
Gurevich, Yuri; Yavorskaya, Tatiana

Working Paper

On Bounded Exploration and Bounded Nondeterminism

TechReport, Microsoft Research, No. 2006-07

Suggested Citation: Gurevich, Yuri; Yavorskaya, Tatiana (2006) : On Bounded Exploration and
Bounded Nondeterminism, TechReport, Microsoft Research, No. 2006-07, Microsoft Research,
Redmond,
http://research.microsoft.com/apps/pubs/default.aspx?id=70259

This Version is available at:
https://hdl.handle.net/10419/121998

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
http://research.microsoft.com/apps/pubs/default.aspx?id=70259%0A
https://hdl.handle.net/10419/121998
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


On Bounded Exploration and Bounded
Nondeterminism

Yuri Gurevich and Tatiana Yavorskaya

January 2006



Abstract

This report consists of two separate parts, essentially two oversized foot-
notes to the article “Sequential Abstract State Machines Capture Sequential
Algorithms” by Yuri Gurevich.

In Chapter I, Yuri Gurevich and Tatiana Yavorskaya present and study a
more abstract version of the bounded exploration postulate.

In Chapter II, Tatiana Yavorskaya gives a complete form of the characteriza-
tion, sketched in the original paper, of bounded-choice sequential algorithms.



Chapter 1

A more abstract bounded
exploration postulate

Yuri Gurevich and Tatiana Yavorskaya

Abstract

In his article “Sequential Abstract State Machines Capture Sequential Algo-
rithms”, Gurevich defines a sequential algorithm by means of three postu-
lates: sequential time, abstract state, and bounded exploration postulates.
Here we give another bounded exploration postulate such that (a) the new
postulate is more abstract and is closer in spirit to the abstract state postu-
late than the original one, and (b) in the presence of the sequential time and
abstract state postulates, the new bounded exploration postulate is equiva-
lent to the original.

1



1.1 Introduction

According to [1], a sequential algorithm is any object A satisfying the sequen-
tial time postulate, the abstract state postulate and the bounded exploration
postulate. We presume that the reader is familiar with [1]. But, for reader’s
convenience, we restate the three postulates.

Postulate 1 (Sequential Time). A is associated with

• a nonempty set S(A) whose elements will be called states of A,

• a nonempty subset I(A) of S(A) whose elements will be called initial
states of A, and

• a map τA : S(A) −→ S(A) that will be called the one-step transforma-
tion of A.

Remark 1. The original version of the postulate in [1] did not require that
S and I be nonempty. The reasonable modification is due to [2].

Postulate 2 (Abstract State).

• States of A are first-order structures.

• All states of A have the same vocabulary.

• The one-step transformation τA does not change the base set of any
state.

• S(A) and I(A) are closed under isomorphisms. Further, any isomor-
phism from a state X to a state Y is also an isomorphism from τA(X)
to τA(Y ).

Postulate 3 (Bounded Exploration). There exists a finite set T of terms in
the vocabulary of A such that the update set ∆(A,X) of A at X coincides
with the update set ∆(A, Y ) of A at Y whenever states X,Y of A coincide
over T .

The bounded exploration postulate is convincing but it contradicts the
spirit of the abstract state postulate according to which a state is just a
presentation of its isomorphism type so that only the isomorphism type of
the state is important. In the bounded exploration postulate above, it is

2



essential that the states X and Y are concrete. The purpose of this note
is to give a more abstract form of the bounded exploration postulate that
is in the spirit of the abstract state postulate and that is equivalent to the
original bounded exploration postulate in the presence of the sequential time
and abstract state postulates.

1.2 Some auxiliary definitions

Let Υ be a vocabulary as in [1]. It contains the logical names true, false,
undef, the equality sign, and the standard propositional connectives. All
other names in Υ are nonlogical. In any (first-order) Υ-structure, the values
of true, false and undef are distinct logical elements; all other elements are
nonlogical. Let X and Y be Υ-structures, and let T be a set of Υ-terms
closed under subterms.

