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Abstract

We show that house prices from Aberdeen in the UK improve in- and

out-of-sample oil price forecasts. The improvements are of a similar
magnitude to those attained using macroeconomic indicators. We ex-

plain these forecast improvements with the dominant role of the oil
industry in Aberdeen. House prices aggregate the dispersed knowl-
edge of the future oil price that exists in the city. We obtain similar

empirical evidence for Houston, another city dominated by the oil in-
dustry. Consistent with our explanation, we find that house prices

from economically more diversified areas in the UK and the US do not
improve oil price forecasts.

Keywords: oil price forecasting, house prices, knowledge spillover

JEL Classification: C53, E32, Q47, R31
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1 Introduction

This paper shows that house prices from Aberdeen in the UK improve monthly

forecasts of the Brent crude oil price in- and out-of-sample. House prices from

Scotland and the UK do not improve oil price forecasts. This rules out that

a hidden factor, such as interest rates, drives the empirical result.

The empirical forecasting power of Aberdeen’s house prices comes from

the role the oil industry plays in the city. Aberdeen is a major oil indus-

try hub and, as such, hosts an agglomeration of major oil corporations and

hundreds of oil-related service and subsea engineering firms. Its harbour and

airport supply about two hundred production platforms in the North Sea

(Hallwood 1988, Newlands 2000, Tiesdell and Allmendinger 2004). The ad-

verse conditions in the North Sea are ideal tests of drilling and installation

equipment to be used elsewhere.1 The drilling experts, sub-sea engineers,

geologists, and lawyers living and working in Aberdeen are part of a highly

connected global network and travel frequently to other oil regions, such as

the Gulf states, Kazakhstan, and Texas. There, they exchange information

with colleagues and gain insights into the economic and political conditions

in these regions. Aberdeen oil professionals hold pieces of implicit knowledge

that could be used for predicting world supply and demand conditions, and

eventually, the future oil price.

While oil industry expertise abounds in Aberdeen, it does not explain why

this dispersed knowledge should show up in house prices. We see two channels

through which this happens. First, individual income and job prospects in

Aberdeen depend on the fortunes of the oil industry. Consequentially, the

1Stanley Reed: Aberdeen, with a foot on the seafloor, New York Times, print edition,

July 30, 2013, page B1.
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industry and the oil price are discussed over dinner, in bars, on the golf

course, in the gym and receive special attention in local newspapers. People

in Aberdeen also love talking about house prices. This is not different in

the rest of the UK, but only in Aberdeen does the expected oil price feature

prominently in such discussions. If an oil price increase is expected, future

income will be higher on average and people will be prepared to pay more for a

house. The buying decision will be discussed with colleagues and friends, who

might also ponder about trading up. Eventually, by acting on the expectation

of a higher future oil price, the current house price should increase. Second,

if oil executives expect the price of oil to increase in the future, they want to

be prepared for increases in production. In a firm without spare workforce

capacity, attractive salaries have to be offered to bring additional staff to

Aberdeen. Their additional housing demand will have an immediate positive

effect on house prices, whereas the expected oil price increase will, if at all,

materialize only with a delay.

Our empirical results for monthly UK time series from 1984:7-2013:6 are

as follows. First, the Aberdeen real house price Granger-causes the Brent real

oil price in a bivariate VAR model. The estimated relationship shows that a

higher current house price is followed, on average, by a higher future oil price.

This is exactly what should happen when implicit knowledge on future supply

and demand conditions in the oil market feed into current house prices. We

find no such relationship for real house prices from Scotland and the UK.

Relative to univariate forecasts, consideration of the Aberdeen house price

improves out-of-sample oil price forecasts for horizons of up to twelve months.

The improvements measured with the ratio of mean squared forecast errors

are similar in magnitude to those from state-of-the-art econometric forecasts

using macroeconomic indicators (Alquist et al. 2013). The house price thus
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aggregates information on global supply and demand to a similar degree as

econometric models.2

Second, conducting the same analysis for nominal prices, we find that

the Aberdeen house price Granger-causes the Brent oil price in-sample. The

current house price is again positively related to the future oil price, as should

be if the housing market is influenced by expectations of the future oil price.

We find no such relationship for nominal house prices from Scotland and

the UK. The ratios of out-of-sample mean squared forecast errors from the

Aberdeen VAR relative to those of univariate models are smaller than one,

but this time not statistically significant. The evidence is thus weaker for

nominal prices than for real prices.

Third, as a robustness check, we conduct the same analysis for Houston,

a US city dominated by the oil industry. Using quarterly time series from

1991:1 to 2014:1, we find that the Houston house price Granger-causes the

West Texas Intermediate (WTI) oil price. House prices from the West South

Central (WSC) census region of the US show no such in-sample power. The

Houston house price also improves out-of-sample forecasts relative to fore-

casts from univariate models, both for real and nominal prices. The forecast

improvements are, however, never statistically significant. This lack of statis-

tical power might be due to the shorter sample and the quarterly frequency

of the series. The evidence for Houston provides further indication that

house price from oil cities condense implicit knowledge on the price of oil.

Moreover, different to the UK, new housing supply is price elastic in most

parts of the US (Malpezzi and Maclennan 2001). This applies particularly

to Houston, a city without zoning ordinances. Our finding shows that the

2Economists have not reached a consensus on a model yet (Barsky and Kilian 2004,

Kilian 2009).
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forecasting relationship holds even if housing supply reacts quickly to house

price changes.

In summary, our empirical results show that house prices from cities dom-

inated by the oil industry improve oil price forecasts. We explain this em-

pirical result with the underlying mechanism of information spillovers from

dispersed implicit knowledge to house prices.

The remainder of the paper is organised as follows. Section 2 presents a

model to motivate the empirical analysis. Section 3 explains our empirical

strategy and Section 4 describes the data. Section 5 discusses the empirical

results. Section 6 concludes.

2 A simple model

We use a two-period model to motivate the relationship between the current

house price and the expected output price in a city dominated by a single

industry. When expectations of the output price change, the reservation price

schedule for houses shifts, which leads to a change of the current market

clearing house price in the same direction.

At the start of period 0, a household buys a house at price p0; the house

is sold at the end of period 1. Household’s income y is positively correlated

with the price of output. The household maximizes E0[u(c0, c1)], with u(·)

monotone increasing and strictly concave. Consumption is c0 = y0 − p0 − s0
and c1 = y1 +(1+r)s0, where y1 = µ1 +σ1z1 with µ1 ≡ E0[y1], σ

2
1 ≡ Var0[y1],

and z1 ∼ (0, 1). The household forms µ1 and σ1 based on information avail-

able in period 0.3 The optimal saving s∗0 is determined through the first order

3We assume that both moments exist. The standardization places no additional restric-
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condition

E0

[
∂u

∂c0

]
= (1 + r)E0

[
∂u

∂c1

]
. (1)

Instead of living and working in the city, the household could live somewhere

else and receive expected utility u. This determines the reservation price pr0

the household is prepared to pay for a house in the city

u = E0 [u{y0 − pr0 − s∗0, µ1 + σ1z1 + (1 + r)s∗0}] . (2)

Differentiating Eq. 2 with respect to µ1 and using the first order condition

Eq. 1 gives
dpr0
dµ1

∣∣∣∣
u

=
1

1 + r
> 0 . (3)

An expected increase in the future output price leads to higher expected

future income and therefore a higher reservation price for a house. As all

households work in the same industry, Eq. 3 holds for all of them. However,

because the magnitude of the positive correlation between the output price

and income can differ between households, the increase of the reservation

price will be smaller for some households than for others.

