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Factorisable Sparse Tail Event Curves*

Shih-Kang Chao! Wolfgang K. Hardle'* Ming Yuan®
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Abstract

In this paper, we propose a multivariate quantile regression method which enables
localized analysis on conditional quantiles and global comovement analysis on condi-
tional ranges for high-dimensional data. The proposed method, hereafter referred to as
FActorisable Sparse Tail Event Curves, or FASTEC for short, exploits the potential fac-
tor structure of multivariate conditional quantiles through nuclear norm regularization
and is particularly suitable for dealing with extreme quantiles. We study both theoret-
ical properties and computational aspects of the estimating procedure for FASTEC. In
particular, we derive nonasymptotic oracle bounds for the estimation error, and devel-
ope an efficient proximal gradient algorithm for the non-smooth optimization problem
incurred in our estimating procedure. Merits of the proposed methodology are fur-
ther demonstrated through applications to Conditional Autoregressive Value-at-Risk
(CAViaR) (Engle and Manganelli; 2004), and a Chinese temperature dataset.

Keyword: High-dimensional data analysis, multivariate quantile regression, quantile re-
gression, value-at-risk, nuclear norm, multi-task learning.

JEL: C38, C55, C63, G17, G20.

1. Introduction

High-dimensional multivariate quantile analysis is crucial for many applications, such as
risk management and weather analysis. In these applications, quantile functions gy (7) of

random variable Y such that P{Y < ¢y (7)} = 7 at the "tail” of the distribution, namely at
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7 close 0 or 1, such as 7 = 1%, 5% or 7 = 95%, 99%, is of great interest. This is because the
quantile at level 7 can be interpreted as the lower (upper) bound with confidence level 1 — 7
(1) of the possible outcome of a random variable, which can assist the process of decision

making for treatment or risk management. Some practical examples:

e Financial risk management: quantiles gy (7) of asset return with small 7 indicates the
lower bound of the potential loss, which is of interest of both risk manager and market
regulator. In particular, the quantile of asset return with 7 = 1% is called ”value-at-
risk”. At the same time, this is a high-dimensional problem as there are often several

hundreds or thousands of asset returns to be considered.

e Temperature analysis: quantiles at high and small 7 give the range of possible temper-
ature variation, which is useful for crop growth or studying climate change. There may

be hundreds of weather stations depending on the size of the region being considered.

A global analysis in the behavior of dispersion of high-dimensional random variables can be
done based on the observation that the difference of the quantile pair (¢(7),¢(1 — 7)) gives a
flavor of range, which we refer as 7-range. For example 7 = 25% gives the interquartile range,
which is known to be a robust measure of distribution dispersion. The terminology global
refers to the analysis of the pattern of dispersion of variables, which should be distinguished
from the localized analysis specialized at a quantile level. While the factors for each of
the two quantile allows for modeling asymmetry of distribution, we can detect asymmetric
change of the range of the variables, such as expanding, shrinking, shifting, or shifting while
expanding/shrinking, by the sign of loadings and the trend of the factors.

Most previous data analysis method for high-dimensional data emphasizes on the variance
and covariance structure of the high-dimensional data, and methods based on that such as
principal component analysis can describe the linear dependence in variables when the data
are symmetric, in similar scale and no outliers. However, knowing the linear dependence of
the random variables does not lead to the knowledge in their lower and/or upper bounds.
Moreover, for non-Gaussian and highly asymmetric (skewed) data, the methods based on

covariance structure can be highly corrupted if no correction is made.



To see that the information from the covariance and quantiles are not much related, we

analayse data simulated from an asymmetric model. The data are simulated with

Yij =& (Uy) X, T1.;1(Uy < 05), j=1,..,100, L)
1.1
Yij = ® (U)X, T2.;1(Uy > 05), j=101,...,200,

fori =1,...,500, where { X;} are i.i.d. from a joint uniform [0, 1] distribution with X; € R?%
{U;;} areii.d. uniform [0, 1] over both i and j. Iy ,; and I'y ,; are j column vector of matrices
I';, Ty € RP*™ which are of rank 2 and p = m = 200. ®(-) is the cdf of standard Gaussian
distribution. Conditioning on X, Y;; is independent over j. Notice that the distribution
of Y;; is highly asymmetric and skewed, since the first 100 variables are essentially negative

and the last 100 are nonnegative. Moreover, the distribution of Yj; is not continuous, since

there is nonzero density mass (1/2) at 0.
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Figure 1.1: The variable simulated by (1.1). The left is Y; bounded above by 0 and the left
is Y191 bounded below by 0.

The left figure of Figure 1.2 is the biplot of PCA on the matrix Y = (Y;;), which suggests
that Y5 and Y; are different variables, and Y5 seems to be negatively associated with Y; and
is perpendicular to Yj4.. However, the quantile based factor analysis (our method) classifies
the data with respect to the behavior of their quantiles at the tail (7 = 1%,99%) of the
distribution. As the first 100 random variables are similar in their tail behavior (bounded
by 0 above), they all lie horizontally close to the z-axis, while the last 100 variables are

lying vertically close to the y-axis. The reason for such phenomenon is that PCA takes a



=} 84 4768
mn

S| var 142

108

Comp.2

) 206
S

46

0.20

g T T T T T T T T
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

Comp.1

Figure 1.2: The PCA biplot on data Y. PCA is based on the covariance and does not
capture the pattern in the quantiles of the distribution.

centralized view and looks at the covariance Cov(Y;;, Yy) for j # k, and based on (1.1), the
inner product of vectors I',; and I, plays a big role in it.

Our method, however, looks at the dispersion of the data Y;; from an uncentralized view.
From the factors and factor loadings in both figures of Figure 1.3, the pattern of change in
quantiles at 1% and 99% and in 7-range can be determined. Furthermore, in a classification
perspective, the variables close with each other on the right of Figure 1.3 have similar pattern

in the change of the 7-range.
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Figure 1.3: The first factor of 1% and 99% quantiles of data Y (left) and the factor load-
ings(right). Variables have close distance on the right figure have similar change in 7-range,
7 =1%.



In this paper, we estimate the conditional quantile for high-dimensional data with covari-
ates which is factorisable. This method allows for the global analysis of T-range and localized
analysis of a specific quantile of high-dimensional data, and is more robust to outliers and is
capable of capturing the asymmetric distributional dispersion in the data. The key interme-
diate step of implementation is to estimate conditional quantiles for multivariate responses,
which is done via the nuclear norm regularized multivariate quantile regression(MQR), in
which the we factorise the covariates and then using the factors to interpret the data. To
handle high-dimensional data, we assume that the coefficient matrix is of low rank. The
detail is discussed in later sections.

The low-rank regression has been applied to handle the problem of overparametrization
and sparse sample size. Reduced-rank multivariate regression is of interest in a wide variety
of science fields for cross-sectional data. The earliest work dates back to Anderson (1951) in
which the relation between a set of macroeconomic variables and set of manipulable noneco-
nomic variables was considered. Izenman (1975) formally introduced the term ”reduced-rank
regression” and anlaysed the model in detail. For more historical accounts, see Reinsel and
Velu (1998) among others. The multivariate regression problem focuses on the expected val-
ues of the conditional distributions of m response variables, given p-dimensional covariates.
The reduced-rank multivariate regression factorizes the covariates into a parsimonious group
of r factors, which decompose the variation of the conditional expectations of the response
variables and improve the interpretability of the cross-sectional data.

The estimation of the conditional quantiles with low rank covariate matrix involves min-
imization of the empirical loss based on the ”check function” of Koenker and Bassett (1978),
with an additional regularization term of nuclear norm. Our model is equivalent to a multi-
task quantile regression with low-rank structure. Fan et al. (2013) also consider multi-task
quantile regression under transnormal model.

Our contributions are summarized as follows:

1. The factor model for the quantiles of cross-sectional data is proposed;

2. A method of estimation is designed for the nuclear norm regularized non-smooth em-

pirical loss function and its efficiency is O(1/¢€) where € is a given accuracy level;

5



3. The nonasymptotic risk bounds for the multivariate quantile regression are derived

and are illustrated by numerical analyses;
4. A CAViaR modification for financial risk management is demonstrated.

5. A nonparametric curve model is considered for quantile curves and applied on temper-

ature data.

The modification of the Conditional Autoregressive Value-at-Risk (CAViaR) model of Engle
and Manganelli (2004) leads to a Sparse Asymmetric Multivariate Conditional Value-at-Risk
(SAMCVaR) model. It can be viewed as a multiple factor version of White et al. (2015), but
there is no need to identify the factors nor specifying the number of the factors. We apply
SAMCVaR to a dataset consisting of banks, insurance companies and financial service firms
from around the world between mid 2007 to mid 2010, including the period of financial crisis.
Our first finding is the negative leverage effect, in the sense that loss leads more to the drop
of lower quantile factor than the rise of upper quantile factor, which is a step further of the
classical result that only suggests the loss leading to higher dispersion of the distribution.
Moreover, we show the main risk drivers and risk sensitive firms in the crisis period after
the beginning of year 2009. Nonparametric quantile curve model is an extension for the
linear multivariate quantile regression model. Using the temperature data, we show that the

quantile curve model discriminates the two extreme temperature types in China very well.

1.1. Related work

Multivariate quantile regression is studied under several different frameworks by previous
authors, but none of them considered high-dimensional case. Serfling (2002) gives a survey
of this research direction. Suppose the samples (X1,Y7), ..., (X,,Y,) are i.i.d. copies of
(X,Y) in RP™™. Koenker and Portnoy (1990) suggested M-estimation in multiresponse
linear regression model with weighting matrix. The estimator has an efficient covariance

structure, but the estimator fails to be affine equivariant. Chaudhuri (1996), Koltchinskii



(1997), and Chakraborty (2003) consider the geometric quantile, which is the minimizer

i Y, -S'X|+u’(Y;-S'X; 1.2
ore i {31 ' 18 12)
where u € B™! = {v € R™ : ||v|| < 1} controls the direction of deviation from the

center of the data cloud and |[u|| measures the magnitude of the deviation; particularly,
|ul| = 0 corresponds to the median of the data cloud and [|u|| close to 1 corresponds to
the tail of the distribution. Another line of literature tries to link quantile regression and
data depth of Tukey (1975). Kong and Mizera (2012) estimate quantile halfspace by first
projecting data on an oriented straight line with unit vector u, and then finding the quantile
hyperplane which is perpendicular to the vector u and coincides with the line at the quantile
of the projected data. The quantile halfspace is the space lying above the hyperplane. They
show that their quantile halfspace correspond to Tukey’s halfspace depth at each chosen
unit vector u. However, in practice their method cannot be used to construct the halfspace
depth, because that would require estimating uncountably many quantile spaces. Hallin
et al. (2010) propose a novel estimation method quantile halfspaces, and show that the
upper envelop of the resulting upper quantile halfspaces coincides with Tukey’s halfspace
depth and is computable. Asymptotic properties including a Bahadur representation are
also established in this paper.