Definition 1. If f is a function symbol in Υ and t is an Υ-term, then fX is
the interpretation of f in X, ValX(t) is the value of t in X, and X ¹ T is the
set {ValX(t) : t ∈ T}.

A binary relation can be viewed as a set of pairs.

Definition 2. Relation {(Val(t,X), Val(t, Y )) : t ∈ T} is the T-similarity
relation RT between X and Y .

Definition 3. The T-similarity type of X is the equivalence ∼X relation on
T where

s ∼X t ⇐⇒ Val(s,X) = Val(t,X)

Structures X and Y are T -similar if they have the same T -similarity type.

If for x ∈ X ¹ T there is a unique y ∈ Y ¹ T such that xRT y, then RT

is the graph of a function from X ¹ T to Y ¹ T . It would be convenient to
denote that function RT as well. Thus the function RT is defined if and only
if the relation RT is functional.

Lemma 1. Suppose that X and Y are T -similar. Then the function RT from
X ¹ T to Y ¹ T is defined and bijective.

Proof. First we show that relation RT is functional, and so function RT is
defined. Let x = Val(s,X). By the definition of RT , we have xRT Val(s, Y ).

3



If xRT Val(t, Y ) as well, then, by the definition of RT , we have Val(s,X) =
x = Val(t,X). Then ValY (s) = ValY (t) because X and Y are T -similar.

By symmetry, the inverse of relation RT is functional as well. It follows
that function RT is bijective.

Definition 4. A bijection F from X ¹ T to Y ¹ T is a T -isomorphism from
X to Y if for every term f(t1, . . . , tj) in T

F (fX(ValX(t1), . . . , ValX(tj))) = fY (F (ValX(t1)), . . . , F (ValX(tj))).

Lemma 2. Suppose that X and Y are T -similar. Then function RT is
defined, is bijective, and is a T -isomorphism from X to Y .

Proof. By the previous lemma, RT is defined and bijective. Let t be a term
f(t1, . . . , tj) in T . If xi = ValX(ti) for i = 1, . . . , j then

RT (fX(ValX(t1), . . . , ValX(tj))) = RT (Val(t,X)) =

= Val(t, Y ) = fY (RT (x1), . . . , R
T (xj))

Remark 2. Suppose that X and Y are T -similar. One may be tempted to
say that the T -isomorphism RT from X to Y is a partial isomorphism from
X to Y which means that

RT (fX(x1, . . . , xj)) = fY (RT (x1), . . . , R
T (xj))

whenever every xi and fX(x1, . . . , xj) are in the domain of RT . But this is
not necessarily true. For example, let the nonlogical part of Υ consist of
two 0-ary functional symbols α, β and a unary functional symbol f . Set
T = {α, β} and consider states X and Y with three nonlogical elements a, b,
c such that fX(a) = fY (a) = b, fX(b) = fY (b) = c, fX(c) = fY (c) = a, and

αX = a, βX = b,
αY = a, βY = c.

The states X and Y are T -similar: in both cases the values of α, β are dis-
tinct. But RT is not a partial isomorphism. We have RT (fX(a)) = RT (b) =
RT (βX) = βY = c while fY (RT (a)) = fY (RT (αX)) = fY (αY ) = b.

Lemma 3. If function RT from X ¹ T to Y ¹ T is defined and bijective then
X and Y are T -similar.

4



Proof. Let t1, t2 be terms in T . We need to prove that t1 ∼X t2 if and only
if t1 ∼Y t2. By symmetry it suffices to prove the “only if” direction.

Suppose t1 ∼X t2. Then ValY (t1) = RT (ValX(t1) = RT (ValX(t2)) =
ValY (t2). Therefore t1 ∼Y t2.