Figure 1 plots the reservation price schedule pr0,a of ranked reservation

prices for I households. The housing stock is h0 < I. Given the schedule,

the market clearing house price is p∗0,a. At this price, the marginal household

is indifferent between living in the city or somewhere else. Households with

a reservation price below p∗0,a will not live in the city.

[Figure 1 about here.]

tions on the utility function or the distribution of income. The smallest possible realization

of z1 is larger than −{(1 + r)(y0 − p0) + µ1}σ−1
1 and household’s lifetime resources are

sufficient to purchase the house and consume x in both periods.
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The schedule pr0,b in Figure 1 shows the case where a higher output price

is expected. The new market clearing price is p∗0,b. Households settling in

the city at p∗0,b are not necessarily the same as those settling at p∗0,a, because

the individual reservation price depends also on how strongly household’s

future income is related to the output price. Further, the magnitude of the

house price increase will be smaller if house supply is elastic, as denoted by

the dashed curve in Figure 1. The current market clearing house price p∗0

and the expected output price will have a positive relationship unless house

supply is perfectly elastic.

The essential assumption of the model is that the household are well-

informed about µ1 and therefore the future price of output. In a single-

industry city, this assumption is reasonable. A household is confronted on

a daily basis with news and discussions on the likely future of the industry.

And during the process of purchasing a house, the search for information will

be intensified.4

3 Empirical implementation

We examine the empirical relationship between the log house price and the

log oil price in terms of both in-sample Granger-causality tests and out-of-

sample performance assessments. The approaches complement each other.

4In Scotland, a valuer is involved in the sales process to provide the market value of the

property, which serves as the list price and informs the mortgage underwriting process.

Once the property is listed, potential buyers view it and note their interest through their

solicitors. If there are sufficient notes of interest, the interested parties are invited to submit

their bids and the highest bid in the first price sealed-bid auction wins. In Aberdeen this

process takes, on average, 100 days from listing to sale (median is 52 days), see Table A1.
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The in-sample Granger-causality test uses the full sample information and

is an asymptotically optimal test for predictability in population. The out-

of-sample performance assessment, on the other hand, mimics the data con-

straints of real-time forecasting and is the relevant setting for the applied

econometrician.

We implement the tests assuming that the joint process of the house price

and the oil price is governed by the p-th order vector autoregression (VAR)

yt = c+

p∑
i=1

Aiyt−i + ut . (4)

The two-dimensional vector yt = [y1,t, y2,t]
′ collects the oil price and the house

price at time t (t = 1, . . . , T ). The two-dimensional vector ut = [u1,t, u2,t]
′

collects white noise innovations. The (2× 1) vector c collects the coefficients

for the constants and the (4 × 4) matrix Ai collects the coefficients on the

i-th lag of yt. We model the yt process as a VAR in levels instead of in first

differences to ensure that any long-run relationship between house and oil

prices is preserved.

The null hypothesis of Granger non-causality for the house price in the

VAR of Eq. 4 is

H0 : a12,t−1 = a12,t−2 = . . . = a12,t−p = 0 , (5)

which is tested against the alternative hypothesis that at least one of these co-

efficients is different from zero. The series in yt are likely to be non-stationary,

so we adopt the testing procedure developed in Toda and Yamamoto (1995).

This procedure avoids pre-testing for cointegration. We estimate the VAR

in Eq. 4 first with ordinary least squares and select the lag order p using an

information criteria. We then estimate the VAR again with p+d lags, where

d is the highest order of integration of the variables in yt. The Wald-statistic
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for the first p coefficients of this lag-augmented VAR is then asymptotically

χ2
p distributed with p degrees of freedom.

We examine the out-of-sample performance of the VAR with a pseudo

real-time forecast experiment. First, we generate h-period ahead forecasts

from fixed origin regressions, where each forecast uses only information avail-

able up to t− h. We then assess the mean squared forecast errors (MSFEs)

produced by the VAR against the MSFEs produced by three different uni-

variate models for the oil price. The first is a random walk without drift

(RW), which leads to a no-change forecast, the second model is a random

with drift (RWD), and the third model is an ARMA(p, q) (ARMA).5 The

no-change forecast is a popular benchmark, because the oil price conditioned

only on its own history follows a random walk without drift (Hamilton 2009).

During our evaluation period, the oil price shows an upward trend and both

the RWD and the ARMA models allow for the possibility of a non-zero drift.

This puts these two models on equal footing with the VAR.

Whereas the ratios of MSFEs will give a clear picture of the performance

of the VAR for our sample, we are also interested in whether performance dif-

ferences are also statistically significant. We use the DM-test of Diebold and

Mariano (1995) to assess this. The test is based on the mean loss differential

d̄h ≡
1

N

N∑
t=1

(
e2h,t,VAR − e2h,t,j

)
, (6)

where e2h,t,VAR is the time t squared forecast error of the VAR model at

forecast horizon h and e2h,t,j is the time t squared forecast error of model

5The RWD forecast is computed as ŷ1,t = h · µ̂ + y1,t−h, where µ̂ comes from the

regression ∆y1,t = µ+ ε1,t estimated with ordinary least squares. The ARMA forecast is

computed recursively as ŷ1,t = µ̂ +
∑p

i=1 φ̂i(∆ŷ1,t−i − µ̂) +
∑q

j=1 θ̂jε1,t−j + ŷ1,t−1, with

ŷt−h = yt−h. The coefficients come from ∆y1,t = µ+
∑p

i=1 φjy1,t−j +
∑q

j=1 θjε1,t−j + ε1,t

and are estimated with unconditional Maximum Likelihood.

10



j ∈ {RW,RWD,ARMA} at forecast horizon h. The null hypothesis is equal

forecast accuracy

H0 : d̄h = 0 (7)

against the alternative hypothesis that the VAR produces, on average, smaller

forecast errors than the univariate model, H1 : d̄h < 0. We compute the

statistic for the DM-test with Newey-West standard errors, where we set the

number of truncating lags to h − 1 as suggested by Diebold and Mariano

(1995). The DM-test compares squared forecast errors and evaluates the

finite sample accuracy of different forecasting models. We regard this as the

relevant out-of-sample test for the applied econometrician.6

We conduct several robustness checks. First, depending on the applica-

tion, economists and decision makers will be interested in forecasts of either

the real or the nominal oil price. We thus perform our analysis for both real

and nominal series. Second, we repeat the whole analysis for both house

prices from Scotland and the UK. These areas are not dominated by the oil

industry and are economically more diversified, therefore we do not expect

that house prices from Scotland or the UK have any forecasting power for the

oil price. Using these series allows us also to assess if the forecasting power

of the Aberdeen house price is driven by unobserved country-wide factors,

such as a forward-looking monetary policy by the Bank of England. Third,

we conduct the whole analysis also for house prices from Houston, Texas, an-

other global hub of the oil industry. We examine if the house price helps to

6Out-of-sample tests of predictability in population, on the other hand, compare fully

specified and possibly nested models by taking the estimation uncertainty into account,

for a survey see Clark and McCracken (2013). These tests might reject the null hypothesis

of equal predictive ability if the observed mean loss differential is zero or even positive.

Optimal population model comparisons are based on full sample information, but not an

out-of-sample forecast experiment like ours, see e.g. Diebold (2012).
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forecast the WTI oil price. We compare the results with those we obtain if we

use the house price of the economically broader WSC census region. Fourth,

we conduct the analysis when the Schwarz (SIC) and when the Akaike (AIC)

information criterion is used to select the lag order of the VAR.

