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Shih-Kang Chao† Wolfgang K. Härdle†‡ Ming Yuan§

June 27, 2015

Abstract

In this paper, we propose a multivariate quantile regression method which enables
localized analysis on conditional quantiles and global comovement analysis on condi-
tional ranges for high-dimensional data. The proposed method, hereafter referred to as
FActorisable Sparse Tail Event Curves, or FASTEC for short, exploits the potential fac-
tor structure of multivariate conditional quantiles through nuclear norm regularization
and is particularly suitable for dealing with extreme quantiles. We study both theoret-
ical properties and computational aspects of the estimating procedure for FASTEC. In
particular, we derive nonasymptotic oracle bounds for the estimation error, and devel-
ope an efficient proximal gradient algorithm for the non-smooth optimization problem
incurred in our estimating procedure. Merits of the proposed methodology are fur-
ther demonstrated through applications to Conditional Autoregressive Value-at-Risk
(CAViaR) (Engle and Manganelli; 2004), and a Chinese temperature dataset.

Keyword: High-dimensional data analysis, multivariate quantile regression, quantile re-

gression, value-at-risk, nuclear norm, multi-task learning.

JEL: C38, C55, C63, G17, G20.

1. Introduction

High-dimensional multivariate quantile analysis is crucial for many applications, such as

risk management and weather analysis. In these applications, quantile functions qY (τ) of

random variable Y such that P{Y ≤ qY (τ)} = τ at the ”tail” of the distribution, namely at
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IRTG 1792, Einstein Foundation Berlin via the Berlin Doctoral Program in Economics and Management
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τ close 0 or 1, such as τ = 1%, 5% or τ = 95%, 99%, is of great interest. This is because the

quantile at level τ can be interpreted as the lower (upper) bound with confidence level 1− τ

(τ) of the possible outcome of a random variable, which can assist the process of decision

making for treatment or risk management. Some practical examples:

• Financial risk management: quantiles qY (τ) of asset return with small τ indicates the

lower bound of the potential loss, which is of interest of both risk manager and market

regulator. In particular, the quantile of asset return with τ = 1% is called ”value-at-

risk”. At the same time, this is a high-dimensional problem as there are often several

hundreds or thousands of asset returns to be considered.

• Temperature analysis: quantiles at high and small τ give the range of possible temper-

ature variation, which is useful for crop growth or studying climate change. There may

be hundreds of weather stations depending on the size of the region being considered.

A global analysis in the behavior of dispersion of high-dimensional random variables can be

done based on the observation that the difference of the quantile pair (q(τ), q(1− τ)) gives a

flavor of range, which we refer as τ -range. For example τ = 25% gives the interquartile range,

which is known to be a robust measure of distribution dispersion. The terminology global

refers to the analysis of the pattern of dispersion of variables, which should be distinguished

from the localized analysis specialized at a quantile level. While the factors for each of

the two quantile allows for modeling asymmetry of distribution, we can detect asymmetric

change of the range of the variables, such as expanding, shrinking, shifting, or shifting while

expanding/shrinking, by the sign of loadings and the trend of the factors.

Most previous data analysis method for high-dimensional data emphasizes on the variance

and covariance structure of the high-dimensional data, and methods based on that such as

principal component analysis can describe the linear dependence in variables when the data

are symmetric, in similar scale and no outliers. However, knowing the linear dependence of

the random variables does not lead to the knowledge in their lower and/or upper bounds.

Moreover, for non-Gaussian and highly asymmetric (skewed) data, the methods based on

covariance structure can be highly corrupted if no correction is made.
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To see that the information from the covariance and quantiles are not much related, we

analayse data simulated from an asymmetric model. The data are simulated with

Yij = Φ−1(Uij)X
>
i Γ1,∗j1(Uij < 0.5), j = 1, ..., 100,

Yij = Φ−1(Uij)X
>
i Γ2,∗j1(Uij ≥ 0.5), j = 101, ..., 200,

(1.1)

for i = 1, ..., 500, where {Xi} are i.i.d. from a joint uniform [0, 1] distribution withXi ∈ R200,

{Uij} are i.i.d. uniform [0, 1] over both i and j. Γ1,∗j and Γ2,∗j are j column vector of matrices

Γ1,Γ2 ∈ Rp×m, which are of rank 2 and p = m = 200. Φ(·) is the cdf of standard Gaussian

distribution. Conditioning on Xi, Yij is independent over j. Notice that the distribution

of Yij is highly asymmetric and skewed, since the first 100 variables are essentially negative

and the last 100 are nonnegative. Moreover, the distribution of Yij is not continuous, since

there is nonzero density mass (1/2) at 0.
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Figure 1.1: The variable simulated by (1.1). The left is Y1 bounded above by 0 and the left
is Y101 bounded below by 0.

The left figure of Figure 1.2 is the biplot of PCA on the matrix Y = (Yij), which suggests

that Y42 and Y1 are different variables, and Y42 seems to be negatively associated with Y1 and

is perpendicular to Y142. However, the quantile based factor analysis (our method) classifies

the data with respect to the behavior of their quantiles at the tail (τ = 1%, 99%) of the

distribution. As the first 100 random variables are similar in their tail behavior (bounded

by 0 above), they all lie horizontally close to the x-axis, while the last 100 variables are

lying vertically close to the y-axis. The reason for such phenomenon is that PCA takes a
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Figure 1.2: The PCA biplot on data Y. PCA is based on the covariance and does not
capture the pattern in the quantiles of the distribution.

centralized view and looks at the covariance Cov(Yij, Yik) for j 6= k, and based on (1.1), the

inner product of vectors Γ∗j and Γ∗k plays a big role in it.

Our method, however, looks at the dispersion of the data Yij from an uncentralized view.

From the factors and factor loadings in both figures of Figure 1.3, the pattern of change in

quantiles at 1% and 99% and in τ -range can be determined. Furthermore, in a classification

perspective, the variables close with each other on the right of Figure 1.3 have similar pattern

in the change of the τ -range.
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Figure 1.3: The first factor of 1% and 99% quantiles of data Y(left) and the factor load-
ings(right). Variables have close distance on the right figure have similar change in τ -range,
τ = 1%.

4



In this paper, we estimate the conditional quantile for high-dimensional data with covari-

ates which is factorisable. This method allows for the global analysis of τ -range and localized

analysis of a specific quantile of high-dimensional data, and is more robust to outliers and is

capable of capturing the asymmetric distributional dispersion in the data. The key interme-

diate step of implementation is to estimate conditional quantiles for multivariate responses,

which is done via the nuclear norm regularized multivariate quantile regression(MQR), in

which the we factorise the covariates and then using the factors to interpret the data. To

handle high-dimensional data, we assume that the coefficient matrix is of low rank. The

detail is discussed in later sections.

The low-rank regression has been applied to handle the problem of overparametrization

and sparse sample size. Reduced-rank multivariate regression is of interest in a wide variety

of science fields for cross-sectional data. The earliest work dates back to Anderson (1951) in

which the relation between a set of macroeconomic variables and set of manipulable noneco-

nomic variables was considered. Izenman (1975) formally introduced the term ”reduced-rank

regression” and anlaysed the model in detail. For more historical accounts, see Reinsel and

Velu (1998) among others. The multivariate regression problem focuses on the expected val-

ues of the conditional distributions of m response variables, given p-dimensional covariates.

The reduced-rank multivariate regression factorizes the covariates into a parsimonious group

of r factors, which decompose the variation of the conditional expectations of the response

variables and improve the interpretability of the cross-sectional data.

The estimation of the conditional quantiles with low rank covariate matrix involves min-

imization of the empirical loss based on the ”check function” of Koenker and Bassett (1978),

with an additional regularization term of nuclear norm. Our model is equivalent to a multi-

task quantile regression with low-rank structure. Fan et al. (2013) also consider multi-task

quantile regression under transnormal model.

Our contributions are summarized as follows:

1. The factor model for the quantiles of cross-sectional data is proposed;

2. A method of estimation is designed for the nuclear norm regularized non-smooth em-

pirical loss function and its efficiency is O(1/ε) where ε is a given accuracy level;
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3. The nonasymptotic risk bounds for the multivariate quantile regression are derived

and are illustrated by numerical analyses;

4. A CAViaR modification for financial risk management is demonstrated.

5. A nonparametric curve model is considered for quantile curves and applied on temper-

ature data.

The modification of the Conditional Autoregressive Value-at-Risk (CAViaR) model of Engle

and Manganelli (2004) leads to a Sparse Asymmetric Multivariate Conditional Value-at-Risk

(SAMCVaR) model. It can be viewed as a multiple factor version of White et al. (2015), but

there is no need to identify the factors nor specifying the number of the factors. We apply

SAMCVaR to a dataset consisting of banks, insurance companies and financial service firms

from around the world between mid 2007 to mid 2010, including the period of financial crisis.

Our first finding is the negative leverage effect, in the sense that loss leads more to the drop

of lower quantile factor than the rise of upper quantile factor, which is a step further of the

classical result that only suggests the loss leading to higher dispersion of the distribution.

Moreover, we show the main risk drivers and risk sensitive firms in the crisis period after

the beginning of year 2009. Nonparametric quantile curve model is an extension for the

linear multivariate quantile regression model. Using the temperature data, we show that the

quantile curve model discriminates the two extreme temperature types in China very well.

1.1. Related work

Multivariate quantile regression is studied under several different frameworks by previous

authors, but none of them considered high-dimensional case. Serfling (2002) gives a survey

of this research direction. Suppose the samples (X1,Y1), ..., (Xn,Yn) are i.i.d. copies of

(X,Y ) in Rp+m. Koenker and Portnoy (1990) suggested M -estimation in multiresponse

linear regression model with weighting matrix. The estimator has an efficient covariance

structure, but the estimator fails to be affine equivariant. Chaudhuri (1996), Koltchinskii

6



(1997), and Chakraborty (2003) consider the geometric quantile, which is the minimizer

arg min
S∈Rp×m

{ n∑
i=1

‖Yi − S>Xi‖+ u>(Yi − S>Xi)

}
, (1.2)

where u ∈ Bm−1 = {v ∈ Rm : ‖v‖ < 1} controls the direction of deviation from the

center of the data cloud and ‖u‖ measures the magnitude of the deviation; particularly,

‖u‖ = 0 corresponds to the median of the data cloud and ‖u‖ close to 1 corresponds to

the tail of the distribution. Another line of literature tries to link quantile regression and

data depth of Tukey (1975). Kong and Mizera (2012) estimate quantile halfspace by first

projecting data on an oriented straight line with unit vector u, and then finding the quantile

hyperplane which is perpendicular to the vector u and coincides with the line at the quantile

of the projected data. The quantile halfspace is the space lying above the hyperplane. They

show that their quantile halfspace correspond to Tukey’s halfspace depth at each chosen

unit vector u. However, in practice their method cannot be used to construct the halfspace

depth, because that would require estimating uncountably many quantile spaces. Hallin

et al. (2010) propose a novel estimation method quantile halfspaces, and show that the

upper envelop of the resulting upper quantile halfspaces coincides with Tukey’s halfspace

depth and is computable. Asymptotic properties including a Bahadur representation are

also established in this paper.

