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Abstract

We examine forecasting performance of the recent fractionally cointegrated vector
autoregressive (FCVAR) model. The model is applied to daily polling data of political
support in the United Kingdom for 2010–2015. We compare with popular competing
models and at various forecast horizons. Our findings show that the precision of fore-
casts generated by the FCVAR model is better than all multivariate and univariate
models in the portfolio, and the four variants of the FCVAR model considered are
generally ranked as the top four models in terms of forecast accuracy. Furthermore,
the FCVAR model significantly outperforms the standard cointegrated VAR (CVAR)
model at all forecast horizons and the relative forecast improvement is highest at longer
forecast horizons, where the root mean squared forecast error of the FCVAR model is
up to 20% lower than that of the CVAR benchmark model. In an empirical application
to the prediction of vote shares in the 2015 UK general election, forecasts generated
by the FCVAR model leading into the election appear to provide a more informative
assessment of the current state of public opinion on electoral support than that sug-
gested by the hung government prediction of the opinion poll. Specifically, the FCVAR
model projects the correct direction for the realized vote shares in the election for both
the Conservative and Labour parties.

Keywords: forecasting, fractional cointegration, opinion poll data, vector autoregres-
sive model.

1 Introduction
In this paper we investigate the forecasting performance of the recently developed fraction-
ally cointegrated vector autoregressive (FCVAR) model of Johansen (2008) and Johansen
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and Nielsen (2012) relative to a portfolio of competing models at various forecast horizons.
The FCVAR model generalizes the concept of cointegration, and in particular generalizes Jo-
hansen’s (1995) cointegrated VAR (CVAR) model to fractionally integrated time series, and
hence allows estimating long-run equilibrium relationships between fractional time series.

The FCVAR model is a very recently developed statistical model, and it is therefore of
particular interest to examine the gains this model can deliver for the purposes of forecasting.
The choice of data set for applying the model should reflect a current and relevant issue for
forecasting. A prominent example is the desire to predict political support and election vote
share outcomes. This paper addresses this task by applying the FCVAR model to a novel
data set which is comprised of polling results of political support in the United Kingdom for
the period 2010–2015 at the business-daily observation frequency. The fractional integration
behavior of political opinion polling data has been well established in the literature, albeit
for time series at lower frequencies (monthly, quarterly), e.g. Box-Steffensmeier and Smith
(1996), Byers et al. (1997), Dolado et al. (2002, 2003), and Jones et al. (2014). For a more
general reference on fractional integration methods in political time series data, see Box-
Steffensmeier and Tomlinson (2000). It therefore appears natural to apply a fractional time
series model such as the FCVAR to model and forecast political opinion polls.

The industry standard for measuring the current state of political support is through
opinion polling. The demand for polling and survey methodology is largely driven by the
clients desire to form an accurate understanding of the current state of opinion on a particular
question. The poll evidence then serves as an input into the decision making process. When
polls are conducted at regular intervals, it seems natural to use a statistical model to extract
the full potential of the information contained in these time series of poll results by using them
to forecast public opinion beyond the most recent poll date. However, long time series of poll
data are scarce, and, to the best of our knowledge, all previous studies that have analyzed
time series of political opinion polls have used data observed at the monthly frequency or
lower, see, e.g., above references. Authors of these studies have noted that an ideal data
set would have all observations contained within a single government regime spanning only
one political cycle, while providing a large enough sample to conduct meaningful statistical
analysis. The data set used in this paper fully satisfies both desired properties: it spans the
entire UK political cycle following the 2010 UK general election, it is conducted at a high
observation frequency (business-daily), and it is very recent and on-going, and hence very
relevant also for forecasting poll standings which can be viewed as the predicted vote shares
for each political party in an election.

The long time series provided in our data set facilitates forecast accuracy evaluation
using several forecast evaluation procedures. In particular, it allows the formation of a
large number of training sets from which each statistical model can produce forecasts. We
apply two standard procedures to assess forecast accuracy: the rolling window and recursive
forecasting schemes. The main distinction between the two schemes is how they select
the training sets used for estimating the models. The rolling window scheme uses a fixed
training set length (commonly referred to as a window) that moves across the data set, and
the recursive scheme uses an expanding training set length with a fixed start date. The
portfolio of models we consider consists of eight statistical models, four of which are variants
of the FCVAR model. These are then evaluated on their forecasting ability relative to a
group of four popular competing models. Among the latter, the CVAR model serves as the
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main multivariate benchmark model. The simple ARFIMA(0, d, 0) and the more general
ARFIMA(p, d, q) models serve as the fractional univariate benchmarks, where the former
was found by, e.g., Byers et al. (1997) and Dolado et al. (2002), to fit (monthly) UK polling
data well. Finally, we include the ARMA(p, q) model as the classical univariate benchmark.
Forecast accuracy is assessed at seven out-of-sample forecast horizons: 1, 5, 10, 15, 20, 25,
and 50 steps ahead.

The forecasting analysis in this paper shows that the FCVAR model delivers valuable
gains in predicting political support. Both forecasting schemes agree on this finding. The
accuracy of forecasts generated by the FCVAR model is better than all multivariate and
univariate models in the portfolio, and overall the four variants of the FCVAR model are
ranked as the four top performing models. Not only do they perform better relative to
the other models, but the forecasting performance of all FCVAR variants is within very
close range of each other. When compared to the main benchmark model, the FCVAR
model substantially outperforms the CVAR model in 56 of 56 cases, and the relative forecast
improvement is highest at the 15–50 steps ahead forecast horizons, where the root mean
squared forecast error (RMSFE) of the FCVAR model is up to 20% lower than that of the
CVAR benchmark model.

As an empirical application, we consider the prediction of the vote shares for the 2015
UK general election from a range of forecast horizons. In this application, we find that the
FCVAR model has advantages for predicting vote shares and appropriately complements the
industry standard of basing predictions on the latest opinion poll standings.

The remainder of the paper is structured as follows. Section 2 introduces the concept of
fractional integration, the classic arguments for fractional integration in polling data, and
describes our data set. In Section 3 we describe the FCVAR methodology and in Section
4 we give an example of the estimation of the model to our data set. Section 5 presents
the main forecasting analysis including the empirical application to the 2015 UK general
election. Finally, Section 6 provides some concluding remarks.

2 Fractional integration, polling data, and summary

statistics

In important early contributions, Box-Steffensmeier and Smith (1996) and Byers et al. (1997)
show that political popularity, as measured by public opinion polls, can be modeled as
fractional time series processes. The fractional (or fractionally integrated or just integrated)
time series models are based on the fractional difference operator,

∆dXt =
∞∑
n=0

πn(−d)Xt−n, (1)

where the fractional coefficients πn(u) are defined in terms of the binomial expansion (1 −
z)−u =

∑∞
n=0 πn(u)zn, i.e.,

πn(u) =
u(u+ 1) · · · (u+ n− 1)

n!
. (2)

For details and for many intermediate results regarding this expansion and the fractional
coefficients, see, e.g., Johansen and Nielsen (2015, Appendix A). Efficient calculation of
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fractional differences, which we apply in our analysis, is discussed in Jensen and Nielsen
(2014).

With the definition of the fractional difference operator in (1), a time series Xt is said
to be fractional of order d, denoted Xt ∈ I(d), if ∆dXt is fractional of order zero, i.e. if
∆dXt ∈ I(0). The latter property can be defined in the frequency domain as having spectral
density that is finite and non-zero near the origin or in terms of the linear representation
coefficients if the sum of these is non-zero and finite, see, e.g., (Johansen and Nielsen, 2012,
p. 2672). An example of an I(0) process is the stationary and invertible ARMA model.