4 Data

4.1 UK data

The monthly UK data set covers the period 1984:7-2013:6 and consists of

the Brent oil price and constant-quality house price indices for Aberdeen,

Scotland, and the UK. The Brent oil price series comes from ICIS Pricing

via Thompson-Reuters Datastream and is the end of month spot price for

Brent crude oil in US Dollars per barrel. We convert the Brent oil price

to Pound Sterling using the spot exchange rate as reported by the Bank of

England. The constant-quality Aberdeen house price index is computed from

residential transactions provided by Aberdeen Solicitor’s Property Centre

(ASPC). The constant-quality Halifax house price indices for Scotland and

the UK come from Lloyds Banking Group. Details on the house price indices

are in the Appendix. We generate price series in real terms by deflating with

the UK consumer price index (UK CPI) from OECD’s revision and real-time

data base. We use the revised data for in-sample analysis and the real-time

data for out-of-sample analysis. We state whenever real-time data is used.

Table 1 reports summary statistics for the UK data. The average growth

rates of houses prices are of similar magnitude in the three areas. The volatil-

ity of the house price growth rates is highest in Aberdeen, but still only a
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fifth of those of the Brent oil price. Even if the Aberdeen house price could

improve oil price forecasts, much uncertainty will remain.

[Table 1 about here.]

Figure 2 shows the pattern of house price for the three areas. Whereas house

prices in Aberdeen were falling in the first years of our sample period and

were mostly below their level in 1984, house prices in Scotland and the UK

behaved markedly differently over this period.

[Figure 2 about here.]

Unlike house prices in Scotland and the UK, real house prices fell in Aberdeen

in the 1980s and did not grow much in the 1990s. Growth only started to

catch up with the other two areas in the 2000s. Figure 3 shows the Aberdeen

house price and the Brent oil price. The relationship is close, but the much

higher volatility of the Brent oil price is clearly visible.

[Figure 3 about here.]

Table 2 reports the results for unit root tests for the UK price series. The

first is the augmented Dickey-Fuller (ADF) test, which assumes under the

null that the tested series is a random walk without drift.7 The second is the

KPSS test of Kwiatkowski et al. (1992), which assumes under the null that

the tested series is stationary around a constant mean.8 For robustness, we

7We implement the ADF test by running the regression ∆yt = α + βyt−1 +∑k
i=1 ζi∆yt−i + εt and test the one-sided null hypothesis H0 : β = 0 against H1 : β < 0.

We choose the number of lags with the SIC.

8The KPSS test uses the Lagrange multiplier statistic LMKPSS =
(∑T

t=1 ŝ
2
t

)
/σ̂2

u,

where ŝt =
∑T

i=1 ûi. The residual ût comes from a regression of yt on a constant, σ̂2
u is

the estimated error variance from this regression.
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also considered a linear trend in the test regressions. The test results are not

qualitatively different from those in Table 2 and are not reported here.

[Table 2 about here.]

All four series are I(1) non-stationary in levels and stationary in growth rates,

both in real and in nominal terms. The house price growth rate regressions

need to be augmented with lagged terms to cope with serial correlation. Such

correlation has been documented before, see for instance Rosenthal (2006).

The oil price growth regression needs no lags to render residuals that behave

like white noise. The constant in the regression for the oil price growth rate

is statistically insignificant. This fits with the result of Hamilton (2009) that

the oil price conditioned only on its own history follows a RW.

4.2 US data

The quarterly US data covers the period 1991:1-2014:2 and consists of the

WTI oil price and constant-quality house price indices for Houston and the

WSC census region, which consists of Arkansas, Louisiana, Oklahoma, and

Texas. The WTI oil price is the end of quarter spot price of WTI crude oil as

reported by ICIS pricing via Thompson-Reuters Datastream. The constant-

quality house price indices come from the Federal Housing Finance Agency.

The indices are based on repeat-sales of single-family houses whose mortgages

are bought or securitized by Fannie Mae and Freddie Mac. By construction,

these indices are revised each quarter. Real-time data was not available to us.

We thus use the revised series in out-of-sample analysis. We generate price

series in real terms by deflating prices with the US consumer price index (US

CPI) from OECD’s revision and real-time data base.
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Table 3 reports summary statistics for the US data.

[Table 3 about here.]

The growth rate of Houston house prices is on average higher and more

volatile than the growth rate of WSC house prices. Figure 4 shows the

pattern of the two house price series.

[Figure 4 about here.]

In the early 1990s, the Houston real house price was decreasing, whereas

it increased in the WSC census region. From 1998 onwards, the Houston

house price caught up quickly with prices in the WSC census region. The

financial crisis in 2008 had a lesser effect on the Houston house price, which

also recovered much quicker than the WSC house price. Figure 5 shows

the relationship between the Houston house and the WTI oil price. The

relationship seems overall close, but the much higher volatility of the WTI

oil price is also clearly visible.

[Figure 5 about here.]

Table 4 reports results from unit root tests for the two US house price series

and the WTI oil price.

[Table 4 about here.]

The three real price series are I(1) non-stationary in levels and stationary in

growth rates. This also applies to the nominal WTI oil price. The regressions

for the growth rate of the WTI oil price need no lags and have both an
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insignificant constant. The WTI oil price conditioned only on its own history

follows a RW, a result we also obtained for the Brent oil price. For the two

nominal house price series, the ADF and KPSS tests are in disagreement.

The ADF tests do not reject the null hypothesis of non-stationary nominal

growth rates, whereas the KPSS test indicates stationary growth rates. The

ADF test results are also at odds with the result for the growth real house

prices. We explain this outcome with the low power of the ADF test given

the relatively small number of observations. Inclusion of a linear trend in the

test regressions does not alter the qualitative test results.

5 Empirical results

We set the maximal possible lag order for the VARs to twelve for the monthly

UK data and to four for the quarterly US data. In line with the unit root

test results, we set d = 1 in the lag-augmented VARs.9

5.1 Results for the UK

In-sample: Table 5 reports results of Granger-causality tests for house

prices from the UK and the Brent oil price. For each area, test results are

given for two lag-augmented VAR(p+ 1)s. The first VAR uses the lag order

p selected with the SIC, the second the lag order selected with the AIC.

[Table 5 about here.]

9For US nominal house prices, the ADF tests above indicated d = 2. The corresponding

lag-augmented VAR does not give qualitatively different results from those reported below.
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In all four specifications of the Aberdeen VARs, lags of the house price help

to predict the Brent oil price. The P-values of the respective Wald-statistics

are 0.035 (p = 1) and 0.029 (p = 4) for real prices and 0.040 (p = 1) and

0.038 (p = 4) for nominal prices. No such relationship exists in the opposite

direction: lags of the Brent oil price do not help to predict the Aberdeen

house price. This holds both for real and nominal prices.

We reasoned above that the Aberdeen house price should not only help

to predict the Brent oil price, but should also move in the same direction.

Such a positive relationship is present, as the estimated coefficients in Tables

6 and 7 show.

[Table 6 about here.]

[Table 7 about here.]

The estimated coefficient is â12,t−1 = 0.546 (standard error 0.259) for the

lagged real house price in the VAR(1) specification and significantly, see Ta-

ble 6. In the VAR(4) specification â12,t−1 = 0.556 (standard error 0.264) and

the remaining coefficients for lags of the real house price are not statistically

significant. Table 7 reports results for VARs estimated with nominal prices.

The signs and magnitudes of the estimated coefficients are similar to those

already discussed. This confirms our expectation: In all four VAR specifica-

tions, the current Aberdeen house price has a positive predictive link with

the future Brent oil price.

