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Abstract

In this paper we evaluate the performance of several structural break tests

under various DGPs. Concretely we look at size and power properties of

CUSUM based, LM and Wald volatility break tests. In a simulation study

we derive the properties of the tests under shifts in the unconditional and

conditional variance as well as for smooth shifts in the volatility process. Our

results indicate that Wald tests have more power of detecting a change in

the volatility than CUSUM and LM tests. This, however, goes along with

the disadvantage of being slightly oversized. We further show that with huge

outliers in the data the tests may exhibit non-monotonic power functions as

the long-run variance of the squared return process is no longer finite. In

an empirical example we determine the number and time of volatility breaks

considering four equity and three exchange rate series. We find that in some

situations the outcomes of the tests may vary substantially. Further we find

fewer volatility breaks in the currency series than in the equity series.
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1 Introduction

During the last couple of decades, a great deal of attention has been drawn to volatility

shifts and their impact on time series in the context of financial markets. Ever since

the seminal articles of Diebold [1986] and Lamoureux and Lastrapes [1990] stylized facts

of volatility such as long-range dependence or IGARCH effects are regarded as being

caused by structural changes in volatility. There exists evidence that many time series

suffer from occasional structural breaks in the conditional as well as the unconditional

volatility, compare e.g. Andreou and Ghysels [2002], Sensier and van Dijk [2004]. Conse-

quently there are several proposals in the literature for incorporating structural changes

in volatility into GARCH models, cf. Engle and Rangel [2008], Engle et al. [2013] or

Amado and Teräsvirta [2013] among others. Hence, testing for volatility constancy

marks an important task in terms of model selection and forecasting purposes. Break

detection plays also an essential role for e.g. financial decision-making like the pricing

of derivatives and portfolio risk management. Since the implicit assumption of a stable

underlying GARCH process is often confuted by sudden large shocks the unconditional

volatility of exchange rate returns can in turn be effected, c.f. Rapach and Strauss [2008].

Another strand of literature where break detection is of great importance is the influence

of volatility on causality, c.f. D.O. van Dijk and Sensier [2005]. The most widely em-

ployed testing procedures for treating the aforementioned issues in the field of volatility

breaks are commonly CUSUM, LM and Wald tests.

Empirical applications considering structural breaks in GARCH processes applied to

the latter tests in particular have i.a. been provided by Andreou and Ghysels [2002],

Sensier and van Dijk [2004] and Xu [2013b]. The former authors have compared CUSUM

and least-squares volatility break tests concerning their size and power performance

applied to GARCH processes. By additionally considering shifts in the unconditional

variance process Xu [2013b] looked at a broader range of data generating processes

(DGPs).

Our paper deals with the most frequently used volatility break tests and compares

them over a broad range of different DGPs. Thereby, we look at switches in the un-

conditional as well as the conditional volatility, whereat the underlying DGP is either

exposed to single or double shifting or can alternatively exhibit a smooth and steady

increase in the magnitude of the volatility break. The comparison is done via an ex-

tensive simulation study at which we apply seven different tests. Further, we elaborate

that for certain parameter constellations the tests may suffer from non-monotonic power

functions, provided that the data contains large outliers. This results from the fact that

the long-run variance of the squared process may no longer be finite causing the power

to drop once the finite kurtosis condition is no longer fulfilled. By estimating the density

of the break point estimators we assess the correctness of the estimation and can further

confirm the findings of the simulation study.

In the empirical application we analyze four equity series and three exchange rate

series. By estimating the number and timing of the breakpoints we see that the outcome

of the tests can indeed differ substantially for different parameter constellations. Follow-
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ing we carry out the tests for each series in a rolling window allowing us to derive and

compare the distribution of the p-values of the tests. Here we find that for currencies

fewer breaks in volatility are found compared with the equity series.

The paper is organized as follows. Section 2 provides a short introduction of the

insinuated testing procedures. In section 3 the simulation study is presented and the

results are discussed. Section 4 then contains the empirical example while section 5

concludes.

2 Volatility Break Tests

Let {ηt}Tt=1 denote a mean-zero stochastic process with index t and T the time horizon.

To test for a possible break in the volatility of the process CUSUM, Lagrange multiplier

(LM) and Wald tests have been applied in the literature.

