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Abstract

In a recent paper Hualde and Robinson (2011) establish consistency and asymptotic

normality for conditional sum-of-squares estimators, which are equivalent to conditional

quasi-maximum likelihood estimators, in parametric fractional time series models driven by

conditionally homoskedastic shocks. In contrast to earlier results in the literature, their

results apply over an arbitrarily large set of admissible parameter values for the (unknown)

memory parameter covering both stationary and non-stationary processes and invertible

and non-invertible processes. In this paper we extend their results to the case where the

shocks can display conditional and unconditional heteroskedasticity of a quite general and

unknown form. We establish that the consistency result presented in Hualde and Robinson

(2011) continues to hold under heteroskedasticity as does asymptotic normality. However,

we demonstrate that the covariance matrix of the limiting distribution of the estimator

now depends on nuisance parameters which derive both from the weak dependence in the

process (as is also the case for the corresponding result in Hualde and Robinson, 2011)

but additionally from the heteroskedasticity present in the shocks. Asymptotically pivotal

inference can be performed on the parameters of the heteroskedastic model, provided a

conventional “sandwich”estimator of the variance is employed.
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1 Introduction

This paper is concerned with establishing consistency and asymptotic normality results for the

conditional quasi-maximum likelihood (QML) estimator, or equivalently the conditional sum-of-

squares (CSS) estimator, in univariate fractionally integrated (or fractional) time series models

which display time-variation in the variance of the driving shocks. Although the QML estima-

tor has found widespread use in the literature, the conditions under which it is consistent in

fractional time series models are only recently beginning to be well understood and those results

which are available all pertain to the case where the shocks are (conditionally) homoskedastic.

We extend these results to allow for both unconditional heteroskedasticity (often referred to as

non-stationary volatility in the literature) and conditional heteroskedasticity of a very general

form in our analysis.

Fractional models provide a parsimonious means to model a very wide range of dependence

in time series data. In particular, they are flexible enough to allow for both weak and strong

dependence, stationary and non-stationary behaviour, and invertibility and non-invertibility

through the value of the long memory parameter in the model. However, it is this strength of

the fractional model that has meant that, until only very recently, proofs of the consistency of

standard parametric estimators, such as QML, have been eschewed in the literature. Consis-

tency results are, of course, important in their own right but are also necessary prerequisites in

any proof of asymptotic normality for implicitly defined estimators such as the QML estimator.

The problem is due to the non-uniform convergence of the objective function when the range

of values that the long memory parameter may take is large; see Hualde and Robinson (2011)

and, for the multivariate extension thereof, Nielsen (2014) for detailed discussion on this point.

In essence, the problem lies in the different rates of convergence of the estimator’s objective

function in different regions of values the long memory parameter can take. It should be noted

at this stage that there exists a recent parallel literature on globally consistent semi-parametric

estimators in the frequency domain. For an early example, see Shimotsu and Phillips (2005).

However, these estimators achieve only semi-parametric rates of convergence for the estimator

of the long memory parameter, treating weak dependence in the process non-parametrically,

whereas the objective in this paper is to obtain globally consistent estimators with the usual

parametric, i.e.
√
T , rate of convergence.

The aforementioned diffi culties in establishing consistency with parametric estimators have

previously been avoided by, for example, either restricting the range of values the long memory

parameter is allowed to take to an interval of length less than one-half (see, for example, Fox

and Taqqu, 1986, Dahlhaus, 1989, Giraitis and Surgailis, 1990, Hosoya, 1996, and Robinson,

2006), or, as in, for example, Tanaka (1999) and Nielsen (2004) to give local consistency proofs.

Alternatively, with some prior knowledge of the approximate magnitude of the long memory

parameter one can (fractionally) difference the data, estimate the long memory parameter on

the resulting data, and add back. However, in a recent paper, Hualde and Robinson (2011)
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demonstrate the consistency and asymptotic normality of the QML estimator in parametric

fractional time series models for an arbitrarily large set of admissible values of the long memory

parameter which simultaneously includes the range of cases discussed above. They do so in the

context of a fractional model driven by conditionally homoskedastic errors.

Our contribution in this paper is to extend the results in Hualde and Robinson (2011) to

allow for both conditional and unconditional heteroskedasticity in the driving shocks. We do so

using a new framework which includes the general form of non-stationary volatility considered

in Cavaliere and Taylor (2005, 2008) as a special case and also includes a set of conditional

heteroskedasticity conditions which are similar to those employed in Robinson (1991), Deme-

trescu, Kuzin and Hassler (2008) and Hassler, Rodrigues and Rubia (2009), among others. It

is worth noting that neither of these conditions involve specifying a parametric model for the

volatility process, and that our conditional heteroskedasticity conditions are weaker than have

been previously considered in the fractional integration literature. We show, in the context of

the resulting heteroskedastic fractional time series model, consistency and asymptotic normal-

ity of the QML estimator.1 We then show that the variance of the limiting distribution of the

QML estimator depends on nuisance parameters which derive both from the weak dependence

present in the process (as in the corresponding result in Hualde and Robinson, 2011), but also

from the heteroskedasticity present in the shocks. Asymptotically pivotal inference on the pa-

rameters of the fractional model can, however, be obtained by using standard sandwich-type

estimators of the variance.

The extensions to the work of Hualde and Robinson (2011) considered in this paper are

of considerable practical importance given that the well-documented failure of the assumption

of conditional homoskedasticity in both empirical finance and macroeconomics; see section 2

of Gonçalves and Kilian (2004) for detailed discussion and empirical evidence on this point.

Moreover, a large body of recent applied work has grown suggesting that the assumption of

constant unconditional volatility is also at odds with the data. Sensier and van Dijk (2004)

report that over 80% of the real and price variables in the Stock and Watson (1999) data-set

reject the null of constant innovation variance, while Loretan and Phillips (1994) report evidence

against the constancy of unconditional variances in stock market returns and exchange-rate

data. Recent studies have reported that a general decline in the unconditional volatility of the

shocks driving macroeconomic series in the twenty years or so leading up to the recent financial

crisis is a relatively common phenomenon. This feature is known as the “great moderation”; see,

inter alia, Kim and Nelson (1999), McConnell and Perez-Quiros (2000), Sensier and van Dijk

(2004), and references therein. Indeed, the aforementioned financial crisis could be argued to

1Notice that the results given in this paper necessarily apply to the special case of short memory processes,

where d = 0, driven by conditionally and/or unconditionally heteroskedastic innovations. For earlier contributions

relevant to the d = 0 case see, for example, Hannan and Heyde (1972), Hannan and Deistler (1988) and Gonçalves

and Kilian (2004, 2007) who allow for conditional (but not unconditional) heteroskedasticity, and Phillips and

Xu (2007) who allow for unconditional (but not conditional) heteroskedasticity, the latter in the context of a

finite-order AR.
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constitute a further break in the unconditional volatility of these series with volatility increasing

sharply again.

The remainder of the paper is structured as follows. In the next section we present the

heteroskedastic fractional time series model and the assumptions. Section 3 presents the esti-

mator and the main results, which are the consistency theorem and the asymptotic distribution

theory. Section 4 concludes, and the paper ends with appendices of proofs and auxiliary results

used in the main proofs.

In the following, for a sequence of stochastic processes XT (s) ∈ R, s = (s1, . . . , sm) ∈
S, where S is a compact subset of m-dimensional Euclidean space, the notation XT ⇒ X

or XT (s) ⇒ X(s) is used to indicate convergence in distribution of the sequence, either as

continuous processes in C(S) or as cadlag processes in D(S), whereas XT (s)
D→ X(s) means

convergence in distribution in R for a fixed s and P→ denotes convergence in probability. For any

space Q, int(Q) denotes the interior of Q; I(·) denotes the indicator function; x := y indicates

that x is defined by y. For any matrix, M , ‖M‖ is used to denote the norm ‖M‖2 := tr {M ′M}
and (M)m,n denotes its (m,n)’th element; for any vector, v, ‖v‖ denotes the usual Euclidean
norm, ‖v‖ := (v′v)1/2 and (v)m denotes its m’th element; for any real number, x, bxc denotes
the integer part of x. A function f(x) : Rq → R satisfies a Lipschitz condition of order α, or is
in Lip(α), if there exists a finite constant K > 0 such that |f(x1)− f(x2)| ≤ K|x1−x2|α for all
x1, x2 ∈ Rq. Throughout, we use the notation c or K for a generic, finite constant, and, finally,

as a convention, it is assumed that j−1 = 0 for j = 0 in summations over j.

2 The Heteroskedastic Fractional Model

We consider the fractional time series model

Xt = ∆−d+ ut and ut = a(L,ψ)εt, (1)

where the operator ∆−d+ is given, for a generic variable xt, by ∆−d+ xt := ∆−dxtI (t ≥ 1) =∑t−1
i=0 πi (d)xt−i with

πi (d) :=
Γ (d+ i)

Γ (d) Γ (1 + i)
=
d(d+ 1) . . . (d+ i− 1)

i!

denoting the coeffi cients in the usual binomial expansion of (1 − z)−d, and where ψ is a p-

dimensional parameter vector and a(z, ψ) :=
∑∞

n=0 an(ψ)zn.

Remark 1. The parametric form (but not the parameters characterising it) of the function

a(z, ψ) will be assumed known, so that, specifically, ut is assumed to be a linear process governed

by an underlying p-dimensional parameter vector. For example, any process that can be written

as a finite order ARMA model is permitted as is the exponential spectrum model of Bloomfield

(1973). The latter is popular in the fractional literature owing to the relatively simple covariance

matrix formula it offers in this setting; see, for example, Robinson (1994). Further discussion
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on the function a(z, ψ) can be found in Hualde and Robinson (2011) and also in Nielsen (2014)

for the multivariate case.

Remark 2. The definition of fractional integration applied in (1) is that of the so-called “type

II” fractional integration. While “type II” is certainly not the only type of fractional integra-

tion, it does have the desirable feature that the same definition is valid for any value of the

fractional parameter, d, and that no prior knowledge needs to be assumed about the value of

d. Importantly, this implies that both stationary, non-stationary, and over-differenced time

series are permitted and that the range of admissible values of the fractional parameter can be

arbitrarily large; see the discussion in Hualde and Robinson (2011).

Model (1) is analyzed under the following assumption on the innovations εt.

Assumption A. The innovations {εt} are such that εt = σtzt, where {σt} and {zt} satisfy the
conditions in parts (a) and (b), respectively, below:

(a) {σt}t∈Z is non-stochastic and uniformly bounded, and, for all t = 1, ..., T satisfies σt :=

σ (t/T ) > 0, where σ (·) ∈ D([0, 1]), the space of càdlàg functions on [0, 1].

(b) {zt}t∈Z is a martingale difference sequence with respect to the natural filtration Ft, the
sigma-field generated by {zs}s≤t, such that Ft−1 ⊆ Ft for t = ...,−1, 0, 1, 2, ..., and satisfies

(i) E(z2
t ) = 1,

(ii) τ r,s := E(z2
t zt−rzt−s) is uniformly bounded for all t ≥ 1, r ≥ 0, s ≥ 0, where also

τ r,r > 0 for all r ≥ 0,

(iii) For all integers r1, r2 ≥ 1, the 4’th order cumulants κ4(t, t, t−r1, t−r2) of (zt, zt, zt−r1 , zt−r2)

satisfy supt
∑∞

r1,r2=1 |κq(t, t, t− r1, t− r2)| <∞.

Importantly, through the condition in Assumption A(b)(iii), only four moments are assumed

finite in Assumption A. Moreover, Assumption A does not impose Gaussianity. Assumption

A allows for both conditional and unconditional heteroskedasticity of very general forms. The

conditions in part (a) of Assumption A, see Cavaliere and Taylor (2008), imply that the un-

conditional innovation variance σ2
t is only required to be bounded and to display at most a

countable number of jumps, therefore allowing for an extremely wide class of potential models

for the unconditional variance of εt. Models of single or multiple variance shifts satisfy part (a)

of Assumption A with σ (·) piecewise constant. (Piecewise) affi ne functions are also permitted,
thereby allowing for variances which follow a (broken) linear trend.

Part (b) of Assumption A allows for conditional heteroskedasticity in {zt}. A parametric

model, such as a member of the GARCH family, is not assumed. Rather, the conditions in

Assumption A(b) allow for conditional heteroskedasticity of unknown and very general form

and are typical of those used in this literature; see, for example, Robinson (1991), Demetrescu,

Kuzin and Hassler (2008), Hassler, Rodrigues and Rubia (2009) and Kew and Harris (2009).
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However, we note that the conditions given in part (b) of Assumption A are somewhat weaker

than required by these authors. First of all, they impose the assumption that, for any integer

q, 2 ≤ q ≤ 8, and for q non-negative integers si, E(
∏q
i=1 z

si
ti

) = 0 when at least one si is exactly

one and
∑q

i=1 si ≤ 8, see, e.g., Assumption E(e) of Kew and Harris (2009). This implies, in

particular, that τ r,s = 0 for r 6= s, which rules out a large class of asymmetric conditionally

heteroskedastic processes. Secondly, these authors assume strict stationarity of zt, which we do

not.

A special case of Assumption A, which obtains for σ (·) constant and {zt} conditionally
homoskedastic, is the following

Assumption H. The innovations {εt} form a martingale difference sequence with respect to

the filtration Ft, where E
(
ε2
t |Ft−1

)
= σ2 almost surely and suptE(ε4

t ) ≤ K <∞.

Remark 3. Assumption H is a fairly standard conditional homoskedasticity assumption used

in the time series literature. It is, however, weaker than Assumption A2 in Hualde and Robinson

(2011), which additionally imposes the conditions that εt is strictly stationary and ergodic and

that the conditional third and fourth moments of εt are equal to the corresponding unconditional

moments.

Remark 4. Observe that the assumption that zt is a martingale difference sequence in As-

sumption A implies that for any κq(·), q ≥ 2, if the highest argument in the cumulant appears

only once, then the cumulant is zero. This result is stated and formally proved in Lemma A.2

in the appendix. For this reason, our stated assumptions deal only with cumulants where the

first two (the highest) arguments coincide. Moreover, notice that the boundedness assumption

in A(b)(ii) does in fact follow from the conditions imposed in A(b)(iii).

