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Abstract

Confidence intervals based on cluster-robust covariance matrices can be constructed

in many ways. In addition to conventional intervals obtained by inverting Wald (t)
tests, the paper studies intervals obtained by inverting LM tests, studentized boot-
strap intervals based on the wild cluster bootstrap, and restricted bootstrap intervals

obtained by inverting bootstrap Wald and LM tests. It also studies the choice of an
auxiliary distribution for the wild bootstrap, a modified covariance matrix based on
transforming the residuals, which was proposed previously, and modified wild boot-
strap procedures based on the same idea, which are new. Some procedures perform

extraordinarily well even with the number of clusters is small.
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1. Introduction

It is now routine to employ cluster-robust standard errors whenever observations at
the individual level are associated with a number of geographical areas and/or with a
number of time periods. Each geographical area, or each time period, or perhaps each

area-period pair, can be thought of as a cluster. When key regressors are measured
at the cluster level, as is often the case when assessing the effects of policy changes,
fixed effects cannot be used to account for intra-cluster correlation, because the fixed-

effect dummy variables would explain all the variation in the regressor(s) of interest.
Instead, it is common to use cluster-robust standard errors, because they allow both
for heteroskedasticity within and across clusters and for intra-cluster correlation.

In large datasets, even very small levels of intra-cluster correlation can cause severe

errors of inference if standard errors are not robust to clustering. For example, in
a “placebo laws” experiment with over 500,000 observations on employment income
data, where the average intra-cluster correlation coefficient is roughly 0.032, Bertrand,

Duflo, and Mullanaithan (2004) find that using standard errors which are robust to
heteroskedasticity but not to clustering yields rejection frequencies for interventions
that did not actually take place which exceed 0.67 at the .05 level.

There has been a good deal of recent work on cluster-robust inference; see Cameron and
Miller (2015) for a comprehensive survey. Much of this work has focused on testing,

including bootstrap testing; see Cameron, Gelbach, and Miller (2008) and MacKinnon
and Webb (2014). This paper focuses instead on confidence intervals. The next section
discusses the conventional cluster-robust confidence interval, which is implicitly based

on inverting a Wald test, and proposes a new interval based on inverting a Lagrange
Multiplier, or LM, test. The latter is more computationally intensive than the former,
but it should be quite feasible in most cases.

Section 3 then reviews the procedure for constructing a studentized bootstrap interval
based on the wild cluster bootstrap. Section 4 proposes two new “restricted boot-

strap” intervals, which are based on inverting bootstrap P values for Wald and LM
tests, respectively. Unfortunately, these procedures are very computationally intensive.
Section 5 describes the design of simulation experiments to compare the performance

of the five intervals considered so far, and Section 6 presents the results of those ex-
periments.

The remainder of the paper deals with two different issues. Section 7 discusses the
choice of an auxiliary distribution for the wild cluster bootstrap and presents some

further experimental results. Section 8 discusses several ways in which cluster-robust
confidence intervals can be improved by using transformed residuals in covariance
matrices and/or wild bootstrap DGPs and presents some further simulation results.

Finally, Section 9 concludes.
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2. Cluster-Robust Confidence Intervals

Consider the linear regression model

y ≡


y1

y2
...

yG

 = Xβ + u ≡


X1

X2
...

XG

β +


u1

u2
...

uG

, (1)

where the data are divided into G clusters, indexed by g. The g th cluster has Ng

observations, and the entire sample has N =
∑G

g=1 Ng observations. The matrix X
and the vectors y and u have N rows, X has k columns, and the parameter vector

β has k elements. Least squares estimation of equation (1) yields OLS estimates β̂
and residuals û. The disturbances are assumed to be uncorrelated across clusters but
potentially correlated and heteroskedastic within clusters, so that

E(ugug
′) = Ωg, g = 1, . . . , G,

where the Ng ×Ng covariance matrices Ωg are unknown. Thus the covariance matrix
of u is assumed to be block diagonal.

Following Liang and Zeger (1986), the covariance matrix of β̂ can be estimated by

using a cluster-robust covariance matrix, or CRVE. The most widely-used CRVE is

G(N − 1)

(G− 1)(N − k)
(X ′X)−1

(
G∑

g=1

Xg
′ûgûg

′Xg

)
(X ′X)−1. (2)

This has the familiar sandwich form, with (X ′X)−1 serving as the bread and a summa-
tion of k×k matrices over all clusters serving as the filling. The matrix ûgûg

′ contains
the squares and cross-products of all the residuals for cluster g. It evidently provides

an inconsistent estimate of Ωg. Nevertheless, 1/N times the sum of the Xg
′ûgûg

′Xg

matrices does consistently estimate the filling in the asymptotic covariance matrix,
and N times the CRVE consistently estimates the covariance matrix of

√
N(β̂ − β0).

These results require that G tends to infinity with N at a fast enough rate; see Carter,
Schnepel, and Steigerwald (2013).