The standard reasoning for political opinion poll series being fractional relies on Robin-
son’s (1978) and Granger’s (1980) aggregation argument, and can briefly be described as
follows. Suppose individual level voting or polling behavior is governed by the (possibly
binary) autoregressive process

xi,t = δi,1 + δi,2xi,t−1 + ui,t, (3)

where i = 1, . . . , N denotes individuals and t = 1, 2, . . . as usual denotes time. The im-
portant point here is that the autoregressive coefficients δi,2 differ across individuals. Some
individuals have coefficients δi,2 ≈ 0 and are referred to as “floating” voters, whereas others
have coefficients δi,2 ≈ 1 and are referred to as “committed” voters.1 If it is assumed that
the distribution of δi,2 across individuals in the population follows a Beta(u, v) distribution,

then the aggregate vote share or polling share Xt = N−1
∑N

i=1 xi,t is fractionally integrated
of order d = 1−v when N is large, i.e., Xt ∈ I(1−v). For more details, see Box-Steffensmeier
and Smith (1996) or Byers et al. (1997).

The above theoretical argument in favor of modeling opinion poll data as fractional time
series has been supported in empirical work by a large number of authors. For example, Box-
Steffensmeier and Smith (1996) estimate fractional models for US data, Byers et al. (1997)
and Dolado et al. (2002) analyze UK data, Dolado et al. (2003) analyze Spanish data, and
Jones et al. (2014) analyze Canadian data. All find strong evidence in support of fractional
integration with estimates of d around 0.6 − 0.8. In addition, Byers et al. (2007) analyze
an updated version of the sample in Byers et al. (1997) and show that the change to phone
interviews had no effect on estimates of d and did not appear to constitute a structural
break.

The aggregate polling data set we analyze is from the on-going YouGov daily poll of
voting intention for political parties in the United Kingdom. Each business day survey
participants are asked the question: “If there were a general election tomorrow, which party
would you vote for? Conservative, Labour, Liberal Democrat, Scottish Nationalist/Plaid
Cymru, some other party, would not vote, don’t know?”. This poll, and hence the data
series, is business-daily and began on May 14th, 2010 (so shortly after the 55th UK general
election of 2010 held on May 6th). With the next general election held on May 7th, 2015,
this on-going survey provides a long series of polling data all within the tenure of a single
government regime. The results presented in this paper use May 6th, 2015, as the end date,
which was the last day the poll was conducted before the election, for a total of 1227 business-

1“Floating” voters are defined as those who do not have a strong alliance to one party and may be more
easily swayed by current events, media, etc., and “committed” voters, on the other hand, are those who
consistently vote for a particular party and are less inclined to change their voting preference.
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Table 1: Summary statistics (data in percentage)

Series Mean SD Min Max Skew Kurt Start date End date Obs

Conservative (CP) 34.67 3.29 27 44 0.76 2.89 2010/5/14 2015/05/06 1227
Labour (LP) 39.39 3.32 30 45 −0.44 2.33 2010/5/14 2015/05/06 1227
Liberals (LD) 9.41 1.87 5 21 1.42 7.75 2010/5/14 2015/05/06 1227

Notes: The table presents summary statistics for the polling data (expressed in percentages). The statistics
presented are the sample mean, standard deviation, minimum, maximum, skewness, kurtosis, start and end
dates, and number of observations.

Table 2: Summary statistics (logit transformed data)

ELW(m)

Series Mean SD Min Max Skew Kurt m = T 0.6 m = T 0.7 m = T 0.8

Conservative (CP) −0.63 0.14 −0.99 −0.24 0.67 2.81 0.79 0.70 0.65
Labour (LP) −0.43 0.14 −0.84 −0.20 −0.50 2.41 0.88 0.71 0.64
Liberals (LD) −2.28 0.20 −2.94 −1.32 0.50 4.59 0.85 0.66 0.64

Notes: The table presents summary statistics for the logit transform of the polling data. The start and
end dates are the same as in Table 1, as are the statistics presented, with the addition of ELW(m), which
denotes the exact local Whittle estimator of Shimotsu and Phillips (2005) with bandwidth parameter m,
whose asymptotic standard error is (4m)−1/2.

daily observations.2 Previous empirical studies of political support have analyzed monthly
and quarterly data spanning several decades and election cycles. Thus, this daily frequency
data set is particularly attractive for estimating models within a single election cycle.

Our analysis focuses on the three major political parties in the United Kingdom: the
Conservative Party (CP) and the Liberal Democrats (LD), which together constitute the
British Government over the sample period (coalition formed on May 12th, 2010), and the
Labour Party (LP)—the official opposition.3 In Table 1 we present some summary statistics
for the polling data, where these are given in percentage vote shares.

The analysis proceeds after converting the polling data to log-odds (for more details and
background, see Byers et al. (1997)). This is done to map variables on the unit interval
into the real line, in order to use error terms with unbounded support in our models. The
log-odds or logit transformation for a variable Yt ∈ (0, 1) is

yt = log

(
Yt

1− Yt

)
,

where Yt is the original series and yt is the logit transformed series with support (−∞,∞).

2Starting April 7th, 2015, i.e. for the last month before the 2015 election, YouGov changed their polling
frequency to daily, including non-business days. We ignore this minor change, as well as the break in polling
over the Christmas holiday, and in our analysis we treat all observations as equi-distant as is standard.

3On April 16th, 2012, YouGov removed the United Kingdom Independence Party (UKIP) from the
residual category and started recording it as a separate time series. However, as is the case for the Scottish
Nationalist/Plaid Cymru, the support for UKIP is quite low, and hence we do not model either of these
series explicitly.
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Figure 1: Time series plots of data 2010-05-14 – 2015-05-06
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(b) Logit transform
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Note: Black line is Conservative (CP), red line is Labour (LP), and blue line is Liberal Democrats (LD).

Table 2 presents summary statistics for the logit transformed data. The original data and
the logit transform of the data are shown in Figures 1(a) and 1(b), respectively.

As mentioned earlier, the fractional integration characteristic of political opinion polling
data has been well established in the literature for monthly and quarterly data. To add
to this body of literature, we computed the sample autocorrelation functions and estimated
spectral density functions of each of the three series, and we display these in Figures 2(a) and
2(b), respectively. For a fractionally integrated time series, we would expect that the sample
autocorrelation functions decay very slowly (hyperbolically, as opposed to geometrically) and
that the estimated spectral density functions have mass concentrated near the origin. See,
e.g., Baillie (1996) for a review covering these properties. Indeed, both these features appear
clearly in Figure 2.

Finally, for each univariate series we have computed semiparametric estimates of the
fractional integration parameter, d, that do not rely on the specification of a parametric
model or lag structure. Specifically, we computed the exact local Whittle (ELW) estimates
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Figure 2: Serial dependence structure

(a) Sample autocorrelation functions
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(b) Estimated spectral density functions
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of Shimotsu and Phillips (2005), which are displayed in the last three columns in Table 2
for three different choices of bandwidth parameter, m = T 0.6,m = T 0.7, and m = T 0.8 (when
this is not an integer, the integer part of the result is used). In each case, the asymptotic
standard error of the estimate is (4m)−1/2, so for example when m = T 0.6 the asymptotic
standard error of the estimate is 0.059. The results from the ELW estimates suggest that each
series is fractionally integrated with a fractional integration parameter that is statistically
significantly less than one. More generally, the estimates are in line with estimates from
the literature, e.g., Box-Steffensmeier and Smith (1996), Byers et al. (1997), Dolado et al.
(2002, 2003), and Jones et al. (2014), where estimates around 0.6− 0.8 are commonly found

7



for polling data at the monthly frequency. The evidence presented here thus shows also
fractional integration characteristics for the political opinion polls at the daily frequency, as
suggested by the theoretical arguments discussed earlier.

3 Econometric methodology: FCVAR model

Our analysis applies the FCVAR model of Johansen (2008) and Johansen and Nielsen (2012).
This model is a generalization of Johansen’s (1995) CVAR model to allow for fractionally
integrated and fractionally cointegrated time series.

