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Optimal Public Information Dissemination

Introducing Observational Learning into a Generalized Beauty Contest

Hendrik Hüning ∗ and Lukas Meub †

Abstract

We develop a dynamic two-period generalized beauty contest to study the optimal level

of publicity when disclosed information is subject to multiplier effects inherent to social

learning. We build upon the static case, where all agents receive a private signal about an

unknown fundamental state and only a fraction of all agents receive an additional public

signal. However, in our model, agents no longer act simultaneously; rather, agents informed

by both signals act in the first period, while those uninformed about the public signal

delay their action and learn about informed agents’ actions. We show that in the unique

equilibrium of our dynamic game, informed agents overreact more strongly to public signals.

The optimal dissemination of public information is thus considerably lower than the static

case suggests. If the social learning signal is reasonably precise, aggregate welfare is higher

than in the static case. Our results hold relevance for the optimal information policy design

of public authorities.

Keywords: generalized beauty contest, monetary policy, optimal communication, social learning,

strategic complementarities
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Public authorities such as central banks have a profound impact on financial markets as agents

pay close attention to information disclosed. Public information serves agents as a valuable

signal for an economy’s fundamentals and - by influencing market expectations - it affects asset

prices and interest rates. However, Morris and Shin (2002) (henceforth MS) have shown in their

seminal generalized beauty contest model that the dissemination of public information might

also have detrimental welfare effects in markets characterized by strategic complementarities.

Accordingly, it might be optimal for central banks to strategically withhold some information.

Cornand and Heinemann (2008) (henceforth CH) introduce the degree of publicity as an efficient

instrument to preclude overreactions to public information. Although multiplier effects fostering

the dissemination of public information are acknowledged concerning their relevance to assess

the optimal degree of publicity, such distortions to a straightforward management of publicity

and overall market expectations have not been modeled. We consider observational learning

as one multiplier effect of outstanding relevance. Financial market participants in transparent

global markets are able to delay their actions to strategically outwait other participants, observe

their actions and thus infer underlying private and public information. These dynamics in the

penetration of public information substantially alter central banks’ optimal policy design.

In this paper, we extend the analysis presented by CH to a two-period model incorporating

observational learning into the generalized beauty contest with strategic complementarities. In

our framework, agents who are uninformed about the public signal can learn from preceding

actions of the informed agents. Similar to herding models with pay-off externalities (cp. for

instance Dasgupta 2000 or Chari and Kehoe 2004), agents have the incentive to coordinate

within and across periods. This extension from the static to a dynamic setting allows us

to analyze the interplay of pay-off externalities induced by strategic complementarities and

information externalities inherent to social learning. We show that as long as the social learning

signal comprising the actions of the informed agents is not overly imprecise, aggregate welfare

is higher than in the static case. However, the overreaction to disclosed public information

will exceed the overreaction in the static case. This finding results from informed agents

anticipating the behavior of the uninformed agents, who aim to coordinate across periods by

relying on the social learning signal. In response to observational learning as a multiplier effect

to disclosed information, the central bank optimally chooses a lower level of publicity ex ante

and thus excludes more agents from receiving the public information. Furthermore, the central

bank discloses information at maximal precision if the respective public signal is not extremely

imprecise.

The relevance of public information policy has grown considerably since the mid-1990s, when

central bank actions and communication became increasingly transparent. This increase in

transparency was justified by two main arguments: first, it had become widely accepted that

increased transparency improves the credibility of the democratic legitimacy of the central

bank actions; and second, increased transparency was expected to improve the effectiveness

of monetary policy by enabling central banks to more successfully manage market expectations
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(Woodford 2003; Haan et al. 2007).

Following the generalized beauty contest model introduced by MS, a broad discussion has

emerged, questioning the superiority of comprehensive central bank transparency. Financial

markets are predominantly characterized by strategic complementarities, which lead to agents

striving to match the economy’s fundamentals and - at the same time - the likely actions of other

market participants. Therefore, public information contains useful information about both the

fundamentals and the likely actions of other market participants, merely given its public nature.

This dichotomous informational value allows agents to more effectively coordinate with the

actions of others by placing a disproportionally high weight on public information. Markets are

subsequently characterized by an overreaction to public information and they fail to establish

the socially desirable outcome of weights being assigned according to signals’ relative precision.

Consequently, it might be optimal for a central bank to reduce transparency to avoid such an

overreaction to public information.

As Woodford (2005) shows, this undesirable outcome of public information dissemination

crucially depends on the specification of the welfare function: if coordination per se is a welfare

objective, MS’s proposition fails to hold. Svensson (2006) argues that the result established

by MS only holds for an implausibly low precision of public information relative to private

information. Morris et al. (2006) replied that assuming correlated signals, the result even holds

when public information is more precise than private information.

A number of theoretical papers have considered partial publicity as a policy instrument

to avoid the detrimental welfare effects of public information dissemination under strategic

complementarities. Morris and Shin (2007) consider one public and n-semipublic signals within a

modified generalized beauty contest game. In equilibrium, the weight accorded to the semi-public

signals decreases with increasing fragmentation and there is a trade-off between fragmentation

and the precisions of signals. CH emphasize that the MS framework only offers the possibility

to reduce the precision of public information to mitigate the potentially detrimental effects of

disseminating public information. In relaxing this assumption, they introduce an additional

parameter allowing the central bank to restrict the fraction of market participants receiving the

public information and thus actively manage the publicity of announcements as a strategic means

to withhold information. They show that it can be optimal to disseminate public information

with maximum precision to a certain fraction of all agents only.3

Arato et al. (2014) introduce endogenous information acquisition to the framework of CH. In

their model, public information is costly and agents can choose whether or not to gather the

public information. As in Hellwig and Veldkamp (2009) - where agents’ actions are strategic

complements - information acquisition becomes a strategic complement, leading to multiple

equilibria. Arato et al. show that the central bank can guide agents to an unique partial

publicity equilibrium if an increasing pricing rule is introduced, rather than using constant

3Trabelsi (2010) emphasizes the similarity of the fragmentation approach in Morris and Shin (2007) and the
publicity approach in CH. By introducing private signals in addition to the n-semipublic signals in the framework
of Morris and Shin, Trabelsi shows that both approaches induce the same impact of reducing the detrimental
effect of public information: one might either reduce the publicity of public information or introduce fragmented
information.
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prices for public information.4

Another recent paper related to our research objective is Molavi et al. (2014). Contrary to our

game, agents do not receive an exogenous public signal but rather observe some neighboring

agents’ actions. By studying social learning in a dynamic generalized beauty contest game, they

show that in a Markov perfect Bayesian equilibrium agents eventually reach consensus in their

actions. However, Molavi et al. focus on the asymptotic properties of actions due to social

learning in a generalized beauty contest framework, while we are interested in the optimal level

of publicity of the public information when a coordination motive and social learning interact.

From the class of dynamic games with strategic complementarities, the two-period model

developed in Angeletos and Werning (2006) is closest to our framework. Similar to the framework

in CH, agents are divided into two groups: the first group merely receives a private signal - which

is an unbiased signal of the underlying state - and subsequently acts in the first period, whereby

average actions reflect the fundamental; and the second group acts in the second period and

receives a private signal as well as a noisy public signal about the average action of the first

period. This endogenous public signal serves as a focal point for agents in the second period.

The authors show that such an endogenously modelled public signal might lead to a multiplicity

of equilibria rather than a unique solution. However, agents have a binary action set of attacking

or not-attacking the status-quo while we study the equilibrium for a continuous action set.

Our results hold relevance for the optimal design of central bank communication. As

acknowledged by CH, the optimal dissemination of public information should account for

multiplier effects such as observational learning. We show that intertemporal coordination

motives aggravate agents’ overreaction to public information if the social learning signal

- i.e. the observable actions of the informed agents - contains substantial information.

