional difference operator

∆dXt =
∞∑
n=0

πn(−d)Xt−n, (1)

where the fractional coeffi cients πn(u) are defined in terms of the binomial expansion (1 −
z)−u =

∑∞
n=0 πn(u)zn, i.e.,

πn(u) =
u(u+ 1) · · · (u+ n− 1)

n!
.

For details and for many intermediate results regarding this expansion and the fractional
coeffi cients, see, for example, Johansen and Nielsen (2014, Appendix A). Effi cient calculation
of fractional differences, which we apply in our estimation, is discussed in Jensen and Nielsen
(2014).
With the definition of the fractional difference operator in (1), a time series Xt is said to

be fractional of order d, denoted Xt ∈ I(d), if ∆dXt is fractional of order zero, i.e., if ∆dXt ∈
I(0). The latter property can be defined in the frequency domain as having spectral density
that is finite and non-zero near the origin or in terms of the linear representation coeffi cients
if the sum of these is non-zero and finite, see, for example, Johansen and Nielsen (2012). An
example of a process that is fractional of order zero is the stationary and invertible ARMA
model. Finally, then, a time series Xt ∈ I(d) for which one or more linear combinations are
fractional of a lower order, i.e., for which there exists a p×r matrix β such that β′Xt ∈ I(d−b)
with b > 0, is said to be (fractionally) cointegrated.

2.2 The FCVAR model and interpretation

For a time series Yt of dimension p, the well-known CVAR model is given in error correction
form as

∆Yt = αβ′Yt−1 +
k∑
i=1

Γi∆Yt−i + εt = αβ′LYt +
k∑
i=1

ΓiL
i∆Yt + εt, (2)
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where, as usual, εt is p-dimensional independent and identically distributed with mean zero
and covariance matrix Ω. The simplest way to derive the FCVAR model from the CVAR
is to replace the difference and lag operators, ∆ and L = 1 − ∆, in (2) by their fractional
counterparts, ∆b and Lb = 1 − ∆b, respectively, and apply the resulting model to Yt =
∆d−bXt. We then obtain

∆dXt = αβ′∆d−bLbXt +
k∑
i=1

Γi∆
dLibXt + εt, (3)

where ∆d is the fractional difference operator, and Lb = 1−∆b is the fractional lag operator.1

Model (3) nests Johansen’s (1995) CVAR model in (2) as the special case d = b = 1.
Some of the parameters are well-known from the CVAR model and these have the usual
interpretations also in the FCVAR model. The most important of these are the long-run
parameters α and β, which are p × r matrices with 0 ≤ r ≤ p. The rank r is termed
the cointegration, or cofractional, rank. The columns of β constitute the r cointegration
(cofractional) vectors such that β′Xt are the cointegrating combinations of the variables in
the system, i.e. the long-run equilibrium relations. The parameters in α are the adjustment
or loading coeffi cients which represent the speed of adjustment towards equilibrium for each
of the variables. The short-run dynamics of the variables are governed by the parameters
(Γ1, . . . ,Γk) in the autoregressive augmentation.
The FCVAR model has two additional parameters compared with the CVAR model,

namely the fractional parameters d and b. Here, d denotes the fractional integration order of
the observable time series. As would presumably be the case for most– if not all– financial
asset orices, we assume in our study that these are integrated of order d = 1. That is, we
consider d = 1 to be fixed and known, and therefore not estimated. On the other hand, the
parameter b is estimated jointly with the remaining parameters, and determines the degree
of fractional cointegration, i.e. the reduction in fractional integration order of β′Xt compared
to Xt itself.
The FCVAR model (3) thus has the same main structure as the standard CVAR model

(2), in that it allows for modeling of both cointegration and adjustment towards equilibrium,
but is more general since it accommodates fractional integration and cointegration.
We note that the fractional difference as defined in (1) is an infinite series, but any

observed sample will include only a finite number of observations. This makes calculation of
the fractional differences as defined in (1) impossible. In practice, therefore, the summation
in (1) would need to be truncated at n = t − 1, and the bias introduced by application of
such a truncation is analyzed by Johansen and Nielsen (2014) using higher-order expansions
in a simpler model. They show that, albeit in a simpler model, this bias can be avoided by
including a level parameter, µ, that shifts each of the series by a constant. We follow this
suggestion (and set d = 1), and consider the unobserved components formulation

Xt = µ+X0
t , ∆X0

t = Lbαβ
′X0

t +

k∑
i=1

Γi∆L
i
bX

0
t + εt (4)

1Both the fractional difference and fractional lag operators are defined in terms of their binomial expansion
in the lag operator, L, as in (1). Note that the expansion of Lb has no term in L0 and thus only lagged
disequilibrium errors appear in (3).
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from which we easily derive the model

∆(Xt − µ) = αβ′∆1−bLb(Xt − µ) +
k∑
i=1

Γi∆L
i
b(Xt − µ) + εt. (5)

The formulation (5) includes the so-called restricted constant, which may be obtained
as ρ′ = −β′µ and is interpreted as the mean level of the long-run equilibria when these are
stationary, i.e. Eβ′Xt + ρ′ = 0. In the CVAR model this parameter enters as

∆Yt = α(β′Yt−1 + ρ′) +
k∑
i=1

Γi∆Yt−i + εt. (6)

More generally, the level parameter µ in (5) is meant to accommodate a non-zero starting
point for the first observation on the process, i.e., for X1. Our empirical work applies the
version of the FCVAR model given in (5) and we provide comparisons with the CVAR model
in (6).
The asymptotic analysis of the FCVAR model is provided in Johansen and Nielsen (2010,

2012), where it is shown that the maximum likelihood estimator of (b, α,Γ1, . . . ,Γk) is asymp-
totically normal, while the maximum likelihood estimator of (β, ρ) is asymptotically mixed
normal when b > 1/2 and asymptotically normal when b < 1/2. The important implication
is that standard asymptotic inference can be applied using (quasi) likelihood ratio tests and
the χ2-distribution.
Likelihood ratio (trace-type) tests for cointegration rank can be calculated as well, and

hypotheses on the cointegration rank can be tested in the same way as in the CVAR model.
In the FCVAR model, the asymptotic distribution of the tests for cointegration rank depends
on the unknown (true value of the) scalar parameter b, which complicates empirical analysis
compared to the CVAR model. However, the distribution can be simulated on a case-by-
case basis. The calculation of maximum likelihood estimators and test statistics is discussed
in detail in Johansen and Nielsen (2012) and Nielsen and Popiel (2014), with the latter
providing Matlab computer programs that we apply in our empirical analysis.

2.3 Economic model and price discovery

Fractional cointegration between spot and futures log-prices can be derived from an economic
model. Specifically, following Figuerola-Ferretti and Gonzalo (2010), Dolatabadi, Nielsen,
and Xu (2014, 2015) consider an economic model within which spot log-prices are assumed
to be I(1) and no-arbitrage conditions imply that futures log-prices are then also I(1) and
the two log-prices are fractionally cointegrated. It is shown how the FCVAR model provides
a natural methodology for the analysis of the relation between spot and futures log-prices,
and how the model can be used to analyze price discovery as well. In the notation of the
previous subsections, we then let Xt = (st, ft)

′, where st and ft denote the log-spot and
log-futures prices at time t, respectively.
Specifically, Xt may be decomposed into a transitory (stationary) part, β′Xt, and a

permanent part, Wt = α′⊥Xt, using the identity

Xt = (β⊥(α′⊥β⊥)−1α′⊥ + α(β′α)−1β′)Xt

= A1Wt + A2β
′Xt.
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Here, Wt is the common permanent component of Xt; that is, in the case of spot and futures
log-prices, it is the long-run dominant (fundamental or effi cient) price. Thus, the proportions
of price discovery attributable to each market may be inferred from the elements of α⊥, after
being normalized so that the elements sum to unity. For further details, we refer the reader
to Gonzalo and Granger (1995) and Dolatabadi, Nielsen, and Xu (2015).