3.1 Variants of the FCVAR model and interpretations

For a time series Yt of dimension p, the well-known CVAR model with a so-called “restricted
constant” term is given in error correction form as

∆Yt = α(β′Yt−1 + ρ′) +
k∑
i=1

Γi∆Yt−i + εt = αL(β′Yt + ρ′) +
k∑
i=1

ΓiL
i∆Yt + εt, (4)

where, as usual, εt is a p-dimensional independent and identically distributed error term with
mean zero and covariance matrix Ω. The simplest way to derive the FCVAR model from
the CVAR model is to replace the difference and lag operators, ∆ and L = 1 − ∆, in (4)
by their fractional counterparts, ∆b and Lb = 1 −∆b, respectively, and apply the resulting
model to Yt = ∆d−bXt. We then obtain4

∆dXt = α∆d−bLb(β
′Xt + ρ′) +

k∑
i=1

Γi∆
dLibXt + εt, (5)

where ∆d is the fractional difference operator, and Lb = 1−∆b is the fractional lag operator.5

Model (5) nests Johansen’s (1995) CVAR model in (4) as the special case d = b = 1.
Some of the parameters are well-known from the CVAR model and these have the usual
interpretations also in the FCVAR model. The most important of these are the long-run
parameters α and β, which are p× r matrices with 0 ≤ r ≤ p, and ρ, which is an r-vector.
The rank r is termed the cointegration, or sometimes cofractional, rank. The columns of
β constitute the r cointegration (cofractional) vectors, such that β′Xt are the cointegrating
combinations of the variables in the system, i.e. the long-run equilibrium relations. The
parameters in α are the adjustment or loading coefficients which represent the speed of
adjustment towards equilibrium for each of the variables. The restricted constant term ρ
is interpreted as the mean level of the long-run equilibria β′Xt when these are stationary.
The short-run dynamics of the variables are governed by the parameters (Γ1, . . . ,Γk) in the
autoregressive augmentation.

The FCVAR model has two additional parameters compared with the CVAR model,
namely the fractional parameters d and b. Here, d denotes the fractional integration order

4In principle, the restricted constant term should be included as ρ′πt(1), where πt(1) denotes the coefficient
in (1). This is mathematically convenient, but makes no difference in terms of the practical implementation
because the infinite summation in (1) needs to be truncated in practice.

5Both the fractional difference and fractional lag operators are defined in terms of their binomial expansion
in the lag operator, L, as in (1). Note that the expansion of Lb has no term in L0 and thus only lagged
disequilibrium errors appear in (5).
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of the observable time series, while the parameter b determines the degree of fractional
cointegration, i.e. the reduction in fractional integration order of β′Xt compared to Xt itself.
Both fractional parameters are estimated jointly with the other parameters, see Section 3.2.
The FCVAR model (5) thus has the same main structure as the standard CVAR model (4),
in that it allows for modeling of both cointegration and adjustment towards equilibrium, but
is more general since it accommodates fractional integration and cointegration.

We note that the fractional difference as defined in (1) is an infinite series, but any
observed sample will include only a finite number of observations. This makes calculation of
the fractional differences as defined in (1) impossible. In practice, therefore, the summation
in (1) would need to be truncated at n = t − 1, and the bias introduced by application of
such a truncation is analyzed by Johansen and Nielsen (2015) using higher-order expansions
in a simpler model. They show, albeit in a simpler model, that this bias can be avoided by
including a level parameter, µ, that shifts each of the series by a constant. We follow this
suggestion and also consider the unobserved components formulation

Xt = µ+X0
t , ∆dX0

t = α∆d−bLbβ
′X0

t +
k∑
i=1

Γi∆
dLibX

0
t + εt, (6)

from which we easily derive the model

∆d(Xt − µ) = αβ′∆d−bLb(Xt − µ) +
k∑
i=1

Γi∆
dLib(Xt − µ) + εt. (7)

The formulation (7) includes the restricted constant, which may be obtained as ρ′ = −β′µ.
More generally, the level parameter µ in (7) is meant to accommodate a non-zero starting
point for the first observation on the process, i.e., for X1.

Our forecasting analysis applies the versions of the FCVAR model given in (5) and (7)
and we provide comparisons with the CVAR model in (4) as our main benchmark model.
Following the work of Jones et al. (2014) we also consider the sub-models obtained by setting
d = b in (5) and (7), which results in disequilibrium errors that are I(0). Thus, the four
variants of the FCVAR model that we consider are

1. FCVARd,b,ρ: (5) with two fractional parameters (d, b) and a restricted constant (ρ),

2. FCVARd,b,µ: (7) with two fractional parameters (d, b) and a level parameter (µ),

3. FCVARd=b,ρ: (5) with one fractional parameter (d) and a restricted constant (ρ),

4. FCVARd=b,µ: (7) with one fractional parameter (d) and a level parameter (µ).

In each model the fractional parameters are estimated as described in the next subsection,
possibly with the restriction d = b imposed as appropriate.

3.2 Maximum likelihood estimation

It is assumed that a sample of length T +N is available on Xt, where N denotes the number
of observations used for conditioning, for details see Johansen and Nielsen (2012, 2015).
The models (5) and (7) are estimated by conditional maximum likelihood, conditional on N
initial values. For the standard CVAR model, the arguments are well-known and choosing
N = k + 1 leads to reduced rank regression estimation. For the FCVAR model, we proceed
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similarly by maximizing the conditional likelihood function

logLT (λ) = −Tp
2

(log(2π) + 1)− T

2
log det

{
T−1

T+N∑
t=N+1

εt(λ)εt(λ)′

}
, (8)

where the residuals are defined as

εt(λ) = ∆dXt − α∆d−bLb(β
′Xt + ρ′)−

k∑
i=1

Γi∆
d LibXt, λ = (d, b, α, β,Γi, ρ), (9)

for model (5), and hence also for sub-models of model (5), such as that obtained under the
restriction d = b. For model (7) the residuals are

εt(λ) = ∆d(Xt−µ)−αβ′∆d−bLb(Xt−µ)−
k∑
i=1

Γi∆
d Lib(Xt−µ), λ = (d, b, α, β,Γi, µ), (10)

and similarly for sub-models of model (7).
It is shown in Johansen and Nielsen (2012) how, for fixed (d, b), the estimation of model

(5) reduces to regression and reduced rank regression as in Johansen (1995). In this way
the parameters (α, β,Γi, ρ) can be concentrated out of the likelihood function, and numerical
optimization is only needed to optimize the profile likelihood function over the two fractional
parameters, d and b. In model (7) we can similarly concentrate the parameters (α, β,Γi) out
of the likelihood function resulting in numerical optimization over (d, b, µ), thus making the
estimation of model (7) somewhat more involved numerically than that of model (5).

The asymptotic analysis of the FCVAR model is provided in Johansen and Nielsen (2012).
For model (5), Johansen and Nielsen (2012) show that asymptotic theory is standard when
b < 0.5, and for the case b > 0.5 asymptotic theory is non-standard and involves fractional
Brownian motion of type II. Specifically, when b > 0.5, Johansen and Nielsen (2012) show
that under i.i.d. errors with suitable moment conditions, the conditional maximum likelihood
parameter estimates (d̂, b̂, α̂, Γ̂1, . . . , Γ̂k) are asymptotically Gaussian, while (β̂, ρ̂) are locally
asymptotically mixed normal. These results allow asymptotically standard (chi-squared)
inference on all parameters of the model, including the cointegrating relations and orders of
fractionality, using quasi-likelihood ratio tests. As in the CVAR model, see Johansen (1995),
the same results hold for the same parameters in the model (7), whereas the asymptotic
distribution theory for the remaining parameter, µ, is currently unknown.