High-dimensional multivariate regression (MR) has been extensively studied in recent

years, though the non high-dimensional MR has been around for decades. We review some

key ingredients of this model. Suppose

Yi = Γ>Xi + εi, , (1.3)

where the entries of εi are independent with mean 0. In order to recover the matrix Γ,

assuming that εi ∼ N(0,Σε), one minimizes the loss (or negative log likelihood) tr
[
(Y −

XS)Ω(Y − XS)>
]

with respect to matrix S, where Ω is a weighting matrix. Common

choices are Ω = Σ−1
ε and Im, while the former choice generates the efficient estimator and

the later choice only guarantees consistency. An issue of this approach is that it neglects the

7



dependency in the response variables in covariates X (heteroskedasticity). Another issue

is overparametrization, since p and m can be large relative to n and one cannot hope to

consistently estimate the model. To deal with these two issues, Izenman (1975) proposed

the reduced rank approach. For a predetermined integer r > 0,

arg min
S∈Rp×m

tr
[
(Y −XS)Ω(Y −XS)>

]
s.t. rank(S) ≤ r.

The number of variables unknown is thus reduced to r � max{p,m}. Reinsel and Velu

(1998) gave an explicit review of this approach.

In the traditional approach described above, r has to be determined ex-ante. In more

recent developments, Yuan et al. (2007) proposed a penalization approach, in which they

estimate the Γ matrix by minimizing:

‖Y −XΓ‖F + λ‖Γ‖∗, (1.4)

where λ > 0 is a constant. They pointed out the connection between the reduced rank model

and factor analysis and proved that an estimator Γ̂ can be obtained by soft-thresholding the

OLS estimator. Bunea et al. (2011) estimate Γ by minimizing ‖Y − XΓ‖F + λ rank(Γ),

and they show nonasymptotic risk bounds for both their estimator and the estimator from

minimizing (1.4). They also show that both estimators recover the rank of Γ with high prob-

ability. In high-dimensional setting, Negahban and Wainwright (2011) consider two cases

that Γ is either exact low rank or near low rank. For both cases, they obtain nonasymptotic

risk bounds for estimating the true Γ with nuclear norm penalized estimator Γ̂. Negah-

ban et al. (2012) present a unified framework for analyzing high-dimensional M -estimator

with differentiable convex loss functions and decomposable penalizing term. Although the

nuclear norm is decomposable, the asymmetric absolute loss function for estimating condi-

tional quantiles is not differentiable and cannot be minorized with a quadratic function, so

that the framework of Negahban et al. (2012) cannot be directly applied to our problem.

For high-dimensional multi-task quantile regression, Fan et al. (2013) consider the prob-

lem under a transnormal model. They estimate transformations of independent variables
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which simultaneously explain the quantile of each response variable and make the joint dis-

tribution of transformed covariates and response Gaussian. Comparing to their work, our

method assumes low-rank structure, but we do not impose any distribution assumption.

1.2. Organization of the paper

The remaining part of this paper is organized as follows. In Section 2 we discuss the

factorisation, and its similarity to the estimation of factors in traditional factor models.

Section 3 is devoted to the algorithm for solving the optimization problem and analyzing

the convergence property of the algorithm. The tuning procedure is also explained in this

section. In Section 4 the oracle properties of our estimator are investigated. A Monte

Carlo simulation study is presented in Section 5. Section 6 is devoted to applying our

technique to the estimation of SAMCVaR. Empirical results are presented. Section 7 discuss

a nonparametric estimation of multivariate quantile curves, which again can be factorised

into factor curves. A real data application on Chinese temperature data is also presented.

Detailed proofs are shifted to the supplement material.

1.3. Notations

The following notations are adopted throughout this paper. Given two scalars x and

y, x ∧ y def
= min{x, y} and x ∨ y def

= max{x, y}. 1(x ≤ 0) is an index function, which

is equal to 1 when x ≤ 0 and 0 when x > 0. For a vector v = (v1, ..., vp) ∈ Rp, let

‖v‖2 = (
∑p

j=1 v
2
j )

1/2 and ‖v‖∞ = maxj≤p |vj| be the vector `2 and infinity norm. For a matrix

A = (Aij) ∈ Rp×m, given the singular values of A: σ1(A) ≥ σ2(A) ≥ ... ≥ σp∧m(A), let

‖A‖ = max1≤j≤min{p,m} σj(A), ‖A‖∗ =
∑min{p,m}

j=1 σj(A) and ‖A‖F =
√∑min{p,m}

j=1 σj(A)2 =

tr(AA>)1/2 = tr(A>A)1/2 = (
∑p

j=1

∑m
k=1A

2
ij)

1/2 and be the matrix spectral norm, nuclear

norm (or trace norm), Frobenius norm. The jth column vector of A is denoted by A∗j.

Similarly, the ith row vector of A is denoted by Ai∗. The minimal and maximal singular

values of A is denoted by σmin(A) and σmax(A). Ip denotes the p× p identity matrix, and 1

denotes the matrix with all entries equal to 1. 〈·, ·〉 : Rn×m × Rn×m → R denotes the trace

inner product given by 〈A,B〉 = tr(AB>). For a function f : Rp → R, and Zi ∈ Rp, define
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the empirical process Gn(f(Zi)) = n−1/2
∑n

i=1{f(Zi)− E[f(Zi)]}.

Definition 1.1 (Sub-Gaussian variable and sub-Gaussian norm). A random variable X is

called sub-Gaussian if there exists some positive constant K2 such that P(|X| > t) ≤ exp(1−

t2/K2
2) for all t ≥ 0. The sub-Gaussian norm ofX is defined as ‖X‖ψ2 = supp≥1 p

−1/2(E |X|p)1/p.

2. Factorizable sparse multivariate quantile regression

To motivate the estimation of factors in the quantile of a random variable, we first shortly

review the classical linear factor model. Linear factor models, such as Capital Asset Pricing

Model (CAPM) and Arbitrage Pricing Theory (APT), are popular in economics and finance

for describing the relationship between asset returns and factors. The standard setting is

Yij = ψj1Fi1 + ψj2Fi2 + ...+ ψjrFir + εij, (2.1)

where Yi ∈ Rm is a vector of asset returns, Fi1,...,Fir are factors and εij is the portion

not related to the factors. Assumptions are Cov(Fik, εij) = 0 for all k = 1, ..., r and j =

1, ...,m, Cov(εij, εil) = 0 for all j 6= l. Factors Fik can be viewed as hedging portfolios or

macroeconomic drivers depending on the context. Note that the number of factor is exactly

one in terms of CAPM.

The linear factor model (2.1) can be estimated even when the factors are not identified

ex-ante. The multivariate regression model can estimate the factors and loadings, if it is

known that some exogenous macroeconomic variables Xi ∈ Rp are relevant to Fik. Taking

conditional expectation to factor model (2.1) gives

E[Yij|Xi] =
r∑

k=1

ψjk E[Fik|Xi], (2.2)

Suppose that E[Fi,k|Xi] = ϕ>kXi, where ϕk = (ϕk1, ..., ϕkp). We have the multivariate

regression model

E[Yi|Xi] = Γ>∗jXi, (2.3)
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where Γ∗j = (
∑r

k=1 ψj,kϕk,1, ...,
∑r

k=1 ψj,kϕk,p). Γ can be estimated with a multivariate

regression model (1.3) with the rank of Γ being r. The benefit of considering such model is

that this incorporates the cross-sectional information in Yi. This is closely related to multi-

task learning paradigm in machine learning literature. Gibbons and Ferson (1985) was the

first to present the model (2.3). One can also see Chapter 8 of Reinsel and Velu (1998) for

detail. One remark is that for the traditional multivariate regression technique introduced

in Reinsel and Velu (1998), the number of factor r is assumed to be known or has to be

obtained via other method. However, using the advanced regularization method of Yuan

et al. (2007), Bunea et al. (2011) or Negahban and Wainwright (2011), knowing r is not

necessary for estimation.

One remark is that knowing Γ does not trivially yield the estimate for factors and factor

loadings, because the decomposition of Γ = ΦΨ is not unique, in which Φ corresponds

to the factors and Ψ corresponds to the factor loadings. The ideal decomposition requires

Φ to be a matrix with r nonzero columns, so that we have r factors, and Ψ is a unitary

matrix. As pointed out in Section 2 of Yuan et al. (2007), this can be done via singular value

decomposition. Suppose the singular value decomposition of Γ is Γ = UDV>, where U

and V are unitary matrices and D is rectangular diagonal matrix with kth diagonal element

being the singular value σk, and σk = 0 for k > r. The factor loadings ψj = Vj∗ satisfies

‖ψj‖2 = 1 for 1 ≤ j ≤ m. Letting Φ = D>U>. Φ has only r nonzero rows. The factor is

formed as Fik = σkU∗kXi.

Conditional quantile is of our focus. We estimate the quantile of response variables

Yij, j = 1, ...,m parametrically as (2.3). Let qj(τ |Xi) be the conditional quantile of Yij

conditional on Xi ∈ Rp, for j = 1, ...,m and i = 1, ..., n,

qj(τ |Xi) = X>i Γ∗j(τ), (2.4)

where Γ∗j is jth column of matrix Γ ∈ Rp×m, which is assumed of low rank r � min{p,m}.

The model is posed in a high-dimensional setting: p,m→∞ while the sample size n→∞.

Furthermore, model (2.4) is factorisable. Suppose the SVD of Γ is Γ = UDV> and the
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number of nonzero singular values is r, similarly to (2.2),

qj(τ |Xi) =
r∑

k=1

Vj,kf
τ
k (Xi), (2.5)

where f τk (Xi) = σkU
>
∗kXi. With slight abuse of terminology, we also call f τk (Xi) ”factors”

with Vj,k being ”factor loadings”. For mean regression (2.3), factorisation would give a

factor model (2.1). In the practice of multi-task or multivariate quantile regression, factors

are handy for classification and prediction. We will explore its power with real data in

Section 6.

