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Abstract 
 
In this paper, a dynamic relationship between the wind electricity production of 
Germany and Spain is presented. With the help of a VAR(1) model, and using the 
terminology of Granger Causality, it is shown that the wind electricity production of 
Germany Granger causes the wind electricity production of Spain. Other aspects of this 
dynamic relationship are presented as well. 
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Introduction 
 
A new energy economy is emerging: coal, oil and other fossil fuels are being replaced 
by solar and wind energy. This conclusión by Lester R. Brown and his collaborators at 
the Earth Policy Institute is of the greatest relevance in these days. (cf. Brown, 2015, 
p.3) 
 
In the global transition from fossil fuels to wind and solar energy, wind has taken the 
early lead. This is another conclusion by the people at the Earth Policy Institute. (cf. 
Brown, 2015, p.84.) 
 
Some characteristics of wind are worth  mentioning. 
 
Wind is abundant, carbon-free, and inexhaustible. It uses no water, no fuel and little  
land. It also scales up easily and can be brought  online quickly. These advantages, 
together with a policy of public subsidies,  explain why wind power is expanding so 
rapidly. (cf. Brown, 2015, pp. 84-89.) 
 
 
Over the past decade wind power capacity grew more than 20 percent a year, due to its 
many attractive features, public policies supporting its expansión, and falling production 
costs. 
 
The year 2013 ended with a bang for wind energy in Europe. 
 



By the end of 2013, the wind farms installed in more than 85 countries had a combined 
generating capacity of 318000 megawatts. This would be enough to meet the residential 
electricity needs of the European Union´s 506 millon people (cf. J.Matthew Roney, 
April 2014) 
 
 
 
The leaders in wind generating capacity are China and the United States. At the start of 
2014, China had  a 91000 megawatts wind generating capacity, followed by the United 
States with 61000 megawatts. Germany ranked third with 30000 megawatts, followed 
by Spain and India with around 20000 megawatts each. The United Kingdom, Italy, 
France and Canada clustered together in the range 8000-10000 megawatts range. (cf. 
J.Matthew Roney, 2014). 
 
With these wind  power  achievements it is becoming easier to visualize the new energy 
economy. 
 
Michael Renner, Worldwatch Institute, September 30, 2014, presented a graph showing 
the evolution of World nuclear, wind and solar generating capacity, from 1956 to 2013. 
It is reproduced here as figure 1. 
 

 
 
This picture is self explanatory, showing how wind generating capacity is approaching 
nuclear capacity. 
 
By the way, the European Wind Energy Association, EWEA, in its press release of 
15/06/2015 wrote  that “multinational companies are turning to clean, reliable and cost-



effective wind energy” and this is an occasion to celebrate  the Global Wind Day that 
occurs annualy on 15 June. 
 
Spain, for example, was, in 2013, the first country where wind energy was the first 
source of electricity for an entire year. (Press release of the AEE, 15/01/2014) 
 
According to the 2013 advance report of the system operator Red Eléctrica de España, 
REE, the power demand coverage using wind was 20.9%, compared with 20.8% 
coming from nuclear sources. 
 
Germany and Spain, are the two european countries with the highest wind power 
capacity: Germany produces 34250 megawatts and Spain 22959 megawatts.  (cf. J. 
Matthew Roney, 2014) 
 
This, however, is not the place to comment about the many capabilities of wind energy. 
The interested reader is directed to the book of Lester Brown and collaborators in the 
Earth Policy Institute (Brown, 2015). 
 
The starting point for this paper is the data on Wind electricity generation, as recorded 
by eia.gov/beta/international/rankings, and reported  by the Earth Policy Institute in  
2013. I take the data for Germany and Spain with the intent of establishing a dynamic 
relationship between  the wind electricity produced in both countries, via a VAR model 
of order one. 
 
Data 
 
This collection of data was compiled by the author from the eia.gov/beta/international/ 
and from the Earth Policy Institute: “Wind-generated electricity in top five Countries in 
the World, 2000-2013”, is a collection of twenty two years of generated wind electricity 
in Germany and Spain, in terawatts-hours, from 1992 to 2013. 
 
The figures for the two series are in the following table: table 1 
 
 
ENTRY        GERMANY          SPAIN 
 1992:01         0.3             0.1 
 1993:01         0.7             0.1 
 1994:01         1.4             0.2 
 1995:01         1.7             0.3 
 1996:01         2.1             0.4 
 1997:01         3.0             0.7 
 1998:01         4.6             1.4 
 1999:01         5.5             2.7 
 2000:01         9.4             4.7 
 2001:01        10.0             6.8 
 2002:01        16.0             9.3 
 2003:01        19.0            12.0 
 2004:01        26.0            16.0 
 2005:01        27.0            21.0 
 2006:01        31.0            23.0 



2007:01 40.0 28.0
2008:01 41.0 33.0
2009:01 39.0 38.0
2010:01 38.0 44.0
2011:01 47.0 42.0
2012:01 51.0 49.0
2013:01 53.0 56.0

  Table 1 

Using RATS, each temporal evolution is represented in figure 2. 