Likelihood ratio (trace-type) tests for cointegration rank can be calculated as well, and
hypotheses on the cointegration rank can be tested in the same way as in the CVAR model.
In the FCVAR model, the asymptotic distribution of the tests for cointegration rank depends
on the unknown (true value of the) scalar parameter b, which complicates empirical analysis
compared to the CVAR model. However, the distribution can be simulated on a case-by-case
basis, or the computer programs by MacKinnon and Nielsen (2014) can be used to obtain
either critical values of P values for the rank test. The calculation of maximum likelihood
estimators and test statistics is discussed in detail in Johansen and Nielsen (2012) and Nielsen
and Popiel (2014), with the latter providing Matlab computer programs that we apply in
our empirical analysis.
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3.3 Forecasting from the FCVAR model

We now discuss how to forecast the (logit transformed) polling data, that is Xt, from the
FCVAR model (since the CVAR model is a special case obtained as d = b = 1, forecasts
from that model are derived in the same way). Because the model is autoregressive, the best
linear predictor takes a simple form and is relatively straightforward to calculate. We first
note that

∆d(Xt+1 − µ) = Xt+1 − µ− (Xt+1 − µ) + ∆d(Xt+1 − µ) = Xt+1 − µ− Ld(Xt+1 − µ)

and then rearrange (7) as

Xt+1 = µ+ Ld(Xt+1 − µ) + αβ′∆d−bLb(Xt+1 − µ) +
k∑
i=1

Γi∆
dLib(Xt+1 − µ) + εt+1. (11)

Since Lb = 1−∆b is a lag operator, so that LibXt+1 is known at time t for i ≥ 1, this equation
can be used as the basis to calculate forecasts from the model.

We let conditional expectation given the information set at time t be denoted Et(·), and
the best linear predictor forecast of any variable Zt+1 given information available at time
t be denoted Ẑt+1|t = Et(Zt+1). Clearly, we then have that the forecast of the innovation

for period t + 1 at time t is ε̂t+1|t = Et(εt+1) = 0, and X̂t+1|t is then easily found from
(11). Inserting also coefficient estimates based on data available up to time t, denoted6

(d̂, b̂, µ̂, α̂, β̂, Γ̂1, . . . , Γ̂k), we have that

X̂t+1|t = µ̂+ Ld̂(Xt+1 − µ̂) + α̂β̂′∆d̂−b̂Lb̂(Xt+1 − µ̂) +
k∑
i=1

Γ̂i∆
d̂Li

b̂
(Xt+1 − µ̂). (12)

This defines the one-step ahead forecast of Xt+1 given information at time t.
Multi-period ahead forecasts can be generated recursively. That is, to calculate the h-step

ahead forecast, we first generalize (12) as

X̂t+j|t = µ̂+ Ld̂(X̂t+j|t − µ̂) + α̂β̂′∆d̂−b̂Lb̂(X̂t+j|t − µ̂) +
k∑
i=1

Γ̂i∆
d̂Li

b̂
(X̂t+j|t − µ̂), (13)

where X̂s|t = Xs for s ≤ t. Then forecasts are calculated recursively from (13) for j =

1, 2, . . . , h to generate h-step ahead forecasts, X̂t+h|t.
Clearly, one-step ahead and h-step ahead forecasts for the model (5) with a restricted

constant term instead of the level parameter can be calculated entirely analogously. We will
apply the forecasts (12) and (13) for both models (5) and (7) in our analysis below for several
forecast horizons, h.

4 Estimation results
Before we move on to the forecasting analysis, we briefly discuss some estimation results
which are presented in Tables 3–6. Each table shows FCVAR estimation results for one

6To emphasize that these estimates are based on data available at time t, they could be denoted by a
subscript t. However, to avoid cluttering the notation we omit this subscript and let it be understood in the
sequel.
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Table 3: FCVARd,b,ρ estimation results

Model:

∆d̂

CPt

LPt

LDt

 = α̂

β̂′∆d̂−b̂Lb̂

CPt

LPt

LDt

+ ρ̂′

+ Γ̂∆d̂Lb̂

CPt

LPt

LDt

+ ε̂t

Parameters:

d̂ = 0.774
(0.023)

, b̂ = 0.094
(0.026)

, α̂ =

 0.532 −0.810
0.405 0.034
5.517 10.748

 , β̂ =

 1.000 0.000
0.000 1.000
2.247 −1.962

 ,
ρ̂ =

[
0.019 −1.536

]
, Γ̂ =

 −6.011 0.970 −2.485
−0.250 −5.686 −0.684
−5.875 −10.224 2.080

 ,
Qε̂ = 50.111

(0.625)
, log(L ) = 4898.335

Notes: The table shows FCVAR estimation results for model (5) with two fractional parameters, (d, b), and a
restricted constant term, ρ. The multivariate Portmanteau Q-test for serial correlation up to order six in the
residuals is reported as Qε̂ and the maximized log-likelihood value is reported as log(L ). Standard errors

are in parentheses below d̂ and b̂ and P values are in parentheses below Qε̂. The sample size is T +N = 1227
and the first N = 20 observations are used as initial values.

of the four variants considered. Specifically, Table 3 shows results for model (5) with two
fractional parameters, (d, b), and a restricted constant term, ρ, Table 4 shows results for
model (7) with two fractional parameters, (d, b), and the level parameter, µ, while Tables
5 and 6 show the corresponding results for the models with only one fractional parameter,
d = b. In addition, the multivariate Portmanteau Q-test for serial correlation up to order
six in the residuals is reported as Qε̂ and the maximized log-likelihood value is reported as
log(L ). Standard errors are in parentheses below d̂ and b̂ and P values are in parentheses
below Qε̂.

Since it is infeasible to present results for all the many models and training sets on which
our forecasting analysis is based, the results in Tables 3–6 are based simply on the full sample
of size T +N = 1227. In the models with a restricted constant term in Tables 3 and 5, the
first N = 20 observations are used as initial values in the estimation, while in the models
with a level parameter in Tables 4 and 6, we follow Johansen and Nielsen (2015) and set
N = 0.

For each model we initially chose the lag order by the Bayesian information criterion, and
then conducted cointegration rank tests. The model was then estimated and the residuals
tested for white noise (multivariate Portmanteau Q-test reported), which was not rejected
for any of the four models with a lag order of k = 1 and cointegration rank r = 2. Hence we
conclude that the models appear correctly specified.

Looking at the estimated parameter values in the four tables, we first note that d̂ is very
strongly significantly different from one and that b̂ is strongly significantly different from
both zero and one in all models. This suggests very clearly that the FCVAR model is more
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Table 4: FCVARd,b,µ estimation results

Model:

∆d̂

CPt

LPt

LDt

− µ̂
 = α̂β̂′∆d̂−b̂Lb̂

CPt

LPt

LDt

− µ̂
+ Γ̂∆d̂Lb̂

CPt

LPt

LDt

− µ̂
+ ε̂t

Parameters:

d̂ = 0.624
(0.026)

, b̂ = 0.273
(0.084)

, α̂ =

 0.009 −0.156
0.448 0.647
0.064 −0.354

 , β̂ =

 1.000 0.000
0.000 1.000
0.947 −0.748

 ,
µ̂ =

 −0.396
−0.660
−1.597

 , Γ̂ =

 −1.278 0.283 −0.033
−0.367 −2.105 0.074
−0.308 0.478 −1.924

 ,
Qε̂ = 57.148

(0.359)
, log(L ) = 4965.089

Notes: The table shows FCVAR estimation results for model (7) with two fractional parameters, (d, b), and
the level parameter, µ. The multivariate Portmanteau Q-test for serial correlation up to order six in the
residuals is reported as Qε̂ and the maximized log-likelihood value is reported as log(L ). Standard errors

are in parentheses below d̂ and b̂ and P values are in parentheses below Qε̂. The sample size is T +N = 1227
and N = 0 observations are used as initial values.