To find an estimator Γ̂ for Γ, quantile regression proposed by Koenker and Bassett (1978)

allows to recover the conditional quantile of a univariate response. Our loss function

Γ̂λ(τ)
def
= arg min

S∈Rp×m

{
(mn)−1

n∑
i=1

m∑
j=1

ρτ
(
Yij −X>i S∗j

)
+ λ‖S‖∗

}
, (2.6)

where ρτ (u) = u(τ − 1{u ≤ 0}) and S∗j is jth column of matrix S. The first term controls

the quality of fitting, which is similar to the loss function proposed in Koenker and Portnoy

(1990). The second term nuclear norm regularization is applied to encourage the accurate

estimation, as the rank of the matrix Γ is degenerate and is sparse. The quantity τ is

considered fixed in our discussion.

Note that ρτ (u) is not globally differentiable, where 0 < τ < 1 is a given quantile level.

The idea of solving (2.6) is first smoothing the loss function by the method of Nesterov (2005),

and then applying the fast iterative proximal gradient algorithm of Beck and Teboulle (2009).

It will be shown in Theorem 3.2 that our method achieves the efficiency of O(1/ε), where ε

is a given rate of accuracy, say 10−6. Nonasymptotic oracle properties of Γ̂ are established

in Section 4.

3. Computation

In this section, we discuss how the estimate defined by (2.6) can be computed efficiently.

The procedure can be summarized in Algorithm 1. The main result on efficiency of the
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algorithm is Theorem 3.2. Detailed proofs can be found in the supplement material.

The problem of solving a nonlinear program like (1.4) and (2.6) has received a lot of

attention recently. One strand of literature using the proximal gradient approach, exploits

the fact that the proximity operator of nuclear norm has a closed form, which performs soft-

thresholding of the singular values of the input matrix. Such algorithm requires singular value

decomposition (SVD) in each iteration, and this may be computationally expensive when

the matrix is large. Ji and Ye (2009) and Toh and Yun (2010) propose algorithms in this line

which obtain ε-accurate solution inO(1/
√
ε) steps. A second strand of literature reformulates

the optimization problem into a semidefinite program and then applies available solvers.

Though traditional solvers such as SDPT3 or SeDuMi are not suitable for high-dimensional

data, Jaggi and Sulovský (2010) constructed an algorithm based on the algorithm of Hazan

(2008) and applied it on large datasets. This approach avoids performing SVD in each step,

but in general it requires O(1/ε) steps to reach a ε-accurate solution.

Our algorithm follows the first line of proximal gradient algorithm. As in Jaggi and

Sulovský (2010) it is required that the loss function to be differentiable. In our simulation

study we show that our algorithm is able to handle matrices with hundreds of rows and

columns.

A key difference between our problem to those studied in the articles mentioned above

is that, beside the nuclear norm penalty term, the first term in our loss function in (2.6)

is non-smooth, and this suggests that the direct application of proximal gradient algorithm

may not generate desirable result. Therefore, there are two important questions one needs to

answer: how to transform the problem so that it produces favorable properties and what is

the price for such transformation? In what follows we will answer both questions by showing

a procedure to smooth the non-smooth loss function and obtain the convergence rate of our

algorithm. Our approach is inspired by Chen et al. (2012), who deal with sparse regression

problem with non-smooth structured sparsity-inducing penalties. They apply the method of

Nesterov (2005), who suggests a systematic way to approximate the non-smooth objective

function by a function with Lipschitz continuous gradient. Our smoothing method is based

on this idea as well.
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Recall that our goal is to minimize the following loss function:

L(Γ) = (mn)−1

n∑
i=1

m∑
j=1

ρτ
(
Yij −X>i Γ∗j

)
+ λ‖Γ‖∗

def
= Q̂τ (Γ) + λ‖Γ‖∗, (3.1)

where ρτ (u) = u(τ − 1{u ≤ 0}) with given 0 < τ < 1.

Q̂τ (Γ) is clearly non-smooth. To handle this problem, we introduce the dual variables

Θij to rewrite as

Q̂τ (Γ) = max
Θij∈[τ−1,τ ]

(mn)−1

n∑
i=1

m∑
j=1

Θij

(
Yij −X>i Γ∗j

)
. (3.2)

To see that this equation holds, note that for each pair of i, j, when Yij−X>i Γ∗j > 0, Θij = τ

since τ is the largest ”positive” value in the interval [τ − 1, τ ]; when Yij − X>i Γ∗j ≤ 0,

Θij = τ − 1 since τ is the smallest ”negative” value in the interval [τ − 1, τ ]. This verifies

the equation. Observe that it is necessary to choose [τ − 1, τ ] rather than {τ − 1, τ} for the

support of Θij in order to satisfy the convex set conditions given in Nesterov (2005). Though

both choices fulfill the equation, the previous one is an interval and therefore a convex set

while the later one is not convex. This choice is the key to the smoothing approximation

discussed later and will influence the gradient of the smoothed loss function.

The formulation of Q̂τ (Γ) given in (3.2) is still a non-smooth function of Γ, and this makes

the subgradient based algorithm inefficient. To smooth this function, denote Θ = (Θij) the

matrix of Θij, we consider the smooth approximation to Q̂τ (Γ):

Q̂τ,κ(Γ) = max
Θij∈[τ−1,τ ]

{
(mn)−1`(Γ,Θ)− κ

2
‖Θ‖2

F

}
, (3.3)

where `(Γ,Θ) =
∑n

i=1

∑m
j=1 Θij

(
Yij −X>i Γ∗j

)
, and κ > 0 is a smoothing regularization

constant depending on m,n and the desired accuracy. When κ → 0, the approximation

is getting closer to the function before smoothing. We anlayse the convergence rate of our

algorithm based on Theorem 1 of Nesterov (2005).

LEMMA 3.1. `(Γ,Θ) can be expressed as `(Γ,Θ) = 〈−XΓ,Θ〉+ 〈Y,Θ〉.

Since the function κ
2
‖Θ‖2

F is strongly convex, the optimal solution Θ∗(Γ) for achieving

14



(3.3) is unique for each Γ. We introduce a notation: for any matrix A = (Aij), [[A]]τ =

([[Aij]]τ ) where

[[Aij]]τ =


τ, if Aij ≥ τ ;

Aij, if τ − 1 < Aij < τ ;

τ − 1, if Aij ≤ τ − 1.

This function performs componentwise projection on a real matrix to the interval [τ − 1, τ ].

The next theorem presents properties of the (smooth) function Q̂τ,κ(Γ).

THEOREM 3.1. For any κ > 0, Q̂τ,κ(Γ) is well-defined, convex and continuously-differentiable

function in Γ with the gradient ∇Q̂τ,κ(Γ) = −(mn)−1X>Θ∗(Γ) ∈ Rp×m, where Θ∗(Γ) is the

optimal solution to (3.3), namely

Θ∗(Γ) = [[(κmn)−1(Y −XΓ)]]τ . (3.4)

The gradient∇Q̂τ,κ(Γ) is Lipschitz continuous with the Lipschitz constantM = (κm2n2)−1‖X‖2.

By inserting (3.4) into the equation of ∇Q̂τ,κ(Γ), we arrive at the gradient which will be

applied in our algorithm:

∇Q̂τ,κ(Γ) = −(mn)−1X>[[(κmn)−1(Y −XΓ)]]τ . (3.5)

Observe that (3.5) is similar to the subgradient −X{τ − 1(Y −XΓ ≤ 0)} of Q̂τ (Γ), where

the operator τ − 1(· ≤ 0) applies componentwise to the matrix Y − XΓ with a slight

abuse of notation. The major difference lies in the fact that (3.5) replaces the discrete

non-Lipschitz τ − 1(Y −XΓ ≤ 0) with a Lipschitz function [[κ−1(Y −XΓ)]]τ . Figure 3.1

illustrates this approximation property in a univariate framework with m = n = 1 and

X = 1. Denote ψτ (u) = τ − 1(u ≤ 0) the subgradient of ρτ (u). The solid line pictures the

function ψτ (u) with τ = 0.5, which has a jump at the origin. The dashed line corresponds

to the smoothing approximation gradient [[κ−1(Y −XΓ)]]τ associated with κ = 0.5, which

connects the discontinuous part and joins the function ψτ (u) when it reaches τ the right

end and τ − 1 at the left end. As κ decreases to 0.05, we observe that the smoothing
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approximation function is getting steeper around the origin and closer to ρτ .

-0
.5

0.
0

0.
5

0.0

κ=0.5 κ=0.2 κ=0.05

Figure 3.1: The solid line is the function ψτ (u) = τ − 1(u ≤ 0) with τ = 0.5, which has
a jump at the origin. The dashed line corresponding to the smoothing gradient [[κ−1(Y −
XΓ)]]τ associated with κ = 0.5. As κ decreases to 0.05, we observe that the smoothing
approximation function is closer to ψτ (u).

Let Sλ(·) be the proximity operator given in Theorem C.1 in the supplement material. We

state the main result of this section in Algorithm 1 for the optimization problem (2.6). The

name of the algorithm reflects the fact that it is a combination of the smoothing procedure

and the fast iterative shrinkage-thresholding algorithm (FISTA) of Beck and Teboulle (2009).

Algorithm 1: Smoothing fast iterative shrinkage-thresholding algorithm (SFISTA)

1 Input: Y, X, λ, κ = ε
2mn

, M = 1
κm2n2‖X‖2;

2 Initialization: Γ0 = 0, Ω1 = 0, step size δ1 = 1;
3 for t = 1, 2, ..., T do

4 Γt = Sλ/M

(
Ωt − 1

M
∇Q̂τ,κ(Ωt)

)
;

5 δt+1 =
1+
√

1+4δ2
t

2
;

6 Ωt+1 = Γt + δt−1
δt+1

(Γt − Γt−1);

7 end

8 Output Γ̂ = ΓT

The efficiency of Algorithm 1 is given by the following theorem.
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THEOREM 3.2 (Convergence analysis of Algorithm 1). Let {Γt}Tt=0 be the sequence gen-

erated by Algorithm 1, and Γ∗ be the optimal solution for minimizing (3.1). Then for any t

and ε > 0,

|L(Γt)− L(Γ∗)| ≤ ε(τ ∨ {1− τ})2

2
+

4mn‖Γ0 − Γ∗‖2
F‖X‖2

(t+ 1)2ε
. (3.6)

If we require L(Γt)− L(Γ∗) ≤ ε, then

t ≥ 2

√
mn‖Γ∗ − Γ0‖F‖X‖

ε
(

1− (τ∨{1−τ})2

2

) . (3.7)

REMARK 3.1. 1. The first term on the right hand side of (3.6) is related to the smooth-

ing error, which cannot be made small by increasing the number of iteration, but can

only be reduced by choosing a smaller smoothing parameter κ. This is the price we

pay for the smooth approximation. The second term is related to the fast iterative

shrinkage-thresholding algorithm of Beck and Teboulle (2009).