The CRVE (2) resembles a conventional heteroskedasticity-consistent covariance ma-
trix, or HCCME. In fact, if Ng = 1 for all g and the factor of G/(G − 1) is omitted,

it reduces to the HC1 matrix of MacKinnon and White (1985). It will therefore be
referred to as the CV1 matrix. The first factor in (2) is a form of degrees of freedom
correction. It is asymptotically negligible, but it always makes CV1 larger when G and

N are finite. When G is small, it can have a non-negligible effect.

When the CV1 matrix is used to compute t statistics, it is common to base inference on

the t(G−1) distribution; see Donald and Lang (2007) and Bester, Conley, and Hansen
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(2011). However, hypothesis tests based on this distribution tend to overreject when

G is small, especially when the Ng vary substantially across clusters; see MacKinnon
and Webb (2014). This suggests that conventional confidence intervals will tend to
undercover.

The parameter vector β can be partitioned into a (k − 1)--vector β1 and a scalar βk.
The most commonly used (1− α)% confidence interval for βk is[

β̂k − c1−α/2se(β̂k), β̂k + c1−α/2se(β̂k)
]
, (3)

where se(β̂k) is the square root of the k
th diagonal element of the CV1 matrix (2), and

c1−α/2 is the 1− α/2 quantile of the t(G− 1) distribution.

The confidence interval (3) is implicitly obtained by inverting a cluster-robust t test,
which is really a Wald test. We could instead invert a Lagrange Multiplier test. In this
case, the LM statistic can be computed by using the Frisch-Waugh-Lovell, or FWL,

regression
M1(y − β0

kxk) = M1xkbk + residuals, (4)

where β0
k is a candidate value of βk, X ≡ [X1 xk], and M1 ≡ I −X1(X

′
1X1)

−1X ′
1.

The regressand in (4) is the vector of residuals from regressing y − β0
kxk on X1, and

the regressor is the vector of residuals from regressing xk on X1. It is easy to show

that the test statistic LM(β0
k) can be written as

(G− 1)(N − k − 1)

G(N − 1)

(
(y − β0

kxk)
′M1xk

)2/( G∑
g=1

(M1xk)g
′ũgũg

′(M1xk)g

)
, (5)

where ũg denotes the vector of restricted residuals for cluster g, that is, the elements of
the vector M1(y − β0

kxk) corresponding to cluster g. Similarly, (M1xk)g denotes the

rows of the vector M1xk that correspond to cluster g. Expression (5) is just the square
of the scalar (y − β0

kxk)
′M1xk divided by a cluster-robust estimate of its variance.

In order to obtain a confidence interval, we need to invert the test statistic (5). That
is, we need to find the set of values of β0

k which satisfy the inequality

LM(β0
k) ≤ cF1−α,

where cF1−α denotes the 1− α quantile of the F (1, G− 1) distribution.1 This needs to
be done numerically. However, because the problem is one-dimensional and LM(β0

k)

is smooth, it should not be very difficult. The resulting interval will have the form
[βl

k, βu
k ], where

LM(βl
k) = LM(βu

k ) = cF1−α. (6)

1 Asymptotically, it would also be valid to use the 1−α quantile of the χ2(1) distribution.
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Unlike the Wald interval (3), the LM interval defined by (6) will generally not be

symmetric around β̂k

The Wald interval (3) can be expected to provide reliable inferences whenever Wald

test statistics based on the CV1 matrix (2) do so. However, several studies, including
Cameron, Gelbach, and Miller (2008) and MacKinnon and Webb (2014), suggest that
this will generally not be the case when G is small and/or the Ng vary substantially

across clusters. In these cases, the Wald interval is likely to undercover. Whether
the LM interval (6) will perform better in such cases is an open question. In linear
regression models, LM test statistics are often numerically smaller than corresponding

Wald statistics (Breusch, 1979). Even if such an inequality does not hold strictly in
this case, it seems very likely that the LM intervals will be longer, and therefore less
prone to undercover, than the Wald intervals.

3. The Wild Cluster Bootstrap

The wild bootstrap was proposed in Liu (1988). Key papers include Mammen (1993)
and Davidson and Flachaire (2008). An extension to clustered data was suggested in
Cameron, Gelbach, and Miller (2008) in the context of hypothesis testing. Simulation

evidence in that paper and in MacKinnon and Webb (2014) have shown that it can
provide remarkably accurate inferences in cases where cluster-robust t statistics can
overreject severely.

The idea of the wild cluster bootstrap is very simple. For the ordinary wild bootstrap,

the residual associated with each observation is multiplied by an auxiliary random
variable that has mean 0 and variance 1. For the wild cluster bootstrap, the residuals
associated with all the observations in a given cluster are multiplied by by the same

auxiliary random variable. This ensures that the bootstrap DGP mimics both the
intra-cluster correlations and the heteroskedasticity of the residuals.