The Granger-causality tests for Scotland and the UK are reported in

Table 5. There is no indication that house prices from these areas have

predictive power for the Brent oil price. This result holds both for real and
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nominal prices. There is some statistical evidence that the Brent nominal

oil price might help to predict the Scottish nominal house price (p = 2) and

the UK house nominal price (p = 6). The predictive relationship is positive

for Scotland and negative for the UK (not reported). This finding is not

implausible, given that the oil-producing Scottish economy should benefit

from a high oil price, whereas the effects for the UK overall should be mixed.

In both instances, however, the finding depends on p and thus is not robust.

In summary, the in-sample analysis confirms that the Aberdeen house

price condenses implicit knowledge on the future Brent oil price. No such

relationship exists for house prices from broader and economically more di-

versified areas. This rules out that house prices have forecasting power in

general, as it would be the case if they simply reflected the effects of forward-

looking monetary policy. There is some weak evidence that the Brent nominal

oil price helps to predict nominal house prices in the broader areas. Such a

relationship is absent in Aberdeen. This strengthens the argument that im-

plicit oil industry knowledge exists in Aberdeen and that it is reflected in

the house price. Such knowledge is not present in the less specialized areas

and people there might not fully anticipate Brent oil price’s effect on area’s

economy and the housing market.

Out-of-sample: For each month in τ ∈ {2001:1, . . . , 2013:6}, we fit the

four models to monthly real-time data from 1984:7 to t(τ, h). The fitted

models are then used to forecast the Brent oil price h ∈ {1, . . . , 12} peri-

ods ahead. The last period in the estimation sample for τ depends on the

forecast horizon h. For instance, t(2001:1, 12) is 2000:1 and t(2001:1, 6) is

2000:7. This set-up ensures that we obtain 150 forecasts per model and

horizon h in our validation sample. The forecast error eh,t,j from model
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j ∈ {VAR,RW,RWD,ARMA} is the difference between the realized Brent

oil price in t and its forecast based on information from period t− h.

We find the lag-order of the bivariate VARs with the SIC using the data

from 1984:7-2000:1. Coefficients of lagged oil prices are set to zero in the

house price equation of a VAR if not statistically significant over this period.

These restrictions reduce estimation uncertainty.10 Below we only report

results for fixed origin estimation windows. We also computed forecasts with

rolling regressions that keep the estimation window size fixed. The rolling

regressions produce slightly less accurate forecasts.

Figure 6 plots forecasts of the Brent real oil price growth for different fore-

cast horizons h ∈ {3, 6, 9, 12}. The Aberdeen VAR forecasts track the realized

oil price growth rates much better than forecasts from the RW (represented

by the horizontal zero line), the RWD, and the ARMA models. Even for

the VAR forecasts, however, the unpredicted variation of the realized growth

rate is considerable. Given the high oil price volatility, this is no surprise.

[Figure 6 about here.]

Table 8 compares the out-of-sample performance of Brent real oil price fore-

casts from the VAR with those of the three benchmark models. Performance

is assessed with MSFE-ratios, where a ratio below one implies that the VAR

forecasts are more accurate then those of the respective benchmark model.

P-values for the DM-statistic are reported to assess if any performance dif-

ferences are statistically significant and not caused by chance.

10As for the full sample, we find unidirectional Granger-causality from the Aberdeen

house price to the Brent oil price. We find no causality in neither direction for the other

two house price series.
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[Table 8 about here.]

Relative to the no-change forecasts of the RW model, the Aberdeen VAR

has lower MSFEs at all forecast horizons. The reductions range from 2.6

percent (h = 1) to 11.8 percent (h = 12). These improvements are of similar

magnitude to those achievable when indicators of real global activity are used

to forecast oil prices, see Alquist et al. (2013, Table 8.8).11

The null of equal forecast performance can be rejected at the 10% sig-

nificance level for horizons of two to six months, but not for other horizons.

Given the high volatility of the Brent oil price, the DM-test has low power.

Compared with RWD and ARMA, the Aberdeen VAR has lower MSFEs for

all horizons except the first, for which the ARMA model performs slightly

better. The superior performance is statistically significant in most cases.

The RW is the best univariate model for the oil price and the Aberdeen VAR

outperforms this benchmark. The VAR performs even better when compared

with RWD and ARMA, which are likely to be misspecified for the oil price.

This aspect makes it easier to reject the null of equal forecast performance

despite the high oil price volatility, see Table 8.

Tables 9 and 10 report results from VARs that use real house prices from

Scotland and the UK.

[Table 9 about here.]

[Table 10 about here.]

Relative to the RW forecasts, consideration of real house prices from Scot-

land or the UK does not systematically improve forecasts. In both cases,

11The monthly out-of-sample WTI oil price forecasts are for 1991:12-2009:8.
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MSFE-ratios are predominantly above one. A few MSFE-ratios are below

one, mainly for the Scotland VAR. The P-values for the null of equal forecast

performance are always larger than 10%. When the RWD and the ARMA

are used as benchmark models, the relative MSFE ratios are mostly below

one, but never as small as the corresponding ones for the Aberdeen VAR

reported in Table 8. Further, even though RWD and ARMA are likely to be

misspecified, the null of equal forecast performance can never be rejected.

The analysis for real prices shows that the Aberdeen real house price

improves forecasts of the Brent real oil price at all horizons in the validation

sample. House prices from Scotland and the UK do not do this. While the

DM-tests cannot always be rejected for forecasts from the Aberdeen VAR,

the tests can never be rejected for forecasts of VARs fitted with the other

two house price series. This holds irrespectively of benchmark model and

horizon.

Forecasts of the Brent nominal oil price growth behave very similar to the

ones reported already in Figure 6 and are not shown here. Table 11 shows

that the forecast performance of the Aberdeen VAR is weaker for nominal

than real prices. All but one MSFE-ratio in the validation sample are smaller

than one, but all DM-tests are now all statistically insignificant.

[Table 11 about here.]

While not statistically significant, the performance of the Aberdeen VAR for

nominal prices is much better than those of the Scotland VAR and the UK

VAR. Tables 12 and 13 show that these produce MSFE-ratios predominantly

larger than one. Different from the forecasts of the Aberdeen VAR, none of

these two models is able to beat the RW benchmark in the validation sample.
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[Table 12 about here.]

[Table 13 about here.]

In summary, an econometrician who had to forecast the Brent oil price

based on real-time information over the validation sample from 2001:1-2013:6

would have benefited from using the Aberdeen VAR instead of the widely

accepted RW. This holds both for forecast of real and nominal oil prices

and for all forecast horizons considered. While this is true with hindsight,

the direct statistical significance of forecasting superiority is mixed. For real

prices, there is evidence that the good performance of the Aberdeen VAR is

not simply the result of luck. For nominal prices, Aberdeen VAR forecasts

of the Brent nominal oil price are systematically superior to RW forecasts,

whereas forecasts of the Scotland VAR and the UK VAR are all inferior.

While it seems unlikely that this is a chance outcome, the DM-test does not

have enough power to establish significance.

5.2 Results for the US

In-sample: Table 14 reports Granger-causality test results for the two US

housing markets.

[Table 14 about here.]