Remark 5. Since σt depends on (t/T ), a time series generated according to Assumption A

formally constitutes a triangular array of the type {εT,t : 0 ≤ t ≤ T, T ≥ 1}, where εT,t = σT,tzt

and σT,t = σ(t/T ). Since the triangular array notation is not essential, for simplicity the

subscript T is suppressed in the sequel.

We next impose the following assumption on the true parameter values, which are denoted

by subscript zero.

Assumption B. The true parameter values satisfy (d0, ψ0) ∈ D ×Ψ, where D := [d1, d2] with

−∞ < d1 ≤ d2 <∞ and the set Ψ ⊆ Rp is convex and compact.

Assumption B permits the length of the interval D of admissible values of the parame-

ter d to be arbitrarily large. Specifically, the length of D is not limited to less than 1/2 as

in most previous studies of fractional time series models that include proofs of consistency.

Thus, under Assumption B, the model can simultaneously accommodate both non-stationary,

(asymptotically) stationary, and over-differenced processes.

The following condition is imposed on the coeffi cients of the linear filter a(z, ψ):
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Assumption C. For all ψ ∈ Ψ and all z in the complex unit disk {z ∈ C : |z| ≤ 1} it holds
that:

(i) a0(ψ) = 1 and a(z, ψ) =
∑∞

n=0 an(ψ)zn is bounded and bounded away from zero.

(ii) a(eiλ, ψ) is twice differentiable in λ with second derivative in Lip(ζ) for ζ > 0.

(iii) a(z, ψ) =
∑∞

n=0 an(ψ)zn is continuously differentiable in ψ and the derivatives ȧn(ψ) =
∂an(ψ)
∂ψ satisfy

∑∞
n=0 |ȧn(ψ)| <∞.

Remark 6. Assumption C is the univariate version of Assumption C in Nielsen (2014). As-

sumption C(i) coincides with Assumption A1(iv) of Hualde and Robinson (2011), while As-

sumption C(ii) strengthens their Assumption A1(ii) from once differentiable in λ with deriva-

tive in Lip(ζ) for ζ > 1/2, while Assumption C(iii) strengthens their Assumption A1(iii) from

continuity in ψ to differentiability.

Remark 7. Assumptions C(i)-(ii) ensure that ut in (1) is an invertible short-memory process

(with spectrum that is bounded and bounded away from zero at all frequencies); under As-

sumption C(i) the function b(z, ψ) :=
∑∞

n=0 bn(ψ)zn = a(z, ψ)−1 is well-defined by its power

series expansion for |z| ≤ 1 + δ for some δ > 0, and is also bounded and bounded away from

zero on the complex unit disk. The coeffi cients an(ψ) and bn(ψ) then satisfy

|an(ψ)| = O(n−2−ζ) and |bn(ψ)| = O(n−2−ζ) uniformly in ψ ∈ Ψ, (2)

see Zygmund (2003, pp. 46 and 71). In contrast, under Hualde and Robinson’s (2011) Assump-

tion A1(ii) the rate is O(n−1−ζ) for ζ > 1/2, which is slightly weaker. Assumption C is easily

seen to be satisfied, for example, by stationary and invertible finite order ARMA processes due

to the exponential decay of their linear representation coeffi cients.

Finally, the following identification condition will also be needed:

Assumption D. For all ψ ∈ Ψ\{ψ0} it holds that a(z, ψ) 6= a(z, ψ0) on a subset of {z ∈ C :

|z| = 1} of positive Lebesgue measure.

Assumption D is identical to Assumption D in Nielsen (2014) and Assumption A1(i) in

Hualde and Robinson (2011). It is satisfied, for example, by all stationary and invertible finite

order ARMA processes whose AR and MA polynomials are not both overspecified; that is, those

which do not admit any common factors in their AR and MA polynomials. More generally,

Assumption D ensures identification and is related to the standard condition for identification

in extremum (or ML) estimation; see, for example, Hayashi (2000, equation (7.2.13)) for a

textbook treatment. In a time series context, see also Hannan (1973, equation (4)).
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3 Asymptotic Theory

Let θ := (d, ψ) ∈ D ×Ψ = Θ and define the residuals

εt(θ) :=

t−1∑
n=0

bn(ψ)∆d
+Xt−n. (3)

Then the conditional2 Gaussian quasi-log-likelihood function, based on the assumption that the

shocks ut are Gaussian with constant variance equal to σ2, for the model (1) is, apart from a

constant,

L(θ, σ2) = −T
2

log σ2 − 1

2σ2

T∑
t=1

εt(θ)
2.

It follows in the usual way that the (conditional) QML estimator is identical to the classical

least squares or CSS estimator, which is found by minimizing the sum of squared residuals;

that is,

θ̂ := arg min
θ∈Θ

R(θ), (4)

R(θ) := T−1
T∑
t=1

εt(θ)
2. (5)

It is important to notice that Gaussianity is not needed for the asymptotic theory in this paper,

and so (4) can be viewed as a (conditional) QML estimator.

In our first result we now establish the consistency of the QML estimator from (4) when

the shocks, ut, driving (1) are heteroskedastic, satisfying the conditions in Assumption A.

Theorem 1. Let Xt be generated by model (1) satisfying Assumptions A—D, and let (d̂, ψ̂) be

defined by (4). Then (d̂, ψ̂)
P→ (d0, ψ0) as T →∞.

Remark 8. The result in Theorem 1 establishes that the consistency result derived in Hualde

and Robinson (2011) (see also Nielsen, 2014) under the assumption of conditionally homoskedas-

tic errors remains valid under the conditions of Assumption A thereby allowing for conditional

and/or unconditional heteroskedasticity in the driving shocks, ut, in (1). This result does, how-

ever, require the stronger smoothness conditions in Assumption C relative to the corresponding

conditions in Assumption A1 of Hualde and Robinson (2011); see again the discussion in Re-

marks 6 and 7. Notice that the result in Theorem 1 implies that this result also holds under

Assumption H. Although this imposes somewhat weaker conditions than the corresponding

Assumption A2 of Hualde and Robinson (2011), this must be traded off against the stronger

conditions imposed by Assumption C relative to their Assumption A1.

2We are using the term ‘conditional’here in its usual sense to indicate that we have conditioned on the initial

values of ut. This has, of course, been done implicitly through the assumption that (1) generates a type II

fractional process; see again the discussion in Remark 2.
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We now turn to establishing asymptotic distribution theory for the QML estimator from

(4) when we allow for heteroskedasticity of the form given in Assumption A. In order to do so

we will need to strengthen Assumptions A and C with the following additional assumptions.

Assumption E. For all integers q such that 3 ≤ q ≤ 8 and for all integers r1, ..., rq−2 ≥ 1, the

q’th order cumulants κq(t, t, t−r1, . . . , t−rq−2) of (zt, zt, zt−r1 , . . . , zt−rq−2) satisfy the condition

that supt
∑∞

r1,...,rq−2=1 |κq(t, t, t− r1, . . . , t− rq−2)| <∞.

Assumption F. For all z such that |z| ≤ 1, a(z, ψ) =
∑∞

n=0 an(ψ)zn is three times differen-

tiable in ψ on the closed neighborhood Nδ(ψ0) := {ψ ∈ Ψ : |ψ − ψ0| ≤ δ} for some δ > 0, and

the derivatives ∂kan(ψ)

∂ψ(k)
satisfy

∑∞
n=0 |

∂kan(ψ)

∂ψ(k)
| <∞ for all ψ ∈ Nδ(ψ0) and k = 2, 3.

Remark 9. Notice that the moment condition suptE|zt|8 <∞, imposed by a number of other
authors, is necessary for Assumption E with q = 8 to hold and therefore is not stated explicitly.

Remark 10. The strengthening of Assumption A(b)(iii) to a summability condition on the

eighth cumulants of εt in Assumption E would appear to be standard, whether stated directly

or indirectly, in the fractional literature where asymptotic distribution theory is derived under

(conditional) heteroskedasticity, the leading example being the literature on hypothesis testing

on the long memory parameter, d; see, inter alia, Demetrescu, Kuzin and Hassler (2008),

Hassler, Rodrigues and Rubia (2009) and Kew and Harris (2009). The additional moment

conditions this strengthening implies are required in the proof of Theorem 2 to verify that,

under heteroskdastic innovations of the form given in Assumption A, a Lindeberg-type condition

holds for the score and for proving convergence in L2 of the Hessian; see Appendices E.1 and

E.2 respectively.

Remark 11. Assumption F requires a(z, ψ) to be three times differentiable in ψ rather than

the corresponding twice differentiable condition in Assumption A3(ii) of Hualde and Robinson

(2011). This strengthening is required to prove tightness of the Hessian; see Appendix E.2.

This condition is satisfied by standard stationary and invertible ARMA processes, and, indeed,

is not restrictive in practice for the reasons outlined on page 3156 of Hualde and Robinson

(2011).

Finally, to state the asymptotic variance of the limiting distribution of the QML estimator,

we need to define the following matrices,

A0 :=

∞∑
n,m=1

τn,m

[
n−1m−1 −γn(ψ0)′/m

−γn(ψ0)/m γn(ψ0)γm(ψ0)′

]

and

B0 :=
∞∑
n=1

[
n−2 −γn(ψ0)′/n

−γn(ψ0)/n γn(ψ0)γn(ψ0)′

]
,
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where τn,m is defined in Assumption A(b)(ii), γn(ψ) :=
∑n−1

m=0 am(ψ)ḃn−m(ψ) and ḃn(ψ) :=
∂bn(ψ)
∂ψ .

Remark 12. The matrix B0 coincides with the matrix A in Hualde and Robinson (2011) and

derives from the weak dependence present in the process through a(z, ψ). On the other hand,

the matrix A0 also includes the effects of any conditional heteroskedasticity present in εt via the

τn,m coeffi cients. If there is no conditional heteroskedasticity present, then A0 = B0 because

here the only the τn,n = 1 coeffi cients are non-zero. Notice that both A0 and B0 are not affected

by any unconditional heteroskedasticity arising from part (a) of Assumption A.

Remark 13. Observe that A0 is finite because, under Assumption C, γn(ψ) ≤ Kn−1−ζ such

that ||A0|| ≤
∑∞

n,m=1 |τn,m|n−1m1 <∞ by Assumption A(b)(iii).

As in Hualde and Robinson (2011) we will require the matrix B0 to be invertible. This is

formally stated in Assumption G. Again this is easily satisfied by, for example, stationary and

invertible ARMA process.

Assumption G. The matrix B0 is non-singular.

In our second result we now establish asymptotic distribution theory for the QML estimator

from (4) when the shocks, ut, driving (1) are heteroskedastic, satisfying Assumption A.

Theorem 2. Under the assumptions of Theorem 1, Assumptions E—G, and (d0, ψ0) ∈ int(D×
Ψ),

√
T ((d̂, ψ̂)− (d0, ψ0))

D→ N(0, C) as T →∞, (6)

where C := λB−1
0 A0B

−1
0 with λ :=

∫ 1
0 σ

4(s)ds/(
∫ 1

0 σ
2(s)ds)2.

Remark 14. Theorem 2 generalises the corresponding result in Hualde and Robinson (2011)

to the case where the shocks can display conditional and/or unconditional heteroskedasticity.

Observe that, under Assumption H, A0 = B0 and λ = 1 and, hence, the result in (6) reduces

to the result in Theorem 2.2 of Hualde and Robinson (2011). Where heteroskedasticity arises

only through part (a) of Assumption A then so the variance matrix C in the right member

of (6) reduces to λB−1
0 . Moreover, where heteroskedasticity arises only through part (b) of

Assumption A then so C reduces to B−1
0 A0B

−1
0 .

Remark 15. The result in (6) shows that the variance of the asymptotic distribution of the

(scaled and centered) QML estimator depends on the scalar parameter λ. This parameter is a

measure of the degree of unconditional heteroskedasticity (non-stationary volatility) present in

{εt}. For a homoskedastic process, where σ(·) is constant, λ = 1, whereas when σ(·) is non-
constant λ > 1, by the Cauchy-Schwarz inequality. Consequently the variance of the asymptotic

distribution of the QML estimator is seen to be inflated when unconditional heteroskedasticity

is present in {εt}.
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Remark 16. The dependence of the asymptotic variance of the QML estimator on nuisance

parameters arising from both the weak dependence and heteroskedasticity in {εt} implies that
asymptotically pivotal inference on the parameter vector θ = (d, ψ) will need to be based around

a consistent estimator of C. An obvious candidate is the usual sandwich estimator

Ĉ :=

(∂2L(θ, σ2)

∂θ∂θ′

)−1
(
T−1

T∑
t=1

∂Lt
(
θ, σ2

)
∂θ

∂Lt
(
θ, σ2

)
∂θ′

)(
∂2L

(
θ, σ2

)
∂θ∂θ′

)−1
∣∣∣∣∣∣

σ2=σ̂2,θ=θ̂

with Lt(θ, σ2) := −1
2 log(σ2)− 1

2σ2
εt(θ)

2 and σ̂2 := 1
T

∑T
t=1 εt (θ)2. It is then straightforward to

show that

√
T ((d̂, ψ̂)− (d0, ψ0))′(Ĉ)−1

√
T ((d̂, ψ̂)− (d0, ψ0))

D→ χ2
p+1 as T →∞,

where χ2
k denotes a Chi-squared distribution with k degrees of freedom. As an illustration of

this general result, a test for the null hypothesis H0 : d = d̄ could then be based on the Wald-

type statistic WT := T (d̂ − d̄)2(Ĉ−1)11, which under H0 will have a χ2
1 limiting distribution.

An alternative testing approach, based on the application of the wild bootstrap method to the

Lagrange Multiplier test for H0, is considered in Cavaliere, Nielsen and Taylor (2013).