2.4 Forecasting from the FCVAR model

We now discuss how to forecast log-prices, that is Xt, as well as returns, ∆Xt, from the
FCVAR model. Because the model is autoregressive, the best linear predictor takes a simple
form and is relatively straightforward to calculate. We note that ∆(Xt+1 − µ) = Xt+1 −Xt

for t ≥ 1 and rearrange (5) as

Xt+1 = Xt + αβ′∆1−bLb(Xt+1 − µ) +
k∑
i=1

Γi∆L
i
b(Xt+1 − µ) + εt+1. (7)

Since Lb = 1−∆b is a lag operator, so that LibXt+1 is known at time t, this equation can be
used to calculate forecasts from the model.
We let conditional expectation given the information set at time t be denoted Et(·), and

the best linear predictor forecast of any variable Zt+1 given information available at time
t be denoted Ẑt+1|t = Et(Zt+1). Clearly, we then have that the forecast of the innovation
for period t + 1 at time t is ε̂t+1|t = Et(εt+1) = 0, and X̂t+1|t is then easily found from
(7). Inserting also coeffi cient estimates based on data available up to time t, denoted2

(b̂, µ̂, α̂, β̂, Γ̂1, . . . , Γ̂k), we have that

X̂t+1|t = Xt + α̂β̂′∆1−b̂Lb̂(Xt+1 − µ̂) +
k∑
i=1

Γ̂i∆L
i
b̂
(Xt+1 − µ̂). (8)

This defines the forecast of log-prices for period t+ 1 given information at time t. From (8)
we can derive the forecast of returns as

r̂t+1|t = 100(X̂t+1|t −Xt). (9)

We note that, after constructing a series of one-step ahead log-price forecasts, X̂t+1|t for a
range of t, the return forecast (9) is different from 100∆X̂t+1|t, which may seem the obvious
forecast of returns based on forecasts of log-prices, given the definition of returns as 100
times the first difference of log-prices. However, since Xt is known at time t, clearly (9) is
the appropriate forecast of returns.
Multi-period ahead forecasts can be generated recursively. That is, to calculate the h-step

ahead forecast, we first generalize (8) as

X̂t+j|t = X̂t+j−1|t + α̂β̂′∆1−b̂Lb̂(X̂t+j|t − µ̂) +
k∑
i=1

Γ̂i∆L
i
b̂
(X̂t+j|t − µ̂), (10)

2To emphasize that these estimates are based on data available at time t, they could be denoted by a
subscript t. However, to avoid cluttering the notation we omit this subscript and let it be understood in the
sequel.
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Figure 1: Daily commodity log-prices
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Notes: Each plot shows daily commodity log-prices. The blue lines are spot prices and the red lines are
futures prices. The sample is 3/30/1983—10/12/12, except for crude oil where it is 7/24/89—10/12/12.

where X̂s|t = Xs for s ≤ t. Then forecasts are calculated recursively from (10) for j =

1, 2, . . . , h to generate h-step ahead forecasts of log-prices, X̂t+h|t. Given these, h-step ahead
forecasts of returns are calculated as in (9) using the recursively generated log-price forecasts
on the right-hand side. We will apply the returns forecast (9) in our empirical analysis below
for several forecast horizons, h, and we will compare with the similarly obtained returns
forecast based on the CVAR model (6).

3 Preliminary analysis of the data

In our empirical analysis we have data on 15 commodity spot and futures markets. These
are canola, cocoa, coffee, copper, corn, cotton, crude oil, gold, palladium, silver, soybean,
soy meal, soy oil, sugar, and wheat. The data set is obtained from Narayan, Ahmed and
Narayan (2014), and we refer the reader to this paper for details on the data such as the
precise construction of the futures price series. The data are daily (5-day) time-series on
spot and futures prices for each commodity starting on March 30, 1983, and ending October
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Figure 2: Daily commodity spot returns
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Notes: Each plot shows daily commodity spot returns. The sample is 3/30/1983—10/12/12, except for crude
oil where it is 7/24/89—10/12/12.

12, 2012, for a total of 7708 observations. For crude oil the sample period is slightly shorter,
starting on July 24, 1989, and ending October 12, 2012, yielding 6060 observations.
The commodity spot and futures log-price series and corresponding spot and futures

returns are plotted in Figures 1—3. Returns are computed as the first difference of the
log-price series, multiplied by 100 to yield a (continuously compounded) percentage return.
Three tendencies emerge from the figures. First, the log-price series do not appear to have
obvious time trends in Figure 1. This finding was supported by statistical tests in the
estimation of our models below, where any trend included was statistically insignificant and
therefore removed. Second, the spot and futures log-price series appear to move together
in the long-run, supporting the notion that they are cointegrated. Third, there is clearly
heterogeneity among the commodities. For example, the variance of returns in Figures 2
and 3 varies substantially across commodities.
In Table 1 we present some descriptive statistics for each of the commodity spot and

futures returns series. These statistics confirm the tendencies observed in the figures. The
sample mean returns for the spot market vary from 0.004% to 0.031% per day and in the
futures market from −0.001% to 0.030% per day. A similar disparity in sample standard
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Figure 3: Daily commodity futures returns
(a) Canola
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(l) Soy meal
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(m) Soy oil
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Notes: Each plot shows daily commodity futures returns. The sample is 3/30/1983—10/12/12, except for
crude oil where it is 7/24/89—10/12/12.

deviation, skewness, and kurtosis is found. The implication here is that these specific com-
modities can potentially offer investors quite different risk-return trade-offs when considered
from an investment portfolio point of view. The last column in the table reports the first-
order autocorrelation coeffi cient for each series. These are all quite small, ranging from
−0.085 to 0.095, but several are in fact statistically significant due to the large sample size.
Nonetheless, the small autocorrelation coeffi cients suggest that all returns are clearly sta-
tionary I(0) processes, thus confirming our modeling choice of fixing d = 1 in the FCVAR
analysis, but also suggest that past returns alone will likely not be very good predictors of
returns in the future.

4 Empirical results and economic significance

The section has three parts. In the first part, we present estimation results for the FCVAR
and CVAR models based on the first 75% of the sample. We use a relatively large fraction
of the total sample for estimation because the fractional models tend to require large sample
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Table 1: Selected descriptive statistics of commodity spot and futures returns

Spot market returns Futures market returns

Commodity Mean S.d. Skew. Kurt. AC Mean S.d. Skew. Kurt. AC

Canola 0.009 1.437 −0.282 13.968 0.002 0.009 1.295 −1.169 21.957 0.095
Cocoa 0.005 1.784 −0.018 6.625 −0.085 0.004 1.929 −0.007 5.962 0.004
Coffee 0.004 1.931 −0.042 17.243 0.003 0.003 2.279 0.012 11.817 0.000
Copper 0.020 1.656 −0.294 8.725 −0.039 0.021 1.722 −0.426 8.035 −0.032
Corn 0.011 1.664 −0.139 6.546 0.034 0.012 1.659 −1.003 21.212 0.053
Cotton 0.000 1.979 −12.412 570.578 0.014 −0.001 1.956 −8.933 347.753 0.065
Crude oil 0.031 2.341 −0.979 22.202 0.014 0.030 2.412 −0.891 20.238 −0.004
Gold 0.019 0.995 −0.131 10.097 −0.029 0.019 1.003 −0.103 10.153 −0.006
Palladium 0.022 1.958 −0.106 12.200 0.019 0.024 1.961 −0.234 8.802 0.082
Silver 0.015 1.794 −1.063 15.324 −0.016 0.015 1.802 −0.697 10.896 −0.009
Soybean 0.012 1.503 −0.568 7.950 −0.009 0.011 1.539 −0.934 20.509 0.018
Soy meal 0.012 1.699 −0.200 6.556 0.030 0.012 1.678 −0.904 12.272 0.056
Soy oil 0.013 1.570 0.020 5.137 0.020 0.013 1.509 −0.047 5.661 0.058
Sugar 0.015 2.231 −0.133 9.567 −0.039 0.014 2.514 0.218 15.249 −0.044
Wheat 0.011 2.049 −0.273 9.052 −0.019 0.011 1.857 −1.217 29.765 −0.021

Notes: This table reports selected descriptive statistics for the 15 commodity spot and futures return series.