2. The original FISTA algorithm without smoothing yield the convergence rate O(1/
√
ε).

In our case, smoothing approximation error deteriorates the convergence rate and

the best we can do is O(1/ε), which is comparable to the rate obtained by Nesterov

(2005). As an improvement, our rate is still better than O(1/ε2) given by the general

subgradient method.

3. The quantile level τ enters the numerical bound (3.6) by a factor
(

1− (τ∨{1−τ})2

2

)−1

,

which increases when τ is getting close to the boundary of (0, 1).

For implementation, it is crucial to appropriately select λ. In theory, one can select λ

based on (4.13) which gives the oracle result in Section 4, but the value does not adapt to

the data very well. We propose a way to select λ based on the ”pivotal principle”, which are

better adaptive to the data.

Define the random variable

Λ = (nm)−1‖X>W̃‖, (3.8)
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where W̃ij = 1(Uij ≤ 0) − τ , {Uij} for i = 1, ..., n and j = 1, ...,m are i.i.d. uniform

(0,1) random variables, independently distributed from the input variables X1, ...,Xn. The

random variable Λ is pivotal conditioning on design X, as it does not depend on unknown

parameter Γ. Notice that (nm)−1X>W̃ is the score ∇Q̂τ (Γ). Set

λ = 2 · Λ(1− α|X), (3.9)

where Λ(1− α|X)
def
= (1− α)-quantile of Λ conditional on X, and c is an absolute constant.

This is consistent with the pivotal principle applied in the high-dimensional quantile regres-

sion of Belloni and Chernozhukov (2011) and square-root Lasso Belloni et al. (2011). The

choice of the statistics (3.8) is motivated by ∇Q̂(Γ), which plays a crucial role in oracle

inequalities in Section 4.

4. Oracle inequalities

In this section we present the non-asymptotic oracle bounds of the estimator Γ̂ defined

in (2.6). The main results are Theorem 4.1 and Corollary 4.1, which are established through

the convexity and geometric argument of Belloni and Chernozhukov (2011), concentration

inequalities, and E-net arguments.

Our risk bounds resemble the corresponding results of multivariate regression for mean,

such as those in Negahban and Wainwright (2011) and Koltchinskii et al. (2011). We will

compare our results to theirs in Remark 4.1. Koltchinskii (2013) presents an oracle inequality

for excess risk on nuclear norm penalized convex empirical risk minimization. We cannot

apply their result because our quantile loss function is not differentiable. In a novel paper,

Belloni and Chernozhukov (2011) develop theory for high-dimensional Lasso estimator of

non-multivariate regression for quantiles. The idea to prove their main theorem is very

general and can be adapted to our case of multivariate regression for quantiles. However,

some technical properties still need to be established before their method can be applied.

Let (X1,Y1), ..., (Xn,Yn) be i.i.d. copies of (X,Y ) random vectors in Rp+m. Recall

ρτ (u) = u(τ − 1{u ≤ 0}) and its subgradient ψτ (u) = τ − 1(u ≤ 0), and that Γ̂ is defined as
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(2.6). Recall also the empirical loss

Q̂τ (S) = (nm)−1

n∑
i=1

m∑
j=1

ρτ
(
Yij −X>i S∗j

)

and its expectation Qτ (S). We define Γ be the minimizer of Qτ (S), and the difference

∆̂ = Γ̂− Γ. The subgradient for the empirical loss function Q̂τ (Γ) is the matrix

∇Q̂τ (Γ) = (nm)−1

n∑
i=1

XiW
>
i = (nm)−1X>W ∈ Rp×m,

where X is the design matrix and

Wi
def
=
(
1(Yij −X>i Γ∗j ≤ 0)− τ

)
1≤j≤m , W = [W1, ...,Wn]> ∈ Rn×m.

In what follows we generalize the support of vector to matrix by projections. If A ∈ Rp×m is

of rank r, and the singular value decomposition of A is A =
∑r

j=1 σ(A)ujv
>
j with orthogonal

vectors u1, ...,ur ∈ Rp and v1, ...,vr ∈ Rm, the support of A is defined by (S1, S2) in which

S1 = span{u1, ...,ur} and S2 = span{v1, ...,vr}. We define the projection matrix on S1 by

P1 = Ur(U
>
r Ur)

−1U>r = UrU
>
r in which Ur is a p × r matrix whose columns are formed

by {u1, ...,ur}, and U>r Ur = Ir because {u1, ...,ur} is an orthonormal basis. Similarly,

P2 = VrV
>
r . On the other hand, define the orthogonal projection of P1 and P2 by P⊥1 and

P⊥2 . For any matrix S ∈ Rp×m, we define the projections:

PA(S)
def
= S−P⊥1 SP⊥2 ; P⊥A(S)

def
= P⊥1 SP⊥2 .

Define the cone

K(Γ; c0)
def
=
{
S ∈ Rp×m : ‖P⊥A(S)‖∗ ≤ c0‖PA(S)‖∗

}
. (4.1)

Assumption 4.1 (Sampling setting). Samples (X1,Y1), ..., (Xn,Yn) are i.i.d. copies of

(X,Y ) random vectors in Rp+m. F−1
Yij |Xi

(τ |x) = x>Γ∗j(τ). Conditioning on Xi, Yij is

independent in j.
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Assumption 4.1 postulates that the data are i.i.d and there is no cross-sectional depen-

dence in Yi1, ..., Y1m conditioning onXi. This suggests that all dependency in the components

of Yi is captured by the covariatesXi. This assumption is stronger than that usually required

for factor models, for which uncorrelatedness is often sufficient.

Assumption 4.2 (Covariance matrix condition). Let the covariance matrix of X be ΣX ,

assume that 0 < σmin(ΣX) < σmax(ΣX) < ∞. Moreover, assume the sample covariance

matrix of covariates Σ̂X = 1
n
X>X satisfies

P
[
σmin(Σ̂X) ≥ c1σmin(ΣX), σmax(Σ̂X) ≤ c2σmax(ΣX)

]
≥ 1− γn. (4.2)

When the covariates come from a joint p-Gaussian distribution N(0,ΣX), Lemma C.3 in

the supplement material shows that (4.2) holds with c1 = 1/9, c2 = 9 and γn = 4 exp(−n/2).

Assumption 4.3 (Conditional density condition). There exist f > 0 and f̄ ′ <∞ such that

| ∂
∂yj
fYij |Xi

(yi|x)| ≤ f̄ ′ and infj≤m infx fYij |Xi
(x>Γ∗j|x) ≥ f , where fYij |Xi

is the conditional

density function of Yij on Xi.

Similar condition as Assumption 4.3 can be found in Belloni and Chernozhukov (2011).

The quantity f controls the curvature of the population loss function, which can influence

the estimation error. Negahban et al. (2012) give an extensive account on this issue.

Assumption 4.4 (Restricted eigenvalue and nonlinearity). For a given probability distri-

bution Π for X,

βΓ,3
def
= inf

{
β > 0 : β‖PΓ(∆)‖F ≤ ‖∆‖L2(Π), ∀∆ ∈ K(Γ, 3)

}
> 0, (4.3)

ν
def
=

3

8

f

f̄ ′
inf

∆∈K(Γ,3)
∆ 6=0

‖∆‖3
L2(Π)

m−1
∑m

j=1 E[|X>i ∆∗j|3]
> 0, (4.4)

where ‖S‖2
L2(Π)

def
= m−1 EΠ ‖S>Xi‖2

2.

The cone K(Γ, 3) appears often in Lasso literature, for example in Bickel et al. (2009)

and Negahban and Wainwright (2011) among others. Similar assumption on the existence of

constant βΓ,3 can also be found in Negahban and Wainwright (2011) and Koltchinskii et al.
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(2011). From Assumption 4.2 and the fact that ‖PΓ(∆)‖F ≤ ‖∆‖F, we have a rough lower

bound βΓ,3 ≥ m−1/2
√
σmin(ΣX).

The restricted nonlinearity constant ν is proposed by Belloni and Chernozhukov (2011),

which is used to control the quality of minorization given in Lemma 4.2 (i). Section 2.5 of

Belloni and Chernozhukov (2011) calculate ν for various data generating processes under

different design.

The following lemma asserts that the empirical error Γ̂−Γ lies in the cone K(Γ, 3). The

detailed proof can be found in the supplement material.

LEMMA 4.1. Suppose λ ≥ 2‖∇Q̂(Γ)‖ and ∆̂ = Γ̂ − Γ. Then ‖P⊥Γ (∆̂)‖∗ ≤ 3‖PΓ(∆̂)‖∗.

That is, ∆̂ ∈ K(Γ, 3).

The next lemma characterizes useful properties which will be used later. The detailed

proof can be found in the supplement material.

LEMMA 4.2. Under Assumptions 4.3 and 4.4, we have

(i) If ‖∆‖L2(Π) ≤ 4ν and ∆ ∈ K(Γ, 3), Qτ (Γ + ∆)−Qτ (Γ) ≥ 1
4
f‖∆‖L2(Π);

(ii) If ∆ ∈ K(Γ, 3), ‖∆‖∗ ≤ 4
√

2r
βΓ,3
‖∆‖L2(Π), where r = rank(Γ).

The following technical lemma characterizes the convergence rate on the empirical error

of the loss function. In the proof we repeatedly apply the Hoeffding’s inequalities and

Assumption 4.2. The detailed proof can be found in the supplement material.

LEMMA 4.3. Under Assumptions 4.1-4.4. Let

A(t) = sup
‖∆‖L2(Π)≤t,∆∈K(Γ,3)

∣∣∣∣Gn

[
m−1

m∑
j=1

(
ρτ{Yij −X>i (Γ∗j + ∆∗j)} − ρτ{Yij −X>i Γ∗j}

)]∣∣∣∣.
(4.5)

Then

A(t) ≤
(√

2{τ ∨ (1− τ)}
C ′

+ 2

)
αt
√
c2σmax(ΣX) log(p+m)

m

with probability greater than 1− 9(p+m)−2− γn, where c2, C
′ are universal constants from

Assumption 4.2 and Lemma C.1 in the supplement material, α = 4
√

2r
βΓ,3

with r = rank(Γ),

βΓ,3 from Assumption 4.4, and p+m > 3.
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The following theorem derives the bounds for the prediction error, Frobenius and nuclear

norm, expressed in terms of λ, condition number ΣX , τ and f . The proof follows similar

steps as proving Theorem 2 in Belloni and Chernozhukov (2011), which explicitly exploits

the convexity of the loss function and the cone condition.