There are at least two ways in which the wild cluster bootstrap can be used to construct
(1 − α)% confidence intervals. The most widely used and computationally efficient
approach is to construct a “studentized bootstrap” interval. This works as follows:

1. Estimate equation (1) by OLS to obtain estimates β̂, residuals û, and the cluster-

robust standard error se(β̂k).

2. Calculate t̂k = β̂k/se(β̂k), the t statistic for βk = 0.

3. For each of B bootstrap replications, indexed by j, generate a new set of bootstrap

dependent variables y∗j
g using the bootstrap DGP

y∗j
g = Xgβ̂ + ûgv

∗j
g , g = 1, . . . , G, (7)

where y∗j
g is the vector of observations on the bootstrap dependent variable for

cluster g, and v∗jg is a random variable drawn from an auxiliary distribution with

mean 0 and variance 1. A good choice for the latter is usually the Rademacher
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distribution (Davidson and Flachaire, 2008), which takes the values 1 and −1 with

equal probability. Other choices are discussed in Section 7.

4. For each bootstrap replication, estimate regression (1) using y∗j as the regressand,

and calculate t∗jk , the t statistic for βk = β̂k, using the square root of the kth

diagonal element of (2), with bootstrap residuals replacing the OLS residuals, as
the standard error.

5. Sort the t∗jk from smallest to largest, and denote by c∗α/2 and c∗1−α/2, respectively,
the (B + 1)(α/2)th and (B + 1)(1 − α/2)th entries in the sorted list. For these
indices to be integers, B must have been chosen so that (B+1)(α/2) is an integer.

Natural choices are B = 999 or B = 9,999.

6. Construct the (1− α)% studentized bootstrap interval as[
β̂k − se(β̂k)c

∗
1−α/2, β̂k − se(β̂k)c

∗
α/2

]
. (8)

Studentized bootstrap confidence intervals are widely used. See Davison and Hinkley
(1997, Chapter 5) and Davidson and MacKinnon (2004, Chapter 5) for introductory

expositions. The key difference between the studentized bootstrap interval (8) and the
Wald interval (3) is that the 1−α/2 quantile of the t(G−1) distribution is replaced by
either the 1−α/2 quantile or the α/2 quantile of the bootstrap distribution. Because

the interval (8) uses two different quantiles, it will in general be asymmetric.

4. Bootstrap Intervals that Impose the Null

The bootstrap DGP (7) does not impose the null hypothesis. Since doing so makes
the estimates more efficient, it is generally a good idea to impose the null whenever
possible; see Davidson and MacKinnon (1999). In the context of a confidence interval,

however, imposing the null is computationally demanding. There are two null hypo-
theses that correspond to the two ends of the interval, and neither of them is known
initially. Thus an iterative procedure is necessary. However, the computational cost

may be worth it, because there are circumstances in which such a “restricted bootstrap
Wald interval” can work very much better than a studentized bootstrap interval; for
an extreme example, see Davidson and MacKinnon (2014).

The procedure for constructing a restricted bootstrap Wald interval, although com-
putationally demanding, is similar to the one for the LM interval of Section 2 and is

not difficult to describe. Step 1 is unchanged from the first step for the studentized
bootstrap interval. The procedure for determining the upper limit βu

k then continues
as follows:

2. Pick a candidate upper limit, say β
u(1)
k . This might be the upper limit of either

the Wald interval (3) or the studentized bootstrap interval (8). Then calculate

t̂
u(1)
k = (β̂k − β

u(1)
k )/se(β̂k), the t statistic for βk = β

u(1)
k .

3. Calculate the residual vector

ũ(1) ≡ M1(y − β
u(1)
k xk) = M1y − β

u(1)
k M1xk. (9)

These are the residuals from a regression of y − β
u(1)
k xk on X1.
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4. Generate B bootstrap samples using the bootstrap DGP

y∗j
g = β

u(1)
k xkg + ũ(1)

g v∗jg , g = 1, . . . , G, (10)

where ũ
(1)
g is a subvector of ũ(1). The right-hand side of equation (10) could also

includeX1gβ̃
(1)
1 , where β̃

(1)
1 denotes the estimates of β1 conditional on βk = β

u(1)
k ,

but there is no need to include that term, because doing so would not change the
bootstrap test statistic.

5. For each bootstrap sample, calculate the bootstrap test statistic t∗jk for the hypo-
thesis that βk = β

u(1)
k by regressing y∗j − β

u(1)
k xk on X, using the CV1 matrix

(2) to calculate the standard error of β̂∗j
k .

6. Calculate the equal-tail bootstrap P value

p̂∗(1) = 2min

1

B

B∑
j=1

I
(
t∗jk ≤ t̂

u(1)
k

)
,
1

B

B∑
j=1

I
(
t∗jk > t̂

u(1)
k

), (11)

where I(·) denotes the indicator function, which equals 1 if its argument is true

and 0 otherwise.