Observational learning subsequently transmits disclosed public information from informed to

initially uninformed agents, thus reducing - ceteris paribus - the optimal degree of publicity.

Nevertheless, assuming optimal publicity, social learning enhances aggregate welfare. Our

two-period approach further emphasizes central banks’ ability to influence the fundamentals

by disseminating public information.

The remainder of the paper is organized as follows. Section 1 motivates our approach to analyze

the generalized beauty contest in a dynamic two-period model, introduces our model and derives

the equilibrium. Section 2 presents our welfare analysis. Section 3 discusses variations and

extensions to our model, as well as implications drawn from related experimental studies, before

Section 4 concludes.

1 A Dynamic Generalized Beauty Contest Model

1.1 A two-period approach

In the static model by CH, all agents receive a private signal about an unknown fundamental

state of the economy. A fraction of all agents additionally receive a public signal, while all others

4Other models introducing costly information acquisition to the generalized beauty contest framework of MS
include Colombo and Femminis (2008), Ui (2014) and Colombo et al. (2014).
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remain uninformed about this signal issued by the central bank. It is assumed that the central

bank can determine the fraction of agents receiving its public signal by designing their public

announcements accordingly. However, informed and uninformed agents act simultaneously and

thus the model constitutes a static generalized beauty contest game. There is neither a time

lag in agents’ decisions nor observational learning. Accordingly, the model does not account for

a crucial characteristic of financial markets where participants can delay their actions to learn

about first movers’ information when observing their actions.

Our model can be rationalized as follows: agents strive to align their actions to the unknown

fundamental state and - at the same time - follow a coordination motive. They all listen to

public announcements of the central bank and face a signal-extraction problem of inferring the

respective signal conveyed by the announcement. However, only a certain fraction are capable

of inferring the public signal. In the words of Morris and Shin (2007): ”. . . as any central banker

knows, it is not so easy to communicate information in such a way that it become(s) common

knowledge within the private sector. If different listeners interpret an announcement differently,

then the content of the announcement does not become common knowledge. If some listeners pay

attention to the announcement, while others do not, then the content of the announcement does

not become common knowledge. Intuitively, the more one attempts to communicate, the more

likely it is that some listeners will not pay attention to all the information, and the less common

knowledge.” All others wait an instant of one period to observe the actions of informed agents to

gain insights into the newly announced public signal and learn about the likely common action

in the market, as well as the fundamental state.

Similar considerations follow when the public signal is interpreted as a trigger to initiate an action

in the first place. One might assume the fraction of uninformed agents that did not receive or

failed to understand the public signal as having no intention to take an action, since no new

information seems to be disclosed. Only by observing other agents’ actions is a reaction induced

and private information gathered regarding the new fundamental state. Hence, in this scenario,

the decision is not delayed strategically to receive additional information through observational

learning. The delay rather follows from the lack of a trigger that initiates an action, which – to

the informed agents – has been the observation of the public signal.

In our model, sequential choice and intertemporal coordination incentives interact, i.e. the

game features information externalities due to learning and payoff externalities due to strategic

complementarities. As a result, informed agents are concerned about how their actions influence

the successors. This anticipation aspect distinguishes our model from most herding models

following the seminal contributions of Banerjee (1992) and Bikhchandani et al. (1992), where

the only externality is a purely informational one. With strategic complementarities being

absent in many herding models, agents do not conduct forward-looking behavior, which makes

the models more difficult to apply to actual financial markets Dasgupta (2000).

Observational learning causes a dynamic penetration of public information and might raise

publicity of disclosed information above the degree initially intended by the central bank. Since

the actions of informed agents are observed by the agents who did not receive the public signal

in the first place, the focal role of the public signal continues to the second period. Moreover, as
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mentioned above, informed agents in our game account for their actions’ influence on subsequent

play. This anticipation effect amplifies the focal role of the public signal, which alters the optimal

level of publicity in comparison to the static CH case. Put simply, optimal central bank behavior

has to account for decisions taken non-simultaneously, as well as the dynamics of the process by

which public information is disseminated and influenced by observational learning.

1.2 The model

In the following, we first introduce agents’ utility and the signal structure of the game, before

subsequently formulating the optimal actions conditional upon available signals. Finally, we

identify the unique linear equilibrium of the game.

Utility

There is a continuum of agents indexed by i ∈ [0, 1]. There are two periods indexed by t = 0, 1.

Each agent i acts in either t = 0 or t = 1 but never in both periods and chooses an action ai ∈ R,

which maximizes his utility given by

Ui(a, θ) = −(1− r)(ai − θt)2 − r(Li − L̄) (1)

with

Li ≡
∫ 1

0
(ai − aj)2dj, L̄ ≡

∫ 1

0
Ljdj,

where θt = {θ0, θ1} is the fundamental state of period t and r is a constant with 0 < r < 1.5

According to (1), agents minimize the loss from the squared distance to the fundamental state

of the current period (first term) and minimize the individual loss compared to the average loss

from discoordination (second term).

Signal structure and evolution of the fundamental state

All agents receive a private signal that is identically distributed around θt : xit = θt+εi with εi ∼
N(0, σ2ε). The precision of private signals is defined as β ≡ 1

σ2
ε
. All private signals are

uncorrelated.

A fraction P of all agents i observe the realization of a public signal y = θ0+η with η ∼ N(0, σ2η).

We define P ≡ informed agents
all agents such that 0 < P ≤ 1. Public signals are perfectly correlated,

i.e. every informed agent observes exactly the same public signal with precision α ≡ 1
σ2
η
. For

simplicity, we assume an exogenous decision order. Agents who are informed about the public

signal y take an action in the first period t = 0, whereas uninformed agents take an action in

the second period t = 1.6 We assume the fundamental state to be drawn from the real line in

5We abstain from considering the case r = 1, in which we would face a pure coordination game with multiple
equilibria.

6We might well construct a scenario in which agents face (constant) waiting costs when choosing to delay
their actions or act immediately. However, agents being informed about the public signal can be assumed to have
weaker incentives to wait in order to learn from observable actions than uninformed agents (cp. Frisell 2003).
Depending on the significance of waiting costs, there should be an equilibrium where all informed agents act in
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t = 0. For t = 1, the fundamental state evolves in response to the average action in t = 0 such

that

θ1 = ā0.
7

Agents uninformed about the public signal y receive a noisy exogenous public signal in t = 1,

defined as

s ∼ N(ā0, σ
2
s) with δ ≡ 1

σ2
s
.8

To rationalize this social learning signal and the evolution of the fundamental state, we could

think of an immediate price reaction after public announcements by authorities like the central

bank. These assumptions about the evolution of the fundamental state and the social learning

signal allow us to model the social learning signal as an exogenous signal where all agents have

common priors over the precision of all signals.9

Note that for P = 1, the game collapses to the static game introduced by MS as all agents are

informed, act in the same period t = 0 and there is no observational learning. On the contrary,

the fewer agents who receive the public signal y, the more agents who act in t = 1 and learn

from the preceding agents’ actions.10 Agents of both periods account for the focal role of the

social learning signal, since it serves as a focal point for coordination in t = 1 and across periods

by transmitting information on the average action from t = 0. However, the focal role vanishes

for an extremely imprecise social learning signal and our model approaches the CH framework.

Accordingly, our richer setting represents a more general framework comprising MS and CH as

special cases.

Finally, it is assumed that all agents process the signals in a linear fashion - which is common

knowledge - such that

ai0(Ω) = γxi0 + (1− γ)y (2)

and

ai1(Ω) = γxi1 + (1− γ)s (3)

with γ ∈ [0, 1] being the weight on the private signal. We thus restrict our attention to linear

equilibria. Following the related literature, we assume that r, P, α, β, δ are common knowledge.

the first period and all uninformed agents delay their action to the second period. This case would be equivalent
to our scenario featuring an exogenous decision sequence. Please note that such an endogenously derived decision
sequence would substantially complicate our analysis. Since our focus lies on optimal publicity given multiplier
effects inherent to social learning and not the distinct timing of actions, we assume the decision order to be
exogenous and abstain from modeling waiting costs.