Specifically, the table reports the sample mean, standard deviation, skewness, kurtosis, and the first-order

sample autocorrelation of returns (in percentage).

sizes for reliable estimation. In the second part, we present and discuss results for out-of-
sample forecasting for the remaining part of the sample, based on the FCVAR and CVAR
models. The third part of the results is about the economic significance of return forecasts.
In other words, this is where we evaluate the forecasting models by asking: how beneficial
are these forecasting models to investors?

4.1 Estimation results

Before we can estimate the FCVAR model and apply it in forecasting, we have to make
some model selection choices. First, because we include the level parameter µ in the FCVAR
model, we apply estimation conditional on N = 0 initial values for all our results, following
Johansen and Nielsen (2014). Experimentation with different values of N showed little effect.
For the CVAR model we used the formulation with a restricted constant term and applied
estimation conditional on k + 1 initial values, such that maximum likelihood estimation is
reduced rank regression (Johansen, 1995). Second, we have to specify the lag length, k, in
the vector error correction model (5). We apply several different statistics to carefully select
the lag length, namely the Bayesian Information Criterion (BIC), the LR test statistic for
significance of Γk, and univariate Ljung-Box Q tests (with h = 10 lags) for each of the two
residual series, in each case based on the model that has full rank r = p, where p is the
dimension of the system. In addition, we examined the unrestricted estimates of b and β2
which, when the lag length is misspecified, will sometimes be very far from what should
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Table 2: Estimation results for CVAR and FCVAR models of commodity prices

CVAR model FCVAR model

Commodity k −β̂2 −ρ̂ α̂⊥,1 α̂⊥,2 k b̂ se(b̂) −β̂2 β̂′µ̂ α̂⊥,1 α̂⊥,2

Canola 4 1.044 −0.251 0.048 0.952 3 0.424 0.068 1.291 −1.694 0.439 0.561
Cocoa 7 0.915 0.784 0.954 0.046 7 0.217 0.008 0.882 0.999 0.109 0.891
Copper 3 0.991 0.068 0.124 0.876 0 0.337 0.032 1.054 −0.177 0.056 0.944
Coffee 2 0.956 0.303 0.171 0.829 1 0.535 0.056 1.034 −0.077 0.437 0.563
Corn 1 1.057 −0.298 0.305 0.695 1 0.922 0.044 1.058 −0.302 0.327 0.673
Cotton 0 1.073 −0.349 0.108 0.891 0 1.025 0.033 1.063 −0.312 0.101 0.898
Crude oil 1 1.052 −0.236 0.729 0.270 1 0.699 0.052 1.078 −0.314 0.984 0.016
Gold 2 1.000 −0.003 0.226 0.773 0 0.758 0.018 1.003 −0.019 0.136 0.863
Palladium 3 1.002 0.000 0.333 0.666 3 0.987 0.034 1.000 0.012 0.323 0.676
Silver 3 0.993 0.042 0.231 0.768 2 0.632 0.048 0.995 0.027 0.190 0.810
Soybean 1 1.029 −0.201 0.628 0.371 1 0.868 0.035 1.027 −0.196 0.659 0.340
Soy meal 3 1.042 −0.211 0.254 0.745 4 0.614 0.052 0.994 0.021 0.005 0.994
Soy oil 3 1.169 −0.519 0.881 0.118 2 0.433 0.052 1.432 −1.230 0.045 0.954
Sugar 3 1.119 −0.219 0.861 0.138 2 0.471 0.081 1.021 −0.126 0.956 0.043
Wheat 1 1.110 −0.652 0.470 0.529 1 0.992 0.050 1.110 −0.653 0.471 0.528

Notes: This table reports estimation results for CVAR and FCVAR models applied to the first 75% of

the sample of commodity spot and futures log-prices. The columns include lag-order (k), estimates of the

cointegration coeffi cient, −β̂2, and the restricted constant term, −ρ̂ or β̂′µ̂, as well as the price discovery
coeffi cients α̂⊥,1 and α̂⊥,2, normalized to add to unity. For the FCVAR, we also report the estimated

fractional parameter, b̂, and its standard error, se(b̂).

be expected. In particular, due to a non-identification issue in the FCVAR model with
misspecified lag length, it is sometimes found that, e.g., b̂ = 0.05 or similar, see Johansen
and Nielsen (2010, Section 2.3) for a theoretical discussion of this phenomenon. For each
commodity, we first use the BIC as a rough guide to choose the lag length, and starting
from there we find the nearest lag length which satisfies the criteria (i) Γk is significant
based on the LR test, (ii) the unrestricted estimates of b and β2 are reasonable (very widely
defined), and (iii) the Ljung-Box Q tests for serial correlation in the two residual series do
not show signs of misspecification. Third, we select the cointegrating rank, r, by sequentially
testing (using the LR trace statistic) the hypotheses r = 0, 1, 2 until rejection. The critical
values for the rank test are simulated case-by-case for the FCVAR model, and for the CVAR
model we used Johansen (1995, Table 15.2). The selected cointegration rank is then the last
non-rejected hypothesis.
Table 2 reports results3 from estimation of CVAR and FCVAR models for commodity

spot and futures log-prices, i.e. with Xt = (st, ft)
′ in the notation of Section 2. For the

estimation we use only the first 75% of the sample, and reserve the remainder for out-of-
sample forecasting. This leaves T = 5781 observations in the estimation sample, except for
crude oil where T = 4545. Several conclusions emerge from Table 2. First of all, fewer

3Full estimation results are available from the authors upon request.
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lags are usually needed in the lag-augmentation for the FCVAR model compared with the
CVAR model. This is expected since the FCVAR model includes the additional parameter
b to model dependence. However, although the FCVAR model in this way includes one
additional parameter, for each additional lag included in the CVAR model, four additional
parameters need to be estimated, and hence the CVAR model in most cases includes a larger
number of parameters than the FCVAR model.
Secondly, in spite of the larger number of parameters in the CVAR model, the FCVAR

model provides a much better statistical in-sample fit in most cases. This is seen through
the extremely strong statistical significance of the difference of the fractional parameter,
b, from unity, but also from the maximized log-likelihood and BIC values (not reported).
The point estimates b̂ range from just over 0.2 to about 1.0, showing a wide variety of
fractional cointegration properties across the different commodities. The estimates −β̂2
of the cointegration coeffi cients are close to unity, as expected from an effi cient markets
hypothesis point of view, although they may deviate from unity still. The latter reflects a
market in long-run backwardation or contango, see Figuerola-Ferretti and Gonzalo (2010)
or Dolatabadi, Nielsen, and Xu (2014).
The final two columns for each model shows the price discovery coeffi cients, α̂⊥,1 and

α̂⊥,2, normalized to add to unity. The first is the proportion of price discovery in the spot
market, and the second is the proportion of price discovery in the futures market. It is
seen that, according to both the CVAR and FCVAR models, the futures market dominates
price discovery for most commodities, as expected from theory (e.g., Hasbrouck, 1995). In
particular, according to the CVAR model, the spot market is dominant in the price discovery
process for five commodities (cocoa, crude oil, soybean, soy meal, and sugar), and according
to the FCVAR for only three commodities (crude oil, soybean, and sugar). Thus, for the
latter three commodities, there is strong statistical evidence of price discovery in the spot
market.
Our findings on price discovery connects with the literature on price discovery in com-

modity markets; see, e.g., Figuerola-Ferretti and Gonzalo (2010), Dolatabadi, Nielsen, and
Xu (2015), and the papers cited therein. In this literature there are several studies which
show that price discovery is dominated by the futures market. Our study confirms this
broad view, but at the same time points to three commodities where price discovery is not
dominated by the futures market. Thus, while our results are consistent in spirit with the
literature, suggesting that for most commodities futures market dictates price discovery, this
evidence is not completely general– a finding consistent with Dolatabadi, Nielsen, and Xu
(2015).
These price discovery results are not trivial outcomes because the dominance of one mar-

ket over another indicates the market which has the highest information content. This has
implications for investors because the market which has most information can then be used
to forecast the market which has less information. In univariate regression-style forecast-
ing models, one would then consider using past information from the dominant market to
forecast prices or returns in the non-dominant market. However, our FCVAR (and CVAR)
models are joint models for spot and futures price series, and will therefore forecast both
series simultaneously and automatically take the price discovery information into account.
In our forecasting analysis, we will explicitly consider the forecasting performance (in terms
of statistical or economic significance) of the dominant market vis-á-vis the non-dominant
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Figure 4: Daily canola forecasts
(a) Log-spot price forecasts
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(b) Log-futures price forecasts
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(c) Spot return forecasts
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(d) Futures return forecasts
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Notes: The four plots show forecasts as well as subsequently realized values for (a) log-spot prices, (b)
log-futures prices, (c) spot returns, and (d) futures returns. Each plot shows the last 20 observations in the
estimation sample together with the first 50 out-of-sample one-step ahead forecasts and the subsequently
realized values. In each subplot there are three lines: The blue denotes the data observations, the red line
are the recursive FCVAR forecasts, and the green line the recursive CVAR forecasts.

market to analyze their relative forecastability.