For real prices, there is strong statistical evidence that the Houston house

price Granger-causes the WTI oil price unidirectionally. This holds for both

VAR specifications. The relevant estimated coefficients of the VARs (not re-

ported) show that the current Houston house price is, as expected, positively
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correlated with the future WTI oil price. WSC house prices do not Granger-

cause the WTI oil price, but are Granger-caused by it. Our explanation is

that oil plays an important role for the economically more diversified WSC

region, but different from Houston, the role is not important enough to be

reflected in house prices. The empirical evidence is less clear for nominal

prices. Houston house prices Granger-cause the oil price, but in the VAR(4)

specification only at the 10% significance level (P-value is 0.057). At this

significance level, we cannot reject Granger-causality of the oil price for the

Houston house price, making the relationship bidirectional. We detect no

Granger-casualty relationship between the WSC house price and the WTI

oil price.12

Out-of-sample: For each quarter in τ ∈ {2001:1, . . . , 2014:2}, we fit the

four models to quarterly real-time data from 1991:1 to t(τ, h). The fitted

models are then used to forecast the WTI oil price h ∈ {1, . . . , 4} periods

ahead. We obtain 54 forecasts per model and horizon h in our validation

sample.

Figure 7 plots forecasts of the WTI real oil price growth for the four

different horizons and models. The forecasted growth rate from the Houston

VAR tracks the real oil price growth quite well, but the unexplained variation

is still substantial.

[Figure 7 about here.]

The MSFE-ratios in Panel A of 15 show that the Houston VAR produces

performs better than the three benchmark models at all forecast horizons.

12We conducted the analysis also for I(2) nominal house prices, as was indicated by the

ADF tests. The qualitative results of the Granger-causality tests are unchanged.
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[Table 15 about here.]

Given the small sample size, none of these differences is statistically different

from zero.

Forecasts of the nominal oil price growth rate behave very similar to

forecasts of the real growth rates and we omit the plot. All MSFE-ratios in

Panel B of Table 15 are below one for all benchmark models and forecast

horizons. Table 16 shows that this is not the case for the WSC VAR.

[Table 16 about here.]

With hindsight, an econometrician would have benefited from using the

Houston VAR for forecasts of the WTI oil price. This result applies to real

and nominal prices.

6 Conclusion

House prices in a city dominated by the oil industry should be related to

the oil price. One view of this relationship is that residents are surprised

by oil price changes and adjust their housing consumption once the oil price

change is reflected in their income. House prices will then follow suit. We

take the opposite view. The oil industry is far too important to be ignored by

city’s residents. Information relevant for the future oil price, while dispersed,

is abundant. Through anticipation and social interaction, this information

filters into the current house price.

The empirical analysis supports our view. House prices from Aberdeen

improve forecasts of the Brent oil price relative to standard benchmark mod-

els, both in-sample and out-of-sample. No forecasting relationship exists in

24



the opposite direction from the current oil price to the future house price.

House prices from economically more diversified and geographically larger

regions in the UK do not improve the oil price forecasts. We also obtained

similar results from our analysis of house prices from Houston, another oil

city. Our realistic out-of-sample forecast exercise shows that an econometric

forecaster would have benefited from the consideration of oil city house prices

over all considered time horizons. This result has practical relevance, even

though the forecast improvements were not always statistically significant.

Future use of Aberdeen house prices for oil price forecasting depends on

the industry’s development. Oil production in the North Sea is expensive

compared with new production technologies such as hydraulic fracturing and

shale extraction. It may thus happen that the oil industry loses its importance

for Aberdeen’s economy. But other oil cities abound.
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Appendix (for online publication)

A.1 Aberdeen house price index

We compute the constant-quality house price index for Aberdeen based on

the hedonic regression model

ln pi =γ0 +
T∑
t=1

It (i) γt +
L∑
l=1

Il (i) βl +
J−1∑
j=1

Ij (i) βj

+
J∑
j=1

K∑
k=1

Ij (i)xk,iβj,k + ui

(A1)

with the transaction price pi of house i. It (i) are binary indicator variables

that become one if house i was sold in period t and zero otherwise. Il (i)

are binary indicator variables that becomes one if house i is located in area

l, l ∈ {1, 2, . . . , 155}, and zero otherwise. The areas are classified by the

ASPC. Ij (i) are binary indicator variables that become one if property i is

of type j, j ∈ {detached, non-detached, flat}. xk is the k’th characteristic of

the building. The constant-quality (log) house price index is then γ̂t, which

is the least square estimate of time-dummy coefficient in period t.

Eq. A1 is fitted to the full sample (1984:7-2013:6) for the index used in the

in-sample analysis. It is fitted to samples 1984:7 to t(τ, h) for the real-time

out-of-sample analysis with τ ∈ {2001:1, . . . , 2013:6} and h ∈ {1, . . . , 12} .

Table A1 reports summary statistics for the full transaction data set.

According to the ASPC, their data covers about 95 percent of all residen-

tial property sales in Aberdeen. For each property, we observe the building

type, the number of rooms, and various discrete characteristics, such as the

presence of a garage or garden.
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[Table A1 about here.]

Table A2 presents ordinary least square estimates for Eq. A1 fitted to the

full data set. To allow for non-linearities, the number of rooms, bathrooms,

and ensuites enter the regression through binary indicators.

[Table A2 about here.]

The R̄2 = 0.927 indicates a very good regression fit. Most of the estimated

coefficients are statistically significant at the usual levels. Signs and magni-

tudes of the coefficients are plausible. For instance, non-detached houses and

flats sell at a rebate of about 6 to 27 percent compared with non-detached

houses. Larger dwellings, as measured by the number of rooms, increase the

expected sales price.

A.2 Halifax house price indices

We use the seasonally-unadjusted Halifax house price indices, which are real-

time series. The index for Scotland has a quarterly frequency and we use the

regression model

yq = CDXmβ + CDum = Xqβ + uq (A2)

of Chow and Lin (1971) to compute a monthly series. The (n × 1) vector

yq contains the Halifax house price index for Scotland, which has quarterly

observations. The (m × 2) matrix Xm contains a constant and the monthly

Halifax house price index for the UK. We expect the latter to be closely
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related to the unobserved monthly Scottish series. The (n×m) matrix

CD =
1

3


1 1 1 0 · · · 0

0 0 0 1 1 1 0 · · · 0

· · ·

0 · · · 0 1 1 1


converts the monthly UK index into a quarterly series. We assume that

the error term um, and hence uq, is homoscedastic and serially uncorrelated.

Estimating Eq. A2 with ordinary least squares gives β̂ and the correspond-

ing residual vector ûq. The monthly house price series for Scotland is then

computed as

ŷm = Xmβ̂ + C ′Dûq . (A3)
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Figure 2: UK house prices by area. Prices are in real terms and
in log scale. All series are normalised to 1984:7=0.

32



-1

-.5

0

.5

1

1985m1 1990m1 1995m1 2000m1 2005m1 2010m1 2015m1

Aberdeen Brent crude oil

Figure 3: Aberdeen house price and Brent oil price. Prices
are in real terms and in log scale. All series are normalised with their
respective average.
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Figure 4: US house prices by area. Prices are in real terms and
in log scale. All series are normalised to 1991:1=0.
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Figure 5: Houston house price and WTI oil price. Prices are
in real terms and in log scale. All series are normalised with their
respective average.
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Figure 6: Forecasts of Brent real oil price growth. VAR
models uses the Aberdeen real house price.
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Figure 7: Forecasts of WTI real oil price growth. VAR models
use the Houston real house price.
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Table 1: Summary statistics for UK data. Data cover the pe-
riod 1984m7-2013m6, number of observations per series is 347. Table
reports summary statistics for monthly growth rates. All figures are
in percent. Observations used for the computation of the statistics
in Panel A are nominal observations deflated with the UK CPI.

Mean Median Std. Dev.