7. If p̂∗(1) < α, the candidate upper limit β
u(1)
k must be too large. If p̂∗(1) > α,

it must be too small. Repeating steps 2 through 6 as many times as necessary,

search over βu
k using a root-finding algorithm that does not require derivatives,

such as bisection, until it finds a value βu∗
k such that p̂∗(βu∗

k ) = α. This is the
upper limit of the confidence interval.

The procedure for finding the lower limit is almost identical. First, pick a candidate
lower limit, say β

l(1)
k . Then repeat steps 2 through 6 with appropriate modifications. If

p̂∗(1) < α, the candidate lower limit β
l(1)
k must be too small. If p̂∗(1) > α, it must be too

large. Use the root-finding algorithm again to find a value βl∗
k such that p̂∗(βl∗

k ) = α.
This is the lower limit of the confidence interval.

As with all simulation-based optimization procedures, it is essential that the same

random numbers be used for each set of B bootstrap samples. Otherwise, the root-
finding algorithm would never converge. Care should also be taken to make sure that
βl∗
k < βu∗

k , which might not be the case if the starting values were very badly chosen.

Instead of forming a confidence interval by inverting a bootstrap Wald test, we could
form one by inverting a bootstrap test based on the LM statistic (5). The procedure
for constructing this “restricted bootstrap LM interval” is very similar to the one for

the restricted bootstrap Wald interval. In this case, both the test statistic itself and
the bootstrap samples are conditional on the upper and lower limits of the interval.
Thus step 1 is omitted. The remainder of the algorithm proceeds as follows:

2. Given a candidate upper limit β
u(1)
k , compute the test statistic LM(β

u(1)
k ) using

equation (5). Optionally, convert it into a signed statistic t̂
LM,u(1)
k .

–6–



3. Use equation (9) to compute the residual vector ũ(1).

4. Generate B bootstrap samples using equation (10).

5. For each bootstrap sample, calculate the bootstrap test statistic LM∗j
k , using the

same procedure as in step 2. Optionally, convert it into a signed statistic t̂∗LMk .

6. Calculate the upper-tail bootstrap P value

p̂∗(1) =
1

B

B∑
j=1

I
(
LM∗j

k > LM(β
u(1)
k )

)
. (12)

If using signed statistics, calculate an equal-tail bootstrap P value, similar to (11),

instead of (12).

7. Use a root-finding algorithm to find βu∗
k , as before.

8. Repeat steps 2 through 7, with appropriate modifications, to find the lower limit
βl∗
k , as before.

When β̂k is expected to be unbiased, there is no reason to convert the LM statistic

into a signed statistic. However, when β̂k is likely to be biased, as may well be the
case when instrumental variables are being used to correct for endogeneity, doing so
can make a substantial difference.

5. Design of the Experiments

The simulation experiments investigate the model

yig = β1 + β2dig + β3Dig + β4digDig + uig, g = 1, . . . , G, i = 1, . . . , Ng, (13)

where dig = 1 if any of the observations in cluster g is treated, and Dig = 1 for the

same fraction π of observations in every cluster. An observation is actually treated
if digDig = 1. The model (13) can be thought of as a “difference-in-differences”
regression, in which some groups are never treated, so that dig = 0 for all i, and other

groups are treated for part but not all of the time. The coefficient of interest is β4,
which measures the impact of actually treating an observation. The dummy variable
dig is included to account for non-random effects that may characterize treated versus

untreated clusters, and the dummy variable Dig is included to account for non-random
effects that may characterize the time periods in which treatment occurs.

In most of the experiments, G = 20 and N = 1000. However, the way in which the N
observations are allocated to G clusters depends on a parameter γ ≥ 0. Specifically,

Ng =
N exp(γg/G)∑G
j=1 exp(γj/G)

, for g = 1, . . . , G− 1,

where Ng is truncated to the nearest integer, and NG = N −
∑G−1

g=1 Ng. When γ = 0,
the clusters are equal-sized, with Ng = 50 for all g. As γ increases, the cluster sizes
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become more and more unequal. The largest value of γ used in the experiments is 4.5,

for which the smallest and largest values of Ng are 2 and 216, respectively.

The disturbances uig are homoskedastic, normally distributed, equicorrelated within

clusters with correlation coefficient ρ, and independent across clusters. Although the
value of ρ affects the results, it does so to a remarkably limited extent, with almost no
observable effect for 0 ≤ ρ ≤ 0.5. Since its value does not matter, ρ is set to 0.2 for all

the reported experiments.

One feature of the model (13) is that all the regressors are the same for every replication
of a given experiment. This makes it possible to perform many of the computations
just once, which greatly reduces the cost of the simulations. The Wald interval is

extremely inexpensive to compute. The LM interval is much more expensive, but still
quite cheap. The studentized bootstrap interval is somewhat expensive, and the two
restricted bootstrap intervals are quite expensive.