Fig. 2 Temporal  wind electricity production for Germany and Spain: 1992-2013 At a 

first look, the two series seem to be non stationary, but with VAR models their 

transformation is not recommended (Cf. RATS, User’s Guide, p. 205, versión 8.) 

The basic statistics, mean and standard deviation of both series are as follows: 

Series Obs Mean Std Error Minimum Maximum
GERMANY 22 21.21363636 18.52438021 0.30000000 53.00000000
SPAIN 22 17.66818182 18.54370350 0.10000000 56.00000000

VAR(p) models 

According to Tsay (2014, p. 27) the most commonly used econometric model  for 
multiple time series is the multiple vector autorregressive or VAR model. There are 
good reasons for this assertion. 

The multivariate time series tz  follows a VAR model of order p if it can be written as: 
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1

p

t i t t
i

z z a  


  

with tz  a vector of time series of dimension 1k   
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i  a matrix of dimension k k , for 0i   and 0p    , and 
 

ta  a sequence of independent and identically distributed (iid) random vectors with 
mean zero and covariance matrix a  positive-definite. 
 
To summarize the properties of VAR(p) models, it is interesting to start with the 
bilinear VAR(1): 
 

0 1 1t t tz z a        
 
written explicity as: 
 

1,11 1,12 1, 11 10 1

2 20 1,21 1,22 2, 1 2

tt t

t t t
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or: 
 

1 10 1,11 1, 1 1,12 2, 1 1t t t tz z z a         

2 20 1,21 1, 1 1,22 2, 1 2t t t tz z z a         
 
That is, 1,12  shows the linear dependence of 1tz  on 2, 1tz   in the presence of 1, 1tz   . And 

1,21  measures the linear relationship between 2tz  and 1, 1tz   in the presence of 2, 1tz   and 
similarly with the other coefficients of matrix 1  . 
 
This matrix representation of the model, gives us the insight of the so called Granger 
Causality. 
 
If the off-diagonal elements of matrix 1  are zero, that is 1,12 1,21 0    the consequence 
is that 1tz  and 2tz  are not dynamical correlated, in which case each series follows a 
univariate AR(1) model, that can be handled accordingly. The two series are said to be 
uncoupled. (Tsay, 2014, p. 28) 
 
On the other side,  if 1,12 0   but 1,21 0   then  we have: 
 

1 10 1,11 1, 1 1t t tz z a       
 
and 

2 20 1,21 1, 1 1,22 2, 1 2t t t tz z z a         
 
That is, 1tz  does not depend  on the past values of 2tz  but  2tz  depends on the past  
values of 1tz  . This is an example of a transfer function relationship, in control 
engineering.  In econometrics, this is an example of Granger Causality between two 
series, with 1tz  Granger causing 2tz  but 1tz  not being Granger caused by 2tz  . 
 



As Tsay (2014, p.29) remarks for this bivariate VAR(1) model, if the variance-
covariance matrix a  is not diagonal, then 1tz  and 2tz  are instantaneouly or 
contemporaneously correlated, with instantaneous Granger causality, going in both 
directions. 
 
In our case, the bivariate vector tz   is 
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2
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z
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with Germany as 1tz  and Spain as 2 .tz  
 
Next, the number of lags of the model has to be determined. With the help of the 
RATS package, and using the Akaike information criterion (AIC), corrected for degrees 
of freedom, the order of our VAR is 
 
@varlagselect(lags=7,crit=aic) 
# Germany Spain 
 
VAR Lag Selection 
Lags AICC 
   0 14.3814101 
   1  9.7230481* 
   2 10.4747166 
   3 11.2770593 
   4 12.0198686 
   5 15.7624904 
   6 36.0514213 
   7     NA 
 
That is, 1.p   With this value of p, we can estimate the VAR(1) model. Using the MTS 
package, we get: 
 
m1 = VAR(zt,p=1) 
Constant term:  
Estimates:  2.148936 -0.2586105  
Std.Error:  1.145812 0.5067728  
AR coefficient matrix  
AR( 1 )-matrix  
      [,1]  [,2] 
[1,] 0.925 0.116 
[2,] 0.387 0.704 
standard error  
       [,1]   [,2] 
[1,] 0.1759 0.1830 
[2,] 0.0778 0.0809 
   
Residuals cov-mtx:  