4 Concluding remarks

In this paper we have shown that the consistency of QML estimators from parametric frac-

tional time series models driven by conditionally homoskedastic shocks, obtained in Hualde

and Robinson (2011), continue to hold under a wide class of conditionally and/or uncondition-

ally heteroskedastic shocks. We have also shown that the QML estimator is asymptotically

normal, the covariance matrix of which is dependent on nuisance parameters deriving from

both the weak dependence (as in the corresponding result in Hualde and Robinson, 2011) and

any heteroskedasticity present in the shocks. However, asymptotically pivotal inference on the

parameters of the model can be obtained, provided a standard sandwich estimator of the vari-

ance is employed. Like the results in Hualde and Robinson (2011), a fundamental aspect of

our results is that they apply over an arbitrarily large set of admissible parameter values for

the (unknown) memory parameter covering both stationary and non-stationary processes and

invertible and non-invertible processes.

We conclude by mentioning an interesting topic for further research. As noted in the

Introduction, an alternative to parametric QML estimation is provided by semi-parametric

estimation of the long memory parameter; see, in particular, Shimotsu and Phillips (2005) and

Abadir et al. (2007). The former establishes consistency under the assumption of conditionally

homoskedastic shocks, while the latter allows for some quite mild heterogeneity, such that a

weak law of large numbers condition holds; see Equation (2.13) on page 1357 of Abadir et al.

(2007) and the discussion of this they subsequently provide on pages 1358-1359. It would be

useful to investigate if, as we have shown here to hold for the QML estimator, the consistency
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results presented by these authors continue to hold under the general heteroskedastic conditions

given in Assumption A of this paper.

Appendix A Auxiliary Lemmas

We first give a result of McLeish (1974) that will be used repeatedly.

Lemma A.1. Let UTt be a martingale difference array with respect to some filtration Ft such

that Ft−1 ⊆ Ft for t = ...,−1, 0, 1, 2, ..., and suppose, as T →∞, that

(i)
∑T

t=1E(U2
Tt1{|UTt| > δ})→ 0 for all δ > 0,

(ii)
∑T

t=1 U
2
Tt

P→ V.

Then
∑T

t=1 UTt
D→ N(0, V ) as T →∞.

Proof. See Theorem 2.3 of McLeish (1974) and the comments in the two paragraphs following

it.

The next lemma derives an important consequence of the martingale difference property of

zt on the higher-order moments and cumulants of zt. For the special case with q = 2 we obtain

the well-known result that a martingale difference sequence is uncorrelated.

Lemma A.2. Let zt be a martingale difference sequence with respect to the natural filtration

Ft, the sigma-field generated by {zs}s≤t, and suppose E|zt|q <∞ for some integer q ≥ 2. Then

the q’th order moments and cumulants satisfy

E(ztzt−r1 · · · zt−rq−1) = 0 and κq(t, t− r1, . . . , t− rq−1) = 0

for all integers rk ≥ 1, k = 1, . . . , q − 1.

Proof. The result for moments follows from the law of iterated expectations because

E(ztzt−r1 · · · zt−rq−1) = E(E(zt|Ft−1)zt−r1 · · · zt−rq−1) = 0

by the martingale difference property of zt. To show the result for cumulants, we start

with q = 2. Then κ2(t, t − r) = E(ztzt−r) = 0 because r ≥ 1. When q = 3, κ3(t, t −
r1, t − r2) = E(ztzt−r1zt−r2) = 0 by the result for moments. For q = 4 we find κ4(t, t −
r1, t− r2, t− r3) = E(ztzt−r1zt−r2zt−r3)− E(ztzt−r1)E(zt−r2zt−r3)− E(ztzt−r2)E(zt−r1zt−r3)−
E(ztzt−r3)E(zt−r2zt−r1). Again, because rk ≥ 1 for k = 1, 2, 3, the cumulant is zero by the

result for the second and fourth moments. For q = 5 we have κ5(t, t− r1, . . . t− r4) for rk ≥ 1

and find that it contains the fifth moment, which is zero by the result for moments, and it

contains ten products of pairs and corresponding triplets. In each of these there will be either

a pair with E(ztzt−rk) = 0 or there will be a triplet with E(ztzt−rkzt−rj ) = 0 as above. The

same argument also applies to the higher-order cumulants and moments.
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Lemma A.3. Let σt and zt satisfy Assumption A. Let ξ0,n, n ≥ 1, be vector-valued coeffi cients

that satisfy ||ξ0,n|| ≤ Kn−1, K < ∞, uniformly in n ≥ 1, and let gt,m,n, t, n,m ≥ 1, be real

coeffi cients satisfying
∑∞

n,m=1 n
−1m−1 supt |gt,n,m| <∞. Then

T−1
T∑
t=1

σ2
t

t−1∑
n,m=1

ξ0,nξ
′
0,mσt−nσt−mgt,n,m = T−1

T∑
t=1

σ4
t

t−1∑
n,m=1

ξ0,nξ
′
0,mgt,n,m + o (1) .

Proof. First notice that∥∥∥∥∥∥T−1
T∑
t=1

σ2
t

t−1∑
n,m=1

ξ0,nξ
′
0,mσt−nσt−mgt,n,m − T−1

T∑
t=1

σ4
t

t−1∑
n,m=1

ξ0,nξ
′
0,mgt,n,m

∥∥∥∥∥∥
=

∥∥∥∥∥∥T−1
T∑
t=1

σ2
t

t−1∑
n,m=1

ξ0,nξ
′
0,m(σt−nσt−m − σ2

t )gt,n,m

∥∥∥∥∥∥
≤ KT−1

T∑
t=1

t−1∑
n=1

t−1∑
m=n

n−1m−1|σt−nσt−m − σ2
t ||gt,n,m| = K(Q1T +Q2T ),

where the inequality follows because ||ξ0,n|| ≤ Kn−1, by Assumption A(a) and by symmetry in

n and m, and where we defined

Q1T :=

qT∑
n=1

qT∑
m=n

n−1m−1 sup
t
|gt,n,m|T−1

T∑
t=m+1

|σt−nσt−m − σ2
t |,

Q2T :=
T−1∑
n=1

T−1∑
m=max(n,qT+1)

n−1m−1 sup
t
|gt,n,m|T−1

T∑
t=m+1

|σt−nσt−m − σ2
t |.

Let qT := bTκc for κ ∈ (0, 1) and M := supu∈[0,1] σ (u), which is finite because σ(u) ∈ D([0, 1]).

Then∣∣σt−nσt−m − σ2
t

∣∣ ≤ σt |σt−n − σt|+ σt−n |σt−m − σt| ≤M (|σt−n − σt|+ |σt−m − σt|)

such that, for m ≥ n ≥ 1,

T∑
t=m+1

∣∣σt−nσt−m − σ2
t

∣∣ ≤M T∑
t=m+1

(|σt−n − σt|+ |σt−m − σt|) ≤ 2M

T∑
t=m+1

|σt−m − σt| .

Hence, using the fact that σt = σ (t/T ) ∈ D([0, 1]),

sup
n,m=1,...,qT

T−1
T∑

t=m+1

|σt−nσt−m − σ2
t | ≤ 2M sup

m=1,...,qT

T−1
T∑

t=m+1

|σt−m − σt| → 0 as T →∞

(7)

by Lemma A.1 in Cavaliere and Taylor (2009).

The convergence in (7) allows us to show that Q1T converges to zero as T diverges. Note

that

Q1T ≤
(

sup
n,m=1,...,qT

T−1
T∑

t=m+1

|σt−nσt−m − σ2
t |
)
Q11T
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with Q11T := supt
∑qT

n=1

∑qT
m=n n

−1m−1|gt,n,m| <∞. Because the first factor in Q1T converges

to zero as T →∞ by (7), it follows that Q1T → 0 as T →∞.
The term Q2T is bounded as, by another application of Assumption A(a),

Q2T ≤ 4M2
T−1∑
n=1

T−1∑
m=max(n,qT+1)

n−1m−1 sup
t
|gt,n,m|

≤ 4M2
∞∑

m=qT+1

∞∑
n=1

n−1m−1 sup
t
|gt,n,m| → 0

as T →∞ because it is a tail sum (qT →∞) of the convergent sum
∑∞

n,m=1 n
−1m−1 supt |gt,n,m|.

This completes the proof.

Appendix B Inequalities

This section presents some useful inequalities that are applied both in the proofs of the main

theorems and in proofs of variation bounds in the next section.

Lemma B.1. Uniformly in −u0 ≤ v ≤ u ≤ u0 and for j ≥ 1,m ≥ 0 it holds that

| ∂
m

∂um
πj(u)| ≤ c(1 + log j)mju−1, (8)

| ∂
m

∂um
πj(u)− ∂m

∂vm
πj(v)| ≤ c(u− v)(1 + log j)m+1ju−1, (9)

| ∂
m

∂um
πj+1(u)− ∂m

∂um
πj(u)| ≤ c(1 + log j)mju−2, (10)

where the constant c > 0 does not depend on u, ũ, or j.

Uniformly in −δ0 ≤ v + 1/2 ≤ δ0 for δ0 < 1/2 and j ≥ 1 it holds that

πj(−v) ≥ cj−v−1, (11)

where the constant c > 0 does not depend on v or j.

Proof. See Lemma A.1 of Nielsen (2014).

Lemma B.2. Let u and v be such that max(|u|, |v|) ≤ a for some a <∞. Then it holds that

t−1∑
j=1

ju−1(t− j)v−1 ≤ c(1 + log t)tmax(u+v−1,u−1,v−1),

where the constant c > 0 does not depend on u, v, or t.

Proof. See Lemma B.4 of Johansen and Nielsen (2010).

Lemma B.3. Let ξT (u, v, k) := max1≤n,m≤T
∑T

t=max(n,m) |ζt−n(−u, k)ζt−m(−v, k)| for coeffi -
cients ζj(u, k) satisfying ζ0(u, k) = 1 and ζj(u, k) ≤ c(log j)kju−1 for j ≥ 1, where c > 0 does

not depend on u, k, or j. Then:
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(i) Uniformly for min(u+ 1, v + 1, u+ v + 1) ≥ a, it holds that

ξT (u, v, k) ≤
{
c(1 + log T )1+2kT−a if a ≤ 0,

c if a > 0,

where the constant c > 0 does not depend on u, v, or T .

(ii) For any u > 0, v > 0 it holds that

∞∑
t=0

|ζ |t−n|(−u, k)ζt(−v, k)| ≤ c(log |n|)k|n|max(−u−1,−v−1),

where the constant c > 0 does not depend on u, v, or n.

Proof. Part (i): See Lemma A.7 of Johansen and Nielsen (2012).

Part (ii): If n ≥ 0 we split the summation and find the bound

bn/2c∑
t=0

|ζ |t−n|(−u, k)ζt(−v, k)|+
n∑

t=bn/2c+1

|ζ |t−n|(−u, k)ζt(−v, k)|+
∞∑

t=n+1

|ζt−n(−u, k)ζt(−v, k)|

≤ c
bn/2c∑
t=0

(n− t)−u−1(log(n− t))kt−v−1(log t)k + c
n∑

t=bn/2c+1

(n− t)−u−1(log(n− t))kt−v−1(log t)k

+

∞∑
t=n+1

(t− n)−u−1(log(t− n))kt−v−1(log t)k

≤ c(n/2)−u−1(log(n/2))k
bn/2c∑
t=0

t−v−1(log t)k + c(n/2)−v−1(log(n/2))k
n∑

t=bn/2c+1

(n− t)−u−1(log(n− t))k

+ c(n+ 1)−v−1(log(n+ 1))k
∞∑

t=n+1

(t− n)−u−1(log(t− n))k

≤ c(log n)knmax(−u−1,−v−1).

If n < 0 we find the bound

c
∞∑
t=0

(t− n)−u−1(log(t− n))kt−v−1(log t)k

≤ c(−n)−u−1(log(−n))k
∞∑
t=0

t−v−1(log t)k ≤ c|n|−u−1(log |n|)k.

Lemma B.4. Let FN (u) :=
∑N−1

n=0 πn(−u)2. For N ≥ 2,u ≤ −1/2 + a, and a > 0,

FN (u) ≥ 1 + c
1− (N − 1)−2a

2a
,

where the constant c > 0 does not depend on a, u, or N .

Proof. See Lemma A.3 of Nielsen (2014).
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Appendix C Variation bounds

This section contains three lemmas that are used to verify tightness and stochastic equiconti-

nuity conditions for the processes in the previous sections. The first lemma deals with non-

stationary processes and the next lemma with product moments of processes that are nearly

stationary. Lemma C.2 contains the truncation argument used to deal with the non-uniform

convergence in Θ2; see Appendix D.2. The final lemma covers product moments of stationary

and nearly stationary processes, and is applied in the consistency proof —both for the stationary

processes and to deal with certain cross-products of stationary and critical processes —and it

is applied for the Hessian in the proof of asymptotic normality.

Lemma C.1. Let εt satisfy Assumption A. Then, uniformly in v0 ≤ v ≤ u ≤ u0 < −1/2,

||T u+1/2∆u
+εt||2 ≤ c and ||T u+1/2∆u

+εt − T v+1/2∆v
+εt||2 ≤ c|u− v| (12)

where the constant c > 0 does not depend on u, v, or T .

Proof. See Lemma C.3 in Johansen and Nielsen (2010), which also applies under Assumption

A on εt in place of their i.i.d. assumption.

Lemma C.2. Let w1t = w1t(u) :=
∑N−1

n=0 πn(−u)εt−n and w2t = w2t(u) :=
∑t−1

n=N πn(−u)εt−n,

where εt satisfies Assumption A, and define the product moments Q11NT (u) := T−1
∑T

t=N+1w
2
1t−

E(T−1
∑T

t=N+1w
2
1t) and Q12NT (u) := T−1

∑T
t=N+1w1tw2t. Then, for any κ ∈ (0, 1/2) it holds

that, uniformly in −1/2− κ ≤ v ≤ u ≤ −1/2 + κ,

||Q12NT (u)||2 ≤ c(log T )T−1/2+κN1/2+κ, (13)

||Q12NT (u)−Q12NT (v)||2 ≤ c|u− v|(log T )2T−1/2+κN1/2+κ, (14)

||Q11NT (u)||2 ≤ c(log T )T−1/2N1/2+2κ, (15)

||Q11NT (u)−Q11NT (v)||2 ≤ c|u− v|(log T )2T−1/2N1/2+2κ, (16)

where the constant c > 0 does not depend on u, v, or T .