The CUSUM-of-squares test originally introduced by Brown et al. [1975] is given by

CUS Q = max
0≤τ≤1

∣

∣

∣

∣
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∣

∣

[τT ]
∑

t=1

η2t −
T
∑

t=1

η2t

∣

∣

∣

∣

∣

∣

∣

/
√

TΘ,

where [τT ] describes the break point that occurs at the time, with τ denoting the per-

centaged breakpoint τ ∈ [0,1], and Θ being the long-run variance (LRV) of the squared

process. Under the Null of no volatility breaks CUS Q→ supτ∈[0,1] |BB(τ)| where BB(τ) =

W(τ)− τW(1) with W(τ) and BB(τ) being defined as a unit Wiener process on [0,1] and

a Brownian Bridge in dependence of τ, respectively. Simulating BB(τ) results in crit-

ical values of 1.224(10%), 1.358(5%) and 1.628(1%) and can be found in. Deng and

Perron [2008] specify {ηt}Tt=1 to be α-mixing and formulate an estimator for the LRV

under the Null. Earlier Inclan and Tiao [1994] looked at variance breaks for normal iid

data. Thereby the LRV of the CUSQ simplifies to Θ = 2. As the version of Inclan and

Tiao [1994] is heavily oversized for dependent data (cf. Andreou and Ghysels [2002]) we

merely look at the Deng and Perron [2008] version (henceforth DP) of the test in the

upcoming analysis.

Alternatively the LM test can be utilized. The test statistic is given by

LM(τ) = (S S R0−S S R(τ))/
√
Θ (1)

where S S R0 denotes the sum of squared residuals of the simple mean shift model

η2t −
T
∑

t=1

η2t /T = ̺1(t≥[τT ]) +υt with υt
iid∼ N(0,1).

Thereby ̺ depicts the mean shift parameter giving the break size and 1 depicts the

indicator function leading to the Null of H0 : ̺ = 0 while S S R(τ) is defined as the sum of

squared residuals under the alternative of a break in the process at time [τT ].

The Wald test ist then specified as

Wald(τ) = (S S R0−S S R(τ))/
√

Θ(τ), (2)
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in which Θ is determined under the alternative, i.e. Θ(τ).

In our analysis we consider supremum, mean and exponential versions of (1) and (2).

The functionals of the tests J = {LM,Wald} are then defined as:

i) sup -J = supJ(τ)

ii) mean -J =
∫

J(τ)

iii) exp -J = log
(∫

exp
[

1
2J(τ)

])

,

where the integral is defined over τ with τ ∈ τε where τε = {τ : τ ≥ ε, τ ≤ 1−ε}. ε describes

the user-chosen truncation parameter concerning the interval in which a break point is

tested for. Throughout the analysis we set ε = 0.15, following Andrews [1991] here. The

critical values for i) are taken from Andrews [1993] and those for ii) - iii) can be found

in Andrews and Ploberger [1994].

In all three tests Θ = γ0 + 2
∑∞

r=1γr marks the long-run variance (LRV) of ηt with

γr = E(η2t −σ2)(η2t−r −σ2) and σ2
= E(η2t ) for r = 0,1, . . . ,T −1. An estimator of Θ is given

by Θ̂ = γ̂0+ 2
∑T−1

r=1 k(r/m)γ̂r with γ̂r = T−1∑T
t=r+1(η2t − σ̂2)(η2t−r − σ̂2) and σ̂2

=
∑T

t=1η
2
t /T .

Like many others we specify k(·) as the Bartlett kernel while the bandwidth m is deter-

mined conducting the data-dependent method with an AR(1) approximation proposed

by Andrews [1991]. Hence, the estimated bandwidth m̂ equals

m̂ = 4ρ̂2/(1− ρ̂2)2 (3)

where ρ̂ denotes the OLS estimate from a regression of η̂2t on η̂2t−1.

3 Monte Carlo Study

3.1 Simulation setup

By applying the presented tests to DGPs that underly a break in either the conditional or

the unconditional volatility we want to issue potential pitfalls by means of size and power

properties. Here we distinguish between three different process types on behalf of the

shift type: single shifting (I), double shifting (II) and smooth transition (III). Following

Xu [2013b] the DGPs have the form ηt = σtǫt and are composed of a conditional variance

term ǫt and an unconditional variance term σ2
t = σ

2(t/T ) with σ2(s) being defined on

s ∈ (0,1] , i.e.

ǫt = htξt, h2
t = µ+αǫ

2
t−1+βh

2
t−1, ξt

iid∼ N(0,1)

σ2(s) = σ2
0+ (σ2

1−σ
2
0) · {I, II, III} with δ ≡ σ1

σ0
.

By construction the DGPs depend on the parameters τ, δ and T denoting breakpoint,

break size and sample size, respectively. Throughout the analysis σ2
0 is set to equal one

and ht forms a simple GARCH(1,1) process with ξt being iid normal.