7For games in which the history of play influences the fundamental state, see for instance Curtat (1996).
However, note that - unlike in Curtat’s game - our agents’ actions not only depend on the current fundamental
state because we assume inter-temporal coordination incentives. Therefore, we do not establish a Markov perfect
equilibrium (cp. Maskin and Tirole 2001).

8Instead of modeling social learning as a noisy public signal, we could introduce perfect learning. Furthermore,
one might consider heterogeneous private signal precision. Both aspects are discussed in section 3.

9We discuss the difficulties of modeling the social learning signal endogenously in further detail in the context
of (13) and formally in appendix E.

10For P = 0, all agents act in t = 1 and there is no average action and no social learning signal. Agents
would merely rely on their private information for optimal play. Since we chose to analyze the interplay between
coordination and social learning, we abstract from this trivial case and set P > 0.
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Optimal action

For both informed agents and uninformed agents, the FOC of (1) is the utility maximizing

condition

a∗it = (1− r)Ei(θt|Ω) + rEi(ā|Ω). (4)

However, the information set Ω to form the expectations Ei(θt) and Ei(ā) differs between the

two groups. The fraction P of informed agents receive both a private signal xi0 and the public

signal y. The fraction (1 − P ) of uninformed agents receive xi1 and a signal s on the average

action of the informed from observational learning. We can formulate optimal individual actions

conditional upon available signals. For informed agents, (4) becomes

a∗i0 = (1− r)Ei(θ0|xi0, y) + rEi(ā|xi0, y), (5)

where

Ei (θ0|xi0, y) =
β

α+ β
xi0 +

(
1− β

α+ β

)
y

and

Ei(ā|xi0, y) = PEi(ā0|xi0, y) + (1− P )Ei(ā1|xi0, y).

For uninformed agents, we can write

a∗i1 = (1− r)Ei(θ1|xi1, s) + rEi(ā|xi1, s), (6)

where

Ei(θ1|xi1, s) =
β

δ + β
xi1 +

(
1− β

δ + β

)
s

and

Ei(ā|xi1, s) = PEi(ā0|xi1, s) + (1− P )Ei(ā1|xi1, s).

While the expectations about the fundamental are equivalent to the static games of MS and

CH - where private and public signals are weighted by their relative precision - the expectation

about the average action differs, as it comprises expectations concerning the average action in

both t = 0 and t = 1. These expectations about average actions are weighted by the fraction

of agents acting in the respective period. It becomes clear that besides the signal structure,

the main difference of our framework compared with previous models lies in the inter-temporal

coordination incentives.

Linear Equilibrium: Optimal weights on private and public signals in t = 1

In order to solve for the optimal actions in both periods, we start by deriving the optimal weights

on private and public signals for uninformed agents and identify the optimal and the average

action. In a second step, we insert this average optimal action into the optimality conditions of

informed agents and solve for their optimal weights and action.
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By drawing upon equation (6), we write the optimal action for uninformed agents as

a∗i1 = r

{
P

[
β

δ + β
xi1 +

(
1− β

δ + β

)
s

]
+ (1− P )

[
γ1β

δ + β
xi1 +

(
1− γ1β

δ + β

)
s

]}
+ (1− r)

[
β

δ + β
xi1 +

(
1− β

δ + β

)
s

]
(7)

The last term depicts the Bayesian considerations of the two pieces of information to form the

expectation on θ1. The first term contains the expectation about the average action in the

preceding period and the expectation about the average action among the uninformed within

the same period. It is important to note that since we assume θ1 = ā0, both the private and

social learning signal serve as valuable information to derive the likely actions of informed agents,

where we can write Ei(ā0|xi1, s) = Ei(θ1|xi1, s) =
[

β
δ+βxi1 +

(
1− β

δ+β

)
s
]
.11 The expectation

on the average action in the same period - in this case the expression right after (1−P ) - is the

same as in the static case. Derived in detail in appendix A, solving for the optimal weight on

the private signal for uninformed agents yields

γ∗1 =
β[1− r(1− P )]

δ + β[1− r(1− P )]
. (8)

By symmetry, the optimal weight on the public signal is given by (1 − γ∗1), respectively. In

our framework, uninformed agents play the same game as the informed agents in CH, except

that rather than receiving the public signal y, they receive the public social learning signal s.

Furthermore, the optimal weight on the respective public signal increase in (1− P ) and not in

P . For P → 0, the optimal weight on the private signal approaches the static MS case. For

P → 1, the optimal weight on the private signal approaches the efficient Bayesian weight on θ1

as the social learning signal s loses its focal role. Uninformed agents thereby acknowledge that

for higher P (lower 1− P ), there are fewer agents with whom they could profitably coordinate

on s.

Figure 1 illustrates the aforementioned results. It can be seen that the equilibrium weight on

the private signal increases in P and approaches the Bayesian weight at the limit where both

signals are weighted by their relative precision. Since we assume equal signal precision for this

illustration, signals are assigned equal Bayesian weights of 0.5 for P → 1.

Conclusion 1: The more agents are informed by the public signal, the weaker the social learning

signal’s focal role. In the limit (P → 1), weights on private and public signals are accorded

relative to their precision (Bayesian weights).

11At first, it might seem odd that private signals hold information on the actions of first movers. Nonetheless,
in games where preceding actions influence the fundamental state and subsequent agents receive signals about the
resulting new state, all signals - both private and public - contain information about the likely actions of others.
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Figure 1: Optimal weight on private signal in t = 1

Note: the illustration assumes equal precision of the private and the social learning signal β = δ = 0.01

Now we can state the optimal actions for the subgame of uninformed agents as

a∗i1 =
β[1− r(1− P )]

δ + β[1− r(1− P )]
xi1 +

[
1− β[1− r(1− P )]

δ + β[1− r(1− P )]

]
s (9)

and the average action becomes

ā∗1 =

∫ 1

P
a∗i1

=
β[1− r(1− P )]

δ + β[1− r(1− P )]
θ1 +

[
1− β[1− r(1− P )]

δ + β[1− r(1− P )]

]
s

=
δs+ β[1− r(1− P )]θ1
δ + β[1− r(1− P )]

. (10)

In appendix C, we show that that the linear equilibrium established here is the unique

equilibrium of the subgame in t = 1.
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Linear Equilibrium: Optimal weights on private and public signals in t = 0

Following the procedure of backward induction, we insert the optimal average action in t =

1 of (10) into the optimality condition (4) of the informed agents. Since r, P, β and δ are

common knowledge, informed agents can derive the optimal weight on the private signal γ∗1 of

the uninformed agents. However, informed agents neither observe the fundamental state θ1 nor

the average action signaled by s. Therefore, they need to build expectations about these random

variables. First, since

E(θ1) = E(ā0) = θ0

we obtain

Ei(θ1|xi0, y) = β
α+βxi0 +

(
1− β

α+β

)
y.12

In other words, since the expected fundamental state remains constant over periods, informed

agents rely on their signals (xi0 and y) in a Bayesian fashion to form an expectation on θ1.

Second, since

E(s) = ā0

we obtain

Ei(s|xi0, y) =
γ0β

α+ β
xi0 +

(
1− γ0β

α+ β

)
y.