Definition 5. An element a of state X is T -accessible if ValX(t) = a for some
t ∈ T . An update (f, (a1, . . . , aj), a0) is T -accessible if all ai are T -accessible.
A set of updates is T -accessible if every update in the set is T -accessible.

1.3 The new bounded exploration postulate

Postulate 4 (New Bounded Exploration Postulate). There exists a finite
set T of terms in the vocabulary of A, closed under subterms, such that

1. for every state X of A, ∆(A,X) is T -accessible, and

2. if states X and Y of A are T -similar, f(t1, . . . , tj) ∈ T , ai = ValX(ti)
and bi = ValY (ti) then

(f, (a1, . . . , an), a0) ∈ ∆(A,X) ⇐⇒ (f, (b1, . . . , bn), b0) ∈ ∆(A, Y ).

The original bounded exploration postulate did not require the accessi-
bility of updates. The accessibility was derived [1].

Example 1. We give an example of a transition system A that satisfies the
sequential time and abstract state postulates as well as the second part of the
new bounded exploration postulate but where the updates are not accessible.
The vocabulary Υ of A contains a nonlogical nullary function symbol f and
no other nonlogical function symbols. Every state X of A consists of five
distinct elements: three logical and two nonlogical elements; further, fX is a
nonlogical element. Every transition of A changes the value of fX . Thus, if
τA(X) = Y , and the nonlogical elements of X are a and b, and fX = a, then
fY = b.

Clearly, A satisfies the sequential time and abstract state postulates. To
check the second part of the new bounded exploration postulate, we can
assume without loss of generality that T is the set {true, false, undef, f} of
all Υ-term. Since the values of T -terms are distinct in every state of A,
any two states are T -similar. Let X1 and X2 be any two states, with the

5



nonlogical elements a1, b1, and a2, b2 respectively. Let ai = fXi
. We have

∆(A,Xi) = {(f, bi)}. Thus no (f, ValXi
(t)) belongs to ∆(A,Xi), and so

(f, ValX1(t)) ∈ ∆(A,X1) ⇐⇒ (f, ValX2(t)) ∈ ∆(A,X2)

for every t. However, A fails the first part of the new bound exploration
postulate as bi is not T -accessible in Xi, and so ∆(A,Xi) is not T -accessible.

A does not satisfy the original bounded exploration postulate either. In-
deed, let X be a state of A with nonlogical elements a, b where fX = a, and
let Y is obtained from X by replacing b with a fresh element c. Then X and
Y coincide over T but

∆(A,X) = {(f, b)} 6= {(f, c)} = ∆(A, Y )

1.4 Theorems

We abbreviate “bounded exploration” to BE.

Theorem 1. Let an object A satisfy the sequential time and abstract state
postulates. Then A satisfies the new BE postulate if and only if it satisfies
the original.

Proof.

Only if We assume that A satisfies the new BE postulate with some BE
witness T and we prove that it satisfies the original one with the same BE
witness T . Suppose that the states X and Y of A coincide over T . We need
to prove that ∆(A,X) = ∆(A, Y ).

Obviously X and Y are T -similar and RT is the identity function from
X ¹ T onto Y ¹ T . By the new BE postulate, ∆(A,X) = ∆(A, Y ).

If We assume that A satisfies the original BE postulate with a BE witness
T . Without loss of generality, T is closed under subterms. We prove that A
satisfies the new postulate with that same bounded-exploration witness T .
Thus we need to establish the following two claims:

1. for every state X of A, ∆(A,X) is T -accessible, and

2. if states X and Y of A are T -similar, f(t1, . . . , tj) ∈ T , ai = ValX(ti)
and bi = ValY (ti) then

(f, (a1, . . . , aj), a0) ∈ ∆(A,X) ⇐⇒ (f, (b1, . . . , bj), b0) ∈ ∆(A, Y ).