THEOREM 4.1. Under Assumptions 4.1-4.4, λ ≥ 2‖∇Q̂(Γ)‖ and the growth condition on

r:

(
Cτ

√
σmax(ΣX) log(p+m)

m
√
nf

+
λ

f

)
4
√

2r

βΓ,3

< ν. (4.6)

Then

‖Γ̂− Γ‖L2(Π) ≤ 4Cτ
α
√
σmax(ΣX) log(p+m)

m
√
nf

+ 4λ
α

f
(4.7)

‖Γ̂− Γ‖F ≤ 4Cτ
α√
mf

√
σmax(ΣX)

σmin(ΣX)

√
log(p+m)

n
+ 4λ

√
mα

σmin(ΣX)f
(4.8)

‖Γ̂− Γ‖∗ ≤ 4Cτ
α2
√
σmax(ΣX)

mf

√
log(p+m)

n
+ 4λ

α2

f
(4.9)

with probability 1−9(p+m)−2−γn, where α = 4
√

2r
βΓ,3

with r = rank(Γ), βΓ,3 from Assumption

4.4, Cτ =

(√
2{τ∨(1−τ)}

C′
+ 2

)
√
c2, C ′ > 0 is a universal constant from Lemma C.1 in the

supplement material, c2 from Assumption 4.2 and p+m > 3.

Proof of Theorem 4.1. Let

Ω1 = the event that Assumption 4.2 holds;

Ω2 = the event A(t) ≤ Cτ
αt
√
σmax(ΣX) log(p+m)

m
.

Note that the probability of event P(Ω1 ∩ Ω2) ≥ 1− γn − 9(p+m)−2. Set

t = 4Cτ
α
√
σmax(ΣX) log(p+m)

m
√
nf

+ 4λ
α

f
> 0.

We show that on Ω1∩Ω2, ‖X>∆̂‖ > t is infeasible. Let ∆̂ = Γ̂−Γ. On event {‖X>∆̂‖ ≥ t},
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from Lemma 4.1, one has

0 > inf
‖∆‖L2(Π)≥t,∆∈K(Γ,3)

Q̂τ (Γ + ∆)− Q̂τ (Γ) + λ(‖Γ + ∆‖∗ − ‖Γ‖∗), (4.10)

As argued in the proof of Theorem 2 of Belloni and Chernozhukov (2011), from the facts

that

1. Q̂τ (·) + λ‖ · ‖∗ is convex;

2. K(Γ, 3) is a cone,

(4.10) forces the value of Q̂τ (Γ+∆) +λ‖Γ+∆‖∗ on {∆ : ‖∆‖L2(Π) ≥ t,∆ ∈ K(Γ, 3)} to be

less than that evaluated at ∆ = 0. Convexity implies that Q̂τ (Γ+∆)+λ‖Γ+∆‖∗ evaluated

at {∆ : ‖∆‖L2(Π) = t,∆ ∈ K(Γ, 3)} must be smaller than that evaluated at ∆ = 0. Thus,

we have the inequality

0 > inf
‖∆‖L2(Π)=t,∆∈K(Γ,3)

Q̂τ (Γ + ∆)− Q̂τ (Γ) + λ(‖Γ + ∆‖∗ − ‖Γ‖∗),

It can be further deducted that

0 > inf
‖∆‖L2(Π)=t,∆∈K(Γ,3)

Qτ (Γ + ∆)−Qτ (Γ)− n−1/2A(t) + λ(‖Γ + ∆‖∗ − ‖Γ‖∗),

By triangle inequality,
∣∣‖Γ+∆‖∗−‖Γ‖∗

∣∣ ≤ ‖∆‖∗ ≤ α‖∆‖L2(Π) = αt on the set {‖∆‖L2(Π) =

t,∆ ∈ K(Γ, 3)}. Furthermore, by Lemma 4.3, on event Ω1 ∩ Ω2

A(t) ≤ Cτ
α
√
σmax(ΣX) log(p+m)

m
t.

Therefore, on event Ω1 ∩ Ω2, it holds from Lemma 4.2 (ii) that

0 > inf
‖∆‖L2(Π)=t,∆∈K(Γ,3)

Qτ (Γ + ∆)−Qτ (Γ)− Cτ
α
√
σmax(ΣX) log(p+m)

m
√
n

t− λαt,
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Finally, applying Lemma 4.2 (i) as ν > t/4 = ‖∆‖L2(Π)/4, we have

0 > inf
‖∆‖L2(Π)=t,∆∈K(Γ,3)

1

4
ft2 − Cτ

α
√
σmax(ΣX) log(p+m)

m
√
n

t− λαt. (4.11)

With our choice of t, (4.11) cannot hold. Thus, the inequality (4.7) holds.

The inequality (4.8) can be obtained by the simple observation that ‖∆‖2
L2(Π) ≥ (σmin(ΣX)/m)‖∆‖2

F.

The inequality (4.9) for ‖∆̂‖∗ follows from the fact that ∆̂ ∈ K(Γ, 3) by Lemma 4.1,

Lemma 4.2 (ii) and the bound for ‖∆̂‖L2(Π).

Next lemma gives the bound for 1
n
‖X>W‖. From which we obtain a bound for ‖∇Q̂(Γ)‖.

The detailed proof can be found in the supplement material.

LEMMA 4.4. Under Assumption 4.1 and 4.2,

1

n
‖X>W‖ ≤ C∗

√
σmax(ΣX){τ ∨ (1− τ)}

√
p+m

n
, where C∗ = 4

√
2
c2

C ′
log 8 (4.12)

with probability greater than 1− 3e−(p+m) log 8 − γn, where C ′ and c2 are absolute constants

given by Lemma C.1 in the supplement material and Assumption 4.2.

Let us take the rough bound βΓ,3 ≥ m−1/2
√
σmin(ΣX). Lemma 4.4 and Lemma 4.1

suggest to take

λ = 2
C∗

m

√
σmax(ΣX){τ ∨ (1− τ)}

√
p+m

n
. (4.13)

By the choice (4.13), Theorem 4.1 yields the oracle rate, which we summarize in Corollary

4.1.

The last result in this section gives the rate of convergence under the choice of λ given

in (4.13), which will be the guideline for simulation comparison in Section 5.

COROLLARY 4.1. Assume that Assumptions 4.1-4.4 hold and select λ as (4.13). Under

the growth condition on r:

C ′τ
f
√
m

√
σmax(ΣX)

σmin(ΣX)

√
τ ∨ (1− τ)

(√
log(p+m)

n
+

√
p+m

n

)√
r < ν. (4.14)
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Then

‖Γ̂− Γ‖L2(Π) ≤
C ′τ
f
√
m

√
σmax(ΣX)

σmin(ΣX)

√
τ ∨ (1− τ)

√
r

(√
log(p+m)

n
+

√
p+m

n

)
, (4.15)

‖Γ̂− Γ‖F ≤
C ′τ
f

√
σmax(ΣX)

σ2
min(ΣX)

√
τ ∨ (1− τ)

√
r

(√
log(p+m)

n
+

√
p+m

n

)
, (4.16)

‖Γ̂− Γ‖∗ ≤
C ′′τ
f

√
σmax(ΣX)

σ2
min(ΣX)

√
τ ∨ (1− τ)r

(√
log(p+m)

n
+

√
p+m

n

)
, (4.17)

with probability greater than 1− γn − 9(p+m)−2 − 3e−(p+m) log 8 and p+m > 3, where

C ′τ = 8
√

2

[(√
2

C ′
+

2√
τ ∨ (1− τ)

)
√
c2 ∨ 4

√
2
c2

C ′
log 8

]
, (4.18)

C ′′τ = 4
√

2C ′τ with r = rank(Γ), βΓ,3 from Assumption 4.4 and c2 from Assumption 4.2.

Proof of Corollary 4.1. Let events Ω1 and Ω2 be defined as in the proof of Theorem 4.1, and

Ω3 = the event that
1

n
‖X>W‖ ≤ C∗

√
‖ΣX‖{τ ∨ (1− τ)}

√
p+m

n
.

Note that the probability P(Ω1∩Ω2∩Ω3) ≥ 1−γn−9(p+m)−2−3e−(p+m) log 8. On Ω1∩Ω2∩Ω3,

the bounds (4.7), (4.8), (4.9), and (4.12) hold. Inserting the rate of λ in (4.13) and the lower

bound βΓ,3 ≥ m−1/2
√
σmin(ΣX) into (4.7), (4.8),and (4.9) yields bounds (4.15), (4.16),and

(4.17).

REMARK 4.1. 1. The restricted nonlinearity constant ν enters the bounds only through

the growth condition (4.14) on r. This corresponds to the Lasso for quantile regression

of Belloni and Chernozhukov (2011).

2. Component of the risk bounds: Corollary 4.1 shows that the errors are close to the

estimation error given the true model. The bounds (4.15), (4.16), and (4.17) consist

of three components: the dimensionality, covariance matrix of the covariates and con-

ditional density of Y given X. When p and m are fixed with respect to n, the errors

decrease in n−1/2. p and m are allowed to grow with n; however, they are not allowed

to grow faster than n. This phenomenon is also found in the multivariate regression for
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mean, see Negahban and Wainwright (2011), Koltchinskii et al. (2011) among others.

Rank r of matrix Γ enters the bound as a factor, and r(p + m) is the number of un-

known parameters. The covariates can influence the bounds (4.15), (4.16), and (4.17)

through the condition number σmax(ΣX)
σmin(ΣX)

of the covariance matrix ΣX . Large condition

number also introduces instability to multivariate regression for quantiles as for mean.

Finally, the minimal value of densities f and the quantile level τ are related to the

conditional distribution of Yij give Xi and are only seen in multivariate regression for

quantiles. We show in (4.15), (4.16), and (4.17) that small minimal value of densities

f , which may result from the large support of Yij, can result in inaccurate estimation.

On the other hand, the estimation at τ close to 0 or 1 is also difficult as τ ∨ (1 − τ)

enters as a factor to the estimation errors.

5. Simulation

In this section we check the performance of the proposed method via Monte Carlo simu-

lations and verify the oracle properties in Section 4. In the first set of simulation, we consider

three symmetric models, which are different in terms of the degree of sparsity. In the second

set of simulation, an asymmetric setting is considered with two different degree of sparsity.

We consider three symmetric models with different degrees of sparsity in Section 5.1. Section

5.2 is devoted to two asymmetric models.

5.1. Symmetric models

We consider three models that differ in complexity:

• Model LS (Less sparse): Set m = p = n = 500. In each iteration, each entry of the

p ×m coefficient matrix Γ is generated from a i.i.d. normal distribution. Setting the

last 375 singular values of Γ to 0;

• Model MS (Moderate sparse): Generating Γ as Model LS. Setting the first 10 singular

values to 30, and 0 for the rest;
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• Model ES (Extremely sparse): Generating Γ as Model LS. Replacing the first singular

values by 20, and 0 for the rest.