In other words, since s is an unbiased signal of ā0, informed agents can form the same expectation

for s as they do for the average action of all informed agents. Summarizing the optimal individual

action of informed agents based on (5) gives

a∗i0 = (1− r)
[

β

α+ β
xi0 +

(
1− β

α+ β

)
y

]
+ rP

[
γ0β

α+ β
xi0 +

(
1− γ0β

α+ β

)
y

]
+ r(1− P )

{
γ∗1

[
β

α+ β
xi0 +

(
1− β

α+ β

)
y

]
+ (1− γ∗1)

[
γ0β

α+ β
xi0 +

(
1− γ0β

α+ β

)
y

]}
(11)

The first term of this expression replicates the static MS case, whereby agents form Bayesian

expectation about θ0. The second term gives informed agents’ incentive to account for average

play in the same period, which is weighted by the coordination incentive parameterized by r

and the corresponding fraction P of informed agents. The last term formulates the anticipation

of the average action of the (1 − P ) uninformed in the second period. Solving for the optimal

weight on the private signal for informed agents - detailed in appendix B - yields

γ∗0 =
β[1− r(1− γ∗1(1− P ))]

α+ β[1− r(1− γ∗1(1− P ))]
. (12)

By symmetry, the optimal weight on the public signal can be written as (1 − γ∗0). Optimal

12One might wonder why xi0 and y serve as valuable signals for θ1 as they are signals for θ0. Recall that θ1 = ā0
and ā0 is a linear combination of xi0 and y, which can be written as γ0xi0 + (1− γ0)y with γ0 ∈ [0, 1], where xi0
and y are normally distributed random variables with E(xi0) = E(y) = θ0. Therefore, E(θ1|xi0, y) = θ0.
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actions of the subgame in t = 0 are then given by

a∗i0 =
β[1− r(1− γ∗1(1− P ))]

α+ β[1− r(1− γ∗1(1− P ))]
xi0 +

[
1− β[1− r(1− γ∗1(1− P ))]

α+ β[1− r(1− γ∗1(1− P ))]

]
y

and the average action becomes

ā∗0 =

∫ 1

P
a∗i0

=
β[1− r(1− γ∗1(1− P ))]

α+ β[1− r(1− γ∗1(1− P ))]
θ0 +

[
1− β[1− r(1− γ∗1(1− P ))]

α+ β[1− r(1− γ∗1(1− P ))]

]
y

=
αy + β[1− r(1− γ∗1(1− P ))]θ0
α+ β[1− r(1− γ∗1(1− P ))]

. (13)

In appendix D, we show that the linear equilibrium established here is the unique equilibrium

of the subgame in t = 0.13 Expressing ā∗0 in terms of the random variables θ0, η and εi yields

ā∗0 = θ0 +
αη

α+ β[1− r(1− γ∗1(1− P ))]
.

In equilibrium, the average action of the informed agents is distorted away from the fundamental

state according to the noise in the public signal η and the corresponding weight that placed on

the public signal y. This average action is transmitted to the uninformed agents in t = 1 through

a noisy public signal, which is

s = θ0 + αφ
α+β[1−r(1−γ∗1 (1−P ))] with φ ∼ N(η, σ2φ).

Since E(φ) = η, E(s) = ā0. The optimal weights for informed agents show some interesting

properties when compared to the static cases in MS and CH. First, it can be seen that for P = 1

- where all agents become informed and act in the first period - the optimal weight on the private

signal collapses to the static MS case. Second, for any 0 < P < 1, the optimal weight on the

private signal depends on the optimal weight on the private signal in the second period (γ∗1).

For γ∗1 → 0 - which is the case for δ → ∞ or β → 0 - the equilibrium weight on the private

signal again collapses to the MS case, since 1 − γ∗1(1 − P ) = 1. Put simply, for an extremely

precise social learning signal or an extremely imprecise private signal, informed agents assume

that uninformed agents follow their average action signaled by s. Third, for γ∗1 → 1 - which

is the case for δ → 0 or β → ∞ - the equilibrium weight on the private signal corresponds to

that in CH, since 1− γ∗1(1− P ) = P . Put simply, for the case that the social learning signal is

extremely imprecise or the private signal is extremely precise, the dynamic game analyzed here

replicates the static case of CH, given that social learning adds nothing to the game.

13From (13), it becomes clear why modeling the social learning signal as an endogenous signal is impossible
in our case. Recall that we assume inter-temporal coordination incentives, whereby agents try to match average
actions of both their own period and the respective other period. Intuitively, we face the problem that the
precision of an endogenous social learning signal is not identifiable because the average action in t = 0 derived by
the optimal behavior of agents depends on the optimal weights on the signals in t = 1, which in turn depend on
the precision of the social learning signal constituted by the average action in t = 0. In E, we provide a formal
argument regarding this problem.
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Figure 2 illustrates the optimal weight on the private signal depending on the coordination

motive r and the fraction P of agents being informed about the public signal y. It can be seen

that for an increasing r, the optimal weight on the private signal decreases for all P . However,

for P = 1 and P → 0, the optimal weight on the private signal reaches zero for maximum r. For

intermediate levels of publicity P , the optimal weight on the private signal remains significantly

above zero. Even when coordination becomes the predominant motive in t = 0, informed

agents do not assign full weight to the public signal due to a critical mass of uninformed agents

relying on the social learning signal, which imperfectly transmits the public signal y. For any

Figure 2: Optimal weight on private signal in t = 0

Note: the illustration assumes equal precision of the private, the public and the social learning signal
α = β = δ = 0.01

intermediate weight of γ∗1 - i.e. for a reasonable precision of the social learning signal somewhere

in the region of α and β - and for 0 < P < 1, the optimal weight for informed agents on the

private signal is higher than in the MS case, although - more importantly – it is lower than in

the CH case. Figure 3 illustrates a straightforward comparison of the CH, the MS and our own

case with respect to the optimal weight on the private signal of informed agents.

This constitutes one of the central arguments of our paper, which can be summarized as follows:

12



if informed agents expect uninformed agents to delay their action and learn from prior actions,

the focal role of the public signal y is preserved by the social learning signal s. Informed agents

account for uninformed agents’ social learning and thus place a higher weight on the public

signal and less on their private signal for any P . This holds true for social learning signals that

are not extremely imprecise.

Conclusion 2: For reasonable precisions of the social learning signal, the optimal weight on

the private signal is higher than in the static MS case but lower than in the CH case for any

0 < P < 1. The partially public signal has a stronger focal role when introducing social learning.

Figure 3: Optimal weight on private signal in comparison to CH and MS

Note: the illustration assumes equal precision of the private, the public and the social learning signal
α = β = δ = 0.01 and r = 0.7

2 Welfare: The optimal degree of publicity

Our welfare specification follows the same formalization as in MS and CH, whereby coordination

adds to utility on the individual level but not to aggregate welfare. Our model is thus prone

to the criticism expressed by Woodford (2005): if coordination was a welfare objective per se,
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public information should always be released at maximum precision and publicity. Nonetheless,

we follow the argument by CH: while agents individually benefit from accurately predicting

expectations of other agents, efficiency requires actions to reflect the fundamental state and any

form of overreaction to the public signal is socially undesirable.

Consider a pre-stage of our game where the central bank chooses a degree of publicity P to

maximize expected welfare. As the central bank chooses P such that actions are close to the

fundamentals, we can write

E[W (a, θ)] = −E[

∫ P

i=0
(ai0 − θ0)2 +

∫ 1

P
(ai1 − θ1)2]

= −
∫ P

i=0
E{[γ∗0xi0 + (1− γ∗0)y − θ0]2}di−

∫ 1

P
E{[γ∗1xi1 + (1− γ∗1)s− θ1]2}di

= −P [γ∗20 E(ε2i ) + (1− γ∗0)2E(η2)]− (1− P )[γ∗21 E(ε2i ) + (1− γ∗1)2E(φ2)].

Now inserting optimal weights for both periods - γ∗0 from (12), γ∗1 from (8) - yields

= −P

{[
β[1− r(1− γ∗1(1− P ))]

α+ β[1− r(1− γ∗1(1− P ))]

]2 1

β
+

[
1− β[1− r(1− γ∗1(1− P ))]

α+ β[1− r(1− γ∗1(1− P ))]

]2 1

α

}

− (1− P )

{[
β[1− r(1− P ))]

δ + β[1− r(1− P ))]

]2 1

β
+

[
1− β[1− r(1− P ))]

δ + β[1− r(1− P ))]

]2 1

δ

}
,

which can be rearranged to obtain

= −P β[1− r(1− γ∗1(1− P ))]2 + α

[α+ β(1− r(1− γ∗1(1− P )))]2
− (1− P )

β[1− r(1− P ))]2 + δ

[δ + β(1− r(1− P ))]2
.