4.2 Statistical out-of-sample forecast comparison

In this subsection we move on to out-of-sample forecasting. Specifically, starting from the
estimation results in the previous subsection, we recursively generate one-step ahead (daily)
returns forecasts, re-estimating the model each period. We generate a total of 1927 out-of-
sample returns forecasts in this manner (1515 for crude oil), to match the remaining 25%
of our observations. This allows us to compare our forecasts with the actually observed
out-of-sample returns series.
In Figure 4 we show forecasts as well as subsequently realized values for daily forecasting

(h = 1) of canola (a) log-spot prices, (b) log-futures prices, (c) spot returns, and (d) futures
returns. Each subplot shows the last 20 observations in the estimation sample (i.e. Xt for
t = 5762, . . . , 5781) together with the first 50 out-of-sample one-step ahead forecasts (X̂t+1|t
for t = 5781, . . . , 5830) and the corresponding realized values (Xt for t = 5782, . . . , 5831).
In each subplot there are three lines: The blue denotes the data observations, the red line
are the recursive FCVAR forecasts, and the green line the recursive CVAR forecasts. It is
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Figure 5: Daily soybean equilibrium error forecasts
(a) CVAR equilibrium error forecasts
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(b) FCVAR equilibrium error forecasts
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Notes: The two plots show the last observation of the model equilibrium error, i.e. β̂′Xt, together with the
recursive h-period ahead forecasts, β̂′X̂t+h|t for h = 1, . . . , 20, generated from (a) the CVAR model and (b)
the FCVAR model. In each panel, the mean is indicated by a horizontal line given by −ρ̂′ in the CVAR case
and β̂′µ̂ in the FCVAR case.

noted that the log-price forecasts track the subsequently realized observations quite well,
whereas the returns are clearly predicted much less accurately. This is, of course, expected
from no-arbitrage theory of effi cient markets. However, we do note a substantially better
forecasting performance of spot returns compared with futures returns, which could be due
to the fact that the latter is the dominant price discovery market for canola (see Table 2)
and hence should be more diffi cult to predict.
The difference between FCVAR model forecasts and CVAR model forecasts shows most

clearly in the forecasts of the equilibrium error series, β′Xt, which is depicted in Figure
5. Here we show the last (daily) observation on the model equilibrium error (i.e. β̂′Xt for
t = 5781), together with the recursive h-period ahead forecasts of these, β̂′X̂t+h|t for t = 5781
and h = 1, . . . , 20, generated from (a) the CVAR model and (b) the FCVAR model. In each
panel, the horizontal line indicates the mean of the equilibrium relation, given by −ρ̂ in the
CVAR case and by β̂′µ̂ in the FCVAR case. This time, the forecasts are depicted for soybean
instead of canola. This is because the difference shows more clearly for soybean since b̂ is
quite different from one in the FCVAR model and the lag orders are smaller (see Table 2).
The latter implies that the short-run dynamics do not influence the forecasts as much.
It is clear from Panel (a) of Figure 5 that the CVAR model equilibrium error forecasts

return to their mean value very quickly, within just a couple of days. This reflects the I(0)
nature of β′Xt in the CVAR model. On the other hand, the FCVAR model equilibrium
error forecasts in Panel (b) of Figure 5 revert to their mean value only very slowly, reflecting
the fractional integration nature of β′Xt in the FCVAR model. This feature of the multi-
step ahead forecasts generated by the FCVAR model is likely to impact the forecasting
performance of the FCVAR model relative to the CVAR model at longer horizons, which we
will investigate below.
In Table 3 we report some out-of-sample forecast comparison statistics for the one-step

ahead (daily) forecasts calculated from either the FCVAR model or the CVAR model. In
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Table 3: Statistical out-of-sample forecast comparison at daily (h = 1) horizon

CW statistic Relative RMSE R2OOS CVAR R2OOS FCVAR

Commodity Spot Futures Spot Futures Spot Futures Spot Futures

Canola 1.3125∗ 2.0496∗∗ 0.0358 −0.2574 0.4061 −0.0021 0.4057 0.0031
Cocoa 1.9748∗∗ 2.6484∗∗∗ −0.1174 −0.1888 0.0137 −0.0047 0.0160 −0.0009
Copper 1.4817∗ 0.4015 −0.0665 0.0140 0.0018 0.0000 0.0031 −0.0002
Coffee 10.4002∗∗∗ 0.5068 −2.4600 0.0439 0.4386 0.0003 0.4659 −0.0005
Corn 0.6461 0.6700 −0.0141 −0.0147 0.0009 0.0030 0.0012 0.0033
Cotton 0.9068 −0.3591 −0.0155 0.0015 −0.0047 0.0020 −0.0044 0.0019
Crude oil 2.7330∗∗∗−0.1680 −0.2371 0.3108 −0.0067 −0.0005 −0.0019 −0.0067
Gold 1.4257∗ −1.0901 −0.0743 0.1981 −0.0399 0.0426 −0.0383 0.0388
Palladium 2.5913∗∗∗ 0.5101 −0.0670 −0.0050 0.1140 0.0063 0.1152 0.0064
Silver 0.6733 1.3597∗ 0.0333 −0.0921 −0.0740 0.0204 −0.0747 0.0222
Soybean −0.2719 1.8780∗∗ 0.0587 −0.3402 0.0103 −0.0080 0.0092 −0.0012
Soy meal 1.3338∗ 1.5361∗ 0.0178 −0.0749 0.0055 0.0055 0.0052 0.0070
Soy oil 0.4221 1.2459 −0.0659 −0.0670 0.0049 −0.0056 0.0062 −0.0043
Sugar 0.4645 1.9495∗∗ 0.1252 −0.1104 0.0511 −0.0015 0.0487 0.0008
Wheat −0.5548 −0.4826 0.0090 0.0061 −0.0030 −0.0035 −0.0032 −0.0036

Notes: This table reports out-of-sample forecast comparison statistics for one-step ahead (h = 1) returns

forecasts. The statistics reported are the Clark and West (2007) test statistic, the relative RMSE, and the

out-of-sample R2. The CW statistic is asymptotically standard normally distributed and positive values

favors the FCVAR model. Statistical significance (one-sided) at the 10%, 5%, and 1% level is denoted by
∗, ∗∗, and ∗∗∗, respectively. The relative RMSE is calculated such that it favors FCVAR model when it is

negative.

particular, we first report the Clark and West (2007, Section 2) test statistic for equal
predictive ability, which is a modification of the Diebold and Mariano (1995) test statistic to
account for the fact that the CVAR model is nested within the FCVAR model class4 (see also
Giacomini and White, 2006, for the point about nested model classes). The CW statistic is
asymptotically standard normally distributed and favors the FCVAR model forecasts when
it is positive; usually this is tested as a one-sided test, and we report one-sided significance
using asterisks in the table. The next statistic is the relative root mean squared error
(RMSE) of the two forecasts (from the FCVAR and CVAR models, respectively), and this
is calculated such that negative values favor the FCVAR model forecasts. Finally, we report
the out-of-sample R2 for both sets of forecasts.
The results in Table 3 tend to favor the FCVAR model, although the CW statistic is

not always significant. Specifically, the CW statistic favors the FCVAR model forecasts in
13/15 spot markets and 12/15 futures markets, but it is significant at the 10% level or better
in only 8/15 and 6/15 cases, respectively. The relative RMSE prefers the FCVAR model
forecasts in 9/15 commodities for both the spot and futures markets. In our discussion of
price discovery, we mentioned the possibility that it may be advantageous to an investor to