High-dimensional multivariate regression (MR) has been extensively studied in recent
years, though the non high-dimensional MR has been around for decades. We review some

key ingredients of this model. Suppose

}/; = FTX'L + €y, (13)

where the entries of g; are independent with mean 0. In order to recover the matrix T,
assuming that &; ~ N(0,X,), one minimizes the loss (or negative log likelihood) tr [(Y —
XS)Q(Y — XS)"] with respect to matrix S, where  is a weighting matrix. Common
choices are Q = ¥_! and I,,,, while the former choice generates the efficient estimator and

the later choice only guarantees consistency. An issue of this approach is that it neglects the



dependency in the response variables in covariates X (heteroskedasticity). Another issue
is overparametrization, since p and m can be large relative to n and one cannot hope to
consistently estimate the model. To deal with these two issues, Izenman (1975) proposed
the reduced rank approach. For a predetermined integer r > 0,

arg min tr[(Y — XS)Q(Y —XS)"| s.t. rank(S) <r.

SGRP Xm

The number of variables unknown is thus reduced to r < max{p,m}. Reinsel and Velu
(1998) gave an explicit review of this approach.

In the traditional approach described above, r has to be determined ex-ante. In more
recent developments, Yuan et al. (2007) proposed a penalization approach, in which they

estimate the I' matrix by minimizing:
1Y = XT[p + AT, (1.4)

where A > 0 is a constant. They pointed out the connection between the reduced rank model
and factor analysis and proved that an estimator T can be obtained by soft-thresholding the
OLS estimator. Bunea et al. (2011) estimate I' by minimizing ||[Y — XI'||p + Arank(T),
and they show nonasymptotic risk bounds for both their estimator and the estimator from
minimizing (1.4). They also show that both estimators recover the rank of I" with high prob-
ability. In high-dimensional setting, Negahban and Wainwright (2011) consider two cases
that I is either exact low rank or near low rank. For both cases, they obtain nonasymptotic
risk bounds for estimating the true I' with nuclear norm penalized estimator T. Negah-
ban et al. (2012) present a unified framework for analyzing high-dimensional M-estimator
with differentiable convex loss functions and decomposable penalizing term. Although the
nuclear norm is decomposable, the asymmetric absolute loss function for estimating condi-
tional quantiles is not differentiable and cannot be minorized with a quadratic function, so
that the framework of Negahban et al. (2012) cannot be directly applied to our problem.
For high-dimensional multi-task quantile regression, Fan et al. (2013) consider the prob-

lem under a transnormal model. They estimate transformations of independent variables



which simultaneously explain the quantile of each response variable and make the joint dis-
tribution of transformed covariates and response Gaussian. Comparing to their work, our

method assumes low-rank structure, but we do not impose any distribution assumption.

1.2. Organization of the paper

The remaining part of this paper is organized as follows. In Section 2 we discuss the
factorisation, and its similarity to the estimation of factors in traditional factor models.
Section 3 is devoted to the algorithm for solving the optimization problem and analyzing
the convergence property of the algorithm. The tuning procedure is also explained in this
section. In Section 4 the oracle properties of our estimator are investigated. A Monte
Carlo simulation study is presented in Section 5. Section 6 is devoted to applying our
technique to the estimation of SAMCVaR. Empirical results are presented. Section 7 discuss
a nonparametric estimation of multivariate quantile curves, which again can be factorised
into factor curves. A real data application on Chinese temperature data is also presented.

Detailed proofs are shifted to the supplement material.

1.3. Notations

The following notations are adopted throughout this paper. Given two scalars x and

Yy, LAY def min{z,y} and z V y dof max{z,y}. 1(x < 0) is an index function, which

is equal to 1 when z < 0 and 0 when x > 0. For a vector v = (vy,...,v,) € RP, let

V]l = (3F_ v3)? and ||Vl = max;<p ;] be the vector £, and infinity norm. For a matrix

A = (A4;;) € RP*™ given the singular values of A: 01(A) > 02(A) > ... > opam(A), let
|Al = maxicjcmingpmy 75(A), [|A]l = 3557 05(A) and [|A e = \/Z;n:iri{p’m} 0;(A)? =

j=1
tr(AAT)Y/2 = tr(ATA)/? = ( 1D ke A?j)l/2 and be the matrix spectral norm, nuclear

norm (or trace norm), Frobenius norm. The jth column vector of A is denoted by A.,;.
Similarly, the 7th row vector of A is denoted by A,,. The minimal and maximal singular
values of A is denoted by omin(A) and omax(A). I, denotes the p x p identity matrix, and 1
denotes the matrix with all entries equal to 1. (-,-) : R™™ x R™*™ — R denotes the trace

inner product given by (A, B) = tr(AB"). For a function f : R? — R, and Z; € R, define



the empirical process G,(f(Z:)) =n=Y23" {f(Z)) — E[f(Z)]}.

Definition 1.1 (Sub-Gaussian variable and sub-Gaussian norm). A random variable X is
called sub-Gaussian if there exists some positive constant K such that P(|X| > t) < exp(1—

t?/K3) for all t > 0. The sub-Gaussian norm of X is defined as || X ||y, = sup,>, p~/*(E | X |P)1/7.

2. Factorizable sparse multivariate quantile regression

To motivate the estimation of factors in the quantile of a random variable, we first shortly
review the classical linear factor model. Linear factor models, such as Capital Asset Pricing
Model (CAPM) and Arbitrage Pricing Theory (APT), are popular in economics and finance

for describing the relationship between asset returns and factors. The standard setting is
Yij = vjbia +Yplin+ ...+ ¥ Fi + ey, (2.1)

where Y; € R™ is a vector of asset returns, Fj,...,F}, are factors and ¢;; is the portion
not related to the factors. Assumptions are Cov(Fj,e;;) = 0 for all k = 1,...,r and j =
1,...,m, Cov(e;j,ey) = 0 for all j # I. Factors Fj; can be viewed as hedging portfolios or
macroeconomic drivers depending on the context. Note that the number of factor is exactly
one in terms of CAPM.

The linear factor model (2.1) can be estimated even when the factors are not identified
ex-ante. The multivariate regression model can estimate the factors and loadings, if it is
known that some exogenous macroeconomic variables X; € RP are relevant to Fj;. Taking

conditional expectation to factor model (2.1) gives
E[Y;| X0 = D v E[Ful X, (22)
k=1

Suppose that E[F ;| X;] = ¢/ Xi, where ¢, = (g1, ..., orp). We have the multivariate

regression model

E[YiIX] =TT X, (2.3)

*] 79
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where Ty = (O VirPri, s P opey Vikrp)- I can be estimated with a multivariate
regression model (1.3) with the rank of I" being r. The benefit of considering such model is
that this incorporates the cross-sectional information in Y;. This is closely related to multi-
task learning paradigm in machine learning literature. Gibbons and Ferson (1985) was the
first to present the model (2.3). One can also see Chapter 8 of Reinsel and Velu (1998) for
detail. One remark is that for the traditional multivariate regression technique introduced
in Reinsel and Velu (1998), the number of factor r is assumed to be known or has to be
obtained via other method. However, using the advanced regularization method of Yuan
et al. (2007), Bunea et al. (2011) or Negahban and Wainwright (2011), knowing r is not
necessary for estimation.

One remark is that knowing I' does not trivially yield the estimate for factors and factor
loadings, because the decomposition of I' = ®W¥ is not unique, in which ® corresponds
to the factors and ¥ corresponds to the factor loadings. The ideal decomposition requires
® to be a matrix with r» nonzero columns, so that we have r factors, and ¥ is a unitary
matrix. As pointed out in Section 2 of Yuan et al. (2007), this can be done via singular value
decomposition. Suppose the singular value decomposition of T' is I' = UDV'", where U
and V are unitary matrices and D is rectangular diagonal matrix with kth diagonal element
being the singular value oy, and o, = 0 for k > r. The factor loadings ¥, = V, satisfies
[9;ll2 = 1 for 1 < j < m. Letting ® = D'U'. & has only r nonzero rows. The factor is
formed as Fj, = o, U, X;.

Conditional quantile is of our focus. We estimate the quantile of response variables
Yij, 7 = 1,...,m parametrically as (2.3). Let ¢;(7|X;) be the conditional quantile of Y;;

conditional on X; € R?, for j=1,....mandt=1,...,n,

¢;(71X:) = X Ty(7), (2.4)

where I',; is jth column of matrix I' € RP*™, which is assumed of low rank r < min{p, m}.
The model is posed in a high-dimensional setting: p,m — oo while the sample size n — oo.

Furthermore, model (2.4) is factorisable. Suppose the SVD of T is I' = UDV and the

11



number of nonzero singular values is r, similarly to (2.2),
¢;(T1X3) = ) VirfT(Xa), (2.5)
k=1

where f7(X;) = 0, U], X;. With slight abuse of terminology, we also call f7(X;) ”factors”
with Vj; being "factor loadings”. For mean regression (2.3), factorisation would give a
factor model (2.1). In the practice of multi-task or multivariate quantile regression, factors
are handy for classification and prediction. We will explore its power with real data in
Section 6.

To find an estimator T for I', quantile regression proposed by Koenker and Bassett (1978)

allows to recover the conditional quantile of a univariate response. Our loss function

n

f‘)\(T) def arg min {(mn)_l Z ZpT(Y;j — X;S*j) + )\HSH*}, (2.6)

i=1 j=1

where pr(u) = u(t — 1{u < 0}) and S,; is jth column of matrix S. The first term controls
the quality of fitting, which is similar to the loss function proposed in Koenker and Portnoy
(1990). The second term nuclear norm regularization is applied to encourage the accurate
estimation, as the rank of the matrix I' is degenerate and is sparse. The quantity 7 is
considered fixed in our discussion.

Note that p,(u) is not globally differentiable, where 0 < 7 < 1 is a given quantile level.
The idea of solving (2.6) is first smoothing the loss function by the method of Nesterov (2005),
and then applying the fast iterative proximal gradient algorithm of Beck and Teboulle (2009).
It will be shown in Theorem 3.2 that our method achieves the efficiency of O(1/¢), where €
is a given rate of accuracy, say 107 Nonasymptotic oracle properties of T are established

in Section 4.

3. Computation

In this section, we discuss how the estimate defined by (2.6) can be computed efficiently.

The procedure can be summarized in Algorithm 1. The main result on efficiency of the

12



algorithm is Theorem 3.2. Detailed proofs can be found in the supplement material.

The problem of solving a nonlinear program like (1.4) and (2.6) has received a lot of
attention recently. One strand of literature using the proximal gradient approach, exploits
the fact that the proximity operator of nuclear norm has a closed form, which performs soft-
thresholding of the singular values of the input matrix. Such algorithm requires singular value
decomposition (SVD) in each iteration, and this may be computationally expensive when
the matrix is large. Ji and Ye (2009) and Toh and Yun (2010) propose algorithms in this line
which obtain e-accurate solution in O(1/4/€) steps. A second strand of literature reformulates
the optimization problem into a semidefinite program and then applies available solvers.
Though traditional solvers such as SDPT3 or SeDuMi are not suitable for high-dimensional
data, Jaggi and Sulovsky (2010) constructed an algorithm based on the algorithm of Hazan
(2008) and applied it on large datasets. This approach avoids performing SVD in each step,
but in general it requires O(1/¢€) steps to reach a e-accurate solution.

Our algorithm follows the first line of proximal gradient algorithm. As in Jaggi and
Sulovsky (2010) it is required that the loss function to be differentiable. In our simulation
study we show that our algorithm is able to handle matrices with hundreds of rows and
columns.