As soon as the process breaks, the unconditional variance switches to one of the three

process types {I,II,III}. The switches are incorporated into the processes in dependence
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of the design of the variance shift as follows:

single shifts (I): 1{s≥τ}, τ ∈ {0.3,0.5,0.7}

double shifts (II): 1{τ≤s≤τ+0.2}, τ ∈ {0.3,0.5,0.7}

smooth transition (III): s .

The DGPs of the type (I) or (II) are hence exposed to single or double shifting, in-

corporated via the indicator function 1. In contrast to type (I), processes of type (II)

switch from σ2
0 to σ2

1 at ⌊τT ⌋, stay on for ⌊0.2T ⌋, and switch back to the initial variance

process, cf. Xu [2013b]. For a better overview a summary of the different DGPs and

their properties is displayed in Figure 1.

Single shift, tau=0.5

Double shift, tau=0.5

Smooth increase in the volatility

η

η

η

τ

τ

τ

Figure 1: displays exemplary the inflation of the volatility over time for the different process
types for T = 1000with τ = 0.5.

The break itself is then incorporated via the indicator function 1 as soon as t exceeds

the predetermined τ. Whenever the break point ⌊τT ⌋ is reached, the magnitude of the

break, δ, switches from δ= 1 under the Null to δ ∈ {1.1,1.2,1.3,1.5,2} under the alternative

and, thus, causes the volatility shift. The considered samples sizes are T = 200,500,1000.

All of these DGPs are subject to a simple shift at certain breakpoints occurring at the

smallest integer of ⌊τT ⌋. Thus, the break is defined to happen either after 30%, 50% or

70% of the time, meaning τ ∈ {0.3,0.5,0.7}.
Within the class of single shift processes we use four different DGPs. DGP1 undergoes

a switch in the unconditional volatility, while DGPs 2-4 are exposed to a break in the con-

ditional volatility. The DGPs 2-4 are based on different specifications of the GARCH pa-

rameters µ,α and β. Following Hillebrand [2005] the values for (µ,α,β) = (2·10−5,0.1,0.4)

are specified to equal an annualized volatility of σ =
√

250µ/(1−α−β) = 0.1. Hence,

the DGPs 2-4 jump from the bold type values in (4) under the null hypothesis to the
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Break points Single shift Two Shifts
Smooth

transition

DGP 1 

























(I)
single
shift

Simple break at τT

DGP 2 µ =(2, 2.42, 2.88, 3.38, 4.5, 8)·10−05

DGP 3 α =0.1,.19, .25, .30, .378, .48

DGP 4 β =0.4,.487, .553, .604, .678, .78

DGP 5














(II)
double
shift

breaks for 0.2τT

DGP 6 ξt
iid∼
√

0.6t(5)

DGP 7 

















(III)
smooth
transition

s = τ ∈ [0,1]

DGP 8 s =
√
τ ∈ [0,1]

DGP 9 s = τ2 ∈ [0,1]

Table 1: graphs an overview of the DPGs in the simulation study.

following values in accordance with the magnitude of δ = 1,1.1,1.2,1.3,1.5,2:

in DGP2 µ varys: µ = {(2,2.42,2.88,3.38,4.5,8) ·10−05}
in DGP3 α varys: α = {0.1, .19, .25, .30, .378, .48}
in DGP4 β varys: β = {0.4, .487, .553, .604, .678, .78}.

(4)

Additionally, we consider DGPs that are exposed to double shifting (DGPs 5-6) and

processes that undergo a smoothly increasing expansion in the unconditional volatility

over time. While DGP 5 is exposed to simple double shifting, DGP 6 has additionally

heavy tails, where the error term ξt
iid∼
√

0.6t(5), depicting a t-distribution normalized to

mean zero and standard deviation one. DGPs 7-9 exhibit a smooth transition in the

volatility, depending on the transition parameter s. Proportional to the time period the

DGPs 7-9 evolve with s = s̃,
√

s̃, s̃2 ∈ [0,1]. For a better visualization Figure 1 displays

the inflation of the volatility over time for the different process types, respectively.

Apart from DGP 7 and DGP 8, which are taken from Cavaliere and Taylor [2007]

and Xu [2008] the remaining DGPs are adopted from Xu [2013b]. Finally, to review the

different DGPs Table 1 sums up their properties.

3.2 Simulation results

As the results of our study contain 5 dimensions (sample sizes, breakpoints, break sizes,

DGPs and tests) we focus on the most striking patterns in the discussion of our results.