In particular, if N := bTαc with 0 < α < min(1/2−κ
1/2+κ ,

1/2
1/2+2κ), then it holds that

sup
|u+1/2|≤κ

|Q11NT (u)| P→ 0 and sup
|u+1/2|≤κ

|Q12NT (u)| P→ 0. (17)

Proof. Eqn. (13): First evaluate

EQ12NT (u)2 = T−2E

2∏
k=1

T∑
tk=N+1

N−1∑
nk=0

tk−1∑
mk=N

πnk(−u)πmk(−u)εtk−nkεtk−mk .

The term E(
∏2
k=1 εtk−nkεtk−mk) is non-zero only if the two highest subscripts are equal, see

Lemma A.2. However, nk < N ≤ mk such that tk −nk > tk −mk for k = 1, 2. This leaves only
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one possibility, i.e., t1 − n1 = t2 − n2, in which case we eliminate n2 = t2 − t1 + n1 and note

that |t1 − t2| = |n1 − n2| ≤ N . In this case EQ12NT (u)2 is

T−2
T∑

t1,t2=N+1
|t1−t2|≤N

N−1∑
n1=0

t1−1∑
m1=N

t2−1∑
m2=max(N,t2−t1+n1)

πn1(−u)πt2−t1+n1(−u)πm1(−u)πm2(−u)

× σ2
t1−n1σt1−m1σt2−m2E(z2

t1−n1zt1−m1zt2−m2). (18)

If, in this expression, t1 −m1 = t2 −m2 we eliminate m2 = t2 − t1 +m1 and the expectation is

τm1−n1,m1−n1 . Then, with ξT (u, v, k) defined in Lemma B.3,
∑N−1

n1=0 πn1(−u)πt2−t1+n1(−u) ≤
ξN (u, u, 0) and

∑t1−1
m1=N πm1(−u)πt2−t1+m1(−u) ≤ ξT (u, u, 0) by (8) of Lemma B.1, so the

contribution to EQ12NT (u)2 is bounded by

cT−2
T∑

t1,t2=N+1
|t1−t2|≤N

ξN (u, u, 0)ξT (u, u, 0).

The result when t1 − m1 = t2 − m2 now follows from Lemma B.3(i). If, on the other hand,

t1 −m1 6= t2 −m2 in (18), the expectation in (18) is κ4(t1 − n1, t1 − n1, t1 −m1, t2 −m2) and

the contribution to EQ12NT (u)2 is bounded by

cT−2
T∑

t1,t2=N+1
|t1−t2|≤N

N−1∑
n1=0

πn1(−u)πt2−t1+n1(−u)πN (−u)2

×
t1−1∑
m1=N

t2−1∑
m2=max(N,t2−t1+n1)

|κ4(t1 − n1, t1 − n1, t1 −m1, t2 −m2)|

≤ cT−2
T∑

t1,t2=N+1
|t1−t2|≤N

ξN (u, u, 0)N−2u−2

using Assumption A(a),(b)(iii), and this proves the result.

Eqn. (14): Next consider ||Q12NT (u)−Q12NT (v)||2 which is bounded by

||T−1
T∑

t=N+1

(w1t(u)− w1t(v))w2t(u)||2 + ||T−1
T∑

t=N+1

w1t(v)(w2t(u)− w2t(v))||2.

For the first term write w1t(u)−w1t(v) =
∑N−1

n=0 (πn(−u)−πn(−v))εt−n = (u−v)
∑N−1

n=0 ζn(−u, 1)εt−n,

see (9) of Lemma B.1 and Lemma B.3. Now apply the same proof as for (13), noting that only

a log-factor is added. The same proof can be used for the second term.

Eqn. (15): Note that

E(T−1
T∑

t=N+1

w2
1t) = T−1

T∑
t=N+1

N−1∑
n1,n2=0

πn1(−u)πn2(−u)E(εt−n1εt−n2)

= T−1
T∑

t=N+1

N−1∑
n=0

πn(−u)2σ2
t−n

17



such that the second moment of Q11NT (u) is

EQ11NT (u)2 = E(T−1
T∑

t=N+1

w2
1t)

2 − T−2
T∑

t,s=N+1

N−1∑
n,m=0

πn(−u)2πm(−u)2σ2
t−nσ

2
s−m. (19)

Now,

E(T−1
T∑

t=N+1

w2
1t)

2 = T−2E
2∏

k=1

T∑
tk=N+1

N−1∑
nk=0

N−1∑
mk=0

πnk(−u)πmk(−u)εtk−nkεtk−mk ,

where again the two highest subscripts in
∏2
k=1 εtk−nkεtk−mk have to be equal by Lemma A.2.

By symmetry, there are three cases, which we now enumerate.

Case 1) Suppose first that t1 − n1 = t1 −m1, i.e. n1 = m1. If also t2 − n2 = t2 −m2 the

contribution is T−2
∏2
k=1

∑T
tk=N+1

∑N−1
nk=0 πnk(−u)2σ2

tk−nk , which cancels with the second term

of (19). If t2 − n2 6= t2 − m2, then both these terms have to be no greater than t1 − n1 by

Lemma A.2, so that t2 ≤ t1 − n1 + n2 and m2 ≥ t2 − t1 + n1. In this case the contribution is

T−2
T∑

t1=N+1

N−1∑
n1,n2=0

max(T,t1−n1+n2)∑
t2=N+1

N−1∑
m2=max(0,t2−t1+n1)

πn1(−u)2πn2(−u)πm2(−u)

× σ2
t1−n1σt2−n2σt2−m2κ4(t1 − n1, t1 − n1, t2 − n2, t2 −m2)

≤ cT−2
T∑

t1=N+1

N−1∑
n1,n2=0

πn1(−u)2πn2(−u)

≤ cT−1
N−1∑

n1,n2=0

n−2u−2
1 n−u−1

2 ≤ cT−1N1/2+3κ,

where the first inequality is by Assumption A(a),(b)(iii).

Case 2) If t1 − n1 = t2 − n2 ≥ tk −mk the restriction |t1 − t2| = |n1 − n2| ≤ N is implied

such that the contribution is

T−2
T∑

t1,t2=N+1
|t1−t2|≤N

N−1∑
n1=max(0,t1−t2)

N−1∑
m1=n1

N−1∑
m2=max(0,t2−t1+n1)

πn1(−u)πt2−t1+n1(−u)πm1(−u)πm2(−u)

× σ2
t1−n1σt1−m1σt2−m2E(z2

t1−n1zt1−m1zt2−m2).

If also t1 −m1 = t2 −m2, the expectation is τm1−n1,m1−n1 and contribution is bounded by

cT−2
T∑

t1,t2=N+1
|t1−t2|≤N

(
N−1∑
n=0

πn(−u)πt2−t1+n(−u)

)2

≤ cT−2
T∑

t1,t2=N+1
|t1−t2|≤N

ξN (u, u, 0)2 ≤ cT−1NξN (u, u, 0)2 ≤ c(log T )2T−1N1+4κ
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by Assumption A(a) and Lemma B.3(i). If instead t1 − m1 6= t2 − m2, the expectation is

κ4(t1 − n1, t1 − n1, t1 −m1, t2 −m2) and the bound is

cT−2
T∑

t1,t2=N+1
|t1−t2|≤N

N−1∑
n1=max(0,t1−t2)

πn1(−u)2πt2−t1+n1(−u)2

×
N−1∑
m1=n1

N−1∑
m2=max(0,t2−t1+n1)

|κ4(t1 − n1, t1 − n1, t1 −m1, t2 −m2)|

≤ cT−2
T∑

t1,t2=N+1
|t1−t2|≤N

N−1∑
n1=max(0,t1−t2)

πn1(−u)2πt2−t1+n1(−u)2 ≤ cT−1N.

Case 3) If t1 − n1 = t2 −m2 and t1 −m1 = t2 − n2 the contribution is

T−2
T∑

t1,t2=N+1
|t1−t2|≤N

N−1∑
n1=0

N−1∑
m1=0

πn1(−u)πt2−t1+m1(−u)πm1(−u)πt2−t1+n1(−u)σ2
t1−n1σ

2
t1−m1

τm1−n1,m1−n1

≤ c(log T )2T−1N1+4κ

and if t1 − n1 = t2 −m2 and t1 −m1 6= t2 − n2 (both no greater than t1 − n1 by Lemma A.2)

the contribution is

T−2
T∑

t1,t2=N+1
|t1−t2|≤N

N−1∑
n1=0

N−1∑
m1=n1

N−1∑
n2=max(0,t2−t1+n1)

πn1(−u)πm1(−u)πn2(−u)πt2−t1+n1(−u)

× σ2
t1−n1σt1−m1σt2−n2κ4(t1 − n1, t1 − n1, t1 −m1, t2 − n2)

≤ cT−2
T∑

t1,t2=N+1
|t1−t2|≤N

N−1∑
n1=0

πn1(−u)2πt2−t1+n1(−u)2 ≤ cT−1N

in the same way as in case 2).

Eqn. (16): Apply the same decomposition as in the proof of (14) and then use the same

proof as for (15) with an extra log-factor.

Eqn. (17): Using the condition on α, the right-hand sides of (13)—(16) all converge to zero.

Pointwise convergence in probability then follows from (13) and (15) and tightness on the

interval |u+ 1/2| ≤ κ follows from (14) and (16) using the criterion (51). Together this implies

uniform convergence in probability.

Lemma C.3. Let Zit :=
∑∞

n=0 ζin(ψ)εt−n, i = 1, 2, where εt satisfies Assumption A and the

coeffi cients ζin(ψ) satisfy
∑∞

n=0 |ζin(ψ)| < ∞, i = 1, 2, uniformly in ψ ∈ Ψ̃ ⊆ Ψ. Define the

product moment QT (u1, u2, ψ) := T−1
∑T

t=1
∂k

∂u
(k)
1

(∆u1
+ Z1t)

∂l

∂u
(l)
2

(∆u2
+ Z2t) for k, l ≥ 0 and the set

Θ̃ := {(u1, u2, ψ) ∈ D ×D × Ψ̃ : min(u1 + 1, u2 + 1, u1 + u2 + 1) ≥ a} for a > 0. Then

sup
(u1,u2,ψ)∈Θ̃

|QT (u1, u2, ψ)| = OP (1).
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Proof. The proof is given only for k, l = 0 since the derivatives just add a log-factor, see

(8), which does not change the proof. Rearranging the summations the product moment

QT (u1, u2, ψ) is

T−1
T−1∑
j,k=0

πj(−u1)πk(−u2)
∞∑

n,m=0

ζ1n(ψ)ζ2m(ψ)
T∑

t=max(j,k)+1

εt−j−nεt−k−m

= T−1
T−1∑
j=0

πj(−u1)

∞∑
n=0

j+n∑
m=max(0,j+n−T+1)

ζ1n(ψ)ζ2m(ψ)πj+n−m(−u2)

T∑
t=max(j,j+n−m)+1

ε2
t−j−n

(20)

+ 2T−1
T−1∑
j=0

πj(−u1)
∞∑

n,m=0

ζ1n(ψ)ζ2m(ψ)

min(T,j+n−m)−1∑
k=0

πk(−u2)
T∑

t=max(j,k)+1

εt−j−nεt−k−m.

(21)

Since T−1
∑T

t=max(j,j+n−m)+1 ε
2
t−j−n = OP (1) uniformly in j, n,m it holds that sup(u1,u2,ψ)∈Θ̃ |(20)|

is

OP

 sup
(u1,u2,ψ)∈Θ̃

∞∑
n=0

T−1+n∑
m=max(0,n−T+1)

|ζ1n(ψ)||ζ2m(ψ)|
min(T−1,T−1+m−n)∑

j=max(0,m−n)

|πj(−u1)||πj+n−m(−u2)|


= OP

 sup
(u1,u2,ψ)∈Θ̃

∞∑
n=0

T−1+n∑
m=max(0,n−T+1)

|ζ1n(ψ)||ζ2m(ψ)|
min(T−1,T−1+m−n)∑
j=1+max(0,m−n)

j−u1−1(j + n−m)−u2−1

 .

If a > 0 the summation over j is bounded and then sup(u1,u2,ψ)∈Θ̃ |(20)| = OP (1) because∑∞
n=0 |ζin(ψ)| <∞ uniformly in ψ ∈ Ψ̃, i = 1, 2. If a ≤ 0 the summation over j isOP ((log T )T−a)

which is then also the bound for the supremum of (20).

Next, summation by parts yields

min(T,j+n−m)−1∑
k=0

πk(−u2)

T∑
t=max(j,k)+1

εt−j−nεt−k−m

= πj+n−m−1(−u2)

min(T,j+n−m)−1∑
k=0

T∑
t=max(j,k)+1

εt−j−nεt−k−m

−
min(T,j+n−m)−2∑

l=0

(πl+1(−u2)− πl(−u2))

l∑
k=0

T∑
t=max(j,k)+1

εt−j−nεt−k−m, (22)

where
l∑

k=0

T∑
t=max(j,k)+1

εt−j−nεt−k−m =

T−m∑
s=max(1−m,1+j−l−m)

ws,

with ws := εs
∑j+n−m

k=j+n−m−l εs−k being an uncorrelated sequence that satisfies

E(w2
s) = σ2

sE

 j+n−m∑
k=j+n−m−l

εs−k

2

= O(l),
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such that

E

 T−m∑
s=max(1−m,1+j−l−m)

ws

2

=

T−m∑
s=max(1−m,1+j−l−m)

E(w2
s) = O((T + l − j)l).

It follows that
∑l

k=0

∑T
t=max(j,k)+1 εt−j−nεt−k−m = OP ((T + l − j)1/2l1/2) and setting l =

min(T, j + n − m) − 1 that
∑min(T,j+n−m)−1

k=0

∑T
t=max(j,k)+1 εt−j−nεt−k−m = OP (T ), in both

cases uniformly in j, n,m.