           [,1]       [,2] 
[1,]  8.4070018 -0.9003846 
[2,] -0.9003846  1.6445279 
   
det(SSE) =  13.01486  
AIC =  2.929728  
BIC =  3.128099  
HQ  =  2.976458 
 

This estimated model has non-significant coefficients at the usual 0.05   significance level. 
Suppressing these coefficients, we get the simplified model: m2 
 
> m2 = refVAR(m1,thres=1.96) 
Constant term:  
Estimates:  0 0  
Std.Error:  0 0  
AR coefficient matrix  
AR( 1 )-matrix  
      [,1]  [,2] 
[1,] 1.087 0.000 
[2,] 0.364 0.721 
standard error  
       [,1]   [,2] 
[1,] 0.0272 0.0000 
[2,] 0.0632 0.0722 
   
Residuals cov-mtx:  
          [,1]      [,2] 
[1,] 10.062045 -1.098087 
[2,] -1.098087  1.668320 
   
det(SSE) =  15.58092  
AIC =  3.018774  
BIC =  3.167553  
HQ  =  3.053822 
 
 
Finally, this model with significant coefficients, and validating residuals, can be written: 
 

1, 11 1

2 2, 1 2
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With a variance-covariance matrix of residuals 
 

ˆ

10.062 1.098
1.098 1.668a

 
    

  

 
Written separately, the two estimated models, are as follows: 
 

1 1, 1ˆ 0 1.087t tz z     
 
and 



 

2 1, 1 2, 1ˆ 0 0.364 0.721t t tz z z      
 
In words, the production of wind electricity in Germany, in the presence of the wind electricity 
produced by Spain depends on its lagged  first period, while the wind electricity produced by 
Spain, in the presence of the  wind electricity produced by Germany, depends  on its lagged 
first period, and on the lagged  first period of Germany. If we employ the terminology of 
Granger Causality, we can say that the wind electricity produced by Germany Granger causes 
the wind electricity produced by Spain. 
 
Since the matrix variance-covariance matrix â  is not diagonal, then both series are 
instantaneously  or contemporaneously correlated. 
 
In case we would like to be formal, using package VARS  in R, we get: 
 
causality(m2,cause="germany") 
$Granger 
 
        Granger causality H0: germany do not Granger-cause spain 
 
data:  VAR object m2 
F-Test = 24.682, df1 = 1, df2 = 36, p-value = 1.656e-05 
 
 
$Instant 
 
        H0: No instantaneous causality between: germany and 
spain 
 
data:  VAR object m2 
Chi-squared = 1.4073, df = 1, p-value = 0.2355 
 
 
> causality(m2,cause="spain") 
$Granger 
 
        Granger causality H0: spain do not Granger-cause germany 
 
data:  VAR object m2 
F-Test = 0.39955, df1 = 1, df2 = 36, p-value = 0.5313 
 
 
$Instant 
 
        H0: No instantaneous causality between: spain and 
germany 
 
data:  VAR object m2 
Chi-squared = 1.4073, df = 1, p-value = 0.2355 
 
 
Results that confirm our previous conclusions. 
 



 
The impulse response 
 
The VAR(p) models allow us to establish the dynamic relationship between the 
variables of the system, but at the same time, it is possible to consider this relationship 
from other points of view: the impulse response and the forecast error variance 
decomposition. 
 
It is of interest to evaluate the effects of a stochastic change or shock in one variable, to 
its own evolution and to the evolution of the others variables. This type of analysis is 
known as the impulse response or multiplier analysis. 
 
The impulse response measures the effect of a shock caused in one variable of the 
system on its own and on the rest of the variables. This effect it is better understood in 
the MA versión of the VAR model. 
 

1 1 2 2 3 3t t t t tz a a a a             
 
truncatted at some lag, q, with 0 1   and ta  a succesion of iid random innovations, 
having mean cero and constant variance. 
 
In compact form:  

0
0

; 1
q

t i t i
i

z a  


     

 
If we now induce a unitary impulse or  a shock in ta  that is, if we set to zero all the ta  
except one, t ka  , which is set to 1, then by succesive susbtitutions, we get: 
 

1 1

t k t k

t k t k

t t
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This succesion of values of i  is called the impulse response on tz  of the unitary shock 
in ta  . 
 
If a  is not diagonal, it is unrealistic to consider that a unitary shock induced in the 
error term of one of the variables in the VAR can be isolated from the other errors´ 
terms. That is,  it would be impossible to establish the impact of a unitary shock on the 
wind electricity produced by Germany on the wind electricity produced by Spain. To 
solve this problem we could use the Cholesky decomposition of matrix a  , a solution 
possible due to the fact that this matrix is symetric and positive-definite. In this case, 
there is a matrix P  such that 'a PP   and 1' 'P P I   . With this 1P  it is possible to 
convert ta  on a vector of incorrelated errors te  , that is: 



1

0 0

q q

t i t i i t i
i i

z PP a B e  
 

 

       

 
After substituting i iB P  and 1

t te P a  , the elements of iB   are the impulse response 
coefficients of tz  with orthogonal innovations. 
 