4We are grateful to Peter Extercate for bringing this point to our attention.
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Table 4: Statistical out-of-sample forecast comparison at weekly (h = 5) horizon

CW statistic Relative RMSE R2OOS CVAR R2OOS FCVAR

Commodity Spot Futures Spot Futures Spot Futures Spot Futures

Canola 2.6438∗∗∗ 0.9552 −1.2802 −0.1717 0.0873 0.0037 0.1106 0.0071
Cocoa 1.8787∗∗ 1.7968∗∗ −0.5961 −0.5541 0.0749 −0.0004 0.0859 0.0107
Copper 2.0594∗∗ −0.7140 −0.4752 0.0883 0.0057 0.0003 0.0151 −0.0015
Coffee 1.3259∗ 0.7738 −0.2470 0.0706 0.0604 0.0039 0.0650 0.0025
Corn 0.1980 0.6900 0.2187 −0.0623 −0.0007 −0.0020 −0.0051 −0.0007
Cotton −1.3679 1.9168∗∗ 1.5911 −0.3662 −0.0032 0.0032 −0.0354 0.0105
Crude oil 0.5499 0.1949 −0.0779 1.5238 0.0077 0.0075 0.0093 −0.0230
Gold −0.2532 −0.1753 0.0834 0.0278 −0.0116 0.0070 −0.0133 0.0064
Palladium 1.8570∗∗ 0.3850 −0.3942 0.0233 0.0309 0.0060 0.0385 0.0056
Silver −0.2228 1.0889 0.0578 −0.2185 −0.0224 0.0067 −0.0236 0.0111
Soybean −0.2149 0.4864 0.0437 0.1782 0.0068 −0.0034 0.0059 −0.0070
Soy meal 1.0070 −0.5697 −0.6652 −0.0150 0.0022 −0.0017 0.0154 −0.0014
Soy oil 1.4286∗ 0.6064 −0.1786 0.2042 0.0063 0.0022 0.0098 −0.0018
Sugar 0.2205 2.5928∗∗∗ 0.0251 −1.0260 −0.0066 0.0141 −0.0071 0.0342
Wheat −0.2891 −0.6578 0.5382 0.2557 −0.0014 −0.0016 −0.0122 −0.0068

Notes: This table reports out-of-sample forecast comparison statistics for one-week ahead (h = 5) non-

overlapping returns forecasts. The statistics reported are the Clark and West (2007) test statistic, the relative

RMSE, and the out-of-sample R2. The CW statistic is asymptotically standard normally distributed and

positive values favors the FCVAR model. Statistical significance (one-sided) at the 10%, 5%, and 1% level is

denoted by ∗, ∗∗, and ∗∗∗, respectively. The relative RMSE is calculated such that it favors FCVAR model

when it is negative.

invest in the non-dominant price discovery market because returns may be easier to forecast
in that market. Therefore, the best forecast model for the non-dominant market for each
commodity is of particular importance. When considering only the non-dominant market,
the CW statistics show that the FCVAR model forecasts are preferred in 13/15 cases, with
9 of these being significant at the 10% level or better.
Where the CW statistic and relative RMSE are both statistical measures of forecast

comparison, the final columns in Table 3 report the out-of-sample R2 for both sets of return
forecasts. It is seen from these columns that the forecastability of returns vary greatly
across commodities, and also between spot and futures markets for the same commodity.
Comparing the FCVAR and CVAR forecasts, the out-of-sample R2 values are quite similar,
which is perhaps not surprising given the forecast comparison statistics in the previous
columns. In most cases the out-of-sample R2 is higher for the spot market than for the
futures market, confirming earlier results on the relative forecastability of returns from the
two markets.
Before moving on to analyzing economic significance, we investigate the robustness of

the Table 3 results by considering forecasting at longer horizons. Specifically, we consider
forecasting at the weekly and monthly horizons based on daily data, i.e., horizons of h = 5 and
h = 21 periods ahead. The motivation is that these horizons could correspond to an investor
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Table 5: Statistical out-of-sample forecast comparison at monthly (h = 21) horizon

CW statistic Relative RMSE R2OOS CVAR R2OOS FCVAR

Commodity Spot Futures Spot Futures Spot Futures Spot Futures

Canola 0.1632 0.6326 0.8606 −0.2895 −0.0022 −0.0154 −0.0195 −0.0095
Cocoa −0.1954 1.2195 1.1389 −0.5767 0.0155 0.0148 −0.0071 0.0262
Copper −0.1883 0.3597 0.1550 −0.0369 0.0021 −0.0021 −0.0010 −0.0014
Coffee 2.5300∗∗∗ 0.0716 −5.9748 0.5427 −0.1412 0.0201 −0.0089 0.0094
Corn 0.6703 1.4352∗ −0.3193 −0.2064 0.0074 −0.0145 0.0137 −0.0103
Cotton 0.2154 −0.1786 −0.0357 0.0091 −0.0544 0.0158 −0.0536 0.0156
Crude oil 2.2915∗∗ 0.0788 −1.2836 0.9617 −0.0185 0.0178 0.0074 −0.0011
Gold 1.8804∗∗ 0.8343 −0.2065 −0.0943 −0.0072 −0.0128 −0.0030 −0.0109
Palladium 0.9367 1.6715∗∗ −0.0712 −0.0954 0.0306 −0.0213 0.0320 −0.0194
Silver 1.1347 0.0810 −0.1563 −0.0018 0.0216 −0.0066 0.0247 −0.0066
Soybean −1.1808 1.3633∗ 1.1201 −0.7527 0.0288 −0.0794 0.0070 −0.0632
Soy meal 0.3658 1.6460∗∗ −0.9170 −1.2246 0.0654 −0.0448 0.0825 −0.0193
Soy oil 0.7456 1.0300 −0.0854 −0.8347 0.0085 −0.0238 0.0102 −0.0068
Sugar −0.6585 −1.1273 0.3880 2.0149 0.0083 0.0609 0.0006 0.0227
Wheat −0.3110 −1.5188 0.1094 0.2589 −0.0340 −0.0199 −0.0362 −0.0251

Notes: This table reports out-of-sample forecast comparison statistics for one-month ahead (h = 21) non-

overlapping returns forecasts. The statistics reported are the Clark and West (2007) test statistic, the relative

RMSE, and the out-of-sample R2. The CW statistic is asymptotically standard normally distributed and

positive values favors the FCVAR model. Statistical significance (one-sided) at the 10%, 5%, and 1% level is

denoted by ∗, ∗∗, and ∗∗∗, respectively. The relative RMSE is calculated such that it favors FCVAR model

when it is negative.

that rebalances the portfolio weekly or monthly and hence needs only forecasts at those
horizons. With the same motivation, therefore, we consider only non-overlapping forecasts.
That is, the forecast is calculated every h periods (days) for h steps ahead. This yields a
total of 385 one-week ahead (h = 5) forecasts and 91 one-month ahead (h = 21) forecasts of
h-day returns, except for crude oil where we have 303 and 72 forecasts, respectively.
The out-of-sample forecasting results for these longer horizons are presented in Tables

4 (weekly, h = 5) and 5 (monthly, h = 21), which are both laid out exactly like Table 3.
The results for out-of-sample forecast comparisons using statistical measures are similar for
these horizons as for the daily horizon presented in Table 3. For the weekly horizon, the
FCVAR model is preferred to the CVAR model by the CW statistic in 10/15 (spot market)
and 11/15 (futures market) cases, and for the monthly horizon it is preferred in 10/15 (spot)
and 12/15 (futures) cases. Focusing on the non-dominant price discovery market, that is,
the spot market for all commodities except crude oil, soybean, and sugar, the FCVAR model
is preferred to the CVAR model in 11/15 (one-week ahead forecasts) and 11/15 (one-month
ahead forecasts) cases. For the out-of-sample R2, the general tendency is, not surprisingly,
that it is smaller for the longer horizon forecasts, but it remains quite similar for FCVAR
and CVAR forecasts.
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4.3 Mean-variance utility function based profits