Now, rearranging the summations and applying the summation by parts result, sup(u1,u2,ψ)∈Θ̃ |(21)|
is

OP

 sup
(u1,u2,ψ)∈Θ̃

∞∑
n,m=0

|ζ1n(ψ)||ζ2m(ψ)|
min(T−1,T+m−n)∑
j=max(0,1+m−n)

|πj(−u1)||πj+n−m−1(−u2)|

 (23)

+OP

 sup
(u1,u2,ψ)∈Θ̃

T−1
T−1∑
j=0

|πj(−u1)|
∞∑

n,m=0

|ζ1n(ψ)||ζ2m(ψ)|
T−2∑
l=0

|πl+1(−u2)− πl(−u2)|(T + l − j)1/2l1/2

 .

(24)

The result for (23) follows as in the analysis of (20). For term (24) it holds, using (10) and that∑∞
n=0 |ζin(ψ)| <∞ uniformly in ψ ∈ Ψ̃, i = 1, 2, that the order is

sup
(u1,u2,ψ)∈Θ̃

T−1
T−1∑
j=1

j−u1−1
T−2∑
l=1

l−u2−3/2(T + l − j)1/2

≤ sup
(u1,u2,ψ)∈Θ̃

T−1
T−2∑
l=1

l−u2−3/2
T+l−1∑
j=1

j−u1−1(T + l − j)1/2

≤ sup
(u1,u2,ψ)∈Θ̃

c(log T )T−1
T−2∑
l=1

l−u2−3/2(T + l)max(1/2,1/2−u1)

≤ sup
(u1,u2,ψ)∈Θ̃

c(log T )T−1/2
T−2∑
l=1

l−u2−3/2+max(0,−u1),

where the second inequality follows from Lemma B.2 and the third because (T+l)max(1/2,1/2−u1) =

(T + l)1/2(T + l)max(0,−u1) ≤ (2T )1/2lmax(0,−u1). Since −u2 − 3/2 + max(0,−u1) = −min(u2 +

1, u1+u2+1)−1/2 ≤ −a−1/2, the right-hand side is bounded by c(log T )2T−1/2Tmax(0,1/2−a) =

c(log T )2Tmax(−1/2,−a) if a > 0 and c(log T )T−1/2T 1/2−a = c(log T )T−a if a ≤ 0.

Appendix D Proof of Theorem 1

The residual in (3) is given by εt(θ) =
∑t−1

n=0 bn(ψ)∆d−d0
+ ut−n, and clearly the convergence

properties of R(θ) in (5) depend on d− d0. Define the untruncated processes

et(ψ) := c(L,ψ)εt =
∞∑
n=0

cn(ψ)εt−n, (25)

ηt(θ) := ∆d−d0et(ψ) =

∞∑
n=0

ϕn(θ)εt−n, (26)
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where ηt(θ) is well-defined for d− d0 > −1/2 and where we used

c(z, ψ) := b(z, ψ)a(z, ψ0) =
a(z, ψ0)

a(z, ψ)
=
∞∑
n=0

cn(ψ)zn, (27)

ϕn(θ) :=
n∑

m=0

πm(d0 − d)cn−m(ψ). (28)

From Assumption C the coeffi cients cn(ψ) satisfy

|cn(ψ)| = O(n−2−ζ) uniformly in ψ ∈ Ψ (29)

and from Lemma B.2 the coeffi cients ϕn(θ) then satisfy

|ϕn(θ)| = O(nmax(d0−d−1,−2−ζ)) uniformly in ψ ∈ Ψ, (30)

such that, in particular, when d − d0 > −1/2, ηt(θ) is a linear process with square summable

coeffi cients.

Let the deterministic function r(θ) denote the pointwise probability limit of R(θ), shown

subsequently to be given by

r(θ) :=

{ ∫ 1
0 σ(s)2ds

∑∞
n=0 ϕn(θ)2 if d− d0 > −1/2,

∞ if d− d0 ≤ −1/2.
(31)

According to (31) the parameter space Θ is partitioned into three disjoint compact subsets,

Θ1 := Θ1(κ1) = D1 × Ψ, Θ2 := Θ2(κ1, κ2) = D2 × Ψ, and Θ3 := Θ3(κ2) = D3 × Ψ, where

D1 := D1(κ1) = D ∩ {d : d − d0 ≤ −1/2 − κ1}, D2 := D2(κ1, κ2) = D ∩ {d : −1/2 − κ1 ≤
d − d0 ≤ −1/2 + κ2}, and D3 := D3(κ2) = D ∩ {d : d − d0 ≥ −1/2 + κ2}, for some constants
0 < κ2 < κ1 < 1/2 to be determined later. Here, special care is taken with respect to Θ2, where

the convergence of the objective function is non-uniform, as evident in (31).

Clearly, θ0 ∈ Θ3 and if d1 > d0 − 1/2 then the choice κ2 = d1 − d0 + 1/2 > 0 implies that

Θ1 and Θ2 are empty in which case the proof is easily simplified accordingly.

The proof proceeds as follows. First, it is shown that for any K > 0 there exists a (fixed)

κ̄2 > 0 such that

P ( inf
θ∈Θ1(κ1)∪Θ2(κ1,κ̄2)

R(θ) > K)→ 1 as T →∞. (32)

This implies that P (θ̂ ∈ Θ3(κ̄2)) → 1 as T → ∞, so that the relevant parameter space is
reduced to Θ3(κ̄2). From Theorem 5.7 of van der Vaart (1998) the desired result then follows

if, for any fixed κ2 ∈ (0, 1/2),

sup
θ∈Θ3(κ2)

|R(θ)− r(θ)| P→ 0 as T →∞, (33)

inf
θ∈Θ3(κ2)∩{θ:|θ−θ0|≥δ}

r(θ) > r(θ0) for all δ > 0. (34)

Condition (33) entails uniform convergence of the objective function on Θ3, and condition (34)

ensures that the optimum of the limit function is uniquely attained at the true value.
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We show (32) in Appendix D.3, after having established convergence on Θ1 and Θ2 in

Appendices D.1 and D.2, respectively. Then we prove (33) and (34) in Appendices D.4 and

D.5, respectively.

In the proofs we make repeated use of the following lemma, which shows that the problem

can be simplified by considering the sum of squares of ∆d−d0
+ et(ψ) rather than that of εt(θ) in

the analysis of R(θ). That is, the truncation in the residual in the definition of R(θ) can be

dispensed with in the asymptotic analysis.

Lemma D.1. With the notation of this section and under the assumptions of Theorem 1 and

0 < κ1 < min(1/2, ζ/2 + 1/4) it holds that, as T →∞,

sup
θ∈Θ1

|T 2(d−d0)
T∑
t=1

εt(θ)
2 − T 2(d−d0)

T∑
t=1

(∆d−d0
+ et(ψ))2| P→ 0, (35)

sup
θ∈Θ2∪Θ3

|T−1
T∑
t=1

εt(θ)
2 − T−1

T∑
t=1

(∆d−d0
+ et(ψ))2| P→ 0. (36)

Proof. First decompose

T∑
t=1

εt(θ)
2 −

T∑
t=1

(∆d−d0
+ et(ψ))2 =

T∑
t=1

εt(θ)(εt(θ)−∆d−d0
+ et(ψ)) (37)

+
T∑
t=1

∆d−d0
+ et(ψ)(εt(θ)−∆d−d0

+ et(ψ)) (38)

and note that

εt(θ)−∆d−d0
+ et(ψ) = −

t−1∑
j=0

∞∑
n=t−j

πj(d0 − d)bn(ψ)ut−n−j =

∞∑
m=t

φtmut−m,

where φtm := −
∑t−1

j=0 πj(d0 − d)bm−j(ψ) satisfies, see (2) and Lemmas B.1 and B.2,

sup
ψ∈Ψ

∞∑
m=t

|φtm| ≤ c
∞∑
m=t

t−1∑
j=0

jd0−d−1(m− j)−2−ζ

≤ c
t−1∑
j=0

jd0−d−1(t− j)−1−ζ ≤ c(1 + log t)tmax(d0−d,−ζ)−1. (39)

Rewrite the term (38) as

(38) =

T∑
t=1

t−1∑
j=0

πj(d0 − d)

∞∑
n=0

bn(ψ)

∞∑
m=t

φtm(ut−j−nut−m − E(ut−j−nut−m)) (40)

+
T∑
t=1

t−1∑
j=0

πj(d0 − d)
∞∑
n=0

bn(ψ)
∞∑
m=t

φtmE(ut−j−nut−m). (41)

The proof for (37) is identical to that for (38), except the summation over n in (37) is from

t to ∞. For (41) we note that supt |E(utut−n)| = supt |
∑∞

m=n am(ψ0)am−n(ψ0)σ2
t−m| ≤
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c
∑∞

m=nm
−2−ζ(m − n)−2−ζ ≤ cn−2−ζ with ζ > 0 given in Assumption C(ii), such that∑∞

m=t |E(ut−j−nut−m)| ≤ c|t− j − n|−1−ζ . Using also (39) it holds that

sup
ψ∈Ψ

∞∑
m=t

φtmE(ut−j−nut−m) ≤ (sup
ψ∈Ψ

∞∑
m=t

|φtm|)(
∞∑
m=t

|E(ut−j−nut−m)|)

≤ c(1 + log t)tmax(d0−d,−ζ)−1|t− j − n|−1−ζ .

It also holds that

sup
ψ∈Ψ

∞∑
n=0

|bn(ψ)||t− j − n|−1−ζ ≤ c
∞∑
n=0

n−2−ζ |t− j − n|−1−ζ ≤ c(t− j)−1−ζ

by (2) and Lemma B.3(ii). Consequently,

sup
ψ∈Ψ
|(41)| ≤ c

T∑
t=1

(1 + log t)tmax(d0−d,−ζ)−1
t−1∑
j=0

jd0−d−1(t− j)−1−ζ

≤ c
T∑
t=1

(1 + log t)2t2 max(d0−d,−ζ)−2

by Lemmas B.1 and B.2. Thus, supθ∈Θ1
T 2(d−d0)|(41)| ≤ c(log T )3T−1 → 0 as T → ∞ and

supθ∈Θ2∪Θ3
T−1|(41)| ≤ c(log T )3T−1+2κ1 → 0 as T →∞.

Changing the order of the summations, (40) is

−
T−1∑
j=0

πj(d0 − d)
∞∑
n=0

bn(ψ)
∞∑

m=j+1

min(m,T )−1∑
k=0

πk(d0 − d)bm−k(ψ)

min(m,T )∑
t=max(j,k)+1

vt, (42)

where the summand vt := ut−j−nut−m − E(ut−j−nut−m) is mean zero with autocovariances

Evtvs =

∞∑
k1,k2=0

∞∑
l1,l2=0

ak1(ψ0)ak2(ψ0)al1(ψ0)al2(ψ0)σt−j−n−k1σt−m−k2σs−j−n−l1σs−m−l2

× [E(zt−j−n−k1zt−m−k2zs−j−n−l1zs−m−l2)− E(zt−j−n−k1zt−m−k2)E(zs−j−n−l1zs−m−l2)].

The expectations are non-zero only if the two highest subscripts are equal (Lemma A.2). Rou-

tine calculations using (2), Assumption A, and Lemma B.3(ii) show that |Evtvs| ≤ c|s− t|−2−ζ .

Since the summation
∑min(m,T )

t=max(j,k)+1 has at most m terms it follows that

E(

min(m,T )∑
t=max(j,k)+1

vt)
2 =

min(m,T )∑
t,s=max(j,k)+1

E(vtvs) ≤ c
min(m,T )∑

t,s=max(j,k)+1

|t− s|−2−ζ ≤ cm

such that
∑min(m,T )

t=max(j,k)+1 vt = OP (m1/2). From (42) it now follows, using Lemma B.1 and

supψ∈Ψ

∑∞
n=0 |bn(ψ)| <∞, that (40) satisfies

sup
ψ∈Ψ
|(40)| = OP (

T−1∑
j=1

jd0−d−1 sup
ψ∈Ψ

T∑
m=j+1

m−1∑
k=1

kd0−d−1|bm(ψ)|m1/2) (43)

+OP (
T−1∑
j=1

jd0−d−1 sup
ψ∈Ψ

∞∑
m=T+1

T−1∑
k=1

kd0−d−1|bm(ψ)|m1/2). (44)
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For (43) change the order of the summations,

sup
ψ∈Ψ

T∑
m=j+1

m−1∑
k=1

kd0−d−1|bm(ψ)|m1/2 ≤
T−1∑
k=1

kd0−d−1
T∑

m=max(j,k)+1

m−3/2−ζ

≤ c(log T )Tmax(d0−d,0)(j + 1)−1/2−ζ .

Then

sup
d∈D1

T 2(d−d0)(log T )Tmax(d0−d,0)
T−1∑
j=1

jd0−d−3/2−ζ ≤ c(log T )2T−1/2+max(−κ1,−ζ),

sup
d∈D2∪D3

T−1(log T )Tmax(d0−d,0)
T−1∑
j=1

jd0−d−3/2−ζ ≤ c(log T )2T−1/2+κ1+max(0,κ1−ζ),

which shows the result for (43). Similarly, for (44),

sup
ψ∈Ψ

∞∑
m=T+1

T−1∑
k=1

kd0−d−1|bm(ψ)|m1/2 ≤
T−1∑
k=1

kd0−d−1
∞∑

m=T+1

m−3/2−ζ

≤ c(log T )Tmax(0,d0−d)−1/2−ζ ,

which gives the bounds

sup
d∈D1

T 2(d−d0)(log T )Tmax(0,d0−d)−1/2−ζ
T−1∑
j=1

jd0−d−1 ≤ c(log T )2T−1/2−ζ ,

sup
d∈D2∪D3

T−1(log T )Tmax(0,d0−d)−1/2−ζ
T−1∑
j=1

jd0−d−1 ≤ c(log T )2T−1/2−ζ+2κ1 ,

showing the result for (44) and hence concluding the proof.