Table 5: FCVARd=b,ρ estimation results

Model:

∆d̂

CPt

LPt

LDt

 = α̂

β̂′Ld̂
CPt

LPt

LDt

+ ρ̂′

+ Γ̂∆d̂Ld̂

CPt

LPt

LDt

+ ε̂t

Parameters:

d̂ = 0.627
(0.013)

, α̂ =

 −0.024 −0.024
−0.013 0.005
−0.100 0.132

 , β̂ =

 1.000 0.000
0.000 1.000
0.370 −0.922

 ,
ρ̂ =

[
1.955 −1.652

]
, Γ̂ =

 −0.552 0.054 0.029
0.049 −0.587 0.031
0.049 −0.031 −0.554

 ,
Qε̂ = 76.692

(0.023)
, log(L ) = 4875.513

Notes: The table shows FCVAR estimation results for model (5) with one fractional parameter, d = b, and a
restricted constant term, ρ. The multivariate Portmanteau Q-test for serial correlation up to order six in the
residuals is reported as Qε̂ and the maximized log-likelihood value is reported as log(L ). Standard errors

are in parentheses below d̂ and b̂ and P values are in parentheses below Qε̂. The sample size is T +N = 1227
and the first N = 20 observations are used as initial values.
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Table 6: FCVARd=b,µ estimation results

Model:

∆d̂

CPt

LPt

LDt

− µ̂
 = α̂β̂′Ld̂

CPt

LPt

LDt

− µ̂
+ Γ̂∆d̂Ld̂

CPt

LPt

LDt

− µ̂
+ ε̂t

Parameters:

d̂ = 0.572
(0.015)

, α̂ =

 −0.022 −0.018
0.079 0.055
−0.058 −0.048

 , β̂ =

 1.000 −0.000
0.000 1.000
2.403 −3.679

 ,
µ̂ =

 −0.411
−0.653
−1.574

 , Γ̂ =

 −0.497 0.075 0.027
−0.032 −0.652 0.022
−0.061 0.119 −0.694

 ,
Qε̂ = 60.163

(0.263)
, log(L ) = 4962.473

Notes: The table shows FCVAR estimation results for model (7) with one fractional parameter, d = b, and
the level parameter, µ. The multivariate Portmanteau Q-test for serial correlation up to order six in the
residuals is reported as Qε̂ and the maximized log-likelihood value is reported as log(L ). Standard errors

are in parentheses below d̂ and b̂ and P values are in parentheses below Qε̂. The sample size is T +N = 1227
and N = 0 observations are used as initial values.

appropriate for this data than the non-fractional CVAR model since the latter has d = b = 1
imposed. Comparing across the models, it appears that the estimates of d are fairly close,
ranging from 0.57 to 0.77, whereas the estimates of b are quite different in the models with
d 6= b in Tables 3 and 4.

Further comparison across models leads to consideration of the likelihood ratio test statis-
tic for the null hypothesis that d = b. That is, for the models with a restricted constant
term (and N = 20), we can test the null of the model in Table 5 against the alternative of
the model in Table 3, and for the models with a level parameter (and N = 0), we can test
the null of the model in Table 6 against the alternative of the model in Table 4. In the first
case, the likelihood ratio test statistic is 35.002, and in the second case, the likelihood ratio
test statistic is 0.84. In both cases, this is asymptotically chi-squared distributed with one
degree of freedom, so the conclusions of these tests differ and consequently we proceed with
the consideration of all four models.

5 Forecast comparison
This section presents and discusses the forecasting procedure and results. The four variants
of the FCVAR model presented above are evaluated on their forecasting ability relative to
a group of popular competing models. The CVAR model (4) serves as the multivariate
benchmark model. The main univariate benchmark is the ARFIMA(p, d, q) model,

A(L)∆d(Xt − µ) = B(L)εt, (14)

where A(L) and B(L) are the autoregressive and moving average polynomials, satisfying
standard regularity conditions. A special case of (14) is the simple ARFIMA(0, d, 0) model,
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which is also included because it was found by, e.g., Byers et al. (1997) and Dolado et al.
(2002), to fit (monthly) UK polling data well. Finally, another special case of (14) is the
standard ARMA(p, q) model, which we include as the classical univariate benchmark. Es-
timation of the univariate models is by minimization of the conditional sum-of-squares, see
Box and Jenkins (1970) for ARMA models and Hualde and Robinson (2011) and Nielsen
(2015) for ARFIMA models, while forecasting is done using the best linear predictor which
appears standard for these models.

5.1 Forecasting methodology

The forecasting procedure applies the standard rolling window and recursive forecasting
schemes to examine forecasting accuracy. The main distinction between the two schemes is
how they select the training sets used for estimating each model to produce forecasts. The
rolling window scheme uses a fixed training set length (usually referred to as a window) that
moves across the data set. The recursive scheme uses an expanding training set length with a
fixed start date at the beginning of the data set. In order to assess the forecasting capability
of each model, it is necessary to generate predictions from a sufficiently large number of
training sets used to estimate each model, and it is preferable that each training set is long
enough for reliable estimation and forecasting.

For the rolling window scheme, each statistical model uses training sets with a fixed
length of T + N = 600 observations, approximately half the length of the data set. For
the recursive scheme, the first training set includes T + N = 600 observations and each
subsequent training set includes one more observation, until the last training set which has
T +N = 1227− h observations, where h is the forecast horizon. This implies that for both
forecasting schemes, the total number of training sets is 1227−600−h+1 = 628−h, and the
first training set is the same for both procedures. For the FCVAR models with a restricted
constant term we use the first N = 20 observations of each training set as initial values, and
for the FCVAR models with the level parameter we follow Johansen and Nielsen (2015) and
use N = 0 initial values. The CVAR model applies estimation conditional on N = k + 1
initial values, such that maximum likelihood estimation reduces to reduced rank regression.

The forecasting programs use all applicable model specification criteria and tests consis-
tently across both the multivariate and univariate model types, and all rejection rules for
statistical hypothesis testing are conducted at the five percent level of significance. For all
models, the model specification is based on the very first training set, and the same model
specification is then applied to all training sets. That is, we maintain the same lag orders and
cointegration ranks for all training sets, but all the parameters of the models are re-estimated
for each training set before forecasts are calculated.

The multivariate specifications involve first selecting the lag order, k. Lag order selection
is initially based on the Bayesian information criterion (BIC). Given the lag order, cointe-
gration rank tests are performed, which determine the number of cointegrating relations, r,
for each model. The multivariate model is then estimated using these values of k and r. In
the next step, the program performs a multivariate Q-test for white noise up to order six on
the residuals. If the white noise test rejects, then another lag is added and the rank test,
estimation, and white noise test are repeated in sequence until the program fails to reject
white noise for the residuals. The univariate specification differs from the multivariate only
in that two lag orders, p and q, need to be selected conditional on the univariate white noise
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test failing to reject.
Following the completion of the specification algorithm, the forecasting program estimates

the model for all training sets and uses the estimated model parameters to generate h-step
ahead forecasts for each time series. All multivariate and univariate models considered
generate forecasts recursively, see Section 3.3. The ARFIMA(0, d, 0) model is included in
the portfolio due to its popularity for political opinion poll data. Its fixed lag orders make
it the only model in the portfolio with lag orders not determined by a decision rule in the
forecasting program.

Forecasts are generated for seven out-of-sample horizons, h: 1, 5, 10, 15, 20, 25, and 50
steps ahead. As mentioned above, the number of training sets is different for each forecast
horizon, and we denote this number Mh. The models are ranked based on the multivariate
(system) root mean squared forecast error,

RMSFEsys =

√√√√ 1

pMh

p∑
i=1

Mh∑
j=1

(
X̂i,Tj+h|Tj −Xi,Tj+h

)2
, (15)

as well as the univariate root mean squared forecast errors for each series,

RMSFEi =

√√√√ 1

Mh

Mh∑
j=1

(
X̂i,Tj+h|Tj −Xi,Tj+h

)2
, (16)

where, in both cases, h denotes the forecast horizon, p = 3 is the number of series, i.e., the
dimension of the multivariate system, Mh = 628 − h is the number of training sets, and Tj
is the terminal date of training set j. The individual RMSFEi (i = CP, LP, LD) measures
the typical magnitude of forecast errors for each individual time series, while the RMSFEsys

measures the typical magnitude of all forecast errors produced by each model.

5.2 Forecasting results

This section discusses the forecast performance results, and in particular analyses in detail
the relative performance of the FCVAR model to the multivariate benchmark CVAR model,
and concludes with several figures of forecasts generated by all models in the portfolio.

Tables 7 and 8 report the RMSFEi (i = CP, LP, LD) and RMSFEsys values for the
rolling and recursive schemes, respectively. Numbers in parentheses are the corresponding
rankings at each individual forecast horizon. The models are ranked based on the RMSFEsys

because for each model it provides a single measurement of forecast accuracy for all three
time series.