Another possible metric of comparison and evaluation of forecasting performance is economic–
rather than purely statistical– significance. That is, whether the forecasts can generate sig-
nificant returns when incorporated into a dynamic trading strategy. In doing so, we also
investigate whether the improved statistical in-sample fit and forecast performance of the
FCVAR model relative to the CVAR model translate into economically significant profits,
and whether the relatively strong forecastability of commodity returns in some markets
compared with others translate into different economic significance across markets.
The economic significance question is important because the statistical superiority of a

model over its competitors is just a first step in informing investors. An equally important
question is: how can investors benefit from a statistically superior model? This question
is directly based on the ability to forecast returns, that is, whether an investor can use
forecasts from the model to devise successful trading strategies and make superior profits
compared with forecasts from alternative models. In other words, these trading strategies
should deliver statistically significant and meaningful profits.
In the stock return forecasting literature, a mean-variance utility function is typically

utilized to derive a dynamic trading strategy for investors. We assume that the investor
rebalances the portfolio every h days, where we analyze in particular h = 1, h = 5, and
h = 21, corresponding to daily, weekly, and monthly rebalancing, respectively. The investor
can invest in two assets: the risk-free asset with return from period t to period t + h given
by rf,t+h and the risky asset with return rt+h. In our setting, the risky asset is a commodity
(either a spot or a futures position). The investor then forms a portfolio with weight wt+h
on the risky asset and this portfolio yields a return of

rp,t+h = wt+hrt+h + (1− wt+h)rf,t+h = wt+h(rt+h − rf,t+h) + rf,t+h. (11)

Following Marquering and Verbeek (2004) and Campbell and Thompson (2008), among
others, the weight on the risky asset is determined by maximizing the investor’s mean-
variance utility function,

U(rp,t+h) = Et(rp,t+h)−
1

2
γV art(rp,t+h), (12)

where Et(·) and V art(·) denote conditional mean and variance given information at time t
and γ is the investor’s coeffi cient of relative risk aversion. Maximizing U(rp,t+h) with respect
to wt+h yields the optimal weight

w∗t+h =
Et(rt+h)− rf,t+h
γV art(rt+h)

, (13)

noting that the risk-free rate carries no risk and hence does not contribute to the variance
of the portfolio. Following the literature, we further constrain the optimal weight, and
specifically we impose w∗t+h ≥ 0 (no short-selling) and w∗t+h ≤ 1 (no borrowing/leverage).
To summarize the calculation of profitability of the returns forecasts, that is their eco-

nomic significance, three steps are performed: (i) forecast returns, (ii) compute portfolio
weights, and (iii) calculate portfolio returns. The first step involves calculating (9) to fore-
cast commodity (spot or futures) returns at each time period, as explained in Section 2.4.
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In the second step we calculate portfolio weights from (13) given the returns forecasts
Et(rt+h) = r̂t+h|t. For the risk-free return rf,t+h we use the return on the US three-month
Treasury bill, which is assumed known at time t (since it is risk-free). The risk aversion
coeffi cient is set at six, corresponding to an investor that takes a medium level of risk, and
for robustness we also consider a high risk aversion investor (γ = 12) and a low risk aversion
investor (γ = 3). Finally, following the literature, we estimate the time-varying variance of
the risky asset by a 30-period moving window sample variance of its returns.
Third, given the portfolio weights, portfolio returns are computed from (11) for each

period. These are then aggregated across time and reported as an annualized portfolio
return to facilitate comparison across different values of the rebalancing horizon, h.
In Table 6 we report the annualized average excess portfolio return for commodity spot

markets. The returns are reported as excess returns above and beyond the risk-free rate
(the return on which was 1.753% per annum over the out-of-sample forecasting period). The
results are presented for a medium risk investor; that is, with risk aversion coeffi cient γ = 6.
We report results for daily (h = 1), weekly (h = 5), and monthly (h = 21) rebalancing and
for forecasts based on both the CVAR and FCVAR models. For each commodity and each
rebalancing horizon, we conduct a statistical test of the null hypothesis that excess portfolio
return is zero against the two-sided alternative that excess portfolio return is different from
zero and report the t-statistic for this test in parentheses. Statistical significance of the t-test
at the 10%, 5%, and 1% level is denoted by one, two, and three asterisks, respectively. We
interpret this as a (statistical) test of economic significance of the return forecasts.
The results in Table 6 show several clear tendencies. First of all, excess portfolio returns

are positive for all commodities with daily rebalancing and significantly different from zero
for 11 of 15 commodities. With longer-horizon rebalancing, excess returns are positive for
all but a few commodities, and the negative returns are not significantly different from zero.
The excess returns range from nearly zero and insignificant to over 8% per annum and very
strongly statistically significant (with t-statistics of over 14). Compared to the very small
average returns on the commodities reported in Table 1 and the average annual return of
1.753% on the risk-free asset, some of the excess returns in Table 6 are impressively large.
Secondly, as expected, the highest returns are found with daily rebalancing mainly because
there are more opportunities to rebalance, and returns for longer-horizon rebalancing are
smaller, although often significantly different from zero. We also note that, if returns are
approximately multiplied by a factor h, then variances will approximately be multiplied by a
factor h2, and from the optimal weight equation (13), the weight on the risky asset will then
be multiplied by a factor h−1. Thus, with longer horizons, weights will tend to be shifted
towards the risk-free asset compared with the daily horizon, even for a fixed value of the risk
coeffi cient, and this produces lower excess portfolio returns on average.
Comparing portfolio returns using weights calculated from CVAR and FCVAR based

forecasts show that each model produces higher returns in roughly half of all cases, with a
slight edge to the FCVAR model. However, in this comparison it makes sense to make note
of the margin by which one outperforms the other, which is simple in this framework by
considering, for example, an equal-weighted portfolio of all 15 commodities. In that case,
the FCVAR produces an average excess portfolio return of 1.608%, 0.129%, and 0.015% per
annum for daily, weekly, and monthly rebalancing, respectively. In comparison, the CVAR
model produces returns of 1.525%, 0.076%, and 0.023%, respectively. Quite surprisingly,
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Table 6: Annualized excess portfolio returns for commodity spot markets, γ = 6

Daily Weekly Monthly

Commodity CVAR FCVAR CVAR FCVAR CVAR FCVAR

Canola 7.809∗∗∗ 7.343∗∗∗ 0.351∗∗∗ 0.639∗∗∗ 0.050 0.033
(14.144) (13.783) (5.096) (5.470) (0.743) (0.793)

Coffee 7.311∗∗∗ 8.196∗∗∗ 0.195∗∗∗ 0.326∗∗∗ 0.012 0.013
(12.880) (13.621) (3.988) (4.504) (0.637) (0.667)

Cocoa 1.378∗∗∗ 1.326∗∗∗ 0.233∗∗∗ 0.273∗∗∗ −0.003 −0.015
(4.391) (4.396) (3.811) (3.011) (−0.358) (−1.079)

Copper 0.171∗∗ 0.208∗∗ 0.027 0.114∗∗ 0.020∗ 0.018
(2.162) (2.143) (1.466) (2.343) (1.919) (0.919)

Corn 0.279∗∗∗ 0.244∗∗∗ 0.015 0.065 0.091∗ 0.071∗∗

(2.817) (2.769) (0.842) (1.074) (1.906) (1.999)
Cotton 0.032 0.027 0.004 0.017 −0.026 −0.024

(0.430) (0.391) (0.235) (0.253) (−0.575) (−0.559)
Crude oil 0.322∗∗∗ 0.336∗∗∗ 0.039 0.046 −0.008 0.001

(3.964) (4.119) (1.260) (1.558) (−0.798) (0.333)
Gold 0.351 0.387 −0.012 −0.023 0.006 0.008