D.1 Convergence on Θ1(κ1)

First, if θ ∈ Θ1(κ1) then εt(θ) should be normalized by T d−d0+1/2, and by Lemma D.1 the

difference between T 2(d−d0)+1R(θ) and T 2(d−d0)
∑T

t=1(∆d−d0
+ et(ψ))2 is negligible in probability

uniformly in θ ∈ Θ1, so it suffi ces to consider the latter product moment. We apply the

Beveridge-Nelson decomposition,

et(ψ) = c(L,ψ)εt =

( ∞∑
n=0

cn(ψ)

)
εt +

∞∑
n=0

c̃n(ψ)∆εt−n, (45)

where 0 < |
∑∞

n=0 cn(ψ)| < ∞ and c̃n(ψ) = −
∑∞

k=n+1 ck(ψ) satisfies |c̃n(ψ)| ≤ cn−1−ζ uni-

formly in ψ ∈ Ψ, see (29) and also Phillips and Solo (1992, Lemma 2.1). This implies, in

particular, that
∑∞

n=0 |c̃n(ψ)| <∞ uniformly in ψ ∈ Ψ. The relevant product moment can then
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be decomposed as

T 2(d−d0)
T∑
t=1

(∆d−d0
+ et(ψ))2 ≥

( ∞∑
n=0

cn(ψ)

)2

T 2(d−d0)
T∑
t=1

(∆d−d0
+ εt)

2 (46)

+ 2

( ∞∑
n=0

cn(ψ)

)
T 2(d−d0)

T∑
t=1

∆d−d0
+ εt

∞∑
n=0

c̃n(ψ)∆d−d0+1
+ εt−n.

(47)

By the Cauchy-Schwarz inequality, (47) is bounded by

2

( ∞∑
n=0

cn(ψ)

)(
T 2(d−d0)

T∑
t=1

(∆d−d0
+ εt)

2

)1/2(
T 2(d−d0)

T∑
t=1

(

∞∑
n=0

c̃n(ψ)∆d−d0+1
+ εt−n)2

)1/2

.

The term in the first parenthesis satisfies 0 < |
∑∞

n=0 cn(ψ)| < ∞ uniformly in ψ ∈ Ψ by

Assumption C, and the term in the second parenthesis will be shown to be OP (1) uniformly in

d ∈ D1 subsequently. The term inside the third parenthesis can be rewritten as

T 2(d−d0)
T∑
t=1

∞∑
n,m=0

c̃n(ψ)c̃m(ψ)
t−1∑
j,k=0

πj(d0 − d− 1)πk(d0 − d− 1)εt−j−nεt−k−m

= T 2(d−d0)+1
∞∑

n,m=0

c̃n(ψ)c̃m(ψ)

T−1∑
j,k=0

πj(d0 − d− 1)πk(d0 − d− 1)T−1
T∑

t=max(j,k)+1

εt−j−nεt−k−m,

where T−1
∑T

t=max(j,k)+1 εt−j−nεt−k−m = OP (1) uniformly in 0 ≤ j, k ≤ T−1 and
∑∞

n=0 |c̃n(ψ)| <
∞ uniformly in ψ ∈ Ψ. This leaves the bound

sup
θ∈Θ1

T 2(d−d0)
T∑
t=1

(
∞∑
n=0

c̃n(ψ)∆d−d0+1
+ εt−n)2 ≤ c sup

d∈D1
T 2(d−d0)+1

T−1∑
j=0

|πj(d0 − d− 1)|

2

OP (1)

= OP ( sup
d∈D1

T 2(d−d0)+1(
T−1∑
j=0

jd0−d−2)2)

= OP ((log T )2T−2κ1)

by application of Lemma B.1, thus showing that (47) converges to zero in probability uniformly

in θ ∈ Θ1.

Next, the term (46) is analyzed. By the Cauchy-Schwarz inequality,

T 2(d−d0)
T∑
t=1

(∆d−d0
+ εt)

2 ≥ T 2(d−d0)−1(

T∑
t=1

∆d−d0
+ εt)

2 = (T d−d0−1/2∆d−d0−1
+ εT )2,

and we can write T d−d0−1/2∆d−d0−1
+ εT = T d−d0−1/2

∑T−1
j=0 πj(d0−d+1)εT−j = T d−d0−1/2

∑T
t=1 πT−t(d0−

d+ 1)εt and apply Lemma A.1 with UTt = T d−d0−1/2πT−t(d0 − d+ 1)εt, which is a martingale

difference array by Assumption A. Firstly, the Lindeberg condition (i) of Lemma A.1 is sat-

isfied by Lyapunov’s suffi cient condition because
∑T

t=1EU
4
Tt = T 4(d−d0)−2

∑T
t=1 πT−t(d0 − d+
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1)4σ4
tEz

4
t ≤ cT−2

∑T
t=1

(
T−t
T

)4(d0−d) ≤ cT−1 → 0 as T →∞. Secondly, we verify condition (ii)
of Lemma A.1 by showing L2-convergence. Thus,

E

(
T∑
t=1

U2
Tt − E

T∑
t=1

U2
Tt

)2

=
T∑

t,s=1

E(U2
TtU

2
Ts)−

T∑
t,s=1

E(U2
Tt)E(U2

Ts)

= T 4(d−d0)−2
T∑

t,s=1

πT−t(d0 − d+ 1)2πT−s(d0 − d+ 1)2σ2
tσ

2
s[E(z2

t z
2
s )− E(z2

t )E(z2
s )]

= T 4(d−d0)−2
T∑
t=1

πT−t(d0 − d+ 1)4σ4
t [E(z4

t )− E(z2
t )2] (48)

+ 2T 4(d−d0)−2
T∑
t=2

t−1∑
s=1

πT−t(d0 − d+ 1)2πT−s(d0 − d+ 1)2σ2
tσ

2
s[E(z2

t z
2
s )− E(z2

t )E(z2
s )].

(49)

By Assumption A(a),(b)(ii) and Lemma B.1, the term (48) is bounded by

cT 4(d−d0)−2
T∑
t=1

(T − t)4(d0−d) ≤ cT−1 → 0.

The term (49) is

2T 4(d−d0)−2
T∑
t=2

t−1∑
r=1

πT−t(d0 − d+ 1)2πT−t+r(d0 − d+ 1)2σ2
tσ

2
t−rκ4(t, t, t− r, t− r)

≤ cT−2
T∑
t=2

(
T − t
T

)2(d0−d)(T − 1

T

)2(d0−d) t−1∑
r=1

|κ4(t, t, t− r, t− r)| ≤ cT−1 → 0

using Assumption A(a),(b)(iii) and Lemma B.1. Finally,

E

T∑
t=1

U2
Tt = T 2(d−d0)−1

T∑
t=1

πT−t(d0 − d+ 1)2σ2
t

=
1

Γ(d0 − d+ 1)2
T−1

T∑
t=1

(
T − t
T

)2(d0−d)σ2
t (1 + o(1))

→ 1

Γ(d0 − d+ 1)2

∫ 1

0
(1− s)2(d0−d)σ(s)2ds =: V (d),

and we conclude from Lemma A.1 and the above analysis that

QT (d) := T 2(d−d0)−1(
T∑
t=1

∆d−d0
+ εt)

2 = (T d−d0−1/2∆d−d0−1
+ εT )2 D→ V (d)χ2

1 as T →∞, (50)

for any fixed d ∈ D1, which shows the pointwise limit.

To strengthen the pointwise convergence in (50) to weak convergence in C(D1) it is suffi cient

to show that QT (d) is tight as a function of the parameter. We prove tightness using the moment

27



condition in Billingsley (1968, Theorem 12.3), which requires showing that QT (d) is tight for

fixed d ∈ D1 (which is implied by the pointwise convergence) and that

||QT (u1)−QT (u2)||2 ≤ c|u1 − u2| (51)

for some constant c > 0 that does not depend on T , u1, or u2. The tightness condition (51) is

satisfied by Lemma C.1, and hence the convergence in (50) is strengthened to

QT (d)⇒ V (d)χ2
1 in C(D1).

By the continuous mapping theorem applied to the infd∈D1 mapping, which is continuous

because D1 is compact, it then holds that

inf
d∈D1

QT (d)
D→ inf

d∈D1
V (d)χ2

1,

which is positive almost surely. It follows that

inf
θ∈Θ1

R(θ) ≥ inf
θ∈Θ1

(
∑∞

n=0
cn(ψ))2T 2(d0−d)+1QT (d) + oP (1)

and, for any K > 0,

P ( inf
θ∈Θ1

(
∑∞

n=0
cn(ψ))2T 2(d0−d)+1QT (d) > K)→ 1 as T →∞

because infψ∈Ψ(
∑∞

n=0 cn(ψ))2 > 0 by Assumption C and 2(d0 − d) + 1 ≥ 2κ1 > 0 for d ∈ D1.

D.2 Convergence on Θ2(κ1, κ2)

First note that by (36) of Lemma D.1 it suffi ces to prove the result for T−1
∑T

t=1(∆d−d0
+ et(ψ))2.

Letting v := d − d0 ∈ [−1/2 − κ1,−1/2 + κ2], R1T (v) := T−1
∑T

t=1(∆v
+εt)

2, and R2T (v, ψ) :=

T−1
∑T

t=1(∆v
+εt)(

∑∞
n=0 c̃n(ψ)∆1+v

+ εt−n), and applying the decomposition (45), the relevant

product moment is

T−1
T∑
t=1

(∆v
+et(ψ))2 ≥

( ∞∑
n=0

cn(ψ)

)2

R1T (v) + 2

( ∞∑
n=0

cn(ψ)

)
R2T (v, ψ).

The second term, R2T (v, ψ), is OP (1) uniformly in |v + 1/2| ≤ κ1 and ψ ∈ Ψ by Lemma C.3

with Ψ̃ = Ψ, ζ1n(ψ) = 1{n=0}, ζ2n(ψ) = c̃n(ψ), u1 = v ≥ −1/2− κ1, u2 = 1 + v ≥ 1/2− κ1 such

that a = min(1/2− κ1, 1− 2κ2) > 0.

To analyze R1T (v) decompose ∆v
+εt as

∆v
+εt =

N−1∑
n=0

πn(−v)εt−n +
t−1∑
n=N

πn(−v)εt−n = w1t + w2t, t ≥ N + 1,

for some N ≥ 1 to be determined. It then holds that

R1T (v) ≥ T−1
T∑

t=N+1

(∆v
+εt)

2 ≥ T−1
T∑

t=N+1

w2
1t + 2T−1

T∑
t=N+1

w1tw2t. (52)
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Setting N = NT := bTαc with 0 < α < min(1/2−κ1
1/2+κ1

, 1/2
1/2+2κ1

), noting that such an α exists

because 0 < κ1 < 1/2, it follows from (17) of Lemma C.2 that the second term on the right-

hand side of (52) converges in probability to zero uniformly in |v + 1/2| ≤ κ1 and that

sup
|v+1/2|≤κ1

∣∣∣∣∣∣T−1
T∑

t=NT+1

w2
1t − E

T−1
T∑

t=NT+1

w2
1t

∣∣∣∣∣∣ P→ 0 as T →∞.

Thus, the right-hand side of (52) minus E(T−1
∑T

t=NT+1w
2
1t) converges uniformly in probability

to zero as T →∞. It follows, see Assumption A(a), that( ∞∑
n=0

cn(ψ)

)2

R1T (v) ≥
( ∞∑
n=0

cn(ψ)

)2

E

T−1
T∑

t=NT+1

w2
1t

+ µ1T (θ)

=

( ∞∑
n=0

cn(ψ)

)2

T−1
T∑

t=NT+1

NT−1∑
n=0

πn(−v)2σ2
t−n + µ1T (θ)

≥
(

inf
0≤s≤1

σ(s)2

)( ∞∑
n=0

cn(ψ)

)2

T−1(T −NT )FNT (v) + µ1T (θ),

where FNT (v) =
∑NT−1

n=0 πn(−v)2 and µ1T (θ)
P→ 0 as T → ∞ uniformly in |v + 1/2| ≤ κ1 and

ψ ∈ Ψ.

D.3 Proof of Eqn. (32)

We need to show that, for any K > 0, η > 0, there exists a κ̄2 > 0 and a T0 such that

P ( inf
θ∈Θ1(κ1)∪Θ2(κ1,κ̄2)

R(θ) < K) ≤ η

for all T ≥ T0. Since infθ∈Θ1∪Θ2 R(θ) ≤
∑2

j=1 infθ∈Θj R(θ), the two sets Θ1 and Θ2 can be

considered separately.

First consider the interval Θ1(κ1) with κ1 = κ̄1 satisfying 0 < κ̄1 < min(1/2, ζ/2+1/4), and

define Θ̄1 := Θ1(κ̄1). It holds from Section D.1 that P (infθ∈Θ̄1
R(θ) > K)→ 1 as T →∞, i.e.,

for any K > 0, η > 0, there exists a T1 such that P (infθ∈Θ̄1
R(θ) < K) ≤ η/2 for all T ≥ T1.

Second, having already fixed κ1 = κ̄1, consider Θ2(κ̄1, κ2). From Section D.2 with κ1 = κ̄1

and α = 1/6,

R(θ) ≥
(

inf
0≤s≤1

σ(s)2

)( ∞∑
n=0

cn(ψ)

)2

T−1(T − T 1/6)FT 1/6(d− d0) + µT (θ),

where µT (θ) = OP (1) as T → ∞ uniformly in d ∈ [d0 − 1/2 − κ̄1, d0 − 1/2 + κ̄1] ⊃ D2 and

ψ ∈ Ψ. From Lemma B.4,

FT 1/6(d− d0) ≥ 1 + c
1− (T − 1)−2κ2/6

2κ2
.

The factor (2κ2)−1(1 − (T − 1)−2κ2/6) is increasing in T from 0 (for T = 2) to (2κ2)−1 and

decreasing in κ2 from
log(T−1)

6 (for κ2 = 0) to 0, such that (2κ2)−1(1 − (T − 1)−2κ2/6) → ∞
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as (κ2, T ) → (0,∞). Because (
∑∞

n=0 cn(ψ))2 > 0 uniformly in ψ ∈ Ψ and inf0≤s≤1 σ(s)2 > 0,

it follows that for any K > 0, η > 0, there exists κ̄2 > 0 (small) and T2 such that, with

Θ̄2 := Θ2(κ̄1, κ̄2), P (infθ∈Θ̄2
R(θ) < K) ≤ η/2 for all T ≥ T2.