6



The first claim is proven in [1, Lemma 6.2]. To prove the second claim, sup-
pose that X and Y are T -similar states of A, f(t1, . . . , tj) ∈ T , ai = ValX(ti),
and bi = ValY (ti). By symmetry, it suffices to prove that (f, (b1, . . . , bj), b0) ∈
∆(A, Y ) if (f, (a1, . . . , aj), a0) ∈ ∆(A,X). Suppose that (f, (a1, . . . , aj), a0) ∈
∆(A,X).

Case 1: X ∩Y = ∅. Consider a new state X ′ obtained from X by replacing
ValX(t) by ValY (t) for every t ∈ T . States X and X ′ are isomorphic. The
desired isomorphism ξ coincides with RT on X ¹ T and is identity otherwise.
Isomorphism ξ naturally lifts to locations, updates and sets of updates [1].
Accordingly

(f, (b1, . . . , bj), b0) = ξ((f, (a1, . . . , aj), a0)) ∈ ξ(∆(A,X)) = ∆(A,X ′).

Now check, by induction on the depth of term t, that Val(t,X ′) = Val(t, Y )
for all t ∈ T . Therefore X ′ and Y coincide over T . By the old BE postulate,
∆(A,X ′) = ∆(A, Y ) and so (f, (b1, . . . , bj), b0) ∈ ∆(A, Y ).

Case 2: X ∩ Y 6= ∅. Let η be an isomorphism from X to a state X ′ of A
such that X ′ ∩ Y = ∅. Lifting η as above, we have ValX′(ti) = ηai and

(f, (ηa1, . . . , ηaj), ηa0) = η((f, (a1, . . . , aj), a0)) ∈ η(∆(A,X)) = ∆(A,X ′)

It is clear that X ′ and Y are T -similar. We have Case 1 with X ′ playing
the role of X and ηai playing the role of ai. Thus (f, (b1, . . . , bj), b0) ∈
∆(A, Y ).

We recall Lemma 6.11 (Main Lemma) in [1].

Main Lemma For every sequential algorithm A of vocabulary Υ, there is
an ASM program Π of vocabulary Υ such that ∆(A,X) = ∆(A, Π) for all
states X of A.

We reprove Main Lemma using the new definition of sequential algorithms
where the original BE postulate is replaced with the new BE postulate. The
new proof is simpler than the original.

Proof. Consider an arbitrary state X of A, and let T be a bounded-exploration
witness for A. By the new BE postulate, ∆(A,X) is accessible. For every up-
date u = (f, (a1, . . . , aj), a0) ∈ ∆(A,X), fix terms tui such that Val(tui , X) =
ai and construct an update rule f(tu1 , . . . , t

u
j ) := tu0 which we will call Ru. Let

RX be the do-in-parallel composition of the rules Ru.

7



For every state Y of A, T -similar to X, we have

∆(RX , Y ) = ∆(A, Y )

Indeed, the similarity function RT is a T -isomorphism from X to Y . There-
fore

∆(RX , Y ) = RT (∆(RX , X)) = RT (∆(A,X)) = ∆(A, Y ).

The first equality follows from the definition of RT , the second one holds by
the construction of RX , the last one is a corollary of the new BE postulate.

Fix a maximal collection of states X1,. . . ,Xm of A where no two states
are T -similar. Let ϕi be the term

∧
{s = t : s, t ∈ T ∧ Val(s,Xi) = Val(t,Xi)}

∧
∧
{s 6= t : s, t ∈ T ∧ Val(s,Xi) 6= Val(t,Xi)}.

The desired Π is the following program:

do in-parallel

if ϕ1 then RX1

if ϕ2 then RX2

...

if ϕm then RXm

Now let Y be an arbitrary state of A. By the choice of states X1,. . . ,Xm,
state Y is T -similar to some Xi, so that ϕi holds in Y and every other
ϕj fails in Y ; hence ∆(A, Y ) = ∆(RXi

, Y ). By the preceding equation,
∆(RXi

, Y ) = ∆(A, Y ).