(1.255) (1.306) (−0.247) (−0.395) (0.756) (0.872)
Palladium 2.390∗∗∗ 3.331∗∗∗ 0.179∗∗ 0.212∗∗∗ 0.015 0.016

(8.029) (7.999) (2.565) (2.623) (0.984) (1.089)
Silver 0.247 0.250 −0.006 −0.002 0.018∗∗ 0.020∗∗

(0.994) (0.945) (−0.232) (−0.056) (2.085) (2.181)
Soybean 0.303∗∗∗ 0.246∗∗∗ 0.026 0.029 0.038 −0.001

(2.816) (2.674) (1.455) (1.051) (1.163) (−0.067)
Soy meal 0.201∗∗ 0.166∗ 0.012 0.061 0.058∗ 0.021

(1.980) (1.791) (0.833) (1.405) (1.793) (1.429)
Soy oil 0.374∗∗∗ 0.384∗∗∗ 0.022 0.076 0.020 0.023

(2.978) (3.089) (1.042) (1.409) (0.525) (0.681)
Sugar 1.684∗∗∗ 1.643∗∗∗ 0.051 0.056 0.006 0.005

(6.593) (6.504) (0.963) (1.100) (0.891) (0.430)
Wheat 0.028 0.029 −0.001 0.042 0.043 0.040

(0.510) (0.519) (−0.054) (0.754) (0.661) (0.587)

Average 1.525 1.608 0.076 0.129 0.023 0.015

Notes: This table reports annualized average excess portfolio percentage returns for commodity spot markets

for a medium risk investor, i.e., an investor with risk coeffi cient γ = 6. The results are reported for daily

(h = 1), weekly (h = 5), and monthly (h = 21) rebalancing and for forecasts based on both the CVAR

and FCVAR models. In parentheses we report t-statistics for the null of zero excess returns, and statistical

significance (two-sided) at the 10%, 5%, and 1% level is denoted by ∗, ∗∗, and ∗∗∗, respectively. The final

row is the average return across all commodities.
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given our findings in the statistical comparisons, the CVAR model outperforms the FCVAR
model with monthly rebalancing, although the difference is very small. On the other hand,
the FCVAR model outperforms the CVAR model with daily and weekly rebalancing, and
substantially so in the latter case.
The results for the futures markets are presented in Table 7, which is laid out as in Table 6.

These results show much smaller excess returns, which reflects the earlier finding from Figure
4 and Tables 3—5 that futures returns are much more diffi cult to forecast than spot returns.
It is also not too surprising given the findings from Table 2 that price discovery is primarily
in the futures market for all commodities except crude oil, soybean, and sugar. For these
three commodities, Tables 6 and 7 suggest that portfolio returns from the trading strategy
may be higher in the futures market at the weekly and monthly rebalancing horizons. For
all other commodities, except gold, silver, and wheat, returns are higher in the spot markets
than the futures markets (with daily rebalancing).
More generally, the results in Table 7 are very similar to those found in Table 6. We still

find many highly significant and positive excess returns for the futures markets, and the only
negative returns are insignificant. The comparison results for an equal-weighted portfolio of
all 15 commodities show the same conclusions as for the spot market. In this case, for the
futures market, the FCVAR model generates average portfolio returns of 0.152%, 0.046%,
and 0.008% compared with 0.152%, 0.015%, and 0.011% for the CVAR model for daily,
weekly, and monthly rebalancing, respectively.

4.4 Alternative risk aversion coeffi cients

In this section, we investigate the robustness of our findings to the choice of risk aversion
coeffi cient, γ. So far we have considered an investor who takes a medium level of risk, and
specifically has γ = 6. The choice of γ has obvious implications for the portfolio returns via
the calculation of weights in (13), from which it is noticed that a low risk aversion investor
(γ = 3) will place a higher weight on the risky asset and vice versa for the high risk aversion
investor (γ = 12). A natural question is whether portfolio returns constructed as above are
still statistically and economically significant when the investor is more or less risk averse.
In our final set of results, presented in Table 8, we report annualized excess portfolio

returns for commodity spot and futures markets with daily rebalancing (h = 1) for both
a low risk investor (γ = 12) and a high risk investor (γ = 3). The results presented here
support our earlier findings. First, excess portfolio returns are positive in all cases for the
spot market and are negative (but insignificant) in only 4/30 cases for the futures market,
and those four cases are all based on forecasts from the CVAR model. Excess returns from
the trading strategy based on the FCVAR model forecasts are positive in all cases in Table
8.
Second, and not surprisingly, average portfolio returns are higher for the high risk investor

than for the low risk investor. In fact, the high risk investor reaches average excess portfolio
returns of over 16% per annum in some cases. Comparing again with the average (daily)
returns for the commodity markets shown in Table 1, these returns are quite impressive.
Third, returns from the spot market are once more found to be much higher on average

than returns from the futures market. As above, we ascribe this to the higher forecastability
of spot returns compared with futures returns and to the price discovery in the futures
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Table 7: Annualized excess portfolio returns for commodity futures markets, γ = 6

Daily Weekly Monthly

Commodity CVAR FCVAR CVAR FCVAR CVAR FCVAR

Canola 0.349∗∗∗ 0.374∗∗∗ 0.031∗∗ 0.098∗∗ −0.015 0.002
(4.044) (3.955) (2.074) (2.427) (−1.154) (0.093)

Coffee 0.035 0.059 0.014 0.084∗ 0.031 0.025
(0.745) (1.104) (1.235) (1.796) (0.847) (0.784)

Cocoa −0.030 0.001 −0.008 0.022 0.008 0.004
(−0.709) (0.027) (−0.960) (0.495) (0.827) (0.200)

Copper −0.004 0.002 −0.002 0.001 0.000 0.000
(−0.127) (0.961) (−0.354) (0.952) (−0.647) (−0.106)

Corn 0.210∗∗∗ 0.228∗∗∗ 0.010 0.025∗ 0.007 0.010
(3.259) (3.339) (1.042) (1.719) (0.993) (1.141)

Cotton 0.025∗∗∗ 0.025∗∗∗ 0.001∗∗ 0.015∗∗∗ 0.004∗∗ 0.004∗∗

(3.078) (3.159) (2.402) (2.652) (2.342) (2.333)
Crude oil 0.170 0.148 0.051 0.183 0.108 0.062

(0.813) (0.760) (1.185) (1.272) (1.133) (1.140)
Gold 0.554∗∗∗ 0.456∗∗∗ 0.023∗∗ 0.027∗∗ −0.002 −0.001

(5.237) (4.803) (1.989) (2.469) (−0.177) (−0.142)
Palladium 0.260∗∗∗ 0.265∗∗∗ 0.014 0.020 −0.001 0.000

(3.286) (3.345) (1.211) (1.311) (−0.155) (−0.061)
Silver 0.351∗∗∗ 0.285∗∗∗ 0.016 0.028 −0.007 −0.006

(5.166) (5.279) (0.975) (0.943) (−0.543) (−0.787)
Soybean 0.003 0.028 0.011 0.029 −0.008 −0.010

(0.073) (0.590) (1.238) (1.064) (−0.586) (−0.592)
Soy meal 0.127 0.140 0.003 −0.011 −0.026 −0.005

(1.386) (1.422) (0.188) (−0.374) (−1.467) (−0.611)
Soy oil 0.038 0.072 0.024∗ 0.033 −0.006 −0.012

(0.517) (0.942) (1.851) (1.212) (−0.435) (−0.529)
Sugar 0.117 0.127 0.037∗∗ 0.133∗∗∗ 0.062∗∗∗ 0.037∗

(1.106) (1.358) (2.562) (3.005) (2.675) (1.894)
Wheat 0.077∗∗ 0.075∗∗ −0.003 0.003 0.004 0.004

(1.967) (1.978) (−0.341) (0.404) (0.745) (0.728)

Average 0.152 0.152 0.015 0.046 0.011 0.008

Notes: This table reports annualized average excess portfolio percentage returns for commodity futures

markets for a medium risk investor, i.e., an investor with risk coeffi cient γ = 6. The results are reported for

daily (h = 1), weekly (h = 5), and monthly (h = 21) rebalancing and for forecasts based on both the CVAR

and FCVAR models. In parentheses we report t-statistics for the null of zero excess returns, and statistical

significance (two-sided) at the 10%, 5%, and 1% level is denoted by ∗, ∗∗, and ∗∗∗, respectively. The final

row is the average return across all commodities.
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Table 8: Annualized daily excess portfolio returns for alternative risk coeffi cients