A key difference between our problem to those studied in the articles mentioned above
is that, beside the nuclear norm penalty term, the first term in our loss function in (2.6)
is non-smooth, and this suggests that the direct application of proximal gradient algorithm
may not generate desirable result. Therefore, there are two important questions one needs to
answer: how to transform the problem so that it produces favorable properties and what is
the price for such transformation? In what follows we will answer both questions by showing
a procedure to smooth the non-smooth loss function and obtain the convergence rate of our
algorithm. Our approach is inspired by Chen et al. (2012), who deal with sparse regression
problem with non-smooth structured sparsity-inducing penalties. They apply the method of
Nesterov (2005), who suggests a systematic way to approximate the non-smooth objective
function by a function with Lipschitz continuous gradient. Our smoothing method is based

on this idea as well.
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Recall that our goal is to minimize the following loss function:

_ ~ — def X
L) = (mn) ™' Y % pr (Vi = X[ Tug) + AT = Qr(T) + AT, (3.1)
i=1 j=1
where p;(u) = u(r — 1{u < 0}) with given 0 < 7 < 1.
@T(I‘) is clearly non-smooth. To handle this problem, we introduce the dual variables

©;; to rewrite as

n

m
Q-(T) = @ijler?i(lﬁ](mn)_l 2; ; 0 (Vi — X, 'T.,;) . (3.2)
To see that this equation holds, note that for each pair of 7, j, when Y;; —XZ-TI‘*]» >0,0; =1
since 7 is the largest "positive” value in the interval [r — 1,7]; when Y;; — X' r,, <0,
©;; = 7 — 1 since 7 is the smallest "negative” value in the interval [7 — 1, 7]. This verifies
the equation. Observe that it is necessary to choose [ — 1, 7| rather than {7 — 1,7} for the
support of ©;; in order to satisfy the convex set conditions given in Nesterov (2005). Though
both choices fulfill the equation, the previous one is an interval and therefore a convex set
while the later one is not convex. This choice is the key to the smoothing approximation
discussed later and will influence the gradient of the smoothed loss function.

The formulation of Q. (T') given in (3.2) is still a non-smooth function of I', and this makes
the subgradient based algorithm inefficient. To smooth this function, denote ® = (©,;) the
matrix of ©;;, we consider the smooth approximation to @T(F):

Qri(D) = | max _{(mn) (T, ©) ~ 7O . (3.3)

@UE[T—I,T

where (T, ©) = >3 37", ©;; (Yi; — X,'T.;), and & > 0 is a smoothing regularization
constant depending on m,n and the desired accuracy. When x — 0, the approximation
is getting closer to the function before smoothing. We anlayse the convergence rate of our

algorithm based on Theorem 1 of Nesterov (2005).
LEMMA 3.1. /(T",©) can be expressed as ((T',®) = (—XT', ©) + (Y, ©).
Since the function §||@®||} is strongly convex, the optimal solution ®*(T') for achieving
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(3.3) is unique for each I'. We introduce a notation: for any matrix A = (4;;), [[A]]; =
([[Ai;]]-) where

(

T, if Aj; > 7;

[Aillr = § Ay,  ifr—1<Ay<m

T—]_, lfAZJST—l

\

This function performs componentwise projection on a real matrix to the interval [T — 1, 7].

The next theorem presents properties of the (smooth) function @m(I‘).

THEOREM 3.1. For any x > 0, @Tv,{(I‘) is well-defined, convex and continuously-differentiable
function in I" with the gradient VQ\M(I‘) = —(mn)7'XTO*(T") € RP™, where ©*(T) is the

optimal solution to (3.3), namely
O (T) = [[(smn) (Y — XT)],. (3.4

The gradient VQ-.(T') is Lipschitz continuous with the Lipschitz constant M = (km2n?)~*||X]|2.

By inserting (3.4) into the equation of VCT)\T,,{(F), we arrive at the gradient which will be

applied in our algorithm:
VQrr(T) = —(mn) "' X [[(kmn) " (Y — XT)]]. (3.5)

Observe that (3.5) is similar to the subgradient —X{7 — 1(Y — XI" < 0)} of @T(I‘), where
the operator 7 — 1(- < 0) applies componentwise to the matrix Y — XT' with a slight
abuse of notation. The major difference lies in the fact that (3.5) replaces the discrete
non-Lipschitz 7 — 1(Y — XT' < 0) with a Lipschitz function [[x~'(Y — XT')]],. Figure 3.1
illustrates this approximation property in a univariate framework with m = n = 1 and
X = 1. Denote ¢,(u) = 7 — 1(u < 0) the subgradient of p,(u). The solid line pictures the
function ¢ (u) with 7 = 0.5, which has a jump at the origin. The dashed line corresponds
to the smoothing approximation gradient [[x~!(Y — XT')]], associated with x = 0.5, which
connects the discontinuous part and joins the function ,(u) when it reaches 7 the right

end and 7 — 1 at the left end. As k decreases to 0.05, we observe that the smoothing
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approximation function is getting steeper around the origin and closer to p,.
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Figure 3.1: The solid line is the function ¢, (u) = 7 — 1(u < 0) with 7 = 0.5, which has
a jump at the origin. The dashed line corresponding to the smoothing gradient [[x~*(Y —
XT)]], associated with x = 0.5. As k decreases to 0.05, we observe that the smoothing

approximation function is closer to ¢, (u).

Let S)(+) be the proximity operator given in Theorem C.1 in the supplement material. We
state the main result of this section in Algorithm 1 for the optimization problem (2.6). The
name of the algorithm reflects the fact that it is a combination of the smoothing procedure

and the fast iterative shrinkage-thresholding algorithm (FISTA) of Beck and Teboulle (2009).

Algorithm 1: Smoothing fast iterative shrinkage-thresholding algorithm (SFISTA)
Input: Y, X, \, k = -, M = —||X]|?%

2mn’ Kkm?2n?
Initialization: T'y = 0, £2; = 0, step size 6; = 1;
3 fort=1,2,...,7T do
4 = S,\/M (Qt - ﬁer,m(QQ);

144/14467

N =

5 Opp1 = — 5
6 Q=T+ f;ifll(rt —I');
7 end

8 Output r= | 7

The efficiency of Algorithm 1 is given by the following theorem.
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THEOREM 3.2 (Convergence analysis of Algorithm 1). Let {T';}Z_, be the sequence gen-
erated by Algorithm 1, and I'* be the optimal solution for minimizing (3.1). Then for any ¢

and € > 0,

e(rv{l—7})? 4mn|To — T[F[X]?*

L(T;) — L(I')| < .
If we require L(T;) — L(T'™*) < ¢, then
vV I'*—r X
t>2 mal olle H (3.7)

2

c <1 _ (Tv{kf})?)

REMARK 3.1. 1. The first term on the right hand side of (3.6) is related to the smooth-
ing error, which cannot be made small by increasing the number of iteration, but can
only be reduced by choosing a smaller smoothing parameter «. This is the price we

pay for the smooth approximation. The second term is related to the fast iterative

shrinkage-thresholding algorithm of Beck and Teboulle (2009).

2. The original FISTA algorithm without smoothing yield the convergence rate O(1/+/€).
In our case, smoothing approximation error deteriorates the convergence rate and
the best we can do is O(1/e€), which is comparable to the rate obtained by Nesterov
(2005). As an improvement, our rate is still better than O(1/€®) given by the general

subgradient method.

N —1
3. The quantile level 7 enters the numerical bound (3.6) by a factor (1 - M) :

which increases when 7 is getting close to the boundary of (0, 1).

For implementation, it is crucial to appropriately select A. In theory, one can select A
based on (4.13) which gives the oracle result in Section 4, but the value does not adapt to
the data very well. We propose a way to select A based on the "pivotal principle”, which are
better adaptive to the data.

Define the random variable

A = (nm) HIXTW|, (3.8)
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where ,sz = 1U; <0)—7, {U;} for i =1,...,n and j = 1,...,m are iid. uniform
(0,1) random variables, independently distributed from the input variables X1, ..., X,,. The

random variable A is pivotal conditioning on design X, as it does not depend on unknown

parameter I'. Notice that (nm)_lXTW is the score VQ,(T'). Set

A=2-A(1—alX), (3.9)

where A(1 — «|X) o (1 — a)-quantile of A conditional on X, and ¢ is an absolute constant.

This is consistent with the pivotal principle applied in the high-dimensional quantile regres-
sion of Belloni and Chernozhukov (2011) and square-root Lasso Belloni et al. (2011). The
choice of the statistics (3.8) is motivated by VQ(T'), which plays a crucial role in oracle

inequalities in Section 4.

4. Oracle inequalities

In this section we present the non-asymptotic oracle bounds of the estimator T defined
n (2.6). The main results are Theorem 4.1 and Corollary 4.1, which are established through
the convexity and geometric argument of Belloni and Chernozhukov (2011), concentration
inequalities, and £-net arguments.

Our risk bounds resemble the corresponding results of multivariate regression for mean,
such as those in Negahban and Wainwright (2011) and Koltchinskii et al. (2011). We will
compare our results to theirs in Remark 4.1. Koltchinskii (2013) presents an oracle inequality
for excess risk on nuclear norm penalized convex empirical risk minimization. We cannot
apply their result because our quantile loss function is not differentiable. In a novel paper,
Belloni and Chernozhukov (2011) develop theory for high-dimensional Lasso estimator of
non-multivariate regression for quantiles. The idea to prove their main theorem is very
general and can be adapted to our case of multivariate regression for quantiles. However,
some technical properties still need to be established before their method can be applied.

Let (X1,Y1), ..., (X,,Y,) be i.id. copies of (X,Y) random vectors in RP*™.  Recall

pr(u) = u(t — 1{u < 0}) and its subgradient 1, (u) = 7 — 1(u < 0), and that T is defined as
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(2.6). Recall also the empirical loss

n m

Q-(8) = (nm)™' 33 p- (Viy — XTS,)

i=1 j=1

and its expectation Q.(S). We define I' be the minimizer of @Q,(S), and the difference

A=T-T. The subgradient for the empirical loss function @T(F) is the matrix
vVQ,(T) = Z X,W," = (nm)"'XTW € RP™,
where X is the design matrix and

W, < (1(v;; - X T.; <0) - W = [Wy,.. . W,]T e R™™,

7) 1<j<m

In what follows we generalize the support of vector to matrix by projections. If A € RP*™ is
of rank r, and the singular value decomposition of A is A = Z;zl U(A)ujva with orthogonal
vectors uy, ...,u, € R? and vy, ..., v, € R™ the support of A is defined by (S7, S3) in which
S1 = span{uy, ..., u,} and Sy = span{vy,...,v,}. We define the projection matrix on S; by
P, = U, (U/U,)"'U = U,U] in which U, is a p x r matrix whose columns are formed
by {ui,...,u,}, and U'U, = I, because {uy,...,u,} is an orthonormal basis. Similarly,
P, =V, V. On the other hand, define the orthogonal projection of P; and Py by P{ and

Py . For any matrix S € RP*™ we define the projections:
def 1 1. 1 def 1 l
Pa(S) &8 — PLSPL: PL(S) % PLSP;

Define the cone

def

K(T;co) = {S € R™™  [P(S)Ilx < co Pa(S)[l.} - (4.1)

Assumption 4.1 (Sampling setting). Samples (X1,Y1),...,(X,,Y,) are i.id. copies of
(X,Y) random vectors in RPH™, F”l|X( T|l¢) = x'T,;(7). Conditioning on X;, Y;; is

independent in j.
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Assumption 4.1 postulates that the data are i.i.d and there is no cross-sectional depen-
dence in Y;1, ..., Y7, conditioning on X;. This suggests that all dependency in the components
of Y; is captured by the covariates X;. This assumption is stronger than that usually required

for factor models, for which uncorrelatedness is often sufficient.