8



Chapter 2

Bounded-Choice Sequential
Algorithms

Tatiana Yavorskaya

Abstract

In his article “Sequential Abstract State Machines Capture Sequential Al-
gorithms”, Yuri Gurevich characterized deterministic sequential algorithms
as well as bounded-choice sequential algorithms (subsection 9.2) but the sec-
ond characterization is incomplete in that the proofs are missing. Here we
give a complete form of the characterization of bounded-choice sequential
algorithms.

9



2.1 Introduction

In [1], Gurevich characterized deterministic sequential algorithms. More ex-
actly he axiomatized deterministic sequential algorithms by means of three
postulates and proved that every such algorithm is behaviorally equivalent to
a deterministic sequential abstract state machine (and of course that every
deterministic sequential abstract state machine satisfies the three postulates).
In § 9.2, he sketched how to characterize bounded-choice sequential algo-
rithms. Here we turn the sketch into a complete characterization. As usual,
abstract state machines are called ASMs.

In Section 2.2, we modify the three postulate and thus axiomatize bounded-
choice sequential algorithms. Then we define bounded-choice sequential
ASMs, and we check that every such ASM satisfies the modified postulates.

In Section 2.3, we prove that every bounded-choice sequential algorithm
is behaviorally equivalent to an appropriate bounded-choice sequential ASM.

Remark 1. In the case of bounded-choice sequential algorithms, the bounded-
choice postulate plays the role that is played by the bounded-exploration pos-
tulate in [1]. The bounded-exploration postulate was reformed into a more
abstract form in Chapter I. The bounded-choice postulate can be reformed
in the same way though we do not do that here.

2.2 Definitions

The sequential time postulate of [1] needs to be relaxed.

Postulate 5 (Nondeterministic sequential time). Every nondeterministic se-
quential algorithm A is associated with three objects:

• a nonempty set S(A), the set of states of A,

• a nonempty subset I(A) of S(A), the set of the initial states of A, and

• a relation τA ⊆ S(A)× S(A), the one-step transition relation of A.

Remark 2. A is bounded-choice if, for every state X, there are finitely
many states which are related to X by the transition relation τA. We do not
formulate this restriction in the sequential time postulate, because we choose
to separate concerns and to collect all the bounds in the Bounded Choice
Postulate.

10



The abstract state postulate of [1] needs to be adjusted to reflect the
change in the sequential time postulate.

Postulate 6 (Nondeterministic abstract state).

• States of A are first order structures; all states of A have the same
vocabulary.

• If two states are τA-related then they have the same base sets, that is,
if (X,Y ) ∈ τA then Dom(X) = Dom(Y ).

• The set S(A) is closed under isomorphism. If α is an isomorphism from
the state X onto X ′ then for every Y with (X,Y ) ∈ τA there exists Y ′

such that (X ′, Y ′) ∈ τA and α is an isomorphism from Y onto Y ′.

We use the definition of a location and an update from [1]. For the
sake of readability we omit parentheses in the notation for locations and
updates and use simplified notation. Thus (f, a1, . . . , an) is a location such
that f is a functional symbol of arity n and all ai are elements of the state.
(f, a1, . . . , an; a0) is the update of that location with an element a0.

As in [1], for two arbitrary states X and Y by Y −X we denote the set
of updates which, being applied to X, gives Y , so that Y = X + (Y −X) in
the notation of [1]. Note that Y −X is uniquely defined for all states X and
Y with the same base sets. If states Y1 and Y2 are different then Y1−X and
Y2 −X are different as well.

Definition 1. For a nondeterministic algorithm A we define for every state
X the update family F(A; X) = {Y −X | (X,Y ) ∈ τA}. Note that F(A; X)
is a set consisting of sets of updates.

Postulate 7 (Bounded Choice). There exists a finite set of terms T such
that for every two states X and Y if Val(t,X) = Val(t, Y ) for every term
t ∈ T then F(A; X) = F(A; Y ).

Definition 2. Programs (or rules) for bounded-choice ASM’s are defined by
induction.