That is, we only present the results for breaks in the middle of the sample, i.e. τ = 0.5

and for small (T = 200) and large (T = 1,000) samples.1

To get a first idea of the behavior of the tests we look at the power of the tests con-

cerning the different DGPs. As all tests behave qualitatively in the same way regarding

the DGPs we focus on the power results for the DP test for illustrative purposes. Figure

2 plots the power in small and large samples for τ = 0.5 for all DGPs.

As one can clearly see, the power for the single shift DGPs in small samples is natu-

rally higher than for two shift DGPs. Furthermore it is striking that for the smoothly

increasing volatility processes the power is substantially lower than for (single) discrete

1Further results are available upon request. The results for τ = 0.3 and τ = 0.7 are qualitatively not

different from τ = 0.5.
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Figure 2: displays the power of the DP test for T = 200 (left) and T = 1000(right) with τ = 0.5
over all DGPs.

shifts in both, small and large, samples (compare the upper and the lower first graphs

in Figure 2). In large samples the power converges to 1 for nearly all DGPs but DGP

3. It is quite interesting that the DGPs 1, 2 and 4 behave very alike and attain good

power results especially when the magnitude of the break is very distinct. Hence, a first

observable phenomenon is, that there is a negligible difference between the unconditional

and conditional break in the variance, if we look at the DGP 1 compared to DGP 2 or 4.

Secondly we can state that the process with the break in the ARCH parameter, DGP 3,

even suffers from a power drop in large samples as soon as the magnitude of the break

exaggerates δ > 1.5. This non-monotonic power in DGP 3 can also be observed for all

types of the least-squares tests not pictured here. Tables 2 and 3 then return the results

for all tests and DGPs for T = 200 and T = 1,000.2

Turning to the small sample results (cf. Table 2) first we identify the expWald tests to

exhibit the highest power of all tests for nearly all DGPs. However, we also observe the

expWald and the other two Wald tests to be slightly oversized - a fact that has already

been pointed out regarding mean shift tests by other authors such as e.g. Kejriwal

[2009]. Consequently the Wald versions of the tests attain always higher power than

their respective LM counterparts. Comparing the three tests implying a breakpoint

estimator, i.e. the DP, the supLM and the supWald test, one can say that in terms of

power supWald ≻ DP ≻ supLM in small samples. In accordance with Figure 2 we state

very low power for all tests concerning the double shift DGPs 5 and 6. Also the power

for the smoothly inflating variance-processes, DGPs 7-9, is rather low.

Rather surprising is the fact that a switch in the ARCH parameter (DGP3) is clearly

less often detected than a break in the GARCH parameter. This may be caused by

outliers resulting from a large ARCH parameter. In such cases with large outliers in the

data the volatility break tests may no longer be robust to large volatility switches as

the long-run variance might no longer be finite. These considerations are further dealt

2Results for T = 500 can be found in Table 11 in the appendix.
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with in section 3.3. Apart from this the difference between switches in the unconditional

(DGP1) and conditional (DGPs 2-4) variance process does not play a role for the power

of the tests.

Altogether the tests perform very akin in small samples which is due to the fact, that

the LM and Wald test both are based on least squares and resemble each other in their

procedures as well as the CUSQ.
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DGP 1 DGP 2 DGP 3

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 4.34 4.84 5.74 5.90 7.10 6.80 7.70 4.64 5.46 6.04 6.56 6.30 5.60 7.10 4.64 5.46 6.04 6.56 6.30 5.60 7.10

1.1 9.72 8.54 12.82 12.02 11.70 14.20 14.30 9.56 8.88 12.34 11.86 13.10 13.60 14.50 8.34 8.94 11.24 11.10 13.10 13.30 14.30

1.2 22.88 19.34 28.08 26.14 25.50 29.90 31.50 24.36 20.90 29.10 27.58 28.10 31.80 32.70 15.74 15.58 20.50 20.06 21.90 23.00 25.60

1.3 43.92 37.40 48.90 47.28 46.60 52.90 53.90 43.70 36.60 49.02 47.08 48.90 55.70 55.80 21.98 20.74 27.96 27.26 32.00 33.40 36.10

1.5 79.70 71.30 83.18 82.12 79.40 83.50 85.30 79.62 72.22 82.58 81.62 82.40 87.20 87.20 33.18 31.04 41.14 39.92 42.60 47.10 48.60

2 98.98 97.72 99.42 99.46 99.70 99.90 100.0 98.90 98.12 99.30 99.34 99.60 99.80 99.80 44.80 42.02 52.86 52.16 55.90 60.80 62.40