Assumption 4.2 (Covariance matrix condition). Let the covariance matrix of X be X x,
assume that 0 < opin(Lx) < omax(Xx) < 0o. Moreover, assume the sample covariance

matrix of covariates X x = %XTX satisfies

A~

P[Umin(2X> 2 Clamin(2X>7 O-ma)((gX) S C2O-max(EX)} 2 1— Tn- (42)

When the covariates come from a joint p-Gaussian distribution N (0, X x ), Lemma C.3 in

the supplement material shows that (4.2) holds with ¢; = 1/9, ¢o = 9 and ~,, = 4exp(—n/2).

Assumption 4.3 (Conditional density condition). There exist f > 0 and f! < oo such that
|ai%fléj|Xi (yile)| < f" and inf;<,, infy fyv,,x, (2 Tyyla) > f, where fy,x, is the conditional

density function of Y;; on Xj.

Similar condition as Assumption 4.3 can be found in Belloni and Chernozhukov (2011).
The quantity f controls the curvature of the population loss function, which can influence

the estimation error. Negahban et al. (2012) give an extensive account on this issue.

Assumption 4.4 (Restricted eigenvalue and nonlinearity). For a given probability distri-

bution II for X,

Bra L int {8> 0 B|Pr(A)|r < 1Al m, YA € K(T,3)} >0, (4.3)

PRV
8 ackms m~t 37 E[| XA

>0, (4.4)

def
where [[S||7, ) = m ' En|ST X2

The cone (T, 3) appears often in Lasso literature, for example in Bickel et al. (2009)
and Negahban and Wainwright (2011) among others. Similar assumption on the existence of

constant fr 3 can also be found in Negahban and Wainwright (2011) and Koltchinskii et al.
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(2011). From Assumption 4.2 and the fact that ||Pr(A)|r < ||A||lr, we have a rough lower
bound Brz > m =2\ /0 (Zx).

The restricted nonlinearity constant v is proposed by Belloni and Chernozhukov (2011),
which is used to control the quality of minorization given in Lemma 4.2 (i). Section 2.5 of
Belloni and Chernozhukov (2011) calculate v for various data generating processes under
different design.

The following lemma asserts that the empirical error T — T lies in the cone K(T,3). The

detailed proof can be found in the supplement material.
LEMMA 4.1. Suppose A > 2||[VQ(T)|| and A = T — . Then ||P£(A)]], < 3||Pr(A)],.

That is, A € K(T, 3).

The next lemma characterizes useful properties which will be used later. The detailed

proof can be found in the supplement material.
LEMMA 4.2. Under Assumptions 4.3 and 4.4, we have

(i) If [|A[lzym) < 4v and A € K(T,3), Q- (T + A) = Q- (T) = 1 f|All

(ii) If A € K(T',3), [|A]l. < %??HAHLQ(H), where 7 = rank(T").
The following technical lemma characterizes the convergence rate on the empirical error

of the loss function. In the proof we repeatedly apply the Hoeffding’s inequalities and
Assumption 4.2. The detailed proof can be found in the supplement material.

LEMMA 4.3. Under Assumptions 4.1-4.4. Let

Gn [ml > (oY — X (T + AL} — oYy — X;I‘*j})} '

Jj=1

A(t) = sup
IAll Ly (my<t,AeK(T,3)

(4.5)

Then

Alt) < (\/2{7\/8—7)} +2) ozt\/cwmax(znf)log(erm)

with probability greater than 1 —9(p +m) ™2 — v, where ¢, C’ are universal constants from
Assumption 4.2 and Lemma C.1 in the supplement material, o = % with r = rank(T"),
Pr s from Assumption 4.4, and p +m > 3.
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The following theorem derives the bounds for the prediction error, Frobenius and nuclear
norm, expressed in terms of A, condition number ¥x, 7 and f. The proof follows similar
steps as proving Theorem 2 in Belloni and Chernozhukov (2011), which explicitly exploits

the convexity of the loss function and the cone condition.

THEOREM 4.1. Under Assumptions 4.1-4.4, A\ > 2||[VQ(T)|| and the growth condition on

T

Vo Ex) Bt m) | A\
(CT v f +f) B (4.6)

Then

oz\/amax (X x)log(p+ m)

my/nf

Umax ZX IOg b + m

~ [0
IF— Pl < 4C, g (47)

~ «
I -T|r <4C; FAN——— 4.8
|| HF - V mi Umm EX O min EX)i ( )
L 2 max X 1
IT -1, <40, 2 V7 f( x), [loglp +m) +4AO‘7 (4.9)
m n

with probability 1—9(p+m)~2—7,, where o = 45‘/? with 7 = rank(T"), fr 3 from Assumption

4.4, C; = < 2{7\%# + 2) V€2, C' > 0 is a universal constant from Lemma C.1 in the

supplement material, ¢5 from Assumption 4.2 and p +m > 3.

Proof of Theorem 4.1. Let

1 = the event that Assumption 4.2 holds;

2y = the event A(t) < C; O‘t\/"max@;)log(mrm)'

Note that the probability of event P(Q; N {s) > 1 — 1, —9(p+ m) 2. Set

a\/amax Yx)log(p +m) a
t=4C, + 4 = > 0.
my/nf f

We show that on €, N, ||XT£|| > ¢ is infeasible. Let A = I'—T. On event {||XT3|| > t},

22



from Lemma 4.1, one has

in 0T+ A)— O, (T)+ \|IT+ A, — IT|.), 4.10
HA”LQ(H)Zt,AGK(I‘,B)Q( ) = Q-(T) + A(] I+ — I (4.10)

As argued in the proof of Theorem 2 of Belloni and Chernozhukov (2011), from the facts

that
1. Q.(-) + Al| - || is convex;
2. K(I',3) is a cone,

(4.10) forces the value of Q. (T'+A)+ AT+ A, on {A : A oy > t, A € K(T',3)} to be
less than that evaluated at A = 0. Convexity implies that Q,(I'+A)+ AT+ A, evaluated
at {A: ||A]lym = t, A € K(T',3)} must be smaller than that evaluated at A = 0. Thus,

we have the inequality

inf ATI‘+A_ATF +)\ F+A*_F*7
Al M e @ ) — Q- (T) + (] I = |IT]I.)

It can be further deducted that

0> Qr(C+A) = Q-(T) —n '2A(t) + AT + Al — ||T.),

inf
IIA”LZ(H) :t,AGK(F,?))

By triangle inequality,

1T+ Al = [Tl

< [|A]l. < al|AllL,ar = at on the set {|| Al =

t,A € K(T,3)}. Furthermore, by Lemma 4.3, on event €; Ny

.A(t) < CTO‘\/O-max(EX> log(p + m)t.

Therefore, on event 4 N {2y, it holds from Lemma 4.2 (ii) that

0> inf Q.(T+A)—Q.(T) - 0, OV Tmex(Zx) log(ptm),

Al (=t AEK(T,3) my/n
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Finally, applying Lemma 4.2 (i) as v > t/4 = [|Al|1,m)/4, we have

—f 2 _ a\/amax(EX) log(p +m)

inf t — \at. 4.11
1AL, (m =t AK(T,3) 4+ — (4.11)

With our choice of ¢, (4.11) cannot hold. Thus, the inequality (4.7) holds.
The inequality (4.8) can be obtained by the simple observation that || A7 an = (Omin(Ex)/m)| Al
The inequality (4.9) for ||A[, follows from the fact that A € K(I,3) by Lemma 4.1,

Lemma 4.2 (ii) and the bound for HAHLZ(H)' O

Next lemma gives the bound for 2| X "W]{|. From which we obtain a bound for ||VQ( |-

The detailed proof can be found in the supplement material.

LEMMA 4.4. Under Assumption 4.1 and 4.2,

LIXTW < 0" Vome (B0 v (L= T/ 22 where € = 4, 22 1og8  (1.12)
n n

with probability greater than 1 — 3e~(Ptm)log8 _ o “where C' and ¢, are absolute constants

given by Lemma C.1 in the supplement material and Assumption 4.2.

Let us take the rough bound Brz > m Y% /oum(Xx). Lemma 4.4 and Lemma 4.1

suggest to take

p+m
p—

)\—QQ\/O'maX Ex){rv(l—-1)} (4.13)

By the choice (4.13), Theorem 4.1 yields the oracle rate, which we summarize in Corollary
4.1.
The last result in this section gives the rate of convergence under the choice of \ given

n (4.13), which will be the guideline for simulation comparison in Section 5

COROLLARY 4.1. Assume that Assumptions 4.1-4.4 hold and select A as (4.13). Under

the growth condition on 7:

el (e SIS
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Then

by T O-max 10 p+m p+m
Hr—r||L2(H)<f\/_ ” w/ 1—7\/‘<\/ & 44/ ) (4.15)

IT =T < “z(gziﬁf(\/m p+m) (4.16)
R =N

with probability greater than 1 —, — 9(p +m)~2 — 3e~P+m™1e8 and p +m > 3, where

—8\/_{< \/TT)\/_VALMQ logS] (4.18)

C" = 4y/2C" with r = rank(T"), Br3 from Assumption 4.4 and ¢, from Assumption 4.2.

Proof of Corollary 4.1. Let events €2, and )5 be defined as in the proof of Theorem 4.1, and

1 /
Q3 = the event that —|X"W|| < C*\/||Zx|[{r vV (1 — 1)} prm
n n

Note that the probability P(Q;NQ:NQ3) > 1—7,,—9(p+m)~2—3e~PFm10s8 - On Q;NNQNQ,
the bounds (4.7), (4.8), (4.9), and (4.12) hold. Inserting the rate of A in (4.13) and the lower
bound Brz > m~ Y%\ /ouin(Ex) into (4.7), (4.8),and (4.9) yields bounds (4.15), (4.16),and
(4.17). O

REMARK 4.1. 1. The restricted nonlinearity constant v enters the bounds only through
the growth condition (4.14) on r. This corresponds to the Lasso for quantile regression

of Belloni and Chernozhukov (2011).

2. Component of the risk bounds: Corollary 4.1 shows that the errors are close to the
estimation error given the true model. The bounds (4.15), (4.16), and (4.17) consist
of three components: the dimensionality, covariance matrix of the covariates and con-
ditional density of Y given X. When p and m are fixed with respect to n, the errors
decrease in n=Y2. p and m are allowed to grow with n; however, they are not allowed

to grow faster than n. This phenomenon is also found in the multivariate regression for
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mean, see Negahban and Wainwright (2011), Koltchinskii et al. (2011) among others.
Rank r of matrix I" enters the bound as a factor, and r(p + m) is the number of un-
known parameters. The covariates can influence the bounds (4.15), (4.16), and (4.17)

omax(Bx) of the covariance matrix X x. Large condition
Jmin(EX)

through the condition number
number also introduces instability to multivariate regression for quantiles as for mean.
Finally, the minimal value of densities f and the quantile level 7 are related to the
conditional distribution of Y;; give X, and are only seen in multivariate regression for
quantiles. We show in (4.15), (4.16), and (4.17) that small minimal value of densities
S, which may result from the large support of Yj;, can result in inaccurate estimation.

On the other hand, the estimation at 7 close to 0 or 1 is also difficult as 7V (1 — 7)

enters as a factor to the estimation errors.