• Update rules
f(t1, . . . , tn) := t0

Here f is a functional symbol of arity n and all ti are terms.

11



• Conditional rules
if b then R1 else R2

Here b is a boolean term and R1, R2 are rules.

• Parallel rules
do-in-parallel R1, . . . , Rn

Here all Ri are rules.

• Choose-among rules
choose-among R1, . . . , Rn

Here all Ri are rules.

Definition 3. With any program π and state X we associate an update
family F(π; X) in the following way.

• If R is an update rule f(t1, . . . , tn) := t0 then

F(R; X) = {{(f, Val(t1), . . . , Val(tn); Val(t0))}}.

• If R is a conditional rule if b then R1 else R2 then

F(R; X) =

{ F(R1; X) if Val(b) = true;
F(R2; X) if Val(b) = false.

• If R is a parallel rule do-in-parallel R1, . . . , Rn then

F(R; X) = {∪n
i=1∆i | ∆i ∈ F(Ri; X) and ∪n

i=1 ∆i does not clash}.

• If R is a rule choose among rules R1, . . . , Rn then

F(R; X) =
⋃
i

F(Ri; X).

Bounded-choice ASMs are defined exactly as sequential ASMs are defined
in [1], except that programs are as above rather than as in [1].

Theorem 1. Every bounded-choice ASM is a bounded-choice algorithm.

Proof. Obvious.

12



2.3 Emulation of algorithms by ASM’s

Theorem 2. For every bounded-choice algorithm A there exists a bounded
choice ASM with the same states and initial states and with a program π
such that F(A; X) = F(π; X) for every state X.

Proof. Suppose that A = (S(A), I(A), τ) is an algorithm in the vocabulary
Υ and the set of terms T is a bound-exploration witness for A. Without loss
of generality we assume that T is closed under subterms and contains true,
false, undef.

The following terminology is taken from [1]. We call a ∈ X a critical
element if there exists a term t ∈ T such that Val(t,X) = a. An update
(f, a1, . . . , an; a0) is critical if all ai are critical.

Lemma 1. For (X,Y ) ∈ τA, all updates from Y −X are critical.

Proof. Suppose that (f, a1, . . . , an; a0) ∈ Y − X and ai is not critical for
some i. We consider a structure X ′ obtained from X by replacing ai by
a fresh element a′i. Since X ′ is isomorphic to X it is also a state of our
algorithm. By the induction on the construction of a term t we can show that
Val(t,X) = Val(t,X ′) for every term t ∈ T . Then according to the bounded
choice postulate we conclude that F(A,X) = F(A,X ′). Since ai 6∈ X ′ we
obtain then ai cannot occur in any element from F(A,X ′), whence it cannot
occur in any element of F(A,X), in particularly in Y −X, contradiction.

Corollary 1. For every X, the set F(A,X) is finite, and its elements are
finite sets. Furthermore, the set τA(X) = {Y | (X,Y ) ∈ τA} is finite.

Proof. Indeed, F(A,X) = {Y −X | (X,Y ) ∈ τ}. By the previous lemma all
updates from Y −X are critical. Since both the set T and the vocabulary of
A are finite, the set of all critical updates is finite. Thus, for every Y the set
Y −X is finite. Then F(A,X) is finite since the number of all sets of critical
updates is also finite. Since different Y ∈ τA(X) yield different Y −X, the
set τA(X) is also finite.

We define the desired program π in three steps.

Step 1. Suppose that (X,Y ) ∈ τA. By corollary 1 Y − X is a finite set.
Suppose that the list (f j, aj

1, . . . , a
j
nj ; a

j
0) for j = 1, . . . , k comprises all up-

dates from Y −X. By lemma 1, aj
i = Val(tji , X) where tji are terms from T .