We begin the assessment of the forecast accuracy with a discussion of the one-step ahead
forecasts. This seems natural prior to examining performance at other subjectively selected
horizons that may be of interest in any given application. In the context of political opinion
polls, one can easily imagine the relevance of forecasting poll standings or vote shares at
many different horizons.

According to the recursive scheme, all four variants of the FCVAR model outperform
all competing models at the one-step ahead forecasting horizon. According to the rolling
window scheme, three of the four FCVAR variants outperform all competing models, and
the FCVARd=b,ρ model loses to the ARFIMA(p, d, q) model by a very small margin. Both
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forecasting schemes rank a variant of the FCVAR model with two fractional parameters as
the top performing model. The rolling window scheme ranks the FCVARd,b,µ and FCVARd,b,ρ

models (jointly) first and the FCVARd=b,µ model second, while the recursive scheme ranks
the FCVARd,b,ρ model first and the FCVARd=b,ρ model second. An important observation is
that the third and fourth ranked FCVAR specifications are very close in performance to the
top performing variant, showing that the reliability of one-step ahead forecasts generated by
the FCVAR model is robust to the number of fractional parameters and type of deterministic
terms used in the specification, at least for this data set.

The longer forecast horizons considered, 5, 10, 15, 20, 25 and 50 steps ahead, deliver
results that are in agreement with the findings for the one-step ahead horizon. The model
rankings across all forecast horizons determine that the accuracy of both short, medium and
long term forecasts generated by the FCVAR model is better than the other models in the
portfolio. This can be seen from the fact that for 7 of 7 cases (1 to 50 steps) in both the
rolling and the recursive schemes, the top two performing models are always variants of the
FCVAR model and three of the top four models are always variants of the FCVAR model.
Furthermore, with the exception of three forecast horizons (1, 5 and 50 steps) in the rolling
window scheme and one forecast horizon (50 steps) in the recursive scheme, all four variants
of the FCVAR model are ranked as the top four models. The exception occurs when only
one variant of the FCVAR model underperforms by a small margin relative to the ARFIMA
model. Overall, this evidence provides strong support for the application of the FCVAR
model for forecasting next day (one-step), next week (5-steps), and all the way up to ten
weeks ahead (50-steps) poll standings.

The results for both forecasting schemes suggest that the FCVAR model with two frac-
tional parameters produces the smallest average forecast errors. A variant of the FCVAR
model with two fractional parameters always outperforms both sub-models, the FCVARd=b,ρ

and FCVARd=b,µ. The recursive scheme determines the FCVARd,b,ρ model as the absolute
favorite at all forecast horizons, while the rolling window scheme ranks the FCVARd,b,µ and
FCVARd,b,ρ models as the top two performing models interchangeably, with the FCVARd,b,µ

variant ranked first over the majority of forecast horizons.
Furthermore, the model rankings strongly suggest that the forecasting accuracy of the

FCVAR is better than the multivariate benchmark CVAR model. To assess the degree of
relative performance, Tables 9 and 10 report the RMSE percentage change,

100

(
RMSFEsys(FCVAR)

RMSFEsys(CVAR)
− 1

)
, (17)

between the two models for the rolling and recursive schemes, respectively. Negative values
favor the FCVAR model and positive values favor the CVAR model.

Table 9 and 10 show strong forecast accuracy improvement for all variants of the FCVAR
model relative the to the CVAR model. At the one-step ahead horizon the FCVAR model
delivers 4− 6% and 6− 8% improvement for the rolling and recursive schemes, respectively.
In 56 of 56 cases, all four variants of the FCVAR model perform better than the CVAR
model. For the FCVAR models with a restricted constant, the improvements in performance
increase substantially as the forecasting horizon increases. The recursive scheme shows 15%,
17%, 19% and 20% improvement for the 15, 20, 25 and 50 step ahead horizons, attained
by the FCVAR model with two fractional parameters and a restricted constant. The rolling
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Table 7: Root mean squared forecast errors – rolling window forecast scheme

Model Series 1 step 5 step 10 step 15 step 20 step 25 step 50 step

FCVARd,b,ρ CP 0.0562 0.0613 0.0637 0.0656 0.0678 0.0704 0.0781
LP 0.0499 0.0524 0.0569 0.0609 0.0647 0.0690 0.0902
LD 0.1134 0.1161 0.1233 0.1298 0.1358 0.1415 0.1650
System 0.0785 (1) 0.0816 (2) 0.0866 (2) 0.0910 (2) 0.0953 (2) 0.0996 (1) 0.1176 (2)

FCVARd,b,µ CP 0.0561 0.0608 0.0632 0.0656 0.0677 0.0702 0.0781
LP 0.0505 0.0549 0.0607 0.0669 0.0723 0.0781 0.1030
LD 0.1130 0.1145 0.1201 0.1249 0.1295 0.1350 0.1543
System 0.0785 (1) 0.0813 (1) 0.0858 (1) 0.0901 (1) 0.0941 (1) 0.0987 (2) 0.1162 (1)

FCVARd=b,ρ CP 0.0569 0.0629 0.0664 0.0684 0.0708 0.0729 0.0782
LP 0.0506 0.0525 0.0569 0.0604 0.0645 0.0687 0.0908
LD 0.1174 0.1241 0.1329 0.1400 0.1445 0.1499 0.1663
System 0.0808 (4) 0.0859 (5) 0.0918 (4) 0.0965 (4) 0.1001 (3) 0.1041 (3) 0.1183 (3)

FCVARd=b,µ CP 0.0566 0.0634 0.0682 0.0731 0.0783 0.0828 0.1039
LP 0.0502 0.0540 0.0597 0.0653 0.0705 0.0828 0.1056
LD 0.1131 0.1169 0.1242 0.1326 0.1379 0.1450 0.1799
System 0.0786 (2) 0.0829 (3) 0.0888 (3) 0.0952 (3) 0.1002 (4) 0.1076 (4) 0.1345 (6)

CVARρ CP 0.0605 0.0656 0.0712 0.0748 0.0800 0.0835 0.0953
LP 0.0547 0.0577 0.0667 0.0744 0.0805 0.0865 0.1114
LD 0.1200 0.1260 0.1386 0.1489 0.1559 0.1619 0.1828
System 0.0838 (5) 0.0885 (7) 0.0979 (7) 0.1054 (7) 0.1113 (7) 0.1164 (7) 0.1353 (7)

ARFIMA(0, d, 0) CP 0.0578 0.0623 0.0664 0.0700 0.0730 0.0758 0.0858
LP 0.0531 0.0638 0.0746 0.0834 0.0909 0.0977 0.1248
LD 0.1158 0.1244 0.1335 0.1410 0.1466 0.1521 0.1628
System 0.0808 (4) 0.0884 (6) 0.0963 (6) 0.1029 (6) 0.1081 (6) 0.1132 (6) 0.1284 (4)

ARFIMA(p, d, q) CP 0.0578 0.0623 0.0664 0.0700 0.0730 0.0758 0.0860
LP 0.0531 0.0638 0.0746 0.0834 0.0909 0.0977 0.1252
LD 0.1133 0.1184 0.1259 0.1328 0.1382 0.1438 0.1637
System 0.0796 (3) 0.0856 (4) 0.0928 (5) 0.0991 (5) 0.1044 (5) 0.1095 (5) 0.1289 (5)

ARMA(p, q) CP 0.0664 0.0795 0.0945 0.1051 0.1105 0.1138 0.1186
LP 0.0641 0.1076 0.1351 0.1491 0.1567 0.1617 0.1759
LD 0.1373 0.1833 0.1934 0.1966 0.1980 0.1992 0.2054
System 0.0955 (6) 0.1310 (8) 0.1467 (8) 0.1548 (8) 0.1591 (8) 0.1620 (8) 0.1705 (8)

Notes: The overall performance of each model is measured by the root mean square forecast error of the
entire multivariate system. Numbers in parentheses are the corresponding rankings at each individual forecast
horizon. The number 1 rank is assigned to the best performing model. The number 8 rank is assigned to
the worst performing model. Results are based on h-step ahead forecasts produced using 628-h training sets
of length 600.
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Table 8: Root mean squared forecast errors – recursive window forecast scheme