5. Simulation

In this section we check the performance of the proposed method via Monte Carlo simu-
lations and verify the oracle properties in Section 4. In the first set of simulation, we consider
three symmetric models, which are different in terms of the degree of sparsity. In the second
set of simulation, an asymmetric setting is considered with two different degree of sparsity.
We consider three symmetric models with different degrees of sparsity in Section 5.1. Section

5.2 is devoted to two asymmetric models.
5.1. Symmetric models

We consider three models that differ in complexity:

e Model LS (Less sparse): Set m = p = n = 500. In each iteration, each entry of the
p x m coefficient matrix I' is generated from a i.i.d. normal distribution. Setting the

last 375 singular values of T" to 0;

e Model MS (Moderate sparse): Generating I' as Model LS. Setting the first 10 singular

values to 30, and 0 for the rest;
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e Model ES (Extremely sparse): Generating I' as Model LS. Replacing the first singular

values by 20, and 0 for the rest.

Given the T' generated by the model above, at each iteration, we generate X; from N (0, )

with o;; = 0.5/"=7!. The response variable is generated as
Y, =T"X,+e, (5.1)

where g; is a random vector in which each element is from i.i.d. standard normal distribution.

We estimate the model at quantile levels 7 = 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95. In order
to get some ideas on the solution path, we set A = (5 x 107%,107°,5 x 107°,107%) for
comparison purpose. For reference, using the tuning technique in Section 3, the simulated
A = (0.00477,0.00465, 0.00438, 0.00346) for 7 = 5%, 10%, 20%, 50%. The A for 7 = 95%, 90%
and 80% are the same as that of 7 = 5%, 10%, 20% by symmetry. The iteration run is 500.

We stop the SFISTA algorithm at step ¢t when the difference of loss function at step ¢t — 1
and t is less than 107%. Moreover, considering the size of our model and the choice of s in
the simulation study of Chen et al. (2012), we directly set x = 0.0001, rather than applying
the x given by Theorem 3.2.

The performance of T is measured by:

e Prediction error: m~!|X(T — T')||p;

e Model selection: Frobenius error |I" — fHF and nuclear error ||T' — fH*,
e Estimated number of nonzero singular values;

e Computational time.

The number of nonzero singular values is determined by the sudden drop in singular values
of T'. If the drop from 7th singular value to (7 4+ 1)th singular value is greater than a given
threshold, then we record the number of nonzero singular values as 7. Notice that the three
symmetric models only differ in sparsity. From the simulation, we can clearly see what role

sparsity plays.
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The results are shown as boxplots from Figure 5.2 to 5.4. Each figure consists of five
rows, which presents the prediction error, Frobenius error, nuclear error, estimated number
of factors and the computational time, and the columns correspond to different values of .

The errors as functions in 7 of the three models show ”V” shape. This confirms the
term 7V (1 — 7) appeared in the oracle bounds in Theorems 4.1. Furthermore, the model
complexity rank(I") influences the error. Among the three models, the errors are smaller in
the most sparse Model ES and larger in the less sparse Model LS. This confirms the factor
rank(I") appeared in the oracle bounds given in Theorems 4.1.

The A inducing the smallest error in the simulation of each model slightly differs. Notice
that all components involved in selecting A in (4.13) are equivalent for the three symmetric
models, so the optimal A should be the same for the three models. In addition, A changes
the way how errors depend on 7. In Model LS, the ”V” shape shown in the Frobenius and
nuclear deviation becomes more flat. Hence, in such model we should choose a smaller A
when the quantile at level 7 = 0.5 is to be estimated, and a bigger A when the quantiles at
7 close to 0 or 1 are to be estimated.

The number of factors selected for the three models are generally accurate. We find that
for 7 = 0.5 the algorithm almost always makes correct selection for all the choices of A and
all the three symmetric models. For Model ES the algorithm selects the correct number of
factors even for 7 = 0.2,0.8 when X is large. For other 7, particularly the extremes ones
close to 0 or 1, it is more difficult to recover the true number of factors.

About the computational efficiency of our algorithm, the time required for the algorithm
to converge increases with the complexity. This fact corresponds to the term [|[I* — Iyl|p
in inequality (3.7). When we look at the most sparse Model ES Figure 5.4, the algorithm
converges in less than 80 seconds in the best case A = 107°. For Model LS and MS, smaller
choices of A usually imply longer time for the algorithm to converge, while larger choices of
A allow the algorithm to converge in less than 250 seconds for Model LS and 100 seconds for
Model MS. On the other hand, 7 has influence on the convergence time, which corresponds
to the inequality (3.7) and the third point of Remark 3.1. For example, in the last row of

Figure 5.2 and 5.3, the case 7 = 0.5 takes least time when A is small, but this situation
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reverses in the most sparse Model ES.

5.2. Asymmetric models

To further illustrate our method, beside adjusting the level of sparsity as done in Section
5.1, in this section we specify asymmetric models for the conditional distribution of Y;;. Let

I'1 and T's be two p X m matrices of rank r; and r, with following two specifications:

e Model AES (asymmetric extremely sparse): (r1,72) = (2,2);

e Model AMS (asymmetric moderately sparse): (r1,72) = (2, 10).
For each model, two matrices I'y and I'y are chosen:

1. Generating vectors {as, ..., a,, } and {by, ..., b, } in RP. The components of each vector

are 1.i.d. uniform distributed random variables supported on [0, 1];

2. Each jth column in Ty is Y ;' | ay jax where ay; are independent random variables
in U0, 1]; similarly, each jth column in T's is >, | By by where [ ; are independent

random variables in U[0, 1].

Now we discuss the data generation. Let U;; be i.i.d. uniform random variable supported

on [0,1],7=1,..,n and j = 1,...,500. Generating X, from N(0,%) with o;; = 0.5 and

then setting X; = ®(X;). X, will have support [0,1]” and be correlated according to Falk

(1999). The response variables are generated by
Vi =0 (U)X, [T1,51(Uy < 0.5) 4+ Ta,51(Uy > 0.5)] (5.2)

where ®(-) is the cdf of N(0,1). Y; is i.i.d. by construction. Notice that when conditioning

on Xj;, the randomness comes only from U;;, which is independent of X;. Hence, Y;; is
independent in j when conditioning on Xj.

The exact conditional quantile function ¢;(7|x) of ¥;; on x is

q;(tlx) = (I)_l(T)wTFL*j, T < 0.5;

¢j(r|lx) = @7 (7)x " Ta.;, 7>0.5,
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for j =1,...,500. Note that at ®~!(0.5) = 0, and therefore the coefficient matrix at 7 = 0.5
is 0.

Figure 5.1 gives an illustration of the marginal densities of Y;; for j = 1,...500. The left
figure is associated with Model AMS in which the densities tend to be asymmetric, in the
sense that they have thick right tails and thin left tails. The densities are also more disperse.
The right figure is associated with Model AES, and the densities are more symmetric and

less disperse.
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Figure 5.1: The plot of all 500 marginal densities of Y; in asymmetric models. The left figure
is associated with Model AMS in which the densities tend to be asymmetric (thick right tails
and thin left tails). The right figure is associated with Model AES in which the densities are
more symmetric.

The simulation run is 500. The measure of performance is the same as that of symmetric
models. In this simulation, we select A = (0.005,0.01,0.05,0.1). The numerical performance
of the asymmetric model is shown in Figure 5.5 and 5.6. For reference, the simulated A
for 7 = 5%,10%,20%,50% are A = (0.002308,0.002310,0.002314,0.002308). The \ for
7 = 95%,90% and 80% are the same as that of 7 = 5%, 10%, 20% by symmetry.

Some patterns can be observed from the simulated estimation errors of the two models.
Despite the fact that I'y # I's, the asymmetry in distribution is not significant and the error
as a function of 7 from Model AES is in symmetric ”V” shape. This again corresponds to
the factor 7V (1 — 7) in Theorems 4.1. In terms of the choice of A\, small A appears to give
smaller errors for both models. However, the errors corresponding to 7 > 0.5 in Model AMS

are notably higher than those in Model AES. This is owing to the fact that the matrix I's
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in Model AMS is less sparse than Model AES. This simulation result confirms the factor
rank(T") in the oracle bounds in Section 4.

The number of nonzero singular values is almost always correctly estimated in Model
AES. As expected, the estimated number of nonzero singular values of Model AMS is higher
than that in Model AES when 7 > 0.5. However, we find that the estimated number of
nonzero singular values is 2 in Model AES and between 5-7 in Model AMS, seemingly the
average of the rank of I'y and I'y. However, the true number of nonzero singular values at
7 = 0.5 is exactly 0. This shows that the singular values are hard to be accurately estimated
if the coeflicient matrix I'; is not continuous in 7.

The computational time generally follows the rule of (3.7). When A is small, we find that
the variation of 7 = 0.5 tends to be large. Due to high rank(I's) in Model AMS, it is more
computationally demanding to recover T, for 7> 0.5, as implied by the term ||[I'f — T ||r

in inequality (3.7).
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Figure 5.6: The asymmetric Model AMS. The horizontal axis is 7. The true number of factors is 2 for 7 < 0.5 and 10 for 7 > 0.5.
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6. Real data application: SAMCVaR model

In this section, we apply the regularized multiple quantile regression on financial data.
In Section 6.1, we propose a modification of CAViaR model. Section 6.2 deals with the
data selection and choice of the tuning parameter \. Section 6.3 is devoted to the empirical

findings.

6.1. Model

Since Engle and Manganelli (2004) proposed the conditional autoregressive value at risk
(CAViaR) model, financial econometricians have applied it in many empirical studies and
proposed many variations for it. The model analyses a univariate autoregressive structure in
quantiles, which does not account for the interdependence of asset returns. As the financial
spillover effect has been widely understood as a risk source, the quantification of spillover
effects has been an important issue for financial econometricians.

White et al. (2008) introduce a multi-quantile modification of CAViaR (MQ-CAViaR),
which allows a sequence of conditional quantile of asset returns to depend on each other.
Combining with the robust estimation for skewness and kurtosis using quantiles of Kim and
White (2004), they study the time varying patterns of higher moments of asset returns. In
White et al. (2015), they consider the spillover effect in asset returns by the multivariate
MQ-CAViaR (MVMQ-CAViaR) model, which combines the MQ-CAViaR models of a set of
asset returns. Nonetheless, they estimated a simpler bivariate CAViaR for each asset return
with a single universal market index, for which they took the World Financials price index
provided by Datastream.

In contrast to previous models, we consider a multivariate model which jointly incorpo-
rates multiple asset returns. Let Y, be the asset return for firm j, j = 1,...,m, at time
t,t=1,...,T. Let ¢ ;(t|Fi—1) be the conditional quantile at level 7 for asset return j at

time ¢ on filtration F;_;. From the spirit of multivariate CAViaR, we consider the Sparse
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Asymmetric Multivariate Conditional Value-at-Risk model (SAMCVaR):
Gr,j (7| Fi-1) Z’h,;, MNYio1k| + Z’Vz,gk Y:Lk, (6.1)

where Y~ = max{—Y,0} and T',;(7) = (v1,;(7) ", 72, (1) ") " and v,;(7) = (v1j1(7), -, Yijm(T))
for | = 1,2. The rank r of I satisfies r < m. Following the discussion in Section 2, we

impose the condition that Y7, 97, < 1. Let
X =(Yeial, o Vi Yii 1, o Yt ) | € RP™ (6.2)
We may therefore rewrite (6.1) as
Qe (T1Fee1) = e (71X1-1) = X1y Ty (7).