It can be seen that for δ → 0, γ∗1 → 1 and the limit of the above expression becomes

= −P β(1− rP )2 + α

[α+ β(1− rP )]2
− (1− P )

1

β
.

This expression replicates the expected welfare of the static CH case. Although agents act

in different periods, the game collapses to the static case for a very imprecise social learning

signal compared to the private signal. The intuition of this result is straightforward: if the

social learning signal holds no value for the uninformed in t = 1, they fully rely on their private

signal, which in turn is anticipated by the first movers. The information set for informed and

uninformed agents becomes equivalent to the static case. We analyze the expression above in

further detail by carrying out various graphical illustrations with distinct parametrizations. We

illustrate our findings graphically to enable an intuitive understanding since first derivatives of

the expected welfare function are quite complex (see appendix F).
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Comparing the static and dynamic case

Figure 4a depicts the expected welfare with respect to P and r in our framework, while figure

4b depicts expected welfare as formulated in CH, which we identified as being equivalent to

our case for δ → 0. For both illustrations, we assume equal precision of the underlying signals

(α = β = δ). In the static CH case, the optimal level of publicity is lower than 1 if, and only

if, α
β < 3r − 1, or for α = β if, and only if, r > 2

3 . In our dynamic case, the optimal level of

publicity not only depends on the coordination motive r and the relative precision of private and

public signals; rather, optimal publicity crucially depends on the precision of the social learning

signal relative to the precision of both the private and public signal. For the case illustrated by

figure 4a, the optimal publicity P is smaller than 1 and - more importantly - smaller than in the

static CH case for any r > 0. The stronger the coordination motive, the higher the loss from a

non-optimal level of publicity. Non-optimality thereby results from either too low or too high

publicity .

For r = 0, any P > 0 is welfare maximizing. Put simply, if there are no coordination incentives,

all signals hold the same information value to estimate the underlying fundamental. Since there

is no desire to coordinate, there is no overreaction to the public signal and uninformed agents

receive the same information by observing the average action of the informed agents. For r → 1,

P = 0.44 is welfare maximizing, which is lower than in the static CH case as observational

learning transmits disclosed public information from informed to initially uninformed agents.

This transmission is anticipated and accounted for by the informed agents, the focal role of

the central bank’s signal grows stronger and – ceteris paribus – the optimal degree of publicity

decreases.

Conclusion 3: For equivalent signal precisions, the welfare maximizing degree of publicity is

lower in the dynamic case than in the static CH case.

If the social learning signal is less precise than the public and private signal (figure 5a), the

optimal level of publicity P is higher than under equal signal precision (figure 4a). Intuitively,

the welfare maximizing central bank benefits from informing more agents due to the higher

precision of its own public signal compared to the social learning signal. As before, the stronger

the coordination motive, the higher the loss from a non-optimal level of publicity. However, in

this case, losses are asymmetrically distributed, i.e. publicity higher than the optimum is less

welfare damaging compared to publicity lower than the optimum, since the public signal y is

more precise than the social learning signal. If the social learning signal is more precise than

the public and private signal, the optimal level of publicity P substantially decreases. In our

illustration of figure 5b, the social learning signal is twice as precise and thus the optimal P

becomes zero. Effective social learning and the imprecise public signal evoke an optimal zero

public disclosure policy, where P is chosen infinitesimal.
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(a) dynamic case (b) static CH case

Figure 4: Welfare depending on r and P for the static and the dynamic case

Note: the illustrations assumes equal precision of the private, the public and the social learning signal
α = β = δ = 0.01

Conclusion 4: For a weak precision of the social learning signal, optimal publicity is high,

whereas for strong precision the optimal publicity is low. Therefore, the effectiveness of social

learning determines optimal central bank policy with respect to publicity.

(a) low precision: δ = 0.005 (b) high precision: δ = 0.02

Figure 5: Welfare depending on r and P for high and low precision of s

Note: the illustration assumes equal precision of the private and the public signal α = β = 0.01

Optimal publicity and the precision of central bank’s public signal

As CH note, if the public signal y can be provided with infinite precision α→∞, the expected

welfare loss is zero and the first best solution is established. However, if there is an upper limit ᾱ
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for the provision of the public signal, the central bank has to choose the optimal level of publicity

and precision simultaneously. CH show that if the central bank can set P = P ∗, the optimal

precision is always maximal in the static case. The main theorem follows: public information

should always be provided with maximum precision, but - under certain conditions - not to all

agents. In our case, where the effectiveness of social learning plays a crucial role for the optimal

level of publicity, this theorem no longer holds. Figure 6a evaluates expected welfare at P ∗ with

respect to α and r.

For any r < 2
3 , overall welfare is strictly increasing in α. Optimal precision is given by the feasible

maximum as stated by the main theorem of CH. For instance, for r = 0, welfare strictly increases

in α whereby such an increase in the precision of the public signal substantially contributes to

welfare only if α > β = δ. For the case of a weaker precision in the public signal than the private

and social learning signal, the central bank optimally chooses a small P to prevent actions from

being distorted away from the fundamental state. Conversely, for α > β = δ, optimal P is high

as more agents should be informed to benefit from the precise public signal.

For any r > 2
3 , the optimal precision is not necessarily the maximal feasible one. Only if

the central bank can guarantee a minimum precision of their issued public signal, optimal

precision equals the the maximal feasible. Following our illustration, this minimum constitutes

at α > 0.001. Accordingly, the public signal must be at least one tenth as precise as the private

signal and the social learning signal. For precisions lower than this threshold, it becomes

optimal for the central bank to completely withhold information and provide a signal carrying

no information at all. However, Svensson (2006) argues - based upon empirical findings on the

precision of private versus public sector forecasts, e.g. by Romer and Romer (2000) - that it

seems unlikely to assume the relative precision of public information being sufficiently weak for

this finding to become relevant.

Conclusion 5: Given optimal publicity P ∗, the optimal precision of the public signal is at

the maximum only if r < 2
3 . For r > 2

3 , it can be optimal to withhold very imprecise public

information and issue a signal carrying no information at all.

Desirability of social learning

On the one hand, social learning leads to the uninformed agents in our model being better

informed than in the static CH case, whereby uninformed agents might more accurately match

the fundamental state by their actions. On the other hand, social learning serves a focal role

that fosters coordination and aligns the actions of all agents. Naturally, the question arises

concerning whether social learning is generally desirable from a welfare perspective.

In our dynamic beauty contest model, social learning only adds to overall welfare if the central

bank chooses the optimal level of publicity (P = P ∗) and the social learning signal carries some

information and is not extremely imprecise. Consider the public signal y to be very precise (high

α) and at the same time the social learning signal s to be very imprecise (low δ): in this case, if

the central bank chooses a very low level of publicity (P < P ∗), more agents act upon the social
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(a) public signal precision: α (b) social learning signal precision: δ

Figure 6: Welfare depending on r evaluated at P = P ∗

Note: the illustration assumes equal precision for a) the private and the social learning signal β = δ =
0.01 and b) the private and the public signal β = α = 0.01

learning signal, which potentially distorts actions further away from the fundamental than the

public signal. Social learning subsequently reduces welfare and becomes socially undesirable.

By contrast, if the social learning signal is very precise (high δ) and the public signal is very

imprecise (low α) and the central bank chooses a very high level of publicity (P > P ∗), the

contrary holds true: too many agents act upon the public signal, which potentially distorts

actions further away from the fundamental than the social learning signal. Social learning

subsequently becomes desirable as the positive impact on welfare potentially becomes strong.