Model Series 1 step 5 step 10 step 15 step 20 step 25 step 50 step

FCVARd,b,ρ CP 0.0561 0.0616 0.0642 0.0667 0.0697 0.0727 0.0839
LP 0.0505 0.0548 0.0611 0.0671 0.0726 0.0784 0.1062
LD 0.1123 0.1144 0.1197 0.1251 0.1292 0.1342 0.1520
System 0.0781 (1) 0.0814 (1) 0.0860 (1) 0.0906 (1) 0.0946 (1) 0.0991 (1) 0.1175 (1)

FCVARd,b,µ CP 0.0563 0.0619 0.0653 0.0688 0.0728 0.0765 0.0905
LP 0.0499 0.0524 0.0564 0.0602 0.0640 0.0686 0.0939
LD 0.1150 0.1198 0.1288 0.1381 0.1466 0.1567 0.2024
System 0.0793 (3) 0.0835 (3) 0.0895 (4) 0.0956 (4) 0.1015 (4) 0.1082 (4) 0.1390 (6)

FCVARd=b,ρ CP 0.0563 0.0617 0.0646 0.0672 0.0701 0.0732 0.0846
LP 0.0507 0.0550 0.0612 0.0673 0.0729 0.0786 0.1058
LD 0.1144 0.1193 0.1267 0.1338 0.1387 0.1439 0.1614
System 0.0792 (2) 0.0838 (4) 0.0894 (3) 0.0948 (3) 0.0991 (2) 0.1037 (2) 0.1217 (2)

FCVARd=b,µ CP 0.0563 0.0624 0.0662 0.0697 0.0731 0.0766 0.0887
LP 0.0507 0.0555 0.0622 0.0685 0.0747 0.0808 0.1113
LD 0.1147 0.1171 0.1236 0.1309 0.1367 0.1441 0.1741
System 0.0794 (4) 0.0830 (2) 0.0886 (2) 0.0943 (2) 0.0993 (3) 0.1051 (3) 0.1298 (3)

CVARρ CP 0.0615 0.0684 0.0712 0.0830 0.0909 0.0972 0.1160
LP 0.0551 0.0595 0.0667 0.0828 0.0926 0.1017 0.1388
LD 0.1208 0.1222 0.1386 0.1427 0.1500 0.1572 0.1789
System 0.0845 (7) 0.0878 (7) 0.0979 (7) 0.1066 (7) 0.1145 (7) 0.1218 (7) 0.1469 (7)

ARFIMA(0, d, 0) CP 0.0586 0.0628 0.0668 0.0706 0.0739 0.0770 0.0881
LP 0.0515 0.0566 0.0634 0.0692 0.0744 0.0792 0.0991
LD 0.1181 0.1242 0.1359 0.1468 0.1560 0.1651 0.2007
System 0.0817 (6) 0.0842 (5) 0.0948 (6) 0.1022 (6) 0.1085 (6) 0.1147 (6) 0.1389 (5)

ARFIMA(p, d, q) CP 0.0585 0.0627 0.0668 0.0706 0.0739 0.0770 0.0881
LP 0.0517 0.0566 0.0634 0.0692 0.0744 0.0792 0.0991
LD 0.1149 0.1190 0.1280 0.1374 0.1451 0.1537 0.1877
System 0.0802 (5) 0.0843 (6) 0.0910 (5) 0.0977 (5) 0.1034 (5) 0.1093 (5) 0.1327 (4)

ARMA(p, q) CP 0.0693 0.0836 0.1041 0.1205 0.1309 0.1379 0.1489
LP 0.0623 0.1035 0.1386 0.1564 0.1657 0.1709 0.1813
LD 0.1460 0.1483 0.1524 0.1615 0.1656 0.1759 0.2265
System 0.1000 (8) 0.1150 (8) 0.1333 (8) 0.1473 (8) 0.1549 (8) 0.1624 (8) 0.1883 (8)

Notes: The overall performance of each model is measured by the root mean square forecast error of the
entire multivariate system. Numbers in parentheses are the corresponding rankings at each individual forecast
horizon. The number 1 rank is assigned to the best performing model. The number 8 rank is assigned to
the worst performing model. Results are based on h-step ahead forecasts produced using 628-h training sets
of length= 600, 601, . . . , 1227− h.
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Table 9: Rolling scheme: RMSFEsys percentage change FCVAR vs. CVAR

Model 1 step 5 step 10 step 15 step 20 step 25 step 50 step

FCVARd,b,ρ −6.24 −7.80 −11.50 −13.60 −14.43 −14.48 −13.10
FCVARd,b,µ −6.34 −8.18 −12.29 −14.44 −15.45 −15.19 −14.10
FCVARd=b,ρ −3.56 −3.01 −6.14 −8.42 −10.10 −10.60 −12.52
FCVARd=b,µ −6.22 −6.39 −9.29 −9.64 −10.00 −7.58 −0.55

Notes: Negative values favor the FCVAR model. Results are based on h-step ahead forecasts produced using
628-h training sets of length 600.

Table 10: Recursive scheme: RMSFEsys percentage change FCVAR vs. CVAR

Model 1 step 5 step 10 step 15 step 20 step 25 step 50 step

FCVARd,b,ρ −7.53 −7.32 −12.13 −15.07 −17.43 −18.66 −20.00
FCVARd,b,µ −6.08 −4.92 −8.53 −10.32 −11.39 −11.17 −5.36
FCVARd=b,ρ −6.23 −4.61 −8.65 −11.11 −13.45 −14.88 −17.18
FCVARd=b,µ −6.06 −5.47 −9.50 −11.55 −13.24 −13.68 −11.61

Notes: Negative values favor the FCVAR model. Results are based on h-step ahead forecasts produced using
628-h training sets of length= 600, 601, . . . , 1227− h.

scheme shows up to 15% improvement for the FCVAR models with a restricted constant,
and up to 14% improvement for the FCVAR models with a level parameter. In 30 of 56
cases, the FCVAR model delivers more than a 10% reduction in the RMSFEsys relative to
the CVAR model. Overall the fractional models outperform the non-fractional models, and
fractional cointegration substantially improves forecast accuracy, with the gains becoming
more pronounced at longer forecast horizons.

To conclude the forecast comparison, examples of forecasts generated by all models in
the portfolio are presented in Figure 3. The presented forecasts are generated using the
first training set, which is common to both the rolling and recursive forecasting schemes.
The figure shows the last 50 observations in the training set, followed by the out-of-sample
observations and forecasts up to the longest horizon considered, 50, for the CP, LP and
LD series in separate panels. All series and forecasts in the figure are transformed back to
percentages to provide an illustration of how all models forecast political support as measured
by daily opinion polls.

The forecasts for this training set are in agreement with the evidence presented in the
model ranking exercise. An interesting observation, which is present in results from other
training sets as well, is that even though the CVAR forecasts exhibit more dynamics in the
short run (which is a result of a higher lag order selected compared to the FCVAR), this does
not translate into more accurate predictions for short horizons. Furthermore, as the short
run dynamics die out for both multivariate models, it is evident that fractional cointegration
generates more precise predictions. All variants of the FCVAR produce similar predictions,
and these are reasonably close to the realized data series in all three panels, while the other
models in the portfolio only perform well in some cases.
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Figure 3: Forecasts for first training set
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(c) Liberal Democrats (LD)
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Notes: Training set corresponds to the first window that is shared by the rolling window and recursive
window forecasting schemes. The ARFIMA(0, d, 0) model is not included because the ARFIMA(p, d, q)
model specifies both lag orders to zero.
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5.3 Predicting vote shares of the 2015 UK general election

In this section we present an application to the prediction of the 2015 UK general election,
which was deemed the most unpredictable election in decades in the media. Opinion poll
agencies predicted a hung government, but ended up significantly underestimating the Con-
servative Party vote share; the party that won the election with a majority representation
in Parliament. Note, however, that vote shares cannot be mapped into election outcomes in
the context of the UK election process. This can be seen from the fact that the realized vote
share for the Conservative Party was 36.9%, but the party won 331 out of 650 constituencies
in the country; an outcome that the predicted vote share of the previous-day YouGov opinion
poll, 34%, does not exclude.