It should be mentioned that the problem involved in the Cholesky decomposition of a  
, is that the order of variables in the vector tz  has consequences, but this is not the place 
for more details, and we could consider this articiality as the cost for clarifiying the 
impulse response of the system to the new incorrelated te  . 
 
In this case, using the software RATS, the impulse response of a unitary shock in the 
wind electricity produced by Germany is: 
 
 
Responses to Shock in GERMANY 
 Entry    GERMANY     SPAIN 
       1 3.17207272 -0.3461733 
       2 3.44820676  0.9061026 
       3 3.74837872  1.9093622 
       4 4.07468113  2.7418843 
       5 4.42938869  3.4608558 
       6 4.81497412  4.1083266 
       7 5.23412538  4.7155078 
       8 5.68976443  5.3058762 
 
The impulse response of a unitary shock in the wind electricity produced by Spain is: 
 
 
Responses to Shock in SPAIN 
 Entry    GERMANY     SPAIN 
       1 0.00000000  1.2443810 
       2 0.00000000  0.8969694 
       3 0.00000000  0.6465497 
       4 0.00000000  0.4660432 
       5 0.00000000  0.3359313 
       6 0.00000000  0.2421445 
       7 0.00000000  0.1745416 
       8 0.00000000  0.1258123 
 
 
The graphical representation of these responses is depicted in fig. 3 
 



 
 
Fig. 3. Impulse responses 
 
 
The forecast error variance decomposition 
 
Another point of view for the dynamic relationship established by a VAR model is 
given by the forecast error variance decomposition, (FEVD),  which permits the 
assignment of the fraction of the variance of the error due to each of the variables in the 
sytem. In other words, this decomposition allows us to tribute the error variance at the 
sources. 
 
With RATS, this is the decomposition in our case: 
 
 
Decomposition of Variance for Series GERMANY 
 Step   Std Error  GERMANY   SPAIN 
      1  3.1720727  100.000   0.000 
      2  4.6853148  100.000   0.000 
      3  6.0002098  100.000   0.000 
      4  7.2529680  100.000   0.000 
      5  8.4985310  100.000   0.000 
      6  9.7677533  100.000   0.000 
      7 11.0817450  100.000   0.000 
      8 12.4570660  100.000   0.000 
 
 
Decomposition of Variance for Series SPAIN 
 Step   Std Error  GERMANY   SPAIN 
      1  1.2916346    7.183  92.817 
      2  1.8149094   28.564  71.436 
      3  2.7124871   62.337  37.663 
      4  3.8849340   80.201  19.799 
      5  5.2137400   88.592  11.408 
      6  6.6422937   92.838   7.162 
      7  8.1477939   95.194   4.806 
      8  9.7239239   96.609   3.391 
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In the first column of these tables are the estimated standard errors of the predictions, 
here to a horizon of 8 periods (years). In the rest of the columns, the percentage of the 
variance due to each of the variables. The sum of each row adds to the total. In the first 
table the 100% of the error variance is due to Germany. In the second table, the 
percentage of the error variance is distributed between Germany and Spain. 
 
We can request the forecast from 2008 to 2017 using RATS. These are the figures: 
 
 
Entry     GERMANY      SPAIN 
 2008:01 43.48206448 34.75539137 
 2009:01 47.26724830 40.89334784 
 2010:01 51.38193846 46.69667807 
 2011:01 55.85481904 52.37884813 
 2012:01 60.71707108 58.10417773 
 2013:01 66.00259000 64.00247079 
 2014:01 71.74822187 70.17964059 
 2015:01 77.99402025 76.72545460 
 2016:01 84.78352544 83.71921071 
 2017:01 92.16406802 91.23393042 
 
Once again we can see how closely the series and the forecasts move. 
 
 
Conclusion 
 
The main conclusión of this paper is the relevance of Germany and Spain in the  
generation of wind electricity, in Europe, confirming the German position of leadership 
according to the  Granger Causality Principle. Another relevant conclusion is that both 
countries are working firmely in the direction established by United Nations  for climate 
preservation. 
 
At this moment, the critical point is the future of public subsidies. The economic crisis 
of these days  suggests to hold back the policy of public aids. However, the worries 
about the climate change, works in favor of maintaining policy to help fund renewable 
sources of energy, and wind energy is one. 
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