It may seem surprising that neither N nor G is varied in the principal experiments. In-
creasing N would have almost no effect on the results, but it would raise computational

costs substantially. Increasing G would make all the intervals perform better, but it
would not affect any conclusions about their relative performance. Some evidence on
the latter point is provided in the next section.

Most experiments use 100,000 replications with B = 999. For the same reason that

the power of bootstrap tests increases with B (see Davidson and MacKinnon, 2000),
the length of bootstrap confidence intervals tends to decline (slightly) as B increases.
It is therefore desirable not to use too small a value of B in the experiments. With

100,000 replications, the standard error of an estimated coverage level that is truly 0.95
is 0.00069. Because the same simulated data are used for all five intervals, however,
the difference between any two estimated coverage levels is actually much smaller than

this. In no case do simulation errors lead to results that are at all ambiguous.

6. Performance of Alternative Confidence Intervals

Figure 1 shows the coverage of the five intervals discussed in Sections 2, 3, and 4 at
the nominal 0.95 level as functions of P , the fraction of clusters treated. In these

experiments, G = 20, N = 1000, and γ = 3, which implies that the smallest cluster
has 8 observations and the largest has 155. Clusters are always treated from smallest
to largest, and the results would undoubtedly be different if any other ordering were
used. The fraction of observations within each treated cluster that is treated, π, is 0.4.

The actual number of treated clusters is obtained by truncation. For example, since
8× 0.4 = 3.2, three observations are treated when Ng = 8.

The Wald interval (3) always undercovers, and it does so quite severely when P is
large or small. This is what would be expected based on the results for t tests in

MacKinnon and Webb (2014). In contrast, the LM interval defined by equations (6)
always overcovers. No results for LM intervals are shown for P < 0.20 or P > 0.85,
because, in those cases, there often appeared to be no finite solution to equations (6).
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The studentized bootstrap interval (8) always performs better than the Wald interval.

Like the latter, it always undercovers, but it does so to a very limited extent for
intermediate values of P . When P is large or small, however, the undercoverage can
be quite severe. In the extreme case of P = 0.05, in which just one cluster is treated,

the Wald and studentized intervals cover the true value just 14.2% and 15.2% of the
time, respectively. This case is not shown in order to avoid making the main part of
the figure difficult to read.

The two restricted bootstrap intervals behave very similarly. They perform extremely
well for moderate values of P , say 0.30 ≤ P ≤ 0.75, but they undercover slightly

for somewhat more extreme values, and they overcover severely for P ≤ 0.15 and
P ≥ 0.90. Note that, if G had been larger, the range of excellent performance would
have been wider. MacKinnon and Webb (2014) showed that bootstrap tests perform

badly only when the number of treated clusters, PG, rather than P itself, is small or
large. The results of that paper also apply here, since the restricted bootstrap intervals
are obtained by inverting bootstrap tests.

Figure 2 shows coverage as a function of γ, holding P and π constant at 0.3 and

0.4, respectively. As expected, all the intervals perform less well as γ increases and
the values of Ng consequently become more dispersed. With increasing γ, the Wald
and studentized bootstrap intervals undercover more severely, and the LM interval

overcovers more severely. The two restricted bootstrap intervals perform extremely
well for all values of γ, although they seem to undercover just a little bit more when
γ is large.

Figure 3 shows coverage as a function of π, the fraction of observations within treated
clusters that is treated. Coverage improves sharply for both the Wald and LM intervals,

and to a lesser extent for the studentized bootstrap interval, as π increases from 0.10
to 0.25, but there is little further improvement as π continues to increase.

Figure 4 shows what happens as both G and N increase together. In the figure, G
takes the values 15, 18, 21, . . . , 48, and N = 50G. The value of P is 1/3, so that the

numbers of treated clusters are 4, 5, 6, . . . , 16. As we would expect, all the intervals
perform better as G increases. In particular, the restricted bootstrap intervals perform
almost perfectly for G ≥ 21, and the studentized bootstrap interval performs very well

for G ≥ 39. In contrast, it appears that G would have to be very large indeed for the
Wald and LM intervals to perform really well.

The results in Figures 1 through 4 should not have been surprising. Conventional
Wald intervals always undercover, and they sometimes do so severely. In contrast,
LM intervals always overcover. Studentized bootstrap intervals always outperform the

Wald intervals on which they are based, but their performance can be problematical,
especially when G is not large and cluster sizes are quite dispersed. In contrast,
the two restricted bootstrap intervals perform extremely well, and almost identically,

except when PG, the number of treated clusters, is very small or very large. Thus,
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even though these intervals are relatively difficult and expensive to compute, they are

probably worth using in many cases.

7. Wild Bootstrap Auxiliary Distributions

In principle, a great many different auxiliary distributions could be used to generate
the random variables v∗g that play a key role in the bootstrap DGPs (7) and (10).