Given the Γ generated by the model above, at each iteration, we generate Xi from N(0,Σ)

with σij = 0.5|i−j|. The response variable is generated as

Yi = Γ>Xi + εi, (5.1)

where εi is a random vector in which each element is from i.i.d. standard normal distribution.

We estimate the model at quantile levels τ = 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95. In order

to get some ideas on the solution path, we set λ = (5 × 10−6, 10−5, 5 × 10−5, 10−4) for

comparison purpose. For reference, using the tuning technique in Section 3, the simulated

λ = (0.00477, 0.00465, 0.00438, 0.00346) for τ = 5%, 10%, 20%, 50%. The λ for τ = 95%, 90%

and 80% are the same as that of τ = 5%, 10%, 20% by symmetry. The iteration run is 500.

We stop the SFISTA algorithm at step t when the difference of loss function at step t−1

and t is less than 10−6. Moreover, considering the size of our model and the choice of κ in

the simulation study of Chen et al. (2012), we directly set κ = 0.0001, rather than applying

the κ given by Theorem 3.2.

The performance of Γ̂ is measured by:

• Prediction error: m−1‖X(Γ̂− Γ)‖F;

• Model selection: Frobenius error ‖Γ− Γ̂‖F and nuclear error ‖Γ− Γ̂‖∗;

• Estimated number of nonzero singular values;

• Computational time.

The number of nonzero singular values is determined by the sudden drop in singular values

of Γ̂. If the drop from r̂th singular value to (r̂ + 1)th singular value is greater than a given

threshold, then we record the number of nonzero singular values as r̂. Notice that the three

symmetric models only differ in sparsity. From the simulation, we can clearly see what role

sparsity plays.
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The results are shown as boxplots from Figure 5.2 to 5.4. Each figure consists of five

rows, which presents the prediction error, Frobenius error, nuclear error, estimated number

of factors and the computational time, and the columns correspond to different values of λ.

The errors as functions in τ of the three models show ”V” shape. This confirms the

term τ ∨ (1 − τ) appeared in the oracle bounds in Theorems 4.1. Furthermore, the model

complexity rank(Γ) influences the error. Among the three models, the errors are smaller in

the most sparse Model ES and larger in the less sparse Model LS. This confirms the factor

rank(Γ) appeared in the oracle bounds given in Theorems 4.1.

The λ inducing the smallest error in the simulation of each model slightly differs. Notice

that all components involved in selecting λ in (4.13) are equivalent for the three symmetric

models, so the optimal λ should be the same for the three models. In addition, λ changes

the way how errors depend on τ . In Model LS, the ”V” shape shown in the Frobenius and

nuclear deviation becomes more flat. Hence, in such model we should choose a smaller λ

when the quantile at level τ = 0.5 is to be estimated, and a bigger λ when the quantiles at

τ close to 0 or 1 are to be estimated.

The number of factors selected for the three models are generally accurate. We find that

for τ = 0.5 the algorithm almost always makes correct selection for all the choices of λ and

all the three symmetric models. For Model ES the algorithm selects the correct number of

factors even for τ = 0.2, 0.8 when λ is large. For other τ , particularly the extremes ones

close to 0 or 1, it is more difficult to recover the true number of factors.

About the computational efficiency of our algorithm, the time required for the algorithm

to converge increases with the complexity. This fact corresponds to the term ‖Γ∗ − Γ0‖F

in inequality (3.7). When we look at the most sparse Model ES Figure 5.4, the algorithm

converges in less than 80 seconds in the best case λ = 10−5. For Model LS and MS, smaller

choices of λ usually imply longer time for the algorithm to converge, while larger choices of

λ allow the algorithm to converge in less than 250 seconds for Model LS and 100 seconds for

Model MS. On the other hand, τ has influence on the convergence time, which corresponds

to the inequality (3.7) and the third point of Remark 3.1. For example, in the last row of

Figure 5.2 and 5.3, the case τ = 0.5 takes least time when λ is small, but this situation
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reverses in the most sparse Model ES.

5.2. Asymmetric models

To further illustrate our method, beside adjusting the level of sparsity as done in Section

5.1, in this section we specify asymmetric models for the conditional distribution of Yij. Let

Γ1 and Γ2 be two p×m matrices of rank r1 and r2 with following two specifications:

• Model AES (asymmetric extremely sparse): (r1, r2) = (2, 2);

• Model AMS (asymmetric moderately sparse): (r1, r2) = (2, 10).

For each model, two matrices Γ1 and Γ2 are chosen:

1. Generating vectors {a1, ..., ar1} and {b1, ..., br2} in Rp. The components of each vector

are i.i.d. uniform distributed random variables supported on [0, 1];

2. Each jth column in Γ1 is
∑r1

k=1 αk,jak where αk,j are independent random variables

in U [0, 1]; similarly, each jth column in Γ2 is
∑r2

k=1 βk,jbk where βk,j are independent

random variables in U [0, 1].

Now we discuss the data generation. Let Uij be i.i.d. uniform random variable supported

on [0, 1], i = 1, ..., n and j = 1, ..., 500. Generating X̃i from N(0,Σ) with σij = 0.5|i−j| and

then setting Xi = Φ(X̃i). Xi will have support [0, 1]p and be correlated according to Falk

(1999). The response variables are generated by

Yij = Φ−1(Uij)X
>
i [Γ1,∗j1(Uij < 0.5) + Γ2,∗j1(Uij ≥ 0.5)] , (5.2)

where Φ(·) is the cdf of N(0, 1). Yi is i.i.d. by construction. Notice that when conditioning

on Xi, the randomness comes only from Uij, which is independent of Xi. Hence, Yij is

independent in j when conditioning on Xi.

The exact conditional quantile function qj(τ |x) of Yij on x is

qj(τ |x) = Φ−1(τ)x>Γ1,∗j, τ < 0.5;

qj(τ |x) = Φ−1(τ)x>Γ2,∗j, τ ≥ 0.5,
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for j = 1, ..., 500. Note that at Φ−1(0.5) = 0, and therefore the coefficient matrix at τ = 0.5

is 0.

Figure 5.1 gives an illustration of the marginal densities of Yij for j = 1, ...500. The left

figure is associated with Model AMS in which the densities tend to be asymmetric, in the

sense that they have thick right tails and thin left tails. The densities are also more disperse.

The right figure is associated with Model AES, and the densities are more symmetric and

less disperse.
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Figure 5.1: The plot of all 500 marginal densities of Yi in asymmetric models. The left figure
is associated with Model AMS in which the densities tend to be asymmetric (thick right tails
and thin left tails). The right figure is associated with Model AES in which the densities are
more symmetric.

The simulation run is 500. The measure of performance is the same as that of symmetric

models. In this simulation, we select λ = (0.005, 0.01, 0.05, 0.1). The numerical performance

of the asymmetric model is shown in Figure 5.5 and 5.6. For reference, the simulated λ

for τ = 5%, 10%, 20%, 50% are λ = (0.002308, 0.002310, 0.002314, 0.002308). The λ for

τ = 95%, 90% and 80% are the same as that of τ = 5%, 10%, 20% by symmetry.

Some patterns can be observed from the simulated estimation errors of the two models.

Despite the fact that Γ1 6= Γ2, the asymmetry in distribution is not significant and the error

as a function of τ from Model AES is in symmetric ”V” shape. This again corresponds to

the factor τ ∨ (1− τ) in Theorems 4.1. In terms of the choice of λ, small λ appears to give

smaller errors for both models. However, the errors corresponding to τ > 0.5 in Model AMS

are notably higher than those in Model AES. This is owing to the fact that the matrix Γ2
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in Model AMS is less sparse than Model AES. This simulation result confirms the factor

rank(Γ) in the oracle bounds in Section 4.

The number of nonzero singular values is almost always correctly estimated in Model

AES. As expected, the estimated number of nonzero singular values of Model AMS is higher

than that in Model AES when τ > 0.5. However, we find that the estimated number of

nonzero singular values is 2 in Model AES and between 5-7 in Model AMS, seemingly the

average of the rank of Γ1 and Γ2. However, the true number of nonzero singular values at

τ = 0.5 is exactly 0. This shows that the singular values are hard to be accurately estimated

if the coefficient matrix Γτ is not continuous in τ .

The computational time generally follows the rule of (3.7). When λ is small, we find that

the variation of τ = 0.5 tends to be large. Due to high rank(Γ2) in Model AMS, it is more

computationally demanding to recover Γ̂τ for τ > 0.5, as implied by the term ‖Γ∗τ − Γ0,τ‖F

in inequality (3.7).
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6. Real data application: SAMCVaR model

In this section, we apply the regularized multiple quantile regression on financial data.

In Section 6.1, we propose a modification of CAViaR model. Section 6.2 deals with the

data selection and choice of the tuning parameter λ. Section 6.3 is devoted to the empirical

findings.

6.1. Model

Since Engle and Manganelli (2004) proposed the conditional autoregressive value at risk

(CAViaR) model, financial econometricians have applied it in many empirical studies and

proposed many variations for it. The model analyses a univariate autoregressive structure in

quantiles, which does not account for the interdependence of asset returns. As the financial

spillover effect has been widely understood as a risk source, the quantification of spillover

effects has been an important issue for financial econometricians.

White et al. (2008) introduce a multi-quantile modification of CAViaR (MQ-CAViaR),

which allows a sequence of conditional quantile of asset returns to depend on each other.

Combining with the robust estimation for skewness and kurtosis using quantiles of Kim and

White (2004), they study the time varying patterns of higher moments of asset returns. In

White et al. (2015), they consider the spillover effect in asset returns by the multivariate

MQ-CAViaR (MVMQ-CAViaR) model, which combines the MQ-CAViaR models of a set of

asset returns. Nonetheless, they estimated a simpler bivariate CAViaR for each asset return

with a single universal market index, for which they took the World Financials price index

provided by Datastream.

In contrast to previous models, we consider a multivariate model which jointly incorpo-

rates multiple asset returns. Let Yj,t be the asset return for firm j, j = 1, ...,m, at time

t, t = 1, ..., T . Let qt,j(τ |Ft−1) be the conditional quantile at level τ for asset return j at

time t on filtration Ft−1. From the spirit of multivariate CAViaR, we consider the Sparse
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Asymmetric Multivariate Conditional Value-at-Risk model (SAMCVaR):

qt,j(τ |Ft−1) =
m∑
k=1

γ1,j,k(τ)|Yt−1,k|+
m∑
k=1

γ2,j,k(τ)Y −t−1,k, (6.1)

where Y − = max{−Y, 0} and Γ∗j(τ) = (γ1,j(τ)>,γ2,j(τ)>)> and γl,j(τ) = (γl,j,1(τ), ..., γl,j,m(τ))

for l = 1, 2. The rank r of Γ satisfies r � m. Following the discussion in Section 2, we

impose the condition that
∑r

k=1 ψ
2
j,k ≤ 1. Let

Xt−1 = (|Yt−1,1|, ..., |Yt−1,m|, Y −t−1,1, ..., Y
−
t−1,m)> ∈ R2m. (6.2)

We may therefore rewrite (6.1) as

qt,j(τ |Ft−1) = qt,j(τ |Xt−1) = X>t−1Γ∗j(τ).