13



We define the rule RX,Y as the do-in-parallel composition of the update rules
tj0 := f j(tj1, . . . , t

j
nj) for j = 1, . . . , k. It is clear that

F(RX,Y ; X) = {Y −X}. (2.1)

Step 2. By corollary 1 the set τA(X) is finite. Suppose that it consists
of the states Y1,. . . ,Ym. We define RX as follows

choose among rules RX,Y1 , . . . , RX,Ym

In view of 2.1 it is clear that

F(RX ; X) = F(A; X). (2.2)

Step 3. Now we can define the whole program π. For every state X ∈
S(A) we define a boolean term ϕX as follows:

ϕX 
∧{t1 = t2 | t1, t2 ∈ T, Val(t1, X) = Val(t2, X)}∧
∧{t1 6= t2 | t1, t2 ∈ T, Val(t1, X) 6= Val(t2, X)}. (2.3)

Since T is finite, there are finitely many different ϕX . It is also clear that ϕX

is true in X, that is, Val(ϕX , X) = true.
Let X1, . . . , Xn be the the maximal list of states of A for which formulas

ϕX are different. We put π to be the following program

do in parallel
if ϕX1 then RX1

· · ·
if ϕXn then RXn

We have to prove that F(π; Y ) = F(A; Y ) for every state Y . Since there
is a single formula ϕXi which is true in Y , it remains to show that from
Val(ϕX , Y ) = true it follows that F(RX ; Y ) = F(A; Y )

The proof consists in a series of lemmas. We say that the states X and
Y coincide over T and write X =T Y if for every term t ∈ T one has
Val(t,X) = Val(t, Y ).

Lemma 2. If X =T Y then F(RX ; Y ) = F(A; Y ).

14



Proof. The following equalities hold:

F(RX ; Y ) = F(RX ; X) = F(A; X) = F(A; Y ).

The first equality follows from X =T Y since RX uses only terms from T .
The second one follows from (2.2). The last one is a corollary of the bounded
choice postulate.

Lemma 3. Suppose that F(RX ; Y ) = F(A; Y ) and the states Y and Z are
isomorphic. Then F(RX ; Z) = F(A; Z).

Proof. Let i : Y 7→ Z be an isomorphism. We extend i to updates and sets
of updates. Then

F(RX ; Z) = i(F(RX ; Y )) = i(F(A; Y )) = F(A; Z)

where the first equality can be checked directly, the second one follows from
the conditions of the current lemma and the third one is a corollary of the
last part of the abstract state postulate.

Lemma 4. Let X and Y be two states and Val(ϕX , Y ) = true. Then
F(RX ; Y ) = F(A; Y ).

Proof. Case 1. If Dom(X)∩Dom(Y ) = ∅, we consider the state Ỹ obtained
from Y by replacing Val(t, Y ) by Val(t,X) for all terms t ∈ T . Since Ỹ ' Y
we have Ỹ ∈ S(A) by the abstract state postulate. Since Ỹ =T X, then ϕX

is true in Ỹ whence by lemma 2 we conclude F(RX ; Ỹ ) = F(A; Ỹ ). Since

Ỹ ' Y , by lemma 3 we obtain F(RX ; Y ) = F(A; Y ).
Case 2. Now suppose that Dom(X) ∩ Dom(Y ) 6= ∅. Construct an iso-

morphic copy of Y (denoted by Y ′) such that Dom(X)∩Dom(Y ′) = ∅. Then
the condition ϕX is true in Y ′ since it is true in Y . Therefore F(RX , Y ′) =
F(A, Y ′) by case 1. Since Y ′ ' Y we conclude F(RX , Y ) = F(A, Y ) by
lemma 3.

15



Bibliography

[1] Yuri Gurevich. Sequential Abstract State Machines Capture Sequential
Algorithms. ACM Trans. on Computational Logic 1:1 (2000), 77–111.

[2] Andreas Blass and Yuri Gurevich. Ordinary Small-Step Algorithms,
I. ACM Trans. on Computational Logic 7:2 (2006).

16