Panel A. Real

House price

Aberdeen 0.178 0.203 2.120

Scotland 0.132 0.103 1.191

UK 0.220 0.225 1.382

Brent oil price 0.098 0.490 10.495

Panel B. Nominal

House price

Aberdeen 0.425 0.333 2.210

Scotland 0.379 0.347 1.012

UK 0.467 0.453 1.136

Brent oil price 0.347 0.715 10.467

Panel C. Inflation

UK CPI 0.247 0.285 0.430
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Table 2: Unit root and stationarity test for UK data. Reports
results for ADF and KPSS test. tADFβ statistic is for the null hypoth-
esis of a unit root. Critical values are published in Fuller (1996,
Ch. 10A). k is number of lags in ADF test regression. LMKPSS

statistic is for the null hypothesis of stationarity. Critical values are
published in Kwiatkowski et al. (1992, Table 1). **significant at
1%-level *significant at 5%-level.

k tADFβ LMKPSS

Panel A. Real prices

Aberdeen house price

Level 3 -0.164∗∗ 4.998∗∗

Growth rate 2 -8.032∗∗ 0.379∗∗

Scottish house price

Level 3 -1.166∗∗ 4.561∗∗

Growth rate 2 -7.494∗∗ 0.320∗∗

UK house price

Level 4 -1.326∗∗ 4.876∗∗

Growth rate 3 -4.946∗∗ 0.333∗∗

Brent oil price

Level 0 -1.563∗∗ 3.318∗∗

Growth rate 0 -18.373∗∗ 0.196∗∗

Panel B. Nominal prices

Aberdeen house price

Level 3 0.111∗∗ 6.047∗∗

Growth rate 2 -7.987∗∗ 0.220∗∗

Scottish house price

Level 1 -1.785∗∗ 6.174∗∗

Growth rate 0 -13.224∗∗ 0.376∗∗

UK house price

Level 4 -1.458∗∗ 6.108∗∗

Growth rate 3 -5.766∗∗ 0.397∗∗

Brent oil price

Level 0 -0.834∗∗ 5.019∗∗

Growth rate 0 -18.455∗∗ 0.159∗∗
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Table 3: Summary statistics for US data. Data cover the
period 1991q1-2014q1, number of observations per series is 92. Table
reports summary statistics for quarterly growth rates. All figures are
in percent. Observations used for the computation of the statistics
in Panel A are nominal observations deflated with the US CPI.

Mean Median Std. Dev.

Panel A. Real prices

House price

Houston 0.416 0.367 1.339

WSC 0.259 0.397 0.828

WTI oil price 1.182 2.969 15.996

Panel B. Nominal prices

House price

Houston 1.021 1.041 1.388

WSC 0.864 0.952 0.667

WTI oil price 1.814 4.074 16.145

Panel C. Inflation

US CPI 0.605 0.597 0.594
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Table 4: Unit root and stationarity test for US data. Reports
results for ADF and KPSS test. tADFβ statistic is for the null hypoth-
esis of a unit root. Critical values are published in Fuller (1996,
Ch. 10A). k is number of lags in ADF test regression. LMKPSS

statistic is for the null hypothesis of stationarity. Critical values are
published in Kwiatkowski et al. (1992, Table 1). **significant at
1%-level *significant at 5%-level.

k tADFβ LMKPSS

Panel A. Real prices

Houston house price

Level 1 0.936∗∗ 2.223∗∗

Growth rate 0 -7.651∗∗ 0.290∗∗

WSC house price

Level 3 -1.140∗∗ 2.140∗∗

Growth rate 2 -3.417∗∗ 0.107∗∗

WTI oil price

Level 0 -1.178∗∗ 2.054∗∗

Growth rate 0 -9.584∗∗ 0.075∗∗

Panel B. Nominal prices

Houston house price

Level 4 0.436∗∗ 2.422∗∗

Growth rate 3 -1.973∗∗ 0.237∗∗

WSC house price

Level 2 -0.705∗∗ 0.362∗∗

Growth rate 1 -2.530∗∗ 0.123∗∗

WTI oil price

Level 0 -0.827∗∗ 2.251∗∗

Growth rate 0 -9.539∗∗ 0.230∗∗
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Table 5: Granger-causality tests for the UK. Reports results
for Wald-test in lag-augmented VAR(p+1). For each area, two VARs
are fitted: the first uses the lag order selected with the SIC, the sec-
ond uses the lag order selected with the AIC. The λW statistics is for
the null hypothesis of Granger non-causality. P-value is calculated
from χ2

p-distribution with p degrees of freedom.

Area Equation Predictor p λW P-value

Panel A. Real prices

Aberdeen Brent oil price House price 1 4.430 0.035

4 10.792 0.029

House price Brent oil price 1 0.089 0.766

4 4.837 0.304

Scotland Brent oil price House price 2 0.623 0.430

3 1.008 0.799

House price Brent oil price 2 0.951 0.329

3 5.317 0.150

UK Brent oil price House price 2 0.785 0.675

6 4.366 0.627

House price Brent oil price 2 4.010 0.135

6 10.424 0.108

Panel B. Nominal prices

Aberdeen Brent oil price House price 1 4.237 0.040

4 10.176 0.038

House price Brent oil price 1 0.205 0.651

4 4.644 0.326

Scotland Brent oil price House price 2 0.194 0.908

3 0.374 0.945

House price Brent oil price 2 4.950 0.084

3 5.76 0.124

UK Brent oil price House price 2 0.280 0.869

6 4.971 0.548

House price Brent oil price 2 2.459 0.292

6 12.957 0.044
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Table 6: VAR for real Aberdeen house and Brent oil price.
Reports OLS estimates of VAR from Eq. 4, VAR augmented during
estimation with d = 1 lag. Coefficients on augmented lags are not
reported. Standard errors are in square brackets. B-statistic is for
null hypothesis that residuals are white noise. P-value is calculated
from CDF(B) =

∑∞
j=−∞(−1)je−2B

2j2 .

VAR(1) VAR(4)

Equation: Oil price House price Oil price House price

Oil pricet−1 0.972 -0.001 0.974 -0.010

[0.054] [0.004] [0.054] [0.011]

Oil pricet−2 -0.014 0.018

[0.075] [0.015]

Oil pricet−3 0.051 -0.024

[0.074] [0.015]

Oil pricet−4 -0.145 0.028

[0.074] [0.015]

House pricet−1 0.546 1.001 0.556 1.008

[0.259] [0.006] [0.264] [0.054]

House pricet−2 -0.209 0.102

[0.370] [0.075]

House pricet−3 -0.869 0.081

[0.370] [0.075]

House pricet−4 0.693 -0.235

[0.371] [0.076]

Constant 0.123 0.005 0.137 0.003

[0.038] [0.008] [0.040] [0.008]

RMSE 0.103 0.021 0.102 0.021

B-stat. 0.763 1.298 0.605 0.673

P-value 0.605 0.069 0.858 0.756

Observations 346 343
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Table 7: VAR for nominal Aberdeen house and Brent oil
price. Reports OLS estimates of VAR from Eq. 4, VAR augmented
during estimation with d = 1 lag. Coefficients on augmented lags
are not reported. Standard errors are in square brackets. B-statistic
is for null hypothesis that residuals are white noise. P-value is cal-
culated from CDF(B) =

∑∞
j=−∞(−1)je−2B

2j2 .