Combining these results, for any K > 0, η > 0, there exists a κ̄2 > 0 such that

P ( inf
θ∈Θ̄1∪Θ̄2

R(θ) < K) ≤
2∑
j=1

P ( inf
θ∈Θ̄j

R(θ) < K) ≤
2∑
j=1

η/2 = η

for all T ≥ max(T1, T2) = T0, which proves (32).

D.4 Convergence on Θ3(κ2) and proof of (33)

Again, by Lemma D.1, it suffi ces to prove the result for T−1
∑T

t=1(∆d−d0
+ et(ψ))2. In this

case, define the untruncated process ηt(θ) := ∆d−d0et(ψ) and note that ηt(θ) −∆d−d0
+ et(ψ) =∑∞

n=t πn(d0 − d)et−n(ψ) =
∑∞

n=t ϕn(θ)εt−n, see (28), with

E(ηt(θ)−∆d−d0
+ et(ψ))2 =

∞∑
n=t

ϕn(θ)2σ2
t−n ≤ c

∞∑
n=t

n2 max(d0−d−1,−2−ζ) ≤ ct−2κ2 → 0

for all θ ∈ Θ3 (pointwise), using (30) and Assumption A(a). It follows that

R(θ) = T−1
T∑
t=1

ηt(θ)
2 + oP (1),

and furthermore,

ET−1
T∑
t=1

ηt(θ)
2 = T−1

T∑
t=1

∞∑
n=0

ϕn(θ)2σ2
t−n

= T−1
T∑
t=1

σ2
t

∞∑
n=0

ϕn(θ)2 + T−1
T∑
t=1

∞∑
n=0

ϕn(θ)2(σ2
t−n − σ2

t ).

Let qT := bTχc for some χ ∈ (0, 1). Then the last term is bounded as

T−1
T∑
t=1

∞∑
n=0

ϕn(θ)2(σ2
t−n − σ2

t ) ≤
qT∑
n=0

ϕn(θ)2T−1
T∑
t=1

|σ2
t−n − σ2

t | (53)

+
∞∑

n=qT+1

ϕn(θ)2T−1
T∑
t=1

|σ2
t−n − σ2

t |. (54)

Because supn=1,...,qT T
−1
∑T

t=1 |σ2
t−n − σ2

t | → 0 by Cavaliere and Taylor (2009, Lemma A.1)

and
∑qT

n=0 ϕn(θ)2 ≤
∑∞

n=0 ϕn(θ)2 < ∞ uniformly in θ ∈ Θ3, see (30), it holds that |(53)| →
0. Next, by Assumption A(a) and by (30) we have, respectively, supt σ

2
t ≤ M < ∞ such

that supt T
−1
∑T

t=1 |σ2
t−n − σ2

t | ≤ 2M and
∑∞

n=qT+1 ϕn(θ)2 ≤ c
∑∞

n=qT+1 n
2 max(d0−d−1,−2−ζ) ≤

cq−2κ2
T → 0 uniformly in θ ∈ Θ3, and therefore |(54)| → 0. This shows that ET−1

∑T
t=1 ηt(θ)

2 =∫ 1
0 σ(s)2ds

∑∞
n=0 ϕn(θ)2 + o(1) = r(θ) + o(1), see (31), because T−1

∑T
t=1 σ

2
t →

∫ 1
0 σ(s)2ds by

Assumption A(a) and the continuous mapping theorem. To prove

R(θ) = T−1
T∑
t=1

ηt(θ)
2 + oP (1)

P→ r(θ) as T →∞, (55)
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i.e., the pointwise limit in probability, we show L2-convergence.

To that end we find, in a similar way as in (48) and (49), that

E

(
T−1

T∑
t=1

ηt(θ)
2 − ET−1

T∑
t=1

ηt(θ)
2

)2

= T−2
T∑

t,s=1

E(ηt(θ)
2ηs(θ)

2)− T−2
T∑

t,s=1

E(ηt(θ)
2)E(ηs(θ)

2)

= T−2
T∑

t,s=1

∞∑
n1,n2=0

∞∑
m1,m2=0

(
2∏
i=1

ϕni(θ)ϕmi(θ)σt−niσs−mi

)
× [E(zt−n1zt−n2zs−m1zs−m2)− E(zt−n1zt−n2)E(zs−m1zs−m2)],

where the expectations are zero unless the two highest subscripts are equal (Lemma A.2). By

symmetry, we only need to consider three cases, which we now enumerate.

Case 1) t− n1 = t− n2 = s−m1 = s−m2, in which case the expectations and the σt’s are

uniformly bounded by Assumption A and we find the contribution

cT−2
T∑
t=1

( ∞∑
n=0

ϕn(θ)2

)2

≤ cT−1

( ∞∑
n=0

n−1−2κ2

)2

≤ cT−1 → 0

using (30).

Case 2) t− n1 = t− n2 > s−m1 ≥ s−m2, where the contribution is

T−2
T∑

t,s=1

∞∑
n=0

∞∑
m1=max(0,s−t+n+1)

∞∑
m2=m1

ϕn(θ)2ϕm1
(θ)ϕm2

(θ)

× σ2
t−nσs−m1σs−m2κ4(t− n, t− n, s−m1, s−m2)

≤ cT−2
T∑

t,s=1

∞∑
n=0

n−1−2κ2 max(0, s− t+ n+ 1)−1−2κ2

×
∞∑

m1=max(0,s−t+n+1)

∞∑
m2=m1

|κ4(t− n, t− n, s−m1, s−m2)|

≤ cT−2
T∑

t,s=1

∞∑
n=0

n−1−2κ2 max(0, s− t+ n+ 1)−1−2κ2

≤ cT−2
T∑

t,s=1

|t− s|−1−2κ2 ≤ cT−1 → 0

using Assumption A(a),(b)(iii) together with (30).

Case 3) t−n1 = s−m1 > t−n2 ≥ s−m2, where we distinguish between the two subcases:
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Case 3a) t− n2 = s−m2 with the contribution

T−2
T∑

t,s=1

∞∑
n1=max(0,t−s)

∞∑
n2=n1+1

ϕn1(θ)ϕn2(θ)ϕs−t+n1(θ)ϕs−t+n2(θ)σ
2
t−n1σ

2
t−n2τn2−n1,n2−n1

≤ cT−2
T∑

t,s=1

∞∑
n1=max(0,t−s)

n
−1/2−κ2
1 (s− t+ n1)−1/2−κ2

∞∑
n2=n1+1

n
−1/2−κ2
2 (s− t+ n2)−1/2−κ2

= cT−2
T∑
t=1

∞∑
n1=0

n−1−2κ2
1

∞∑
n2=n1+1

n−1−2κ2
2

+ 2cT−2
T∑

t>s=1

∞∑
n1=t−s

n
−1/2−κ2
1 (s− t+ n1)−1/2−κ2

∞∑
n2=n1+1

n
−1/2−κ2
2 (s− t+ n2)−1/2−κ2

≤ cT−1 + cT−2
T∑

t>s=1

∞∑
n1=max(0,t−s)

n
−1/2−2κ2
1 (s− t+ n1)−1/2−κ2

≤ cT−1 + cT−2
T∑

t>s=1

(t− s)−2κ2 ≤ cT−1 + cT−2κ2 → 0,

where we once again used (30) and Assumption A(a),(b)(iii).

Case 3b) t− n2 > s−m2 with the contribution

T−2
T∑

t,s=1

∞∑
n1=max(0,t−s)

∞∑
n2=n1+1

∞∑
m=s−t+n2+1

ϕn1(θ)ϕn2(θ)ϕs−t+n1(θ)ϕm(θ)

× σ2
t−n1σt−n2σs−mκ4(t− n1, t− n1, t− n2, s−m)

≤ cT−1 + cT−2
T∑

t>s=1

∞∑
n1=max(0,t−s)

n
−1/2−2κ2
1 (s− t+ n1)−1/2−κ2

≤ cT−1 + cT−2κ2 → 0

as in Case 3a). This shows that (55) holds pointwise for all θ ∈ Θ3.

The result (55) can be strengthened to uniform convergence in probability by showing that

R(θ) is stochastically equicontinuous (or tight). From Newey (1991, Corollary 2.2) this holds

if the derivative of R(θ) is dominated uniformly in θ ∈ Θ3 by a random variable BT = OP (1).

From Lemma C.3 with u1 = u2 = d − d0 ≥ −1/2 + κ2, a = 2κ2, and Ψ̃ = Ψ (noting that only

summability of the linear coeffi cients is assumed in Lemma C.3 and this is satisfied uniformly on

Θ by the derivatives of cn(ψ) by Assumption C(iii)) it holds that BT = supθ∈Θ3
|∂R(θ)
∂θ | = OP (1),

showing that R(θ) is stochastically equicontinuous on Θ3 and hence that (55) holds uniformly

in θ ∈ Θ3. Since the result holds for any κ2 it proves (33).

D.5 Proof of Eqn. (34)

Since r(θ0) =
∫ 1

0 σ(s)2ds it is suffi cient to prove that

inf
θ∈Θ3∩{θ:|θ−θ0|≥δ}

∞∑
n=0

ϕn(θ)2 > 1 for all δ > 0 and all κ2 ∈ (0, 1/2).
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Because ϕ0(θ) = 1 for all θ ∈ Θ3 by Assumption C, it is clear that
∑∞

n=0 ϕn(θ)2 = 1 +∑∞
n=1 ϕn(θ)2 ≥ 1, and by Assumption D the inequality is strict for all θ 6= θ0, which proves

(34) by continuity of ϕn(·) and compactness of Θ3.

Appendix E Proof of Theorem 2

By consistency of θ̂, the asymptotic distribution theory for the QML estimator is obtained from

the usual Taylor series expansion of the score function. That is,

0 = T 1/2∂R(θ̂)

∂θ
= T 1/2∂R(θ0)

∂θ
+ T 1/2∂

2R(θ̄)

∂θ∂θ′
(θ̂ − θ0), (56)

where θ̄ is an intermediate value satisfying |θ̄i − θ0i| ≤ |θ̂i − θ0i| for i = 1, . . . , p+ 1.

E.1 Convergence of the score function

The normalized score function evaluated at the true value is

T 1/2∂R(θ0)

∂θ
= 2T−1/2

T∑
t=1

εt(θ0)ŷ1,t−1 with ŷk,t−1 =
∂k

∂θ(k)
εt(θ)|θ=θ0 .

Define also

ST := 2T−1/2
T∑
t=1

εty1,t−1,

where the first element of y1,t−1 is −
∑t−1

n=1 n
−1εt−n and the remaining p elements are given by∑t−1

n=1 γn(ψ0)εt−n. Similarly, the first element of ŷ1,t−1 is−
∑t−1

n=1 n
−1εt−n(θ0) and the remaining

elements are
∑t−1

n=1 ḃn(ψ0)ut−n.

We find that the difference is

T 1/2∂R(θ0)

∂θ
− ST = 2T−1/2

T∑
t=1

(εt(θ0)− εt)ŷ1,t−1 + 2T−1/2
T∑
t=1

εt(ŷ1,t−1 − y1,t−1), (57)

where

εt(θ0)− εt = −
∞∑
n=t

bn(ψ0)ut−n

and

ŷ1,t−1 − y1,t−1 =

[
−
∑t−1

n=1 n
−1
∑∞

k=t−n bk(ψ0)ut−n−k∑t−1
n=1 ḃn(ψ0)

∑∞
k=t ak(ψ0)εt−k

]
.

The first term of (57) is then

−2T−1/2
T∑
t=1

∞∑
n=t

bn(ψ0)ut−nŷ1,t−1,
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which has second moment

4T−1
T∑

t,s=1

∞∑
n=t

∞∑
m=s

bn(ψ0)bm(ψ0)E(ut−nŷ1,t−1us−mŷ1,s−1)

≤ KT−1
T∑

t,s=1

∞∑
n=t

∞∑
m=s

|bn(ψ0)||bm(ψ0)| ≤ KT−1
T∑

t,s=1

t−1−ζs−1−ζ ≤ KT−1−2ζ → 0,

see (2). The second term of (57) is[
−2T−1/2

∑T
t=1 εt

∑t−1
n=1 n

−1
∑∞

k=t−n bk(ψ0)ut−n−k

2T−1/2
∑T

t=1 εt
∑t−1

n=1 ḃn(ψ0)
∑∞

k=t ak(ψ0)εt−k

]
. (58)

The first term in (58) has second moment

4T−1
T∑

t,s=1

t−1∑
n=1

s−1∑
m=1

n−1m−1
∞∑

k=t−n

∞∑
l=s−m

bk(ψ0)bl(ψ0)E(εtεsut−n−kus−m−l)

= 4T−1
T∑
t=1

t−1∑
n,m=1

n−1m−1
∞∑

k=t−n

∞∑
l=t−m

bk(ψ0)bl(ψ0)

∞∑
r=0

∞∑
q=0

ar(ψ0)aq(ψ0)σ2
tσt−k−n−rσt−l−m−q

× (κ4(t, t, t− k − n− r, t− l −m− q) + κ2(t, t)κ2(t− k − n− r, t− l −m− q))

≤ KT−1
T∑
t=1

t−1∑
n,m=1

n−1m−1
∞∑

k=t−n

∞∑
l=t−m

|bk(ψ0)||bl(ψ0)|
∞∑
r=0

∞∑
q=0

|ar(ψ0)||aq(ψ0)|

≤ KT−1
T∑
t=1

t−1∑
n,m=1

n−1m−1
∞∑

k=t−n

∞∑
l=t−m

k−2−ζ l−2−ζ

≤ KT−1
T∑
t=1

t−1∑
n,m=1

n−1m−1(t− n)−1−ζ(t−m)−1−ζ ≤ KT−1
T∑
t=1

t−2 ≤ KT−1 → 0,

where the first two inequalities use Assumption A(a),(b)(iii) and (2), and the fourth inequality

uses Lemma B.2. The second term in (58) has second moment

4T−1
T∑

t,s=1

t−1∑
n=1

s−1∑
m=1

ḃn(ψ0)ḃm(ψ0)
∞∑
k=t

∞∑
l=s

ak(ψ0)al(ψ0)E(εtεsεt−kεs−l)

≤ KT−1
T∑
t=1

(

∞∑
k=t

|ak(ψ0)|)2 ≤ KT−1
T∑
t=1

(t−1−ζ)2 → 0

using Lemma A.2, Assumption C(iii), and (2). Thus, each of the terms in (58) and hence those

in (57) converge to zero in L2-norm and therefore in probability.