These include the asymmetric two-point distribution proposed in Mammen (1993),
which is probably the most widely used, and the Rademacher distribution proposed in
Davidson and Flachaire (2008), which seems to be a much better choice in most cases.

For the wild bootstrap to work well, the residuals must provide good approximations
to the unknown disturbances. Sometimes, the residuals are transformed in order to

make the approximations better; see Section 8. Provided the approximations are in
fact good, we want the disturbances in the bootstrap DGP to have mean zero and the
same higher moments as the (possibly transformed) residuals. For that to be the case

up to the fourth moment, the auxiliary distribution must satisfy the conditions

E(v∗) = 0, E(v∗2) = 1, E(v∗3) = 1, and E(v∗4) = 1. (14)

Unfortunately, it is impossible for any distribution to satisfy these conditions.

To see why not, consider the outer product of the vector [1 v∗ v∗2]′ with itself for a

random variable v∗ with expectation 0 and variance 1. This yields a 3×3 matrix with
expectation

E

 1 v∗ v∗2

v∗ v∗2 v∗3

v∗2 v∗3 v∗4

 =

 1 0 1

0 1 µ3

1 µ3 µ4

, (15)

where µ3 and µ4 denote the third and fourth moments of v∗. The determinant of
the matrix on the right-hand side of equation (15) must be nonnegative because the
matrix is positive semidefinite. This determinant is µ4 − µ2

3 − 1. Therefore,

µ4 − µ2
3 ≥ 1. (16)

If µ3 = 1, equation (16) implies that µ4 ≥ 2. Conversely, if µ4 = 1, it implies
that µ3 = 0. Thus there exists no distribution of v∗ which satisfies conditions (14).

This means that there is no ideal auxiliary distribution. We either need to relax the
requirement that µ3 = 1 or allow µ4 ≥ 2.

Since it takes the values 1 and −1 with equal probability, it is easy to see that the
Rademacher distribution has µ3 = 0 and µ4 = 1. Thus it satisfies three of the four

conditions in (14). However, because its third moment is zero, it imposes symmetry
on the bootstrap disturbances.
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Mammen (1993) suggests the two-point distribution

v∗ =

{
−(

√
5− 1)/2 with probability (

√
5 + 1)/(2

√
5),

(
√
5 + 1)/2 with probability (

√
5− 1)/(2

√
5).

(17)

This distribution satisfies the first three conditions in (14), but it has µ4 = 2. Thus
it violates the last condition, although it does come as close to satisfying it as any
distribution with µ3 = 1 can, because the inequality (16) holds as an equality.

Davidson and Flachaire (2008) provides evidence that the Rademacher distribution is a
better choice than Mammen’s two-point distribution (17) even when the disturbances
are not symmetric. Davidson, Monticini, and Peel (2007) considers a class of two-point

distributions of which Rademacher and (17) are special cases. In experiments with
disturbances that are heavily skewed and severely heteroskedastic, the Rademacher
distribution clearly outperforms (17) and all the others considered. Thus it appears

that having a fourth moment equal to 1 is more important for an auxiliary distribution
than having a third moment equal to 1.

With a two-point distribution, each observation can have only two bootstrap distur-

bances associated with it. In the cluster case, this means that there are only 2G

possible bootstrap samples. When G is small (say, less than 12) this can cause seri-
ous problems, as Webb (2013) points out. That paper therefore suggests an auxiliary

distribution with six mass points,

−
√
1.5, −1, −

√
0.5,

√
0.5, 1,

√
1.5,

each of which has probability 1/6. It is easy to see that:

E(v∗) = 0, E(v∗2) = 1, E(v∗3) = 0, and E(v∗4) = 7/6.

Because 6G is very much larger than 2G, the six-point distribution can safely be used
even when G is very small. Its only disadvantage, relative to Rademacher, is that the

fourth moment is slightly higher than 1.

Of course, it is not essential to limit ourselves to auxiliary distributions with a finite
number of mass points. Since the standard normal distribution has mean 0 and var-

iance 1, it may seem to be a natural choice for the distribution of v∗. However, µ3 = 0
and µ4 = 3, so that the standard normal violates two of the conditions in (14). It
violates the last condition much more severely than the six-point distribution does.

Another continuous distribution with the correct mean and variance is the uniform
distribution

U
[
−
√
3,
√
3
]
,

which has µ3 = 0 and µ4 = 1.8. It also violates two of the conditions in (14), but it
violates the fourth-moment condition less severely than the standard normal does.
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In addition to the two-point distribution, Mammen (1993) suggests the continuous

distribution
v∗ = u/

√
2 + 1−

2
(w2 − 1),

where u and w are independent standard normal random variables. It can be shown
that

E(v∗) = 0, E(v∗2) = 1, E(v∗3) = 1, and E(v∗4) = 6.

Thus the first three moments satisfy conditions (14), but the fourth moment is very
much larger than 1.