However, if the central bank chooses publicity optimally, welfare at worse reaches the level

of the static CH case (cp. figure 6b). As aforementioned, expected welfare in our model

corresponds to expected welfare in CH in case of an extremely imprecise social learning signal

δ → 0. Contrastingly, if the social learning signal carries at least some information, welfare is

strictly higher for all r.

Conclusion 6: Social learning adds to overall welfare if the central bank follows the welfare

optimizing level of publicity (P = P ∗) and the respective social learning signal is not extremely

imprecise.

3 Discussion

In this section, we bring up variations and extensions of our main framework. Firstly, we

discuss a variation of our model in which the media distributes public announcements to a wider

audience than initially intended by the central bank. Secondly, we consider heterogeneous private

signal precision between informed and uninformed agents. Thirdly, we introduce an alternative
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specification of the social learning signal and the evolution of the fundamental state. Fourthly,

we connect our model to the related literature concerning the central bank’s influence on an

economy’s fundamentals. Finally, we discuss our theoretical findings in the light of experimental

evidence on generalized beauty contests and social learning.

Media as a multiplier

Besides social learning, there are various channels through which public information might spread

to a wider audience than initially intended by the central bank. In particular, the role of the

media should be considered as highly relevant, since its discussion of central bank actions and

communication enables uninformed agents to receive - at least partly - the public signal. An

effective way to model the role of the media in our framework would allow uninformed agents

– rather than receiving s – to receive a signal ỹ = y + ψ with ψ ∼ N(0, σ2ψ), which is an

unbiased signal of the issued public signal y.14 The signal represents the media’s interpretation

of the central bank announcement. Assuming that informed agents anticipate the spreading

of the information, the desirability of this second order public information crucially depends

on how accurate the media processes the initial announcement. In the most extreme case, the

media issues its information on the public signal y without any noise and all agents eventually

become informed. This amplifies the focal role of public information and the central bank

optimally reduces the level of publicity. Again, it is the informed agents’ beliefs concerning the

information set of uninformed agents and the intertemporal coordination motive that prompts

the optimal level of publicity to be lower than in the static case. This replicates the general

argument of our paper, namely that accounting for multiplier effects is crucial when designing

central bank communication.

Heterogeneous private signal precision

An interesting variation of our model results from relaxing the assumption of equal private

signal precision across periods (β0 6= β1). Consider that private signal precision is very low for

uninformed agents, e.g. because private investors are not spending as many resources to gather

information compared to institutional investors. It might plausibly be assumed that agents

with more precise private information are more capable of receiving and processing public

information and thus act prior to the uninformed agents with imprecise private information.

Uninformed agents are subsequently prompted to closely follow the social learning signal, where

feedback trading might be considered a related phenomenon. Conversely, informed agents

account for this reaction by assigning a higher weight on public information than under the

assumption of uninformed agents acting upon private information of equal precision. Central

bank communication has to account for the aggravated overreaction to public information in

such an environment. The contrary logic applies if the private information of uninformed agents

is more precise.

14An advantage of this variation of the model is that the fundamental can be modeled as constant since the
impossibility of exogenously deriving the precision of the social learning signal - formulated in appendix E - no
longer holds true.
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Perfect and private learning

We modeled social learning by a noisy public signal. However, we could introduce perfect

learning, which involves uninformed agents observing ā0 without any noise. The evolution

of the fundamental state becomes θ1 = ā0 + ϕ with ϕ ∼ N(0, σ2ϕ) to preclude agents from

observing θ1 with full precision, given that this would result in a trivial situation. In this

case of perfect learning, uninformed agents in period t = 1 do not form expectations about

the average action of informed agents in t = 0, since ā0 is already part of their information

set. The importance of the social learning signal for uninformed and informed agents - through

anticipation - is substantially higher. This amplifies the focal role of public announcements.

Overall, under perfect learning, our finding of optimal publicity being sensitive to the relevance

of coordination motives and social learning proves robust. Furthermore, instead of modeling

social learning by a public signal received by all uninformed agents, we could assume private

learning. For instance, each uninformed agent might observe an action of one neighboring agent

privately, which leaves the social learning signal without a focal role. However, as shown in

section 2, informed agents account for (private) learning of uninformed agents and thus place

higher weight on the public signal than in the static case. This anticipation effect reduces ex

ante the optimal publicity of public information. Regardless of social learning running privately

or publicly, public information is subject to a multiplier effect that decreases optimal publicity.

Overall, our main result proves robust against the specific process of social learning.

Central bank power

In our framework, the central bank is capable of manipulating the fundamental state, which

represents a distinct expansion of power compared to the static models of CH and MS. The

central bank influences informed agents’ actions through its public announcements, whereby

subsequently the average action of the first period determines θ1. Therefore, every public

announcement y that might bring actions closer to the fundamental state θ0 also manipulates

the fundamental θ1. This indirect influence on the fundamental is not the same as the “activist

policy” formulated in the extension of the MS framework by James and Lawler (2011), who

introduced a direct influence of the central bank on fundamentals through stabilization policy.

Policy interventions g are modeled as being capable of completely resolving welfare distortions

due to variations in θ. In their model, policy interventions that manipulate the fundamental state

are an additional means of central bank policy. In our model, the fundamental state can only

be manipulated through the intermediary of informed agents’ actions. Public announcements

of the central bank work as self-fulfilling prophecies. This more complex process might cause

the central bank’s influence to be more susceptible to potential distortions, e.g. unreasonable

reactions by market participants. Furthermore, to establish an optimal design of communication

and fully assess the consequences of central bank manipulations in such richer settings, one

would have to account for central bank reputation and the capability of informed agents to

anticipate biased announcements. The state of the economy might play a crucial role as it

affects which type of information is perceived as most relevant. For instance, within a recession
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or a crisis, uncertainty about private information might be high, causing overreactions to public

information such as central bank announcements or social learning signals to grow stronger. This

would strengthen the power of central banks as agents’ expectations are more easily manipulated

in such environments. However, this is not the focus of our paper and we thus abstain from

formally analyzing these considerations in our model. Our welfare function only draws upon

deviations from the fundamental state and not the desirability of manipulating the fundamental

state itself.

Experimental evidence

Dale and Morgan (2012) and Cornand and Heinemann (2014) transfer the static game introduced

by MS to a laboratory setting. They present experimental evidence on the focal role of public

information, finding that agents significantly overweight public information compared to private

information. However, the overreaction to public information is weaker than predicted by theory.

Empirical weights are best predicted by a level-2 reasoning within a cognitive hierarchy model,

which precludes public information from being detrimental to welfare Cornand and Heinemann

(2013). Overall, the detrimental effect of public information is diminished when agents fail

to form higher order beliefs. Baeriswyl and Cornand (2014) experimentally test the partial

publicity argument introduced by CH. Comparing partial publicity - where only a fraction of

all agents become informed - with partial transparency - where the public signal is disclosed to

all agents, albeit with some ambiguity - they show that the two approaches are theoretically

equivalent in their effectiveness of controlling overreaction. This equivalency resembles the

results acquired in the lab. However, the authors argue that partial transparency is easier to

implement and less discriminating as there are no uninformed agents. Experiments on social

learning indicate that subjects are incapable of using Bayes rule optimally (Weizsäcker 2010).

Agents cling to private information and underweight the value of social learning information.

Social learning is insufficient, which results in informational inefficiencies. Transferring this core

finding to our framework, we might similarly expect social learning to be weaker than predicted

by theory. Agents might systematically underweight the information revealed by observable

actions of the informed agents and cling to private information. The same might hold true for

public information received by the informed agents. These considerations connect to the finding

of a weaker overreaction to public information in the lab than predicted by theory Cornand and

Heinemann (2014). In sum, the overreaction to publicly observable signals such as those issued

by the central bank or derived by observable actions might be weaker than predicted by theory.