If letting q,(7|X:—1) = (@1 (7|X¢-1), s @t (7| X:-1)) " be a vector of quantiles of all the
firms in the sample, then q,(7|X;_1) = T'" X;_;, where ' = [[,q, ..., Tn], and we have the
multivariate quantile regression model (2.4)

This model is a multivariate variation of CAViaR, and we replace the autoregressive
¢t—1,;(7) in CAViaR model by a dispersion measure |Y;_; ;| for asset j in the information
set at time ¢ — 1. The inclusion of the lag negative return Y,~, ;, which also appears in the
CAViaR model with ”asymmetric slope”, is based on the intuition that ”"one bad day makes
the probability of the next somewhat greater” (Engle and Manganelli; 2004). Two major
features of model (6.1) are that the quantile of each firm is time-varying; moreover, (6.1)
accounts for the spillover effect on financial firm j from financial firm [ # j.

We estimate I' via the nuclear norm regularized multivariate quantile regression. We
select 7 = 1% and 99%, in which 7 = 1% corresponds to the VaR of the asset returns, while
7 = 99% corresponds to the growth potential of the assets.

The factorisation described in Section 2 is applied to gain an insight into the common
structure. We factorise the covariates into factors f;1(7), ..., fi.,(7) where r < m by using

the left singular vectors of I'. We investigate two aspects related to the factors. The first
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is how a firm Y;_,; contributes to the factor; the second is how sensitive the conditional
quantile of a firm is relative to the factor. We may study the contribution of firm j to the
variation of the market by the coefficients associated to the two transformations [Yy;|, Y;; in

the factor fy:

_— , O fi(7)

Contribution from component j to fi(7) : ————— = (P14, P2.k;)- (6.3)
o3l Y;7) e

Note that the contribution from component j to f,.(7) does not vary over time. On the other

hand, the sensitivity to the variation of the market can be described by

(7| X
Sensitivity of j quantile to fi(7) : % =1k (6.4)
k\T

With the singular value decomposition I' = UDV ', the contribution of j firm to the
factor fi. defined in (6.3) can be computed by the 7,7 +m element in the U,; € R*™ times
ok, where oy is the kth singular value on the diagonal of D. The quantity in (6.4) can be

found by the kth component in Vy,.

6.2. Data and tuning

We obtain a set of stock prices consists of m = 230 major global financial firms. The
dataset can be downloaded from Simone Manganelli’s website, which is used in White et al.
(2015). Their data period is from Dec. 31, 1999 to Aug. 6, 2010. The regional and industrial
characteristics can be found in Table 1 of White et al. (2015), which we include in Table 6.1

for completeness.

Bank Financial Service Insurance Total

EU 47 22 27 96
North America 25 17 28 70
Asia 47 14 3 64
Total 119 53 58 m = 230

Table 6.1: The summary of financial firms in the data.

We use the data from August 31, 2007 to August 6, 2010. There are 766 closing prices
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for each stock in the sample. We compute the daily log-return. This results in sample size
n = 765. The dimension of the input variables X; is p = 2m = 460, as we consider two
transformations for each asset return, as in formula (6.2). Figure 6.1 shows the time series
plots of the log-returns of the 230 financial institutions over this data period, and a plot of
volatility index (VIX) kept by Chicago Board Options Exchange. The plot of asset returns
suggests there are two large high volatility clusters before and after the beginning of the year
2009, which corresponds to the subprime mortgage crisis. Another phase of volatility increase
is around mid 2010, which corresponds to the rising concern of the European debt crisis. The
data show strong asymmetry, as the returns demonstrate high negative skewness. Though
VIX is constructed by the returns of the S&P500 constituents, it appears to approximate

the global financial risk too.

Daily Log returns of 230 firms(%)

-150 -100

T T T
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20 30 40 50 60 70 80
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Figure 6.1: The upper figure shows the time series plots of the 230 global financial institutions

with different grey level distributions and thicknesses. The lower figure shows the time series
of VIX.

To select the tuning parameter A, applying the procedure described in Section 3 gives

A = 0.02467565 for 7 = 1%. By symmetry we also apply A = 0.02467565 for 7 = 99%.
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6.3. Empirical findings from global financial data

In this section we discuss the empirical findings from factorizing the multivariate quantile
regression (6.1) at level 7 = 1% and 99%. After the factorisation by SVD, the time series
plot of the first two factors for the two sets of quantile regression are reported in Figure
6.2. Both first factors f,(0.01) and f,(0.99) are volatile and moving away from 0 at the end
of 2008 and in the first quarter of 2009, and mid 2010, which corresponds to the phases of
volatility increase as indicated in Figure 6.1. Moreover, as can be seen from the figures, the
two time series f,(0.01) and f,(0.99) are negatively correlated. The absolute scale of the
two second factors f,(0.01) and f,(0.99) are much smaller than the first factors. A sharp
peak appears in the plot of f,(0.01) at the first quarter of 2009. The time series of f,(0.99)

is volatile before and after the beginning of the year 2009.
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Figure 6.2: The time series plots for the first 2 factors. The black lines corresponds to 1%
quantile factors and the blue lines corresponds to 99% quantile factors.

In what follows, Section 6.3.1 presents the estimated factors and the analysis of 7-range

at 7 = 1%. Section 6.3.2 presents the tail factor analysis at 7 = 1%.

6.3.1. 7-range analysis

In this subsection we discuss the common structure of 7-range of global financial returns

with 7 = 1%.
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First we consider the contribution to and the loadings associated with the first factor.
Figure 6.3 shows that the contribution to the first factors lie in the second quadrant, which
suggests that all the covariates have negative impact to the first factor of 1% multivariate
quantile regression, and positive impact to the first factor of 99% multivariate quantile
regression. The dots and firm names in black represent the lag absolute log-returns, and
they tend to lie around the diagonal line or even above it. This suggests that the absolute
lag log-returns tend to contribute equally to both f,(0.01) and f,(0.99), which is consistent
to the intuition that higher return in period ¢ — 1 induces higher volatility in period t.
On the other hand, the lag negative part Y,”; ; marked in red are more located below the
diagonal line, which suggests that the Y,~, ; contributes more to f;(0.01) than to f,(0.99).
The well-known ”leverage effect” postulated by Black (1976) suggests the tendency that
the volatility of an asset is negatively correlated to the the asset return. Furthermore, it is
suggested that such effect is asymmetric: the coincidence between the loss in period t —1 and
larger volatility in period ¢ is more frequent than the coincidence between the gain in period
t — 1 and lower volatility in period ¢, as documented by Engle and Ng (1993). However, as
volatility or variance is a symmetric measure of dispersion of distribution, it is incapable of
revealing information of the potentially asymmetric contribution to such dispersion. Figure
6.3 uncovers the fact that the increasing dispersion (volatility) of the distribution in asset
return in response to the nonnegative loss Y,~, ; is largely due to the drop of lower quantile
factor f,(0.01) rather than the rise of upper quantile factor f,(0.99). In particular, such
increase in volatility creates as much impact in loss but relatively less potential in gain.

Figure 6.4 illustrate the loadings to the first factor of of 1% and 99% multivariate quantile
regression. The loadings are all positive, and lying on the 45 degree line, which suggests that
the firm highly associated with the first factor of 1% MQR would also be highly associated
with the first factor of 99% MQR. This implies that the direction of change in the 7-range
over the returns is similar, but the magnitudes is different. Indeed, the firms lying on the
far top right corner are the firms with high market risk sensitivity, including Huntington
Bancshares Inc., American International Group, Allied Irish Banks and more, whose time

series patterns best resemble that of the first factors f,(0.01) and £,(0.99). The return time
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Figure 6.3: The contribution to the first factor of 1% and

0.00

99% MQR from the 2304230

covariates. The firm name and the dots in black denote the lag absolute log return |Y;_4 .

Dots and firm name with 7"

in red denote the lag negative return Y, 7, ;.

series of several risky firms are shown in Figure 6.9, in the sense that during financial crisis

of 2008-2009, the range of their distribution is very disperse, which leads to large volatility.
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Figure 6.4: The factor loadings of 230 firms on the first factors f,(0.01) and f,(0.99).

Second factors f,(0.01) and f,(0.99) describe the extreme market movement in the
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beginning of 2009. In Figure 6.5, the dots in black, corresponding to the contribution from
lag absolute returns, are more located above the line corresponding to zero contribution to
factor f,(0.99), while the red dots, corresponding to the contribution from the lag negative
part, tend to gather below the line. This suggests again that the lag negative part has less
impact on the factor associated with the upper quantile. Moreover, the dots lying at far right
and separate from the other points are associated mainly with the Bank of Ireland, Allied

Irish Banks and the Royal Bank of Scotland Group, which lead to the peak of f,(0.99).
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Figure 6.5: The contribution to the second factor of 1% and 99% MQR from the 230+230
covariates. The firm name and the dots in black denote the lag absolute log return |Y;_4 .
Dots and firm name with "= in red denote the lag negative return Y;~, .

The factor loadings of firms on the second factor f,(0.01) can be applied to distinguish
the firms being influenced most by the sharp peak of f,(0.01) at the beginning of 2009. In
Figure 6.6, the loadings of asset returns on f,(0.01) and f,(0.99) are mainly distributed in
the first and third quadrants. The firms whose 7-range influenced negatively by the peak
of £5(0.99) are in the second and third quadrants. In particular, the 7-range of the firms
located in the second quadrant shift downward at the beginning of 2009. On the contrary,
the T-range of the firms located in the third quadrant expands at the beginning of 2009. The

T-range expanding the most are PNC Financial Services Group, Inc., State Street, Lloyds
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Figure 6.6: The factor loadings of 230 firms on the second factors f,(0.01) and £,(0.99).

6.3.2. Tail factor analysis

In this section, we discuss the empirical findings by looking at the contribution to and

the loadings associated with the first two factors of 1% multivariate quantile regression.

Figure 6.7 illustrates the contribution from the covariates to the first and second factor of

1% MQR. Lag negative returns concentrates on the lower right of the figure and is below the

horizontal line y = 0, and lag absolute returns spread around the horizontal line y = 0. The

absolute and negative lag return of Allied Irish Bank, Bank of Royal Scotland Group and

Bank of Ireland are more isolated and located at the top left corner, and are highly related

to the first and second factor of 1% MQR. This suggests that they have high association

with the downside risk of the global financial market.

Figure 6.8 shows the factor loadings of each firm on the first and second factors of 1%

MQR. The points are gathering on the top left with positive loadings on factor 2, and

then spreading to the lower right like a fan. The pattern suggests that the firms positively

associated with the first factor of 1% MQR tend to be negatively associated with the second

factor of 1% MQR. Together with the information that the first factor of 1% MQR is generally
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Figure 6.7: The contribution to the first and second factor of 1% MQR from the 2304230
covariates. The firm name and the dots in black denote the lag absolute log return |Y;_4 .
Dots and firm name with 7" in red denote the lag negative return Y,~, ;.

negative and the second factor of 1% MQR has a positive peak from Figure 6.2, Figure 6.8
implies that the firms lying on the lower right direction bear high market risk in our sample.