VAR(1) VAR(4)

Equation: Oil price House price Oil price House price

Oil pricet−1 0.979 0.005 0.983 -0.002

[0.053] [0.011] [0.054] [0.011]

Oil pricet−2 -0.030 0.011

[0.075] [0.015]

Oil pricet−3 0.057 -0.028

[0.074] [0.015]

Oil pricet−4 -0.137 0.028

[0.075] [0.015]

House pricet−1 0.541 1.030 0.532 1.026

[0.263] [0.054] [0.268] [0.054]

House pricet−2 -0.249 0.103

[0.379] [0.076]

House pricet−3 -0.816 0.046

[0.378] [0.076]

House pricet−4 0.784 -0.233

[0.379] [0.076]

Constant 0.126 0.005 0.139 0.002

[0.038] [0.008] [0.040] [0.008]

RMSE 0.103 0.021 0.103 0.021

B-stat. 0.755 1.365 0.606 0.672

P-value 0.619 0.048 0.856 0.758

Observations 346 343
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Table 8: Performance of Aberdeen VAR forecasts, real
prices. Reports MSFE for Brent real oil price forecasts from VAR(1)
relative to MSFEs of forecasts from three benchmark models. Per h,
number of forecasts is 150. P-value is for null hypothesis H0 : d̄h = 0
against one-sided alternative H1 : d̄h < 0. P-value comes from the
standard normal distribution.

Benchmark:

RW RWD ARMA

h Ratio P-value Ratio P-value Ratio P-value

1 0.974 0.139 0.967 0.084 1.007 0.598

2 0.944 0.053 0.933 0.025 0.949 0.108

3 0.923 0.032 0.908 0.012 0.914 0.044

4 0.909 0.039 0.889 0.015 0.883 0.027

5 0.900 0.061 0.876 0.024 0.853 0.020

6 0.900 0.099 0.871 0.044 0.833 0.025

7 0.892 0.125 0.859 0.057 0.808 0.029

8 0.889 0.164 0.851 0.082 0.785 0.035

9 0.894 0.215 0.848 0.114 0.771 0.048

10 0.893 0.241 0.840 0.130 0.758 0.057

11 0.891 0.256 0.832 0.138 0.745 0.058

12 0.882 0.239 0.817 0.117 0.738 0.054
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Table 9: Performance of Scotland VAR forecasts, real
prices. Reports MSFE for Brent real oil price forecasts from VAR(2)
relative to MSFEs of forecasts from three benchmark models. Per h,
number of forecasts is 150. P-value is for null hypothesis H0 : d̄h = 0
against one-sided alternative H1 : d̄h < 0. P-value comes from the
standard normal distribution.

Benchmark:

RW RWD ARMA

h Ratio P-value Ratio P-value Ratio P-value

1 1.021 0.786 1.013 0.689 1.056 0.954

2 1.009 0.575 0.996 0.469 1.014 0.595

3 0.995 0.467 0.978 0.372 0.985 0.430

4 0.992 0.463 0.970 0.366 0.964 0.370

5 0.988 0.453 0.962 0.360 0.937 0.307

6 0.994 0.480 0.962 0.377 0.920 0.282

7 0.992 0.477 0.956 0.368 0.899 0.252

8 1.002 0.506 0.959 0.390 0.885 0.243

9 1.018 0.543 0.965 0.417 0.878 0.253

10 1.028 0.561 0.967 0.428 0.873 0.262

11 1.036 0.571 0.967 0.435 0.866 0.266

12 1.025 0.547 0.950 0.405 0.858 0.258

46



Table 10: Performance of UK VAR forecasts, real prices.
Reports MSFE for Brent real oil price forecasts from VAR(2) relative
to MSFEs of forecasts from three benchmark models. Per h, number
of forecasts is 150. P-value is for null hypothesis H0 : d̄h = 0 against
one-sided alternative H1 : d̄h < 0. P-value comes from the standard
normal distribution.

Benchmark:

RW RWD ARMA

h Ratio P-value Ratio P-value Ratio P-value

1 1.022 0.821 1.014 0.720 1.057 0.967

2 1.009 0.589 0.997 0.470 1.015 0.604

3 0.999 0.492 0.982 0.385 0.989 0.447

4 0.997 0.483 0.975 0.378 0.968 0.380

5 0.996 0.482 0.970 0.377 0.944 0.321

6 1.004 0.514 0.972 0.398 0.929 0.295

7 1.006 0.520 0.968 0.395 0.911 0.265

8 1.016 0.551 0.972 0.415 0.897 0.249

9 1.032 0.591 0.979 0.441 0.890 0.255

10 1.046 0.617 0.983 0.457 0.887 0.265

11 1.059 0.638 0.988 0.472 0.885 0.272

12 1.051 0.618 0.974 0.441 0.880 0.265
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Table 11: Performance of Aberdeen VAR forecasts, nominal
prices. Reports MSFE for Brent nominal oil price forecasts from
VAR(1) relative to MSFEs of forecasts from three benchmark models.
Per h, number of forecasts is 150. P-value is for null hypothesis
H0 : d̄h = 0 against one-sided alternative H1 : d̄h < 0. P-value
comes from the standard normal distribution.

Benchmark:

RW RWD ARMA

h Ratio P-value Ratio P-value Ratio P-value

1 0.996 0.428 0.995 0.414 1.038 0.875

2 0.977 0.250 0.975 0.242 0.991 0.423

3 0.964 0.188 0.961 0.185 0.964 0.279

4 0.956 0.190 0.953 0.188 0.943 0.219

5 0.949 0.200 0.946 0.195 0.917 0.162

6 0.956 0.263 0.953 0.253 0.905 0.160

7 0.953 0.283 0.951 0.267 0.887 0.149

8 0.958 0.334 0.957 0.321 0.874 0.154

9 0.973 0.409 0.974 0.405 0.876 0.191

10 0.981 0.445 0.984 0.449 0.876 0.221

11 0.988 0.469 0.994 0.483 0.877 0.240

12 0.980 0.447 0.985 0.457 0.876 0.242
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Table 12: Performance of Scotland VAR forecasts, nominal
prices. Reports MSFE for Brent nominal oil price forecasts from
VAR(2) relative to MSFEs of forecasts from three benchmark models.
Per h, number of forecasts is 150. P-value is for null hypothesis
H0 : d̄h = 0 against one-sided alternative H1 : d̄h < 0. P-value
comes from the standard normal distribution.

Benchmark:

RW RWD ARMA

h Ratio P-value Ratio P-value Ratio P-value

1 1.037 0.912 1.036 0.887 1.081 0.984

2 1.028 0.748 1.023 0.706 1.042 0.750

3 1.021 0.639 1.018 0.603 1.022 0.596

4 1.027 0.640 1.024 0.605 1.013 0.544

5 1.028 0.622 1.024 0.590 0.992 0.476

6 1.045 0.674 1.041 0.637 0.989 0.469

7 1.050 0.681 1.048 0.645 0.977 0.442

8 1.069 0.722 1.067 0.686 0.975 0.444

9 1.101 0.783 1.102 0.748 0.991 0.480

10 1.130 0.820 1.133 0.788 1.009 0.518

11 1.153 0.842 1.160 0.816 1.023 0.543

12 1.152 0.835 1.156 0.810 1.029 0.555
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Table 13: Performance of UK VAR forecasts, nominal
prices. Reports MSFE for Brent nominal oil price forecasts from
VAR(2) relative to MSFEs of forecasts from three benchmark mod-
els. Per h, number of forecasts is 150. P-value is for null hypothesis
H0 : d̄h = 0 against one-sided alternative H1 : d̄h < 0. P-value
comes from the standard normal distribution.