Cognitive limitations or distrust in observable actions reduce the relevance of social learning yet

increase the relevance of private information. Consequently, the actual optimal level of publicity

might exceed the level derived theoretically by our model. However, since the interactions in our

two-period framework are quite complex and anticipation effects might enter into play, future

empirical research should explore the effectiveness of social learning and potential distortions.
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4 Conclusion

We introduce observational learning in a two-period generalized beauty contest to study the

optimal level of publicity for central bank information that is prone to multiplier effects. We

show that as long as the social learning signal is not extremely imprecise, the optimal degree of

publicity is lower in our dynamic setting than in the static case. This finding is driven by the

focal role of the central bank signal for both the informed and uninformed agents.

Our results hold relevance for the optimal design of central bank communication. In choosing

the degree of publicity, the central bank merely decides on the fraction of first-hand informed

agents, while the uninformed agents will imperfectly learn about the public signal by observation.

Social learning by the uninformed agents is anticipated and accounted for by the informed agents,

prompting them to assign a higher weight to the central bank’s signal. Accordingly, overreaction

is substantially aggravated by the social learning dimension as it leads to initially uninformed

agents being involved in the coordination game. For a reasonably precise social learning signal,

the central bank has to reduce the publicity of its signal compared to the static case. Nonetheless,

social learning – as a prominent multiplier of central bank communication – enhances aggregate

welfare given an optimal policy design.
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Appendix A

Derivation of optimal weights on the private and the public signal in t=1

We start the derivation of optimal weights for uninformed agents by considering equation (7)

a∗i1 = (1− r) β

β + δ
xi1 +

(
1− β

β − δ

)
s

+ r

{
P

[
β

β + δ
xi1 +

(
1− β

β + δ

)
s

]
+ (1− P )

[
γ1β

β + δ
xi1 +

(
1− γ1β

β + δ

)
s

]}
,

which can be rearranged such that

a∗i1 =

(
β − rβ + rPβ + rγ1β − rγ1βP

β + δ

)
xi1 +

(
1− β − rβ + rPβ + rγ1β − rγ1βP

β + δ

)
s.

It can be seen that the two multipliers of xi1 and s are perfectly symmetric. Since we assumed

that all agents use their available information in a linear fashion (see equations (2) and (3)), we

obtain

γ1 =
β − rβ + rPβ + rγ1β − rγ1βP

β + δ
,

from which we can solve for the optimal weight on the private signal

γ∗1 =
β[1− r(1− P )]

δ + β[1− r(1− P )]
.

By symmetry, the optimal weight on the public social learning signal s is then given by

(1− γ∗1) = 1− β[1− r(1− P )]

δ + β[1− r(1− P )]
.

Appendix B

Derivation of the optimal weight on the private and public signal in period t=0

We start the derivation of optimal weights for informed agents by considering equation

(11)

a∗i0 = (1− r)
[

β

α+ δ
xi0 +

(
1− β

α+ β

)
y

]
+ r

{
P

[
γ0β

α+ β
xi0 +

(
1− γ0β

α+ β

)
y

]
+(1− P )

[
(1− γ∗i1)

[
γ0β

α+ β
xi0 +

(
1− γ0β

α+ β

)
y

]
+ γ∗1

[
β

α+ β
xi0 +

(
1− β

α+ β

)
y

]]}
,
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which can be rearranged such that

a∗i0 =

(
β

α+ β
− rβ

α+ β
+

rγ0β

α+ β
− rγ∗1γ0β

α+ β
+
rγ∗1β

α+ β
+
rγ∗1Pγ0β

α+ β
− rγ∗1Pβ

α+ β

)
xi0

+

(
1− β

α+ β
− rβ

α+ β
+

rγ0β

α+ β
− rγ∗1γ0β

α+ β
+
rγ∗1β

α+ β
+
rγ∗1Pγ0β

α+ β
− rγ∗1Pβ

α+ β

)
y.

As in the case for uninformed agents, there is perfect symmetry in the multipliers of xi0 and y.

Since it is assumed that information is used in a linear fashion (see equations (2) and (3)), we

obtain

γ0 =
β

α+ β
− rβ

α+ β
+

rγ0β

α+ β
− rγ∗1γ0β

α+ β
+
rγ∗1β

α+ β
+
rγ∗1Pγ0β

α+ β
− rγ∗1Pβ

α+ β
,

from which we can solve for the optimal weight on the private signal

γ∗0 =
β[1− r(1− γ∗1(1− P ))]

α+ β[1− r(1− γ∗1(1− P ))]
.

By symmetry, the optimal weight on the public signal y is then given by

(1− γ∗0) = 1− β[1− r(1− γ∗1(1− P ))]

α+ β[1− r(1− γ∗1(1− P ))]
.

Appendix C

Proof of Uniqueness for t=1

Here we prove that the equilibrium strategy identified for t=1 is a linear combination of

available signals xi1 and s. The proof follows CH (p. 738). Intuitively, it has to be proven that

the infinite sum of average expectations of the average expectations...(k times) is bounded and

converges to the linear equilibrium identified in section 1.2. The optimal action of uninformed

agents is given by the first-order condition of the utility function

ai1 = (1− r)Ei(θ1) + rEi(a).

The average action of all agents is given by

a = P

∫ 1

0
ai0(xi0, y)di+ (1− P )

∫ 1

0
ai1(xi1, s)di

Since we assumed θ1 = a0, we obtain

a = Pθ1 + (1− P )a1(θ1, s),
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which can be plugged into the FOC such that

ai1 = (1− r)Ei(θ1) + rEi[Pθ1 + (1− P )a1(θ1, s)]

= [1− r(1− P )]Ei(θ1) + r(1− P )Ei[a1(θ1, s)]

= [1− r(1− P )]Ei(θ1) + [r(1− P )][1− r(1− P )]Ei[E1(θ1)] + [r(1− P )]2Ei[E1(a1|θ1, s)]

= [1− r(1− P )]
∞∑
k=0

[r(1− P )]kEi[E
k
1(θ1)] + lim

k→∞
[r(1− P )]kEi[E

k
1(a1|θ1, s)],

where E
k
1(θ1) denotes the average expectation of the average expectation. . . (k times) of θ1

and E
k
1(a1) is the average expectation of the average expectation. . . (k times) of the average

action in t = 1. Since we assume 0 < r < 1, r(1− P ) < 1 and thus the limes term in the above

expression is zero. Thus, the equation reduces to

= [1− r(1− P )]
∞∑
k=0

[r(1− P )]kEi[E
k
1(θ1)].

Following Lemma 1 from MS (p. 1527), we can substitute Ei[E
k
1(θ1)] = (1 − µk+1)s + µk+1xi1

with µ = β
δ+β which yields

= [1− r(1− P )]
∞∑
k=0

[r(1− P )]k(1− µk+1)s+ µk+1xi1

= [1− r(1− P )]

[
s
∞∑
k=0

[r(1− P )]k − sµ
∞∑
k=0

[r(1− P )µ]k + xi1µ
∞∑
k=0

[r(1− P )µ]k

]
.

Now, since r(1−P )µ < 1, the infinite sums in the expression above
∑∞

k=0[r(1−P )µ]k converge

to 1
1−r(1−P )µ . Similarly, the expressen

∑∞
k=0[r(1−P )]k converges to 1

1−r(1−P ) .We can thus write

= [1− r(1− P )]

[
s

1− r(1− P )
− sµ

1− r(1− P )µ
+

xi1µ

1− r(1− P )µ

]
= s− sµ[1− r(1− P )]

1− r(1− p)µ
+
xi1µ[1− r(1− P )]

1− r(1− p)µ
.