The similarity in the lower tail of the distribution can be inferred by the distance in Figure
6.8. The shorter the distance between the two points on Figure 6.8, the larger their similarity
is in the 1% quantile. For example, the distance between State Street and PNC Financial
Services Group, Inc. is close, and their 1% quantile time series have similar behavior, which

can be seen from their time series plots in Figure 6.9.
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7. Factor curves model

In this section, we extend the parametric linear multivariate quantile regression model
to a nonparametric model, in which the unknown conditional curves are approximated by
sieve spaces. Section 7.1 introduces the factorisable ”quantile curve” and the factor curves.
Section 7.2 deals with the estimation of the model. Section 7.3 applies the nonparametric
factorisable quantile curves on the temperature data of 159 weather stations from China and

classifies the primary patterns in Chinese temperature.

7.1. Model

For functional data, the concept of ”"quantile” is not as well understood as that for a
usual univariate random variable. The functional data can be understood as the realizations
of a functional variable (see, e.g. Ferraty and Vieu (2006)), which is a map Y : Q@ — C,
where () is the sample space and C is the set of all continuous function on 7. Without loss
of generality, 7 can be a bounded interval. As an example, the standard Brownian motion

W (w,t) is also a functional variable.

Definition 7.1 (Quantile curves). For 0 < 7 < 1, the 7 quantile curve ¢,(t) of functional

variable Y is also a continuous function in ¢ satisfying

P{w:Y(w,t) < g (t), VEET}) =T

For fixed ¢ € T, it holds that P({w : Y(w,t) < ¢(t), V¢t € T}) = 7. Taking standard
Brownian motion W (t) as an example, the 7 quantile of W (t) is ¢,(t) = Vt® (7), where
®(-) is the cdf of standard normal distribution. When 7 is close to 0 or 1, we call ¢, () a tail
event curve.

Consider m functional variables Y; (%), ..., Y;,(t), denote their quantile curves ¢ ;(¢). Sup-

pose that g, ;(t) lies in F which is the class of functions f defined on [0, 1] whose sth derivative
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f©) exists and satisfies a Lipschitz condition of order :
1FO) — O <O —t)?, for tt € [a,b],

for s = ¢ 4+ 60 > 0.5. We assume that ' > 1 and 6 > 0 throughout the following discussion.
Based on the construction of Schumaker (1981) and Stone (1985), each function ¢,; € F
can be approximated by an element g, . ;(t) € S, so that ||¢,r; — ¢rjllec = O(p,') (see the
discussion in p. 150 of Newey (1997)), where S,, is an expanding functional class with basis

functions {b;,1 <1 < p, }. Denote b(t) = (b1(t),..., by, (1)), so that
Gnri (1) = T;(t), (7.1)

where I'y; is jth column of matrix T'.
The timings of measurement are ti,...,t, for all j. Denote B = (By) € R"*P with
By = b(t;) and Y = (Y;;) € R™™ with Y}; = Yj(¢;). The matrix I' can be viewed as the

coefficient matrix in the multivariate quantile regression model
q,(t) = BI.

Q. (t) = (@n71(t), s Gnrm(t)), and T' can be estimated as in Section 3, but now the covari-
ates are the values of the basis functions evaluated at tq, ..., t,.

Furthermore, model (7.1) is also factorisable. If the SVD of T is T' = UDV and the

number of singular values of I" is 7. Similarly to (2.5),
Gnr(8) = D Vir (D), (7.2)
k=1

where f7(t) = 0, U] b(t) may be called factor curves with factor loadings V..

20



7.2. Estimation

Similar to Section 3, we minimize the following loss function:

1SS (¥ — BITL) 4 AT % ,(T) + AT (7.3)

i=1 j=1

with p,(u) = u(r — 1{u < 0}) with given 0 < 7 < 1.

The empirical loss @Tyb(l") is non-smooth. Apply the approach in Section 3, the smoothed
version of @T,b(l“) with a Lipschitz gradient is @T,b,H(I‘). Algorithm 2 can be directly applied
by using @T,bﬁ(I‘). The convergence analysis is similar to Theorem 3.2. The details are

omitted for brevity.

Algorithm 2: Smoothing fast iterative shrinkage-thresholding algorithm (SFISTA)
1 Input: Y, B, A\, k=3, M = Hm2n2||BH2

2 Initialization: T'y = 0, 2, = 0, step size 6; = 1;
3 fort=1,2,...,T do

4 Ft = SA/M (Qt - %V@TJ),H(Qt));
1++/14+462

5 Opp1 = 5
6 Q=T+ 6t 1<Ft —Ty);
7 end

o]

Output T = L'y

For the choice of the number of spline basis p,, from bias and variance decomposition
of spline estimator (Huang; 2003), under the fact that the functions to be estimated in our
case are univariate, the convergence rate of the estimator is Op(p,* + \/pn/n). The order

of p, minimizes the convergence rate is n*/**1_ A usual assumption is s = 2.

7.3. Application: Chinese Temperature Data

In this section we apply the nonparametric multivariate regression model to real data.
We utilize the Chinese temperature data in the year 2008 from 159 weather stations around
China, which can be downloaded from the website of Research Data Center of CRC 649
of Humboldt-Universitat zu Berlin. The dataset consists of one year time series of daily

averaged temperature.
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Before applying our method, we first fit a mean curve with smoothing spline which de-
scribes the mean temperature of China in the year 2008. In Figure 7.1, the bottom subfigure
is the fitted trend curve, which shows seasonal pattern. The detrended temperature time
series of 159 weather stations in the top figure of Figure 7.1 also demonstrate a seasonality
pattern. The deviation to the mean temperature is larger in winter than in summer among

these weather stations.

-10

_?I,O

Detrended Temperature ( ° C)

0.0 0.2 0.4 0.6 0.8 1.0

Temperature ( ° C)
202 H B
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Figure 7.1: The temperature time series in excess to national mean of the 159 weather
stations around China with different grey levels and thicknesses. The figure below is the
temperature trend curve estimated by smoothing spline.

We will apply the nonparametric multivariate quantile regression to further investigate
the detrended temperature curves. The B-spline basis functions are used, and the number

of basis function is p = [n%4]

= 11. The timing of measurement is daily ¢, ...,%365. The
quantile levels are 7 = 1% and 99%. We choose the tuning parameter \ by applying the

procedure of simulating (3.8) and compute A by (3.9), the estimated value is A = 0.000156.
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7.3.1. T-range analysis

In this section, we present the factors and the 7-range analysis using the loadings to the
factor curves.

Figure 7.2 presents the first four factors. The first factor of 1% and 99% quantile regres-
sion enclose a region which is wide in both ends and narrow in the middle. This matches
our observation for Figure 7.1 that the deviation in temperature among weather stations
tends to be higher in winter but lower in summer. Moreover, the two first factors captures
two types of seasonality. The reverse V or U shape of the first factor of 99% multivariate
quantile regression represents a ”seasonality at high temperature”, while the V or U shape

of the first factor of 1% represents a ”seasonality at low temperature”.
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Figure 7.2: The time series plots for the first 4 factors. The black lines corresponds to 1%
quantile factors and the blue lines corresponds to 99% quantile factors.

The factor loadings of the first factor for 1% and 99% quantile regression demonstrate a

nearly "L shape, as shown in Figure 7.3. This suggests that the weather stations positively
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associated with the first factor of 1% multivariate quantile regression have almost no associ-
ation with the first factor of 99% multivariate quantile regression. Such dichotomy pattern
allows for classifying the weather stations into groups.

In Figure 7.3, the temperature curve of Tulihe has the highest factor loading in the first
factor of 1% multivariate quantile regression, while the temperature curve of Dongfang has
the highest factor loading in the first factor of 99% multivariate quantile regression. Thus,
Tulihe is classified as showing strong ”seasonality at low temperature” and Dongfang shows
strong "seasonality at high temperature”. Notice that the factor loading to the first factor
of 99% multivariate quantile regression is slightly negative for Tulihe, and the factor loading
to the first factor of 1% multivariate quantile regression is close to 0 for Dongfang. Another
weather station marked in the figure is located in Yushu, which has small positive loadings

to the first factor of both 1% and 99% multivariate quantile regression, and is hard to be

classified to any of the two seasonality patterns.
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Figure 7.3: The plot of weather stations based on their factor loadings to 1% and 99%
multivariate quantile regression. Each point denotes a weather station in China.
7.3.2. Selected weather station analysis

This section discusses the three selected weather stations from Figure 7.3.
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Figure 7.4 shows the temperature plot, 1% and 99% quantile curves, and the location
of the three weather stations marked in Figure 7.3. Tulihe is located in far northeastern
Inner Mongolia, China, which is well-known for its bitter cold in winter and large temper-
ature difference between summer and winter. While the estimated 99% factors are mainly
influenced by the temperature curves from warmer areas, the reverse V-shaped yearly tem-
perature curve of Tulihe cannot be captured by the 99% factors, and the estimated curve is
flat. Dongfang, however, is located in tropics, and in winter at warmest the temperature is
25 degrees celsius higher than the national average. The estimated 1% factors dominated by
cold regions cannot fit the V-shaped yearly temperature curve of Dongfang, so its 1% quan-
tile curve is flat. Yushu is located in central west China and belongs to highland climate.
The average altitude in the region of Yushu is over 4000 meters. It has high temperature
variation within a day, and is generally slightly cooler in summer and warmer in winter than
the national average. The seasonality for Yushu is not significant, and both the 1% and 99%

factors do not fit Yushu'’s yearly temperature curve well.
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Figure 7.4: Plots of temperature observations, 1%, and 99% temperature quantile curves at
the three selected weather stations in the year 2008. The location of the weather stations
are marked in the upper left map of China.

References

Anderson, T. W. (1951). Estimating linear restrictions on regression coefficients for multi-

variate normal distributions, Annals of Mathematical Statistics 22: 327-351.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear

inverse problems, SIAM Journal on Imaging Sciences 2(1): 183-202.

Belloni, A. and Chernozhukov, V. (2011).

(1-penalized quantile regression in high-

dimensional sparse models, The Annals of Statistics 39(1): 82-130.

o6



Belloni, A., Chernozhukov, V. and Wang, L. (2011). Square-root lasso: pivotal recovery of

sparse signals via conic programming, Biometrika 98(4): 791-806.

Bickel, P. J., Ritov, Y. and Tsybakov, A. B. (2009). Simultaneous analysis of Lasso and
Dantzig selector, The Annals of Statistics 37(4): 1705-1732.

Black, F. (1976). Studies of stock market volatility changes, Proceedings of the American

Statistical Association, Business and Economic Statistics, pp. 177-181.

Bunea, F., She, Y. and Wegkamp, M. H. (2011). Optimal selection of reduced rank estimators

of high-dimensional matrices, The Annals of Statistics 39(2): 1282-1309.

Cai, J.-F., Candes, E. J. and Shen, Z. (2010). A singular value thresholding algorithm for

matrix completion, SIAM Journal on Optimization 20(4): 1956-1982.

Chakraborty, B. (2003). On multivariate quantile regression, Journal of Statistical Planning
and Inference 110: 109-132.

Chaudhuri, P. (1996). On a geometric notion of quantiles for multivariate data, Journal of

American Statistical Association 91(434): 862-872.

Chen, X., Lin, Q., Kim, S., Carbonell, J. G. and Xing, E. P. (2012). Smoothing proximal
gradient method for general structured sparse regression, The Annals of Applied Statistics

6(2): T19-752.