Benchmark:

RW RWD ARMA

h Ratio P-value Ratio P-value Ratio P-value

1 1.037 0.912 1.036 0.887 1.081 0.984

2 1.028 0.748 1.042 0.750 1.042 0.750

3 1.021 0.639 1.018 0.603 1.022 0.596

4 1.027 0.640 1.024 0.605 1.013 0.544

5 1.028 0.622 1.024 0.590 0.992 0.476

6 1.045 0.674 1.041 0.637 0.989 0.469

7 1.050 0.681 1.048 0.645 0.977 0.442

8 1.069 0.722 1.067 0.686 0.975 0.440

9 1.101 0.783 1.102 0.748 0.991 0.480

10 1.130 0.820 1.133 0.788 1.009 0.518

11 1.153 0.842 1.160 0.816 1.023 0.543

12 1.152 0.835 1.158 0.810 1.029 0.555
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Table 14: Granger-causality tests for the US. Reports results
for Wald-test in lag-augmented VAR(p+1). For each area, two VARs
are fitted: the first uses the lag order selected with the SIC, the sec-
ond uses the lag order selected with the AIC. The λW statistics is for
the null hypothesis of Granger non-causality. P-value is calculated
from χ2

p-distribution with p degrees of freedom.

Area Equation Predictor p λW P-value

Panel A. Real prices

Houston: WTI oil price House price 1 4.904 0.027

3 15.001 0.002

House price WTI oil price 1 0.010 0.922

3 0.211 0.976

WSC: WTI oil price House price 2 4.048 0.132

4 7.259 0.123

House price WTI oil price 2 19.229 0.000

4 18.252 0.001

Panel B. Nominal prices

Houston: WTI oil price House price 2 9.850 0.007

4 9.177 0.057

House price WTI oil price 2 5.889 0.053

4 7.952 0.093

WSC: WTI oil price House price 3 1.873 0.599

4 3.191 0.526

House price WTI oil price 3 1.363 0.714

4 2.064 0.724
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Table 15: Performance of Houston VAR forecasts. Reports
MSFE for WTI oil price forecasts from VAR(1) relative to MSFEs of
forecasts from three benchmark models. Per h, number of forecasts
is 54. P-value is for null hypothesis H0 : d̄h = 0 against one-sided
alternative H1 : d̄h < 0. P-value comes from the standard normal
distribution.

Benchmark:

RW RWD ARMA

h Ratio P-value Ratio P-value Ratio P-value

Panel A. Real prices

1 0.967 0.310 0.961 0.319 0.906 0.227

2 0.922 0.229 0.908 0.253 0.888 0.217

3 0.951 0.359 0.932 0.348 0.925 0.332

4 0.978 0.445 0.957 0.414 0.952 0.404

Panel B. Nominal prices

1 0.972 0.205 0.973 0.276 0.919 0.176

2 0.952 0.197 0.952 0.239 0.929 0.189

3 0.952 0.263 0.956 0.311 0.945 0.281

4 0.937 0.261 0.955 0.348 0.946 0.327
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Table 16: Performance of WSC VAR forecasts. Reports
MSFE for WTI oil price forecasts from VAR(1) relative to MSFEs of
forecasts from three benchmark models. Per h, number of forecasts
is 54. P-value is for null hypothesis H0 : d̄h = 0 against one-sided
alternative H1 : d̄h < 0. P-value comes from the standard normal
distribution.

Benchmark:

RW RWD ARMA

h Ratio P-value Ratio P-value Ratio P-value

Panel A. Real prices

1 1.175 0.998 1.167 0.997 1.101 0.874

2 1.303 0.998 1.284 0.999 1.257 0.997

3 1.436 0.998 1.407 0.997 1.396 0.996

4 1.561 0.997 1.527 0.992 1.519 0.992

Panel B. Nominal prices

1 1.084 0.690 1.086 0.670 1.025 0.544

2 1.106 0.673 1.107 0.648 1.079 0.611

3 1.199 0.755 1.205 0.729 1.192 0.718

4 1.265 0.787 1.287 0.776 1.275 0.767

53



Table A1: Summary statistics for residential transactions in
Aberdeen. Transactions took place between 1984:7-2013:6. Num-
ber of observations is 127,628. Sales price is in real (year 2010)
pound sterling. Asking price is only observed for 127,581 observa-
tions. Time on market is the number of days between first listing
and date of transaction. Number of rooms is total number of public
rooms and bedrooms.

Mean Median Std. Dev.

Sales price (’000) 106.509 82.704 83.840

Sales price/Asking price 1.085 1.040 0.219

Time on market 100.375 52.000 143.351

Number of rooms 3.691 3.000 1.606

Number of bathrooms 0.936 1.000 0.321

Number of ensuites 0.271 0.000 0.494

Building type

Detached 0.164

Non-detached 0.315

Flat 0.521

Property has

Central heating 0.601

Double glazing 0.632

Garage 0.237

Garden 0.463
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Table A2: Hedonic regression results. Reports ordinary least
square estimates of Eq. A1 using all transactions from Aberdeen.
Monthly time dummies, area dummies, and constant are not re-
ported. Standard errors are corrected for heteroscedasticity and
intra-area correlation of residuals. **significant at 1%-level *signifi-
cant at 5%-level.

Dependent variable: ln house price

Coef. Std. Err.

Detached

2 rooms -0.339 0.026∗∗

4 rooms 0.208 0.012∗∗

5 rooms 0.305 0.012∗∗

6 rooms 0.419 0.014∗∗

7 rooms 0.529 0.017∗∗

8 rooms 0.647 0.017∗∗

9 rooms 0.787 0.022∗∗

10 rooms 0.866 0.040∗∗

0 bathrooms -0.111 0.013∗∗

2 bathrooms 0.162 0.012∗∗

3 bathrooms 0.319 0.042∗∗

1 ensuites 0.125 0.012∗∗

2 ensuites 0.215 0.016∗∗

3 ensuites 0.261 0.030∗∗

No garden 0.030 0.021∗∗

No garage -0.077 0.010∗∗

Central heating 0.061 0.011∗∗

Double glazing -0.062 0.014∗∗

Non-detached

Type dummy -0.057 0.021∗∗

2 rooms -0.313 0.015∗∗

4 rooms 0.120 0.010∗∗

5 rooms 0.214 0.009∗∗

6 rooms 0.347 0.015∗∗

7 rooms 0.502 0.023∗∗

8 rooms 0.635 0.020∗∗

Continued on next page
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Table A2: Continued

9 rooms 0.764 0.018∗∗

10 rooms 0.794 0.024∗∗

0 bathrooms -0.105 0.010∗∗

2 bathrooms 0.143 0.012∗∗

3 bathrooms 0.180 0.046∗∗

1 ensuites 0.101 0.006∗∗

2 ensuites 0.204 0.016∗∗

3 ensuites 0.270 0.049∗∗

No garden -0.042 0.017∗∗

No garage -0.072 0.009∗∗

Central heating 0.059 0.007∗∗

Double glazing -0.025 0.014∗∗

Flat

Type dummy -0.273 0.026∗∗

1 rooms -0.635 0.015∗∗

2 rooms -0.328 0.011∗∗

4 rooms 0.173 0.011∗∗

5 rooms 0.331 0.014∗∗

6 rooms 0.418 0.022∗∗

7 rooms 0.442 0.024∗∗

8 rooms 0.437 0.038∗∗

0 bathrooms -0.263 0.013∗∗

2 bathrooms 0.174 0.020∗∗

1 ensuites 0.203 0.012∗∗

2 ensuites 0.355 0.029∗∗

3 ensuites 0.730 0.018∗∗

No garden -0.039 0.017∗∗

No garage -0.096 0.011∗∗

Central heating 0.110 0.008∗∗

Double glazing 0.023 0.010∗∗

No of observations 127,628 R̄2 0.932∗∗
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