Because y1,t−1 is measurable with respect to the sigma-algebra Ft−1 := σ({εs, s ≤ t−1}), it
holds that vTt := 2T−1/2εt

∑t−1
n=1 ξ0,nεt−n = 2T−1/2σtzt

∑t−1
n=1 ξ0,nσt−nzt−n is a martingale dif-

ference sequence with respect to the filtration Ft. Here we have defined ξ0,n := [−n−1, γn(ψ0)′]′,

which satisfies ||ξ0,n|| ≤ Kn−1 by Assumption C, see (2).

To apply the central limit theorem for martingales, see Lemma A.1, we first verify the

Lindeberg condition via Lyapunov’s suffi cient condition that
∑T

t=1E||vTt||2+ε → 0 for some
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ε > 0. Thus,

E||vTt||2+ε = E

(
(2T−1/2)2+ε|σtzt|2+ε||

t−1∑
n=1

ξ0,nσt−nzt−n||2+ε

)

≤ KT−1−ε/2E

(
|zt|2+ε(

t−1∑
n=1

n−1|zt−n|)2+ε

)

using that the σt’s are bounded by Assumption A(a) and that ||ξ0,n|| ≤ Kn−1. FromMinkowski’s

inequality we find E(
∑t−1

n=1 |zt|n−1|zt−n|)2+ε ≤ (
∑t−1

n=1(E(|zt|n−1|zt−n|)2+ε)1/(2+ε))2+ε such that

E||vTt||2+ε ≤ KT−1−ε/2

(
t−1∑
n=1

(
E(|zt|n−1|zt−n|)2+ε

)1/(2+ε)

)2+ε

≤ KT−1−ε/2

(
t−1∑
n=1

n−1

)2+ε

≤ KT−1−ε/2(log T )2+ε

where the second inequality is due to Assumption E provided ε is chosen such that 2ε+ 4 ≤ 8.

Therefore,
T∑
t=1

E||vTt||2+ε ≤ KT−ε/2(log T )2+ε → 0. (59)

Next, the sum of squares of vTt is equal to

4T−1
T∑
t=1

σ2
t z

2
t

t−1∑
n,m=1

ξ0,nξ
′
0,mσt−nσt−mzt−nzt−m

= 4T−1
T∑
t=1

σ2
t

t−1∑
n,m=1

ξ0,nξ
′
0,mσt−nσt−mτnm (60)

+ 4T−1
T∑
t=1

σ2
t

t−1∑
n,m=1

ξ0,nξ
′
0,mσt−nσt−m(z2

t zt−nzt−m − τnm). (61)

By Lemma A.3 with gt,n,m = τnm, (60) is

4T−1
T∑
t=1

σ4
t

t−1∑
n,m=1

ξ0,nξ
′
0,mτnm + o(1)

= 4T−1
T∑
t=1

σ4
t

T−1∑
n,m=1

ξ0,nξ
′
0,mτnm − 4T−1

T∑
t=1

σ4
t

T−1∑
n,m=t

ξ0,nξ
′
0,mτnm + o(1),

where the first term is 4A0T
−1
∑T

t=1 σ
4
t (1 + o(1)) → 4A0

∫ 1
0 σ

4(s)ds and the second term is

bounded by

KT−1
T∑
t=1

T−1∑
n,m=t

j−1k−1τnm ≤ KT−1
T∑
t=1

t−2
T−1∑
n,m=t

τnm,

which converges to zero by Assumption A(b)(iii).
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The second moment of the (i, j)’th element of (61) is

16T−2
T∑

t,s=1

σ2
tσ

2
s

s−1∑
n,m=1

t−1∑
k,l=1

(ξ0,m)i(ξ0,n)j(ξ0,k)i(ξ0,l)jσs−nσs−mσt−kσt−lCov(z2
t zt−kzt−l, z

2
szs−nzs−m)

≤ KT−2
T∑

t,s=1

s−1∑
n,m=1

t−1∑
k,l=1

m−1n−1k−1l−1|Cov(z2
t zt−kzt−l, z

2
szs−nzs−m)|

= KT−2
T∑
t=1

t−1∑
n,m=1

t−1∑
k,l=1

m−1n−1k−1l−1|Cov(z2
t zt−nzt−m, z

2
t zt−kzt−l)| (62)

+KT−2
T∑
t=2

t−1∑
s=1

s−1∑
n,m=1

t−1∑
k,l=1

m−1n−1k−1l−1|Cov(z2
t zt−kzt−l, z

2
szs−nzs−m)|. (63)

For (62) we find the simple bound

KT−2
T∑
t=1

(
t−1∑
k=1

k−1

)4

≤ KT−1(log T )4 → 0

because zt has finite eighth order moments by Assumption E. The covariance in (63) is a

combination of the cumulants of zt up to order eight, where each term is a product of two

cumulants whose orders sum to eight. For the eighth order cumulant we find

T−2
T∑
t=2

t−1∑
s=1

s−1∑
n,m=1

t−1∑
k,l=1

n−1m−1k−1l−1|κ8(t, t, t− k, t− l, s, s, s− n, s−m)| ≤ KT−1 → 0

by Assumption E. There are no seventh order cumulants in (63) because they would be multi-

plied by a first order cumulant, which is zero. For products of sixth and second order cumulants

we find, for example,

T−2
T∑
t=2

t−1∑
s=1

s−1∑
n,m=1

t−1∑
k,l=1

n−1m−1k−1l−1κ2(t− k, t− l)|κ6(t, t, s, s, s− n, s−m)|

= T−2
T∑
t=2

 t−1∑
s=1

s−1∑
n,m=1

n−1m−1|κ6(t, t, s, s, s− n, s−m)|

( t−1∑
k=1

k−2κ2(t− k, t− k)

)

≤ KT−1 → 0
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by Assumption E. Another example is

T−2
T∑
t=2

t−1∑
s=1

s−1∑
n,m=1

t−1∑
k,l=1

n−1m−1k−1l−1κ2(t, t)|κ6(t− k, t− l, s, s, s− n, s−m)|

≤ KT−2
T∑
t=2

t−1∑
s=1

∑
1≤m≤n≤s−1

∑
1≤l≤k≤t−1

n−1m−1k−1l−1κ2(t, t)|κ6(t− k, t− l, s, s, s− n, s−m)|

≤ KT−2
T∑
t=2

t−1∑
s=1

∑
1≤m≤n≤s−1

∑
t−s≤l≤k≤t−1

n−1m−1k−1l−1κ2(t, t)|κ6(t− k, t− l, s, s, s− n, s−m)|

+KT−2
T∑
t=2

∑
1≤l≤k≤t−1

t−l−1∑
s=1

∑
1≤m≤n≤s−1

n−1m−1k−1l−1κ2(t, t)|κ6(t− k, t− l, s, s, s− n, s−m)|

≤ KT−2
T−1∑
s=1

T∑
t=s+1

∑
1≤m≤n≤s−1

∑
t−s≤l≤k≤t−1

n−1m−1k−1l−1|κ6(s, s, t− k, t− l, s− n, s−m)|

+KT−2
T∑
t=2

t−1∑
k=1

t−l−1∑
s=1

∑
1≤m≤n≤s−1

n−1m−1k−2|κ6(t− k, t− k, s, s, s− n, s−m)|

using Lemma A.2. Here, the second term is clearly O(T−1) by Assumption E and the first term

is

T−2
T−1∑
s=1

T∑
t=s+1

∑
1≤m≤n≤s−1

∑
t−s≤l≤k≤t−1

n−1m−1k−1l−1|κ6(s, s, t− k, t− l, s− n, s−m)|

= T−2
T−1∑
s=1

T∑
t=s+1

∑
1≤m≤n≤s−1

∑
0≤u≤v≤s−1

n−1m−1(v − s+ t)−1(u− s+ t)−1

× |κ6(s, s, s− v, s− u, s− n, s−m)|

≤ T−2
T−1∑
s=1

∑
1≤m≤n≤s−1

∑
0≤u≤v≤s−1

n−1m−1|κ6(s, s, s− v, s− u, s− n, s−m)|
(

T∑
t=s+1

(t− s)−2

)
,

which is also O(T−1) using Assumption E. The remaining products of sixth and second order

cumulants, as well as products of lower order cumulants, are treated similarly.

It follows that the sum of squares of vTt satisfies

4T−1
T∑
t=1

σ2
t z

2
t

t−1∑
m,n=1

ξ0,mξ
′
0,nσt−mσt−nzt−mzt−n

p→ 4A0

∫ 1

0
σ4(s)ds.

Hence, by the central limit theorem for martingales, see Lemma A.1, we have that ST
D→

N(0, 4A0

∫ 1
0 σ

4(s)ds) and therefore also that T 1/2 ∂R(θ0)
∂θ

D→ N(0, 4A0

∫ 1
0 σ

4(s)ds).

E.2 Convergence of the Hessian

The second derivative in (56) is tight (stochastically equicontinuous) by Newey (1991, Corollary

2.2) if its derivative is dominated uniformly in d ∈ D3, ψ ∈ Nδ(ψ0) by a random variable

BT = OP (1). From Lemma C.3 with u1 = u2 = d − d0 ≥ −1/2 + κ2 and Ψ̃ = Nδ(ψ0)
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(noting that only summability of the linear coeffi cients is assumed in Lemma C.3 and this

is satisfied uniformly on Nδ(ψ0) by the derivatives of cn(ψ) by Assumption F) it holds that

BT = supd∈D3,ψ∈Nδ(ψ0) |
∂3R(θ)

∂θ(3)
| = OP (1), showing that the second derivative in (56) is tight.

This result, together with consistency of θ̂ (Theorem 1), implies by Lemma A.3 of Johansen

and Nielsen (2010) that the second derivative in (56) can be evaluated at the true value.

Hence, we examine

∂2R(θ0)

∂θ∂θ′
= 2T−1

T∑
t=1

εt(θ0)ŷ2,t−1 + 2T−1
T∑
t=1

ŷ1,t−1ŷ
′
1,t−1,

and by the same argument as for the score, it is enough to consider

HT := 2T−1
T∑
t=1

εtŷ2,t−1 + 2T−1
T∑
t=1

y1,t−1y
′
1,t−1.

Because ŷ2,t−1 is measurable with respect to Ft, εtŷ2,t−1 is a martingale difference sequence,

and it has finite variance such that the first term of HT is oP (1).

The second term of HT has mean

2T−1
T∑
t=1

t−1∑
n=1

σ2
t−nξ0,nξ

′
0,n = 2T−1

T∑
t=1

σ2
t

t−1∑
n=1

ξ0,nξ
′
0,n + o(1)

= 2T−1
T∑
t=1

σ2
t

T−1∑
n=1

ξ0,nξ
′
0,n − 2T−1

T∑
t=1

σ2
t

T−1∑
n=t

ξ0,nξ
′
0,n + o(1)

by Lemma A.3 with gt,n,m = I(n = m)σ−2
t . The first term converges to 2B0

∫ 1
0 σ

2(s)ds

and the second term is bounded by KT−1
∑T

t=1

∑T−1
n=t ||ξ0,n||2 ≤ KT−1

∑T
t=1

∑T−1
n=t n

−2 ≤
KT−1(log T )→ 0. The variance of the (i, j)’th element of the second term of HT is

4T−2
T∑

t,s=1

s−1∑
m,n=1

t−1∑
k,l=1

(ξ0,m)i(ξ0,n)j(ξ0,k)i(ξ0,l)jσs−mσs−nσt−kσt−l

× [E(zs−mzs−nzt−kzt−l)− E(zs−mzs−n)E(zt−kzt−l)]

≤ KT−2
T∑

t,s=1

s−1∑
m,n=1

t−1∑
k,l=1

m−1n−1k−1l−1 |E(zs−mzs−nzt−kzt−l)− E(zs−mzs−n)E(zt−kzt−l)| .

If either m 6= n or k 6= l, the contribution to the variance of the second term of HT is bounded
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by

KT−2
T∑

t,s=1

s−1∑
m,n=1

t−1∑
k,l=1

m−1n−1k−1l−1 |E(zs−mzs−nzt−kzt−l)|

≤ KT−2
T∑

t,s=1

s−1∑
n=1

s−1∑
m=s−t+1

t−1∑
k=1

m−1n−1k−1(t− s+m)−1 |κ4(s−m, s−m, s− n, t− k)|

+KT−2
T∑

t,s=1

s−1∑
n=1

t−1∑
k,l=1

n−2k−1l−1 |κ4(s− n, s− n, t− k, t− l)|

≤ KT−2
T∑

t,s=1

s−1∑
m=s−t+1

m−1(t− s+m)−1 +KT−1
T∑
s=1

s−1∑
n=1

n−2

≤ KT−2(log T )
T∑

t,s=1

(|s− t|+ 1)−1 +KT−1
T∑
s=1

s−1 ≤ KT−1(log T )2 → 0,

whereas if m = n and k = l, the contribution is bounded by

KT−2
T∑

t,s=1

s−1∑
n=1

t−1∑
k=1

n−2k−2 |κ2(s− n, s− n)|κ2(t− k, t− k)|

≤ KT−2
T∑

t,s=1

s−1∑
n=1

t−1∑
k=1

n−2k−2 ≤ KT−2
T∑

t,s=1

s−1t−1 ≤ KT−1(log T )2 → 0.

Thus, the second term of HT converges in L2-norm, and hence in probability, to 2B0

∫ 1
0 σ

2(s)ds.
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