Engle, R. F. and Ng, V. (1993). Measuring and testing the impact of news on volatility,
Journal of Finance 48: 1749-1778.

Engle, R. and Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by

regression quantiles, Journal of Business € Economic Statistics 22: 367-381.

Falk, M. (1999). A simple approach to the generation of uniformly distributed random vari-
ables with prescribed correlation, Communications in Statistics - Simulation and Compu-

tation 28(3): 785-791.

27



Fan, J., Xue, L. and Zou, H. (2013). Multi-task quantile regression under the transnormal

model.

Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and

Practice, Springer.

Gibbons, M. and Ferson, W. (1985). Testing asset pricing models with changing expectations

and an unobservable market portfolio, Journal of Financial Economics 14: 217-236.

Hallin, M., Paindaveine, D. and Siman, M. (2010). Multivariate quantiles and multiple-
output regression quantiles: From L, optimization to halfspace depth, The Annals of

Statistics 38(2): 635-669.

Hazan, E. (2008). Sparse approximate solutions to semidefinite programs, LATIN 2008:

Theoretical Informatics.

Huang, J. Z. (2003). Local asymptotics for polynomial spline regression, Annals of Statistics
31(5): 1600-1635.

Izenman, A. J. (1975). Reduced-rank regression for the multivariate linear model, Journal

of Multivariate Analysis 5: 248-264.

Jaggi, M. and Sulovsky, M. (2010). A simple algorithm for nuclear norm regularized prob-

lems, Proceedings of the 27th International Conference on Machine Learning.

Ji, S. and Ye, J. (2009). An accelerated gradient method for trace norm minimization,

Proceedings of the 26th International Conference on Machine Learning.

Kim, T.-H. and White, H. (2004). On more robust estimation of skewness and kurtosis,

Finance Research Letters 1: 56-73.
Koenker, R. and Bassett, G. S. (1978). Regression quantiles, Econometrica 46(1): 33-50.

Koenker, R. and Portnoy, S. (1990). M estimation of multivariate regressions, Journal of

American Statistical Association 85(412): 1060-1068.

o8



Koltchinskii, V. (2013). Sharp oracle inequalities in low rank estimation, in B. Schélkopf,
Z. Luo and V. Vovk (eds), Empirical Inference: Festschrift in Honor of Viadimir N.

Vapnik, Springer, pp. 217-230.

Koltchinskii, V. I. (1997). M-estimation, convexity and quantiles, The Annals of Statistics

25(2): 435-477.

Koltchinskii, V., Lounici, K. and Tsybakov, A. B. (2011). Nuclear-norm penalization and
optimal rates for noisy low-rank matrix completion, The Annals of Statistics 39(5): 2243

2794.

Kong, L. and Mizera, I. (2012). Quantile tomography: using quantiles with multivariate
data, Statistica Sinica 22: 1589-1610.

Negahban, S. N., Ravikumar, P., Wainwright, M. J. and Yu, B. (2012). A unified framework
for high-dimensional analysis of M-estimators with decomposable regularizers, Statistical

Science 27(4): 538-557.

Negahban, S. N. and Wainwright, M. J. (2011). Estimation of (near) low-rank matrices with

nose and high-dimensional scaling, The Annals of Statistics 39(2): 1069-1097.

Nesterov, Y. (2005). Smooth minimization of non-smooth functions, Mathematical Program-

ming 103(1): 127-152.

Newey, W. K. (1997). Convergence rates and asymptotic normality for series estimators,

Journal of Econometrics 79: 147-168.

Reinsel, G. C. and Velu, R. P. (1998). Multivariate Reduced-Rank Regression, Springer, New
York.

Schumaker, L. (1981). Spline Functions: Basic Theory, Wiley, New York.

Serfling, R. (2002). Quantile functions for multivariate analysis: approaches and applications,

Statistica Neerlandica 56(2): 214-232.

29



Stone, C. J. (1985). Additive regression and other nonparametric models, Annals of Statistics

13(2): 689-705.

Toh, K.-C. and Yun, S. (2010). An accelerated proximal gradient algorithm for nuclear norm

regularized least squares problems, Pacific Journal of Optimization 6: 615—640.

Tukey, J. W. (1975). Mathematics and picturing data, in R. D. James (ed.), Proceedings of

the International Congress on Mathematics.

Vershynin, R. (2012). Compressed Sensing, Theory and Applications, Cambridge University

Press, chapter 5, pp. 210-268.

Wainwright, M. J. (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery
using /;-constrained quadratic programming (Lasso), IEEE Transactions on Information

Theory 55: 2183-2202.

White, H., Kim, T.-H. and Manganelli, S. (2008). Modeling autoregressive conditional
skewness and kurtosis with multi-quantile CAViaR, in J. Russell and M. Watson (eds),

Volatility and Time Series Econometrics: A Festschrift in Honor of Robert F. Engle.

White, H., Kim, T.-H. and Manganelli, S. (2015). VAR for VaR: measuring systemic risk

using multivariate regression quantiles, Journal of Econometrics 187: 169-188.

Yuan, M., Ekici, A., Lu, Z. and Monteiro, R. (2007). Dimension reduction and coefficient
estimation in multivariate linear regression, Journal of the Royal Statistical Society: Series

B 69(3): 329-346.

60



SFB 649 Discussion Paper Series 2015

For a complete list of Discussion Papers published by the SFB 649,
please visit http://sfb649.wiwi.hu-berlin.de.

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

"Pricing Kernel Modeling" by Denis Belomestny, Shujie Ma and Wolfgang
Karl Hardle, January 2015.

"Estimating the Value of Urban Green Space: A hedonic Pricing Analysis
of the Housing Market in Cologne, Germany" by Jens Kolbe and Henry
Wistemann, January 2015.

"Identifying Berlin's land value map using Adaptive Weights Smoothing"
by Jens Kolbe, Rainer Schulz, Martin Wersing and Axel Werwatz, January
2015.

"Efficiency of Wind Power Production and its Determinants" by Simone
Pieralli, Matthias Ritter and Martin Odening, January 2015.

"Distillation of News Flow into Analysis of Stock Reactions" by Junni L.
Zhang, Wolfgang K. Hardle, Cathy Y. Chen and Elisabeth Bommes, Janu-
ary 2015.

"Cognitive Bubbles" by Ciril Bosch-Rosay, Thomas Meissnerz and Antoni
Bosch-Domeénech, February 2015.

"Stochastic Population Analysis: A Functional Data Approach" by Lei
Fang and Wolfgang K. Hardle, February 2015.

"Nonparametric change-point analysis of volatility" by Markus Bibinger,
Moritz Jirak and Mathias Vetter, February 2015.

"From Galloping Inflation to Price Stability in Steps: Israel 1985-2013"
by Rafi Melnick and till Strohsal, February 2015.

"Estimation of NAIRU with Inflation Expectation Data" by Wei Cui, Wolf-
gang K. Hardle and Weining Wang, February 2015.

"Competitors In Merger Control: Shall They Be Merely Heard Or Also
Listened To?" by Thomas Giebe and Miyu Lee, February 2015.

"The Impact of Credit Default Swap Trading on Loan Syndication" by
Daniel Streitz, March 2015.

"Pitfalls and Perils of Financial Innovation: The Use of CDS by Corporate
Bond Funds" by Tim Adam and Andre Guettler, March 2015.

"Generalized Exogenous Processes in DSGE: A Bayesian Approach" by
Alexander Meyer-Gohde and Daniel Neuhoff, March 2015.

"Structural Vector Autoregressions with Heteroskedasticy" by Helmut
Lutkepohl and Aleksei NetSunajev, March 2015.

"Testing Missing at Random using Instrumental Variables" by Christoph
Breunig, March 2015.

"Loss Potential and Disclosures Related to Credit Derivatives — A Cross-
Country Comparison of Corporate Bond Funds under U.S. and German
Regulation" by Dominika Paula Gatkiewicz, March 2015.

"Manager Characteristics and Credit Derivative Use by U.S. Corporate
Bond Funds" by Dominika Paula Gatkiewicz, March 2015.

"Measuring Connectedness of Euro Area Sovereign Risk" by Rebekka
Gatjen Melanie Schienle, April 2015.

"Is There an Asymmetric Impact of Housing on Output?" by Tsung-Hsien
Michael Lee and Wenjuan Chen, April 2015.

"Characterizing the Financial Cycle: Evidence from a Frequency Domain
Analysis" by Till Strohsal, Christian R. Proafio and Jirgen Wolters, April
2015.

SFB 649, Spandauer Stra3e 1, D-10178 Berlin
http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche
Forschungsgemeinschaft through the SFB 649 "Economic Risk".




SFB 649 Discussion Paper Series 2015

For a complete list of Discussion Papers published by the SFB 649,
please visit http://sfb649.wiwi.hu-berlin.de.

022

023

024

025

026

027

028

029

030

031

032

033

034

"Risk Related Brain Regions Detected with 3D Image FPCA" by Ying
Chen, Wolfgang K. Hardle, He Qiang and Piotr Majer, April 2015.

"An Adaptive Approach to Forecasting Three Key Macroeconomic Varia-
bles for Transitional China" by Linlin Niu, Xiu Xu and Ying Chen, April
2015.

"How Do Financial Cycles Interact? Evidence from the US and the UK" by
Till Strohsal, Christian R. Proafio, Jiirgen Wolters, April 2015.
"Employment Polarization and Immigrant Employment Opportunities” by
Hanna Wielandt, April 2015.

"Forecasting volatility of wind power production" by Zhiwei Shen and
Matthias Ritter, May 2015.

"The Information Content of Monetary Statistics for the Great Recession:
Evidence from Germany" by Wenjuan Chen and Dieter Nautz, May 2015.
"The Time-Varying Degree of Inflation Expectations Anchoring" by Till
Strohsal, Rafi Melnick and Dieter Nautz, May 2015.

"Change point and trend analyses of annual expectile curves of tropical
storms" by P.Burdejova, W.K.Hardle, P.Kokoszka and Q.Xiong, May
2015.

"Testing for Identification in SVAR-GARCH Models" by Helmut Luetkepohl
and George Milunovich, June 2015.

"Simultaneous likelihood-based bootstrap confidence sets for a large
number of models" by Mayya Zhilova, June 2015.

"Government Bond Liquidity and Sovereign-Bank Interlinkages" by
Soren Radde, Cristina Checherita-Westphal and Wei Cui, July 2015.

"Not Working at Work: Loafing, Unemployment and Labor Productivity"
by Michael C. Burda, Katie Genadek and Daniel S. Hamermesh, July 2015.
"Factorisable Sparse Tail Event Curves" by Shih-Kang Chao, Wolfgang K.
Hardle and Ming Yuan, July 2015.

SFB 649, Spandauer Stra3e 1, D-10178 Berlin
http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche
Forschungsgemeinschaft through the SFB 649 "Economic Risk".




	AA_Frontpage
	20150701  Cha Hae Yua FASTEC Factorisable Tail Event Curves
	Introduction
	Related work
	Organization of the paper
	Notations

	Factorizable sparse multivariate quantile regression
	Computation
	Oracle inequalities
	Simulation
	Symmetric models
	Asymmetric models

	Real data application: SAMCVaR model
	Model
	Data and tuning
	Empirical findings from global financial data
	-range analysis
	Tail factor analysis


	Factor curves model
	Model
	Estimation
	Application: Chinese Temperature Data
	-range analysis
	Selected weather station analysis



	ZZ_Endpage