None of the simulation evidence in Davidson and Flachaire (2008) and Davidson,

Monticini, and Peel (2007) concerns the wild cluster bootstrap. I therefore investigate
studentized bootstrap intervals using the six auxiliary distributions discussed above.
Because the differences among the auxiliary distributions may be quite small, all ex-
periments use 400,000 replications. This is feasible because studentized bootstrap

intervals are much less expensive to compute than restricted bootstrap intervals.

Figure 5 shows the coverage of studentized bootstrap intervals at the nominal 0.95
level as functions of G for G = 9, 12, 15, . . . , 30, with N = 50G, P = 1/3, and π = 0.4.
It is similar to Figure 4, except that G = 9 and G = 12 are added, because the

failures of the algorithm for the LM interval for those cases are now irrelevant, and
values of G greater than 30 are omitted. The results are striking. For every value
of G, the Rademacher distribution yields the most accurate coverage, followed closely

by Webb’s six-point distribution. Surprisingly, this is true even for G = 9, where
there are only 512 distinct bootstrap samples. The uniform distribution comes next,
but after a noticeable gap, followed by the standard normal and Mammen continuous

distributions. The worst undercoverage, by a considerable margin, is provided by the
Mammen two-point distribution, which is probably still the most widely used auxiliary
distribution in practice.

Figure 6 shows the coverage of studentized bootstrap intervals at the nominal 0.95 level
as functions of P , the proportion of clusters treated, for G = 16 and N = 800, again

with π = 0.4. The actual number of clusters treated varies from 2 to 14. The ordering
of the six auxiliary distributions is precisely the same as in Figure 5. The Rademacher
distribution always performs best, followed closely by the six-point distribution, and

the Mammen two-point distribution always performs worst.

These results strongly support the use of the Rademacher distribution, even when G
is very small, although the six-point distribution also works well and may be safer
in that case. Other distributions should not be employed. Using Mammen’s classic

asymmetric two-point distribution (17) appears to be a particularly bad idea.

–12–



8. Modified CRVEs and Bootstrap DGPs

Following MacKinnon and White (1985), it is common to transform residuals prior to
using them in the filling of a sandwich HCCME. The most popular such HCCME is
probably the HC2 covariance matrix, which uses the transformation

üi =
(
1−Xi(X

′X)−1Xi
′)−1/2

ûi, i = 1, . . . , N, (18)

where Xi denotes the ith row of the regressor matrix X. The HC2 matrix has been
studied extensively. Both theoretical and simulation results suggest that it usually
yields more accurate inferences than HC1, in which ûi is effectively just multiplied

by a degrees-of-freedom correction. For a recent survey on heteroskedasticity-robust
inference, see MacKinnon(2012).

Bell and McCaffrey (2002) proposes the cluster-robust analog of HC2 as an alternative
to the widely-used CV1 matrix (2). The proposed covariance matrix, which it seems
logical to refer to as CV2, omits the first factor in (2), which is essentially a degrees-

of-freedom correction, and replaces the residual subvectors ûg by the subvectors

üg = (I− Pgg)
−1/2 ûg, g = 1, . . . , G, (19)

where (·)−1/2 denotes the symmetric square root of the inverse of the matrix inside
the parentheses,

Pgg ≡ Xg(X
′X)−1Xg

′,

and Xg denotes the Ng × k submatrix of X corresponding to the observations in
cluster g. Thus Pgg is the Ng × Ng block on the diagonal of the projection matrix

PX = X(X ′X)−1X ′ that corresponds to cluster g. Equation (19) evidently reduces
to (18) if all clusters have just one member, so that G = N and Ng = 1 for all g.

Imbens and Kolesar (2012) provides some evidence that CV2 outperforms CV1. Based
on this evidence and the much more extensive body of evidence that HC2 outperforms
HC1, it might seem logical to use CV2 all the time. There is a problem, however. The

matrices I−Pgg are Ng×Ng. When Ng is large, finding the symmetric square root can
be expensive. Indeed, whenNg is very large, simply creating and storing these matrices
may be infeasible. This is a very real problem, because empirical work that uses cluster-

robust inference often employs very large samples. For example, the largest cluster
(for California) in the placebo laws experiments of MacKinnon and Webb (2014),
which are based on the experiments of Bertrand, Duflo, and Mullanaithan (2004), has

42,625 observations. The corresponding Pgg matrix would take up more than 14 GB
of memory.

The basic idea of the CV2 matrix can be extended in several ways. First, we could
evidently define a CV3 matrix similar to the simplified HC3 matrix of Davidson and
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MacKinnon (1993).2 This would simply involve replacing (·)−1/2 by (·)−1 in equation

(19). Although it seems extremely unlikely that CV3 would outperform CV2 in general,
it might well do so in some cases, just as HC3 often outperforms HC2.