If letting qt(τ |Xt−1) = (qt,1(τ |Xt−1), ..., qt,m(τ |Xt−1))> be a vector of quantiles of all the

firms in the sample, then qt(τ |Xt−1) = Γ>Xt−1, where Γ = [Γ∗1, ...,Γ∗m], and we have the

multivariate quantile regression model (2.4)

This model is a multivariate variation of CAViaR, and we replace the autoregressive

qt−1,j(τ) in CAViaR model by a dispersion measure |Yt−1,j| for asset j in the information

set at time t− 1. The inclusion of the lag negative return Y −t−1,j, which also appears in the

CAViaR model with ”asymmetric slope”, is based on the intuition that ”one bad day makes

the probability of the next somewhat greater” (Engle and Manganelli; 2004). Two major

features of model (6.1) are that the quantile of each firm is time-varying ; moreover, (6.1)

accounts for the spillover effect on financial firm j from financial firm l 6= j.

We estimate Γ via the nuclear norm regularized multivariate quantile regression. We

select τ = 1% and 99%, in which τ = 1% corresponds to the VaR of the asset returns, while

τ = 99% corresponds to the growth potential of the assets.

The factorisation described in Section 2 is applied to gain an insight into the common

structure. We factorise the covariates into factors ft,1(τ), ..., ft,r(τ) where r � m by using

the left singular vectors of Γ. We investigate two aspects related to the factors. The first
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is how a firm Yt−1,j contributes to the factor; the second is how sensitive the conditional

quantile of a firm is relative to the factor. We may study the contribution of firm j to the

variation of the market by the coefficients associated to the two transformations |Ytj|, Y −tj in

the factor fk:

Contribution from component j to fk(τ) :
∂fk(τ)

∂(|Yj|, Y −j )
= (ϕ1,k,j, ϕ2,k,j). (6.3)

Note that the contribution from component j to fr(τ) does not vary over time. On the other

hand, the sensitivity to the variation of the market can be described by

Sensitivity of j quantile to fk(τ) :
∂qj(τ |X)

∂fk(τ)
= ψj,k. (6.4)

With the singular value decomposition Γ = UDV>, the contribution of j firm to the

factor fk defined in (6.3) can be computed by the j, j + m element in the U∗k ∈ R2m times

σk, where σk is the kth singular value on the diagonal of D. The quantity in (6.4) can be

found by the kth component in Vk∗.

6.2. Data and tuning

We obtain a set of stock prices consists of m = 230 major global financial firms. The

dataset can be downloaded from Simone Manganelli’s website, which is used in White et al.

(2015). Their data period is from Dec. 31, 1999 to Aug. 6, 2010. The regional and industrial

characteristics can be found in Table 1 of White et al. (2015), which we include in Table 6.1

for completeness.

Bank Financial Service Insurance Total
EU 47 22 27 96
North America 25 17 28 70
Asia 47 14 3 64
Total 119 53 58 m = 230

Table 6.1: The summary of financial firms in the data.

We use the data from August 31, 2007 to August 6, 2010. There are 766 closing prices
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for each stock in the sample. We compute the daily log-return. This results in sample size

n = 765. The dimension of the input variables Xt is p = 2m = 460, as we consider two

transformations for each asset return, as in formula (6.2). Figure 6.1 shows the time series

plots of the log-returns of the 230 financial institutions over this data period, and a plot of

volatility index (VIX) kept by Chicago Board Options Exchange. The plot of asset returns

suggests there are two large high volatility clusters before and after the beginning of the year

2009, which corresponds to the subprime mortgage crisis. Another phase of volatility increase

is around mid 2010, which corresponds to the rising concern of the European debt crisis. The

data show strong asymmetry, as the returns demonstrate high negative skewness. Though

VIX is constructed by the returns of the S&P500 constituents, it appears to approximate

the global financial risk too.
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Figure 6.1: The upper figure shows the time series plots of the 230 global financial institutions
with different grey level distributions and thicknesses. The lower figure shows the time series
of VIX.

To select the tuning parameter λ, applying the procedure described in Section 3 gives

λ = 0.02467565 for τ = 1%. By symmetry we also apply λ = 0.02467565 for τ = 99%.
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6.3. Empirical findings from global financial data

In this section we discuss the empirical findings from factorizing the multivariate quantile

regression (6.1) at level τ = 1% and 99%. After the factorisation by SVD, the time series

plot of the first two factors for the two sets of quantile regression are reported in Figure

6.2. Both first factors f 1(0.01) and f 1(0.99) are volatile and moving away from 0 at the end

of 2008 and in the first quarter of 2009, and mid 2010, which corresponds to the phases of

volatility increase as indicated in Figure 6.1. Moreover, as can be seen from the figures, the

two time series f 1(0.01) and f 1(0.99) are negatively correlated. The absolute scale of the

two second factors f 2(0.01) and f 2(0.99) are much smaller than the first factors. A sharp

peak appears in the plot of f 2(0.01) at the first quarter of 2009. The time series of f 2(0.99)

is volatile before and after the beginning of the year 2009.
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Figure 6.2: The time series plots for the first 2 factors. The black lines corresponds to 1%
quantile factors and the blue lines corresponds to 99% quantile factors.

In what follows, Section 6.3.1 presents the estimated factors and the analysis of τ -range

at τ = 1%. Section 6.3.2 presents the tail factor analysis at τ = 1%.

6.3.1. τ-range analysis

In this subsection we discuss the common structure of τ -range of global financial returns

with τ = 1%.
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First we consider the contribution to and the loadings associated with the first factor.

Figure 6.3 shows that the contribution to the first factors lie in the second quadrant, which

suggests that all the covariates have negative impact to the first factor of 1% multivariate

quantile regression, and positive impact to the first factor of 99% multivariate quantile

regression. The dots and firm names in black represent the lag absolute log-returns, and

they tend to lie around the diagonal line or even above it. This suggests that the absolute

lag log-returns tend to contribute equally to both f 1(0.01) and f 1(0.99), which is consistent

to the intuition that higher return in period t − 1 induces higher volatility in period t.

On the other hand, the lag negative part Y −t−1,j marked in red are more located below the

diagonal line, which suggests that the Y −t−1,j contributes more to f 1(0.01) than to f 1(0.99).

The well-known ”leverage effect” postulated by Black (1976) suggests the tendency that

the volatility of an asset is negatively correlated to the the asset return. Furthermore, it is

suggested that such effect is asymmetric: the coincidence between the loss in period t−1 and

larger volatility in period t is more frequent than the coincidence between the gain in period

t− 1 and lower volatility in period t, as documented by Engle and Ng (1993). However, as

volatility or variance is a symmetric measure of dispersion of distribution, it is incapable of

revealing information of the potentially asymmetric contribution to such dispersion. Figure

6.3 uncovers the fact that the increasing dispersion (volatility) of the distribution in asset

return in response to the nonnegative loss Y −t−1,j is largely due to the drop of lower quantile

factor f 1(0.01) rather than the rise of upper quantile factor f 1(0.99). In particular, such

increase in volatility creates as much impact in loss but relatively less potential in gain.

Figure 6.4 illustrate the loadings to the first factor of of 1% and 99% multivariate quantile

regression. The loadings are all positive, and lying on the 45 degree line, which suggests that

the firm highly associated with the first factor of 1% MQR would also be highly associated

with the first factor of 99% MQR. This implies that the direction of change in the τ -range

over the returns is similar, but the magnitudes is different. Indeed, the firms lying on the

far top right corner are the firms with high market risk sensitivity, including Huntington

Bancshares Inc., American International Group, Allied Irish Banks and more, whose time

series patterns best resemble that of the first factors f 1(0.01) and f 1(0.99). The return time
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Dots and firm name with ”–” in red denote the lag negative return Y −t−1,j.

series of several risky firms are shown in Figure 6.9, in the sense that during financial crisis

of 2008-2009, the range of their distribution is very disperse, which leads to large volatility.
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Second factors f 2(0.01) and f 2(0.99) describe the extreme market movement in the
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beginning of 2009. In Figure 6.5, the dots in black, corresponding to the contribution from

lag absolute returns, are more located above the line corresponding to zero contribution to

factor f 2(0.99), while the red dots, corresponding to the contribution from the lag negative

part, tend to gather below the line. This suggests again that the lag negative part has less

impact on the factor associated with the upper quantile. Moreover, the dots lying at far right

and separate from the other points are associated mainly with the Bank of Ireland, Allied

Irish Banks and the Royal Bank of Scotland Group, which lead to the peak of f 2(0.99).
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Dots and firm name with ”–” in red denote the lag negative return Y −t−1,j.

The factor loadings of firms on the second factor f 2(0.01) can be applied to distinguish

the firms being influenced most by the sharp peak of f 2(0.01) at the beginning of 2009. In

Figure 6.6, the loadings of asset returns on f 2(0.01) and f 2(0.99) are mainly distributed in

the first and third quadrants. The firms whose τ -range influenced negatively by the peak

of f 2(0.99) are in the second and third quadrants. In particular, the τ -range of the firms

located in the second quadrant shift downward at the beginning of 2009. On the contrary,

the τ -range of the firms located in the third quadrant expands at the beginning of 2009. The

τ -range expanding the most are PNC Financial Services Group, Inc., State Street, Lloyds
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6.3.2. Tail factor analysis

In this section, we discuss the empirical findings by looking at the contribution to and

the loadings associated with the first two factors of 1% multivariate quantile regression.

Figure 6.7 illustrates the contribution from the covariates to the first and second factor of

1% MQR. Lag negative returns concentrates on the lower right of the figure and is below the

horizontal line y = 0, and lag absolute returns spread around the horizontal line y = 0. The

absolute and negative lag return of Allied Irish Bank, Bank of Royal Scotland Group and

Bank of Ireland are more isolated and located at the top left corner, and are highly related

to the first and second factor of 1% MQR. This suggests that they have high association

with the downside risk of the global financial market.