Inserting µ = β
δ+β and rearranging terms yields

=

[
1− β[1− r(1− P )]

δ + β[1− r(1− P )]

]
s+

β[1− r(1− P )]

δ + β[1− r(1− P )]
xi1,

which replicates the linear equilibrium established in section 1.2 and completes the proof.
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Appendix D

Proof of uniqueness for t = 0

The proof of uniqueness of the equilibrium strategy in t=0 follows the same logic as for

t=1. The optimal action of informed agents is given by the first-order condition of the utility

function

ai0 = (1− r)Ei(θ0) + rEi(a).

The average action is given by

a = P

∫ 1

0
ai0(xi0, y)di+ (1− P )

∫ 1

0
ai1(xi1, s)di

= Pa0(θ0, y) + (1− P )a1(θ1, s),

which can be plugged into the FOC such that

ai0 = (1− r)Ei0(θ0) + rEi0(Pa0(θ0, y) + (1− P )a1(θ1, s)).

Since a1 = γ∗1θ1 + (1− γ∗1)s, we can write

= (1− r)Ei0(θ0) + rPEi0[a0(θ0, y)] + r(1− P )γ∗1Ei0(θ1) + r(1− P )(1− γ∗1)Ei0(s).

Using the fact that E(θ1) = E(θ0) and E(s) = a0 and summarizing terms yields

= [1− r(1− γ∗1(1− P ))]Ei0(θ0) + r[1− γ∗1(1− P )]Ei0[a0(θ0, y)]

= [1− r(1− γ∗1(1− P ))]Ei0(θ0) + r[1− γ∗1(1− P )] [1− r(1− γ∗1(1− P ))]Ei0[E0(θ0)]

+ [(r(1− γ∗1(1− P ))]2Ei0[E0(a0|θ0, y)]

= [1− r(1− γ∗1(1− P ))]
∞∑
k=0

[r(1− γ∗1(1− P ))]k Ei0[E
k
0(θ0)]

+ lim
k→∞

[r(1− γ∗1(1− P ))]k Ei0[E
k
0(a0|θ0, y)],

where E
k
0(θ) denotes the average expectation of the average expectation... (k times) of θ0 and

E
k
0(a0) is the average expectation of the average expectation... (k times) of the average action

in t=0. Since we assume 0 < r < 1, r[1− γ∗1(1− P )] < 1 and thus the limes term in the above

expression is zero. Thus, the equation reduces to

= [1− r(1− γ∗1(1− P ))]

∞∑
k=0

[r(1− γ∗1(1− P ))]k Ei0[E
k
0(θ0)].
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Following Lemma 1 from MS (p.1527), we can substitute Ei0[E
k
0] = (1− µk+1)y + µk+1xio with

µ = β
α+β which yields

= [1− r(1− γ∗1(1− P ))]
∞∑
k=0

[r(1− γ∗1(1− P ))]k (1− µk+1)y + µk+1xi0

= [1− r(1− γ∗1(1− P ))]

{
y
∞∑
k=0

[r(1− γ∗1(1− P ))]k − yµ
∞∑
k=0

[r(1− γ∗1(1− P ))µ]k

+xioµ
∞∑
k=0

[r(1− γ∗1(1− P ))µ]k
}
.

Now, since r[1 − γ∗1(1 − P )]µ < 1, the infinite sums in the last expression above
∑∞

k=0[r(1 −
γ∗1(1− P ))µ]k converge to 1

1−r[1−γ∗1 (1−P )] and we obtain

= [1− r(1− γ∗1(1− P ))]{
y

1− r[1− γ∗1(1− P )]
− yµ

1− r[1− γ∗1(1− P )]µ
+

xi0µ

1− r[1− γ∗1(1− P )]µ

}
= y − yµ[1− r(1− γ∗1(1− P ))]

1− r[1− γ∗1(1− P )]µ
+
xi0µ[1− r(1− γ∗1(1− P ))]

1− r[1− γ∗1(1− P )]µ

Inserting µ = β
α+β and rearranging terms yields

=

[
1− β[1− r(1− γ∗1(1− P ))]

α+ β[1− r(1− γ∗1(1− P ))]

]
y +

β[1− r(1− γ∗1(1− P ))]

α+ β[1− r(1− γ∗1(1− P ))]
xi0,

which replicates the linear equilibrium established in section 3 and completes the proof.

Appendix E

In section 1.2, we introduced the assumption that θ1 = a0. Accordingly, the average action of

the informed agents determines the new fundamental state of the second period, which has to be

matched by the uninformed agents. In the following, we outline a formal argument concerning

why it is impossible to assume a constant fundamental over periods in our framework. Consider

θ drawn from the real line and constant over periods. Agents from the second period receive a0

without any noise (perfect learning). Subsequently, agents need to know how a0 is distributed

around θ to derive the optimal weight relative to their private signal xi1. Since we assume

ai0 = γxi0 + (1 − γ)y and E(xi) = E(y) = θ, E(ai0) = θ and E(a0) = θ and a0 is an unbiased

signal of the fundamental state. This holds as γ + (1− γ) = 1. However, the variance of a0 has

to be considered relevant as it depends on the equilibrium weights on xi0 and y. Formally, we

can write

V ar(a0) = γ2θ0 + (1− γ)2y,
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where γ is γ∗0 =
β[1−r(1−γ∗1 (1−P ))]

α+β[1−r(1−γ∗1 (1−P ))] . This optimal weight γ∗0 relies on the optimal weight in

t=1, which is γ∗1 = β[1−r(1−P )]
δ+β[1−r(1−P )] . As γ∗1 is based upon the precision of the social learning signal

δ, we would need to know δ to solve for V ar(a0) or its precision 1
V ar(a0)

= δ. As a matter of

logic, this is not possible. The underlying intuition stems from agents having inter-temporal

coordination incentives. Informed agents account for the optimal play in the subsequent second

period, which makes it impossible to exogenously derive the precision of the endogenous signal

at=0. Therefore, we model a fundamental state that evolves according to the average action of

the informed agents. This enables us to introduce an exogenous signal s with an exogenously

determined precision whereby all agents form common priors over the precision of all signals.
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Appendix F

Here, we present the first derivative of the welfare function

E[W (a, θ)] = −P β[1− r(1− γ∗1(1− P ))]2 + α

[α+ β(1− r(1− γ∗1(1− P ))]2
− (1− P )

β[1− r(1− P )]2 + δ

[δ + β(1− r(1− P ))]2
,

where γ∗1 = β[1−r(1−P )]
δ+β[1−r(1−P )] . Maximizing expected welfare with respect to 0 < P ≤ 1 yields for

δE(W )
δP =

2βr
[
1−r

(
1−β[1−r(1−P )](1−P )

β[1−r(1−P )]+δ

)][
β2r[1−r(1−P )](1−P )

[β(1−r(1−P ))+δ]2
− βr(1−P )
β[1−r(1−P )]+δ

+
β[1−r(1−P )]
β[1−r(1−P )]+δ

]
P−β

[
1−r

(
1−β[1−r(1−P )](1−P )

β[1−r(1−P )]+δ

)]2
−α[

β
(
1−r

(
1−β[1−r(1−P )](1−P )

β[1−r(1−P )]+δ

))
+α
]2

+
2βr

[
β2r[1−r(1−P )](1−P )

[β[1−r(1−P )]+δ]2
− βr(1−P )
β[1−r(1−P )]+δ

+
β[1−r(1−P )]
β[1−r(1−P )]+δ

][
−β
(
1−r

(
1−β[1−r(1−P )](1−P )

β[1−r(1−P )]+δ

))2
P−αP

]
[
β
(
1−r

(
1−β[1−r(1−P )](1−P )

β[1−r(1−P )]+δ

))
+α
]3

+−2βr[1−r(1−P )](1−P )+β[1−r(1−P )]2+δ
[β(1−r(1−P ))+δ]2

− 2βr[β[1−r(1−P )]2(1−P )−δ(1−P )]
[β[1−r(1−P )]+δ]3

.

The first two lines of the derivative correspond to the first part of the welfare function (loss in t=0), while the last line corresponds to the

second part (loss in t=1).
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