A more interesting application of the CV2 idea is to use transformed residuals in the
bootstrap DGP. Davidson and Flachaire (2008) suggest transforming the residuals in
wild bootstrap DGPs in ways analogous to the transformations used in the HC2 and

HC3 covariance matrices. That paper and MacKinnon (2012) find that bootstrap
DGPs based on transformed residuals typically yield improved results, even when the
covariance matrix does not employ the same transformation.

There are at least four different wild cluster bootstrap DGPs that could be based on

these ideas. Two of the four would use a transformation like the one used in CV2,
and the other two would use a transformation like the one used in CV3. One of each
pair, like (10), would impose the null, and the other, like (7), would not. The former

would be appropriate for hypothesis testing and for restricted bootstrap intervals, and
the latter would be appropriate for studentized bootstrap intervals. For example, the
CV2-like bootstrap DGP analogous to (7) would be

y∗j
g = Xgβ̂ + ügv

∗j
g , g = 1, . . . , G, (20)

with the vectors üg defined by (19). The wild cluster bootstrap DGPs (7) and (20)
will be referred to as wc1 and wc2, respectively.

Figures 7 and 8 report simulation results for the performance of the CV1 and CV2

covariance matrices and the wc1 and wc2 bootstrap DGPs. These are similar to Figures

5 and 6, respectively, except that they are based on only 100,000 replications because
the CV2 covariance matrix is much more expensive to compute than CV1 even when
the (I− Pgg)

−1/2 matrices have been precomputed.

It is evident in both figures that Wald confidence intervals based on CV2 perform

substantially better than ones based on CV1. Thus, if the sample size is small enough
to make computation of CV2 feasible, and the bootstrap is not going to be used, it is
apparently a good idea to employ CV2.

The studentized bootstrap intervals always perform better than the Wald intervals.
The improvement is sometimes substantial, as it is in Figure 7 and for small values of

P in Figure 8, and sometimes very modest, as it is for moderately large values of P in
Figure 8. Using the wc2 bootstrap DGP almost always works a little bit better than
using the wc1 bootstrap DGP. Interestingly, however, it makes almost no difference

whether wc2 is paired with CV1 or CV2. Since the latter is a great deal more expensive

2 As MacKinnon (2012) explains, this is not quite the same as the jackknife HC3 matrix
originally proposed by MacKinnon and White (1985).
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to compute than the former, these results suggest that combining wc2 with CV1 is the

most attractive variant of the studentized bootstrap.3

The CV1+wc2 intervals perform quite well except when G is very small. However,

in Figure 8, they nowhere perform more than a little bit better than the CV1+wc1
intervals. Therefore, it appears to be safe to conclude from Figure 1, in which the
performance of the latter is compared with several alternatives, that restricted boot-

strap intervals based on either LM or Wald tests would perform noticeably better than
CV1+wc2 intervals in some cases.

9. Conclusion

Conventional cluster-robust confidence intervals are implicitly obtained by inverting t

statistics based on cluster-robust standard errors. The simulation results in Section 6,
combined with the ones in MacKinnon and Webb (2014), suggest that these intervals
work well when the number of clusters is reasonably large, cluster sizes are not very

dispersed, and the fraction of clusters subject to treatment (if the key regressor can be
thought of as a treatment dummy) is moderate. However, when any of these conditions
fails, they are prone to undercover, sometimes severely.

A large number of alternative confidence intervals are studied. The ones that usually

work best are obtained by inverting bootstrap tests, but the procedure for calculat-
ing them can be computationally challenging; see Section 4. Studentized bootstrap
intervals work well in many cases and are much less expensive to compute.

The performance of both conventional intervals and studentized bootstrap ones can be
improved by using the CV2 covariance matrix instead of the much more common CV1

matrix. Unfortunately, the cost of computing CV2 rises very rapidly with the number
of observations in the largest cluster(s). For moderately large samples, it can easily
be more expensive than the studentized bootstrap, and, for very large samples, it can

be infeasible.

When it is feasible to compute CV2, it should also be feasible to compute studentized
bootstrap intervals that use transformed residuals in the bootstrap DGP together
with CV1 in the test statistics. These seem to work a little better than studentized

bootstrap intervals where the bootstrap DGP does not use transformed residuals.

Section 7 studies the choice of an auxiliary distribution for the wild bootstrap. The

results provide additional evidence in favor of the two-point Rademacher distribution
and against the popular two-point Mammen distribution. They also suggest that it is
unwise to use several continuous distributions, including the standard normal.

3 Just what “a great deal more expensive” means depends on N , G, k, and the Ng. In

the experiments, the CV2+wc2 intervals are about 4.7 times as expensive to compute
as the CV1+wc2 intervals. When N is increased from 800 to 1600 or 3200, however,
the CV2+wc2 intervals become 7.7 and 52 times as expensive, respectively.
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7. Coverage of Wald and bootstrap intervals versus G for γ = 3, P = 0.333, π = 0.4
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8. Coverage of Wald and bootstrap intervals versus P for G = 16, γ = 4, π = 0.4
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