Figure 6.8 shows the factor loadings of each firm on the first and second factors of 1%

MQR. The points are gathering on the top left with positive loadings on factor 2, and

then spreading to the lower right like a fan. The pattern suggests that the firms positively

associated with the first factor of 1% MQR tend to be negatively associated with the second

factor of 1% MQR. Together with the information that the first factor of 1% MQR is generally
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Dots and firm name with ”–” in red denote the lag negative return Y −t−1,j.

negative and the second factor of 1% MQR has a positive peak from Figure 6.2, Figure 6.8

implies that the firms lying on the lower right direction bear high market risk in our sample.

The similarity in the lower tail of the distribution can be inferred by the distance in Figure

6.8. The shorter the distance between the two points on Figure 6.8, the larger their similarity

is in the 1% quantile. For example, the distance between State Street and PNC Financial

Services Group, Inc. is close, and their 1% quantile time series have similar behavior, which

can be seen from their time series plots in Figure 6.9.
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7. Factor curves model

In this section, we extend the parametric linear multivariate quantile regression model

to a nonparametric model, in which the unknown conditional curves are approximated by

sieve spaces. Section 7.1 introduces the factorisable ”quantile curve” and the factor curves.

Section 7.2 deals with the estimation of the model. Section 7.3 applies the nonparametric

factorisable quantile curves on the temperature data of 159 weather stations from China and

classifies the primary patterns in Chinese temperature.

7.1. Model

For functional data, the concept of ”quantile” is not as well understood as that for a

usual univariate random variable. The functional data can be understood as the realizations

of a functional variable (see, e.g. Ferraty and Vieu (2006)), which is a map Y : Ω → C,

where Ω is the sample space and C is the set of all continuous function on T . Without loss

of generality, T can be a bounded interval. As an example, the standard Brownian motion

W (ω, t) is also a functional variable.

Definition 7.1 (Quantile curves). For 0 < τ < 1, the τ quantile curve qτ (t) of functional

variable Y is also a continuous function in t satisfying

P
(
{ω : Y (ω, t) ≤ qτ (t), ∀t ∈ T }

)
= τ.

For fixed t ∈ T , it holds that P
(
{ω : Y (ω, t) ≤ qτ (t), ∀t ∈ T }

)
= τ . Taking standard

Brownian motion W (t) as an example, the τ quantile of W (t) is qτ (t) =
√
tΦ−1(τ), where

Φ(·) is the cdf of standard normal distribution. When τ is close to 0 or 1, we call qτ (t) a tail

event curve.

Consider m functional variables Y1(t), ..., Ym(t), denote their quantile curves qτ,j(t). Sup-

pose that qτ,j(t) lies in F which is the class of functions f defined on [0, 1] whose sth derivative
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f (s) exists and satisfies a Lipschitz condition of order γ:

|f (s′)(t′)− f (s′)(t)| ≤ C|t′ − t|θ, for t′, t ∈ [a, b],

for s = s′ + θ > 0.5. We assume that s′ ≥ 1 and θ > 0 throughout the following discussion.

Based on the construction of Schumaker (1981) and Stone (1985), each function qτ,j ∈ F

can be approximated by an element qn,τ,j(t) ∈ Sn so that ‖qn,τ,j − qτ,j‖∞ = O(p−1
n ) (see the

discussion in p. 150 of Newey (1997)), where Sn is an expanding functional class with basis

functions {bl, 1 ≤ l ≤ pn}. Denote b(t) = (b1(t), ..., bpn(t)), so that

qn,τ,j(t) = Γ>∗jb(t), (7.1)

where Γ∗j is jth column of matrix Γ.

The timings of measurement are t1, ..., tn for all j. Denote B = (Bil) ∈ Rn×pn with

Bil = bl(ti) and Y = (Yij) ∈ Rn×m with Yij = Yj(ti). The matrix Γ can be viewed as the

coefficient matrix in the multivariate quantile regression model

qn,τ (t) = BΓ.

qn,τ (t) = (qn,τ,1(t), ..., qn,τ,m(t)), and Γ can be estimated as in Section 3, but now the covari-

ates are the values of the basis functions evaluated at t1, ..., tn.

Furthermore, model (7.1) is also factorisable. If the SVD of Γ is Γ = UDV> and the

number of singular values of Γ is r. Similarly to (2.5),

qn,τ,j(t) =
r∑

k=1

Vj,kf
τ
k (t), (7.2)

where f τk (t) = σkU
>
∗kb(t) may be called factor curves with factor loadings Vj,k.
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7.2. Estimation

Similar to Section 3, we minimize the following loss function:

(nm)−1

n∑
i=1

m∑
j=1

ρτ
(
Yij −B>i∗Γ∗j

)
+ λ‖Γ‖∗

def
= Q̂τ,b(Γ) + λ‖Γ‖∗, (7.3)

with ρτ (u) = u(τ − 1{u ≤ 0}) with given 0 < τ < 1.

The empirical loss Q̂τ,b(Γ) is non-smooth. Apply the approach in Section 3, the smoothed

version of Q̂τ,b(Γ) with a Lipschitz gradient is Q̂τ,b,κ(Γ). Algorithm 2 can be directly applied

by using Q̂τ,b,κ(Γ). The convergence analysis is similar to Theorem 3.2. The details are

omitted for brevity.

Algorithm 2: Smoothing fast iterative shrinkage-thresholding algorithm (SFISTA)

1 Input: Y, B, λ, κ = ε
2mn

, M = 1
κm2n2‖B‖2;

2 Initialization: Γ0 = 0, Ω1 = 0, step size δ1 = 1;
3 for t = 1, 2, ..., T do

4 Γt = Sλ/M

(
Ωt − 1

M
∇Q̂τ,b,κ(Ωt)

)
;

5 δt+1 =
1+
√

1+4δ2
t

2
;

6 Ωt+1 = Γt + δt−1
δt+1

(Γt − Γt−1);

7 end

8 Output Γ̂ = ΓT

For the choice of the number of spline basis pn, from bias and variance decomposition

of spline estimator (Huang; 2003), under the fact that the functions to be estimated in our

case are univariate, the convergence rate of the estimator is OP (p−sn +
√
pn/n). The order

of pn minimizes the convergence rate is n1/(2s+1). A usual assumption is s = 2.

7.3. Application: Chinese Temperature Data

In this section we apply the nonparametric multivariate regression model to real data.

We utilize the Chinese temperature data in the year 2008 from 159 weather stations around

China, which can be downloaded from the website of Research Data Center of CRC 649

of Humboldt-Universität zu Berlin. The dataset consists of one year time series of daily

averaged temperature.
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Before applying our method, we first fit a mean curve with smoothing spline which de-

scribes the mean temperature of China in the year 2008. In Figure 7.1, the bottom subfigure

is the fitted trend curve, which shows seasonal pattern. The detrended temperature time

series of 159 weather stations in the top figure of Figure 7.1 also demonstrate a seasonality

pattern. The deviation to the mean temperature is larger in winter than in summer among

these weather stations.
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Figure 7.1: The temperature time series in excess to national mean of the 159 weather
stations around China with different grey levels and thicknesses. The figure below is the
temperature trend curve estimated by smoothing spline.

We will apply the nonparametric multivariate quantile regression to further investigate

the detrended temperature curves. The B-spline basis functions are used, and the number

of basis function is p = dn0.4e = 11. The timing of measurement is daily t1, ..., t365. The

quantile levels are τ = 1% and 99%. We choose the tuning parameter λ by applying the

procedure of simulating (3.8) and compute λ by (3.9), the estimated value is λ = 0.000156.
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7.3.1. τ-range analysis

In this section, we present the factors and the τ -range analysis using the loadings to the

factor curves.

Figure 7.2 presents the first four factors. The first factor of 1% and 99% quantile regres-

sion enclose a region which is wide in both ends and narrow in the middle. This matches

our observation for Figure 7.1 that the deviation in temperature among weather stations

tends to be higher in winter but lower in summer. Moreover, the two first factors captures

two types of seasonality. The reverse V or U shape of the first factor of 99% multivariate

quantile regression represents a ”seasonality at high temperature”, while the V or U shape

of the first factor of 1% represents a ”seasonality at low temperature”.
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Figure 7.2: The time series plots for the first 4 factors. The black lines corresponds to 1%
quantile factors and the blue lines corresponds to 99% quantile factors.

The factor loadings of the first factor for 1% and 99% quantile regression demonstrate a

nearly ”L” shape, as shown in Figure 7.3. This suggests that the weather stations positively
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associated with the first factor of 1% multivariate quantile regression have almost no associ-

ation with the first factor of 99% multivariate quantile regression. Such dichotomy pattern

allows for classifying the weather stations into groups.

In Figure 7.3, the temperature curve of Tulihe has the highest factor loading in the first

factor of 1% multivariate quantile regression, while the temperature curve of Dongfang has

the highest factor loading in the first factor of 99% multivariate quantile regression. Thus,

Tulihe is classified as showing strong ”seasonality at low temperature” and Dongfang shows

strong ”seasonality at high temperature”. Notice that the factor loading to the first factor

of 99% multivariate quantile regression is slightly negative for Tulihe, and the factor loading

to the first factor of 1% multivariate quantile regression is close to 0 for Dongfang. Another

weather station marked in the figure is located in Yushu, which has small positive loadings

to the first factor of both 1% and 99% multivariate quantile regression, and is hard to be

classified to any of the two seasonality patterns.
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Figure 7.3: The plot of weather stations based on their factor loadings to 1% and 99%
multivariate quantile regression. Each point denotes a weather station in China.

7.3.2. Selected weather station analysis

This section discusses the three selected weather stations from Figure 7.3.
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Figure 7.4 shows the temperature plot, 1% and 99% quantile curves, and the location

of the three weather stations marked in Figure 7.3. Tulihe is located in far northeastern

Inner Mongolia, China, which is well-known for its bitter cold in winter and large temper-

ature difference between summer and winter. While the estimated 99% factors are mainly

influenced by the temperature curves from warmer areas, the reverse V-shaped yearly tem-

perature curve of Tulihe cannot be captured by the 99% factors, and the estimated curve is

flat. Dongfang, however, is located in tropics, and in winter at warmest the temperature is

25 degrees celsius higher than the national average. The estimated 1% factors dominated by

cold regions cannot fit the V-shaped yearly temperature curve of Dongfang, so its 1% quan-

tile curve is flat. Yushu is located in central west China and belongs to highland climate.

The average altitude in the region of Yushu is over 4000 meters. It has high temperature

variation within a day, and is generally slightly cooler in summer and warmer in winter than

the national average. The seasonality for Yushu is not significant, and both the 1% and 99%

factors do not fit Yushu’s yearly temperature curve well.
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Figure 7.4: Plots of temperature observations, 1%, and 99% temperature quantile curves at
the three selected weather stations in the year 2008. The location of the weather stations
are marked in the upper left map of China.
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