Risk coeffi cient γ = 3 Risk coeffi cient γ = 12

Spot market Futures market Spot market Futures market

Commodity CVAR FCVAR CVAR FCVAR CVAR FCVAR CVAR FCVAR

Canola 15.618∗∗∗ 14.687∗∗∗ 0.699∗∗∗ 0.749∗∗∗ 3.904∗∗∗ 3.672∗∗∗ 0.175∗∗∗ 0.187∗∗∗

(14.144) (13.783) (4.044) (3.955) (14.144) (13.783) (4.044) (3.955)
Coffee 14.621∗∗∗ 16.393∗∗∗ 0.069 0.118 3.655∗∗∗ 4.098∗∗∗ 0.017 0.029

(12.880) (13.621) (0.745) (1.104) (12.880) (13.621) (0.745) (1.104)
Cocoa 2.756∗∗∗ 2.652∗∗∗ −0.060 0.002 0.689∗∗∗ 0.663∗∗∗ −0.015 0.001

(4.391) (4.396) (−0.709) (0.027) (4.391) (4.396) (−0.709) (0.027)
Copper 0.343∗∗ 0.417∗∗ −0.007 0.004 0.086∗∗ 0.104∗∗ −0.002 0.001

(2.162) (2.143) (−0.127) (0.961) (2.162) (2.143) (−0.127) (0.961)
Corn 0.557∗∗∗ 0.488∗∗∗ 0.420∗∗∗ 0.457∗∗∗ 0.139∗∗∗ 0.122∗∗∗ 0.105∗∗∗ 0.114∗∗∗

(2.817) (2.769) (3.259) (3.339) (2.817) (2.769) (3.259) (3.339)
Cotton 0.064 0.053 0.050∗∗∗ 0.049∗∗∗ 0.016 0.013 0.013∗∗∗ 0.012∗∗∗

(0.430) (0.391) (3.078) (3.159) (0.430) (0.391) (3.078) (3.159)
Crude oil 0.643∗∗∗ 0.672∗∗∗ 0.340 0.297 0.161∗∗∗ 0.168∗∗∗ 0.085 0.074

(3.964) (4.119) (0.813) (0.760) (3.964) (4.119) (0.813) (0.760)
Gold 0.701 0.774 1.109∗∗∗ 0.912∗∗∗ 0.175 0.193 0.277∗∗∗ 0.228∗∗∗

(1.255) (1.306) (5.237) (4.803) (1.255) (1.306) (5.237) (4.803)
Palladium 6.580∗∗∗ 6.662∗∗∗ 0.520∗∗∗ 0.531∗∗∗ 1.645∗∗∗ 1.666∗∗∗ 0.130∗∗∗ 0.133∗∗∗

(8.029) (7.999) (3.286) (3.345) (8.029) (7.999) (3.286) (3.345)
Silver 0.495 0.500 0.702∗∗∗ 0.570∗∗∗ 0.124 0.125 0.176∗∗∗ 0.143∗∗∗

(0.994) (0.945) (5.166) (5.279) (0.994) (0.945) (5.166) (5.279)
Soybean 0.606∗∗∗ 0.492∗∗∗ 0.005 0.057 0.152∗∗∗ 0.123∗∗∗ 0.001 0.014

(2.816) (2.674) (0.073) (0.590) (2.816) (2.674) (0.073) (0.590)
Soy meal 0.403∗∗ 0.332∗ 0.253 0.281 0.101∗∗ 0.083∗ 0.063 0.070

(1.980) (1.791) (1.386) (1.422) (1.980) (1.791) (1.386) (1.422)
Soy oil 0.748∗∗∗ 0.768∗∗∗ 0.076 0.144 0.187∗∗∗ 0.192∗∗∗ 0.019 0.036

(2.978) (3.089) (0.517) (0.942) (2.978) (3.089) (0.517) (0.942)
Sugar 3.369∗∗∗ 3.285∗∗∗ 0.234 0.255 0.842∗∗∗ 0.821∗∗∗ 0.059 0.064

(6.593) (6.504) (1.106) (1.358) (6.593) (6.504) (1.106) (1.358)
Wheat 0.057 0.058 0.154∗∗ 0.151∗∗ 0.014 0.015 0.039∗∗ 0.038∗∗

(0.510) (0.519) (1.967) (1.978) (0.510) (0.519) (1.967) (1.978)

Average 3.171 3.216 0.304 0.305 0.793 0.804 0.076 0.076

Notes: This table reports annualized average excess portfolio percentage returns for commodity spot and

futures markets for daily (h = 1) rebalancing. The results are reported for a low risk investor (γ = 12) and

a high risk investor (γ = 3) and for forecasts based on both the CVAR and FCVAR models. In parentheses

we report t-statistics for the null of zero excess returns, and statistical significance (two-sided) at the 10%,

5%, and 1% level is denoted by ∗, ∗∗, and ∗∗∗, respectively. The final row is the average return across all

commodities.
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market making returns from the futures market harder to forecast. In particular, we notice
from Table 1 that there is no substantial difference between average returns in the spot and
futures markets, so the different profits in the two markets cannot be attributed simply to
differences in the unconditional average return in the two markets.
Finally, comparing excess returns based on CVAR and FCVAR forecasts using an equal-

weighted portfolio of all 15 commodities shows that the FCVAR model (CVAR model)
produces average excess returns of 3.216% (3.171%) and 0.305% (0.304%) in the spot and
futures market, respectively, for the low risk aversion investor. For the high risk aversion
investor, excess returns for the trading strategy based on forecasts from the FCVAR model
(CVAR model) are 0.804% (0.793%) in the spot market and 0.076% (0.076%) in the futures
market. Thus, the FCVAR model generates the highest average return, in terms of an
equal-weighted portfolio of all 15 commodities. Taken together, therefore, our result that
FCVAR-based forecasts generate higher profits than CVAR-based forecasts on average across
the commodities holds regardless of the risk aversion factor.
The overall implication is that our evidence that the FCVAR is a statistically superior

model also extends to its economic importance. Therefore, both statistically and economi-
cally, the FCVAR model offers investors a better guide to undertaking investment portfolio
decisions.

5 Concluding remarks

This paper is about understanding the link between statistical models of forecasting for com-
modity returns and their implications for investors. Identifying suitable forecasting models
for asset returns is at the forefront of research in asset pricing. This is so because the ac-
curacy of forecasts have direct implications for investors’decision making, particularly with
regard to portfolio choice. In this paper we take a step in this direction by proposing an
FCVARmodel for forecasting commodity spot and futures returns, based on recent empirical
evidence of fractional cointegration in commodity spot and futures markets. We compare the
FCVAR model with the more widely used CVAR model. We derive the best linear predictor
forecast for the FCVAR model and perform an out-of-sample forecast comparison with fore-
casts from the more standard model. In our empirical analysis to 15 commodity spot and
futures markets, the fractional model is found to be superior in terms of statistical in-sample
fit and also out-of-sample forecasting, although the out-of-sample forecast comparison test
statistics are not always significant.
In terms of economic significance of the forecasts, we analyze this through a dynamic

trading strategy based on a portfolio with weights derived from a mean-variance utility
function. This analysis leads to statistically significant and economically meaningful profits
in the commodity markets, and reveals the superiority of the fractional model compared
with the non-fractional model in terms of economic significance; that is in terms of average
portfolio return. Our results are robust on several fronts. First, our out-of-sample forecasting
evaluation exercise applies a number of statistical metrics. Second, we show that forecasts
from FCVAR model are significant for many commodities regardless of the forecasting hori-
zon, i.e. regardless of how often the investor rebalances the portfolio. Third, we show that
our results on profitability are robust to an investor’s level of risk aversion as measured by
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the coeffi cient of relative risk aversion that enters in the utility function and hence in the
calculation of portfolio weights.
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