We also note that the three political parties represented in our data set, are the three
major political parties in the UK that have historically had the most representation in
government by a strong margin over other parties running in the election. However, as the
2015 general election has shown, major losses incurred by the three major parties can be due
to constituencies lost to other political parties not in the top three. In this election the UK
Independence Party (UKIP), Scottish National Party and Green Party have received 12.6%,
4.7% and 3.8% vote shares, respectively, and these three parties are not accounted for in the
data for the entire duration of the survey.

A key strength of our data set for the purpose of vote share prediction is that the observed
time series are contained within one political cycle. This should allow application of a
relatively simple statistical model, and the previous analysis has shown strong support for
the FCVAR model for this task. We next present predictions of all models in the portfolio
leading into the 56th UK general election held on May 7th, 2015. Specifically, Table 11 shows
the opinion poll and the election vote share predictions of each model one month, one week
and one day preceding the election day, as well as the final election vote share outcome. The
predicted values represent forecasts of the poll standings which can be viewed as predicted
vote shares for each political party. Relative to the poll predictions on May 6th, 2015, which
underestimated the vote share of the Conservative Party and overestimated the vote shares
for Labour and the Liberal Democrats, all models in the portfolio predicted a fall in the vote
share for the Liberal Democrats, in agreement with the realized vote share. The forecasts
generated on the day before the election show that, for both the Conservative Party and
the Labour Party, the FCVAR model variants, CVAR model and ARFIMA(0, d, 0) model
predicted vote shares very similar to the poll predictions, while the ARFIMA(p, d, q) and
ARMA(p, q) models predicted lower vote shares for both parties.

The advantage of using the FCVAR model for predicting vote shares becomes evident
when examining the evolution of the models predictions as the observed data approaches the
election day on May 7th, 2015. Figure 4(a) shows how the analysis presented in this paper
complements the industry standard of using the latest opinion poll as an indicator of future
political support, by allowing the analyst to monitor the dynamics in the opinion poll and
the model predictions. The evolution of the predictions for all FCVAR model variants show
a clear upward trend in the support for the Conservative Party leading into the election,
and a downward trend for the Labour Party for one week leading into the election. These
two trends project the correct direction for the realized vote shares in the election. For the
Liberal Democrats, the strong upward trend in the predicted vote share is suspect to exhibit
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Table 11: Vote share prediction and results for the 2015 UK general election

Conservative Labour Liberal Democrat

Panel A: 1 month before election

Poll 33.00 35.00 8.00
Forecasts FCVARd,b,ρ 33.41 34.59 7.56

FCVARd,b,µ 33.38 33.76 7.66
FCVARd=b,ρ 33.15 34.65 7.19
FCVARd=b,µ 33.22 33.67 7.51
CVARρ 32.68 32.91 7.23
ARFIMA(0, d, 0) 34.15 35.07 8.13
ARFIMA(p, d, q) 34.01 35.18 8.33
ARMA(p, q) 34.54 39.30 9.26

Panel B: 1 week before election

Poll 34.00 35.00 8.00
Forecasts FCVARd,b,ρ 33.81 34.65 8.00

FCVARd,b,µ 33.72 34.35 8.10
FCVARd=b,ρ 33.64 34.58 7.69
FCVARd=b,µ 33.64 34.24 8.04
CVARρ 33.57 33.79 7.70
ARFIMA(0, d, 0) 33.96 34.91 8.27
ARFIMA(p, d, q) 33.96 34.91 8.32
ARMA(p, q) 34.32 37.26 9.05

Panel C: 1 day before election

Poll 34.00 34.00 10.00
Forecasts FCVARd,b,ρ 33.95 34.02 8.68

FCVARd,b,µ 33.89 33.77 8.90
FCVARd=b,ρ 33.98 34.05 8.53
FCVARd=b,µ 33.83 33.77 8.90
CVARρ 33.81 33.66 8.65
ARFIMA(0, d, 0) 33.89 34.11 9.23
ARFIMA(p, d, q) 31.77 33.05 7.18
ARMA(p, q) 33.37 33.10 7.01

2015 election result 36.90 30.40 7.90

Notes: The table shows the opinion poll and the election vote share predictions of each model one month
(Panel A), one week (Panel B), and one day (Panel C) preceding the election day. The last row shows the
election vote share outcomes.
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Figure 4: Vote share prediction over 50 polling days leading into the election
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Notes: Each subfigure shows the evolution of election vote share predictions by all FCVAR model variants
for the May 7th, 2015 general election. The predictions are formed starting with the data available 50
polling days prior to the election and continue to May 6th, 2015, the day before the election.
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the same tendency as political polls, in that they tend to over-represent support for smaller
political parties when compared to the election vote share outcomes and the representation
in government. Overall, these dynamics leading into the election provide a more informative
assessment of the current state of public opinion on electoral support than that suggested
by the hung government prediction of the opinion poll.

The evolution of the vote share predictions generated by the competing models, see Figure
4(b), do not exhibit the same trends as the FCVAR models predictions, which were indicative
of the realized vote shares in the election for the Conservative and Labour parties. The CVAR
model captures an increase in support for the Conservative Party, but the increase is not as
strong as for the FCVAR models. The CVAR model also incorrectly predicts a fall in the
Conservative Party vote share for the last week leading up to the election day. The CVAR
models predictions for the Labour Party do not suggest any upward or downward momentum
in the vote share, and while the ARMA(p, q) model correctly finds a downward trend in the
vote share, it substantially overestimates support for the Labour party throughout.

In general, the results from this empirical application show how modeling time series
of political opinion polls using the FCVAR model, which is strongly favored by the model
forecast comparisons, can complement the industry standard of basing predictions solely on
the most recent opinion poll (e.g., the poll standings on the day preceding the election day)
and provide a more informative assessment of the current state of public opinion.

6 Concluding remarks
This paper has examined the forecasting ability of the fractionally cointegrated vector au-
toregressive (FCVAR) model of Johansen (2008) and Johansen and Nielsen (2012) relative
to a portfolio of competing models at several forecast horizons. The model was applied in
the context of predicting political support in the form of opinion polls; a very relevant topic
in the context of forecasting. The analysis used a novel data set of daily polling of political
support in the United Kingdom over the period 2010–2015. The analysis has shown how
observed time series of public opinion polls can improve forecasting public opinion beyond
the most recent poll date. This complements the industry standard for measuring the cur-
rent state of political support through opinion polling, and contributes to decision making
processes that rely on poll evidence as inputs.

Specifically, the forecasting analysis has shown that the FCVAR model delivers valuable
gains in predicting political support. The accuracy of both short, medium, and long term
forecasts generated by the FCVAR model is better than all multivariate and univariate
models in the portfolio. Indeed, overall, the four variants of the FCVAR model are the top
performing models. Not only do they perform better relative to the other models, but the
forecasting performance of all FCVAR model variants are within close range of each other.
When compared to the main benchmark CVAR model, the FCVAR model significantly
outperforms the benchmark at all forecast horizons and the gains are more pronounced
at the longer forecast horizons, where the root mean squared forecast error is up to 20%
lower than the benchmark. Overall the fractional models outperform the non-fractional
models, and the evidence provides strong support for the application of the FCVAR model.
Fractional cointegration substantially improves forecast accuracy, and the gains become more
pronounced at longer forecast horizons.
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In an empirical application to the prediction of vote shares for the 2015 UK general
election, the results show how modeling time series of political opinion polls using the FCVAR
model, which is strongly favored by the model forecast comparison analysis, can complement
the industry standard of basing predictions solely on the most recent opinion poll. The
forecasts generated by the FCVAR model leading into the election appear to provide a more
informative assessment of the current state of public opinion on electoral support than the
hung government prediction of the opinion polls. Specifically, the FCVAR model projects
the correct direction for the realized vote shares in the election for the Conservative and
Labour parties.
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