DGP 4 DGP 5 DGP 6

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 4.64 5.46 6.04 6.56 6.30 5.60 7.10 4.34 4.84 5.74 5.90 7.10 6.80 7.70 3.46 4.56 5.42 5.68 7.50 7.90 8.00

1.1 10.16 9.48 12.48 12.46 13.70 14.20 15.40 4.46 4.10 5.48 5.46 6.10 4.40 6.00 3.08 4.38 5.52 5.26 5.60 5.70 6.50

1.2 25.26 22.50 29.60 28.48 30.00 32.90 34.00 5.52 3.86 6.00 6.00 6.70 6.60 7.60 2.66 2.84 3.78 3.86 5.90 5.50 5.90

1.3 44.64 38.00 48.64 47.56 50.40 55.90 56.30 7.86 4.56 7.14 7.90 9.30 9.90 11.80 3.68 3.06 4.54 4.32 5.70 5.60 6.80

1.5 78.04 71.72 80.46 79.64 81.50 85.10 85.60 11.98 6.94 10.10 11.20 11.40 12.30 14.50 5.60 2.96 5.40 5.64 5.10 6.30 7.50

2 98.44 97.18 98.30 98.64 99.90 99.40 99.40 26.82 14.22 26.88 24.68 24.70 33.80 34.00 12.32 5.74 10.88 10.72 12.40 15.10 17.50

DGP 7 DGP 8 DGP 9

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 4.58 5.26 6.04 6.36 7.70 7.70 9.00 4.58 5.26 6.04 6.36 7.70 7.70 9.00 4.58 5.26 6.04 6.36 7.70 7.70 9.00

1.1 6.42 7.04 8.50 8.64 10.80 10.30 11.60 5.64 5.88 7.64 7.52 9.00 9.90 9.70 6.72 7.66 8.88 9.28 11.50 10.90 12.20

1.2 11.06 10.92 15.40 14.28 16.80 18.30 19.10 8.02 8.48 11.22 10.92 13.10 13.60 14.50 12.02 13.00 16.34 15.76 19.40 19.50 20.10

1.3 17.92 17.66 25.06 23.42 25.40 28.80 29.20 11.68 11.34 16.12 15.04 17.10 18.60 20.20 20.60 21.84 28.22 27.10 29.80 31.40 33.50

1.5 35.86 34.96 47.96 45.04 44.70 51.50 51.10 21.26 20.14 30.54 27.74 28.50 35.90 34.40 42.78 44.18 54.78 52.58 53.60 58.70 58.20

2 75.28 72.54 87.68 84.00 82.20 90.40 89.20 45.30 42.50 61.06 56.12 55.40 66.80 64.60 86.04 85.76 93.56 91.84 92.50 95.60 95.30

Table 2: reports power results for all DGPs according to the DP, LM- and Wald-type tests for τ = 0.5, ǫ = 0.15 and T = 200.
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DGP 1 DGP 2 DGP 3

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 6.60 6.66 6.78 7.02 8.00 8.20 8.00 6.56 6.54 6.48 7.22 7.50 5.80 7.30 6.56 6.54 6.48 7.22 7.50 5.80 7.30

1.1 39.04 34.44 39.46 38.66 36.80 40.00 40.30 39.44 34.22 39.82 39.18 37.60 41.60 41.80 33.12 30.08 34.16 34.00 33.50 36.50 37.60

1.2 88.12 83.96 87.42 87.14 83.90 87.30 87.20 88.28 83.70 87.20 87.24 85.00 87.30 87.80 70.60 64.96 70.92 70.64 67.20 71.60 71.70

1.3 99.46 99.08 99.28 99.40 99.30 99.20 99.50 99.36 98.98 99.30 99.38 99.50 99.80 99.90 88.44 84.94 88.82 88.76 86.50 89.10 89.70

1.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 93.62 92.00 94.62 94.82 93.60 96.20 95.70

2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 90.22 90.10 92.60 92.98 91.70 92.90 93.20

DGP 4 DGP 5 DGP 6

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 6.56 6.54 6.48 7.22 7.50 5.80 7.30 6.60 6.66 6.78 7.02 8.00 8.20 8.00 4.84 6.20 5.96 6.64 6.60 6.00 6.30

1.1 39.60 34.70 39.98 39.36 38.00 41.90 42.10 11.64 9.10 9.62 10.64 9.70 10.10 11.70 5.08 4.54 5.46 5.62 4.50 5.30 5.40

1.2 87.58 83.14 86.28 86.56 84.10 86.60 87.20 26.10 20.94 19.00 23.36 23.10 20.20 25.20 9.36 6.58 8.04 9.04 6.50 9.00 9.30

1.3 99.22 98.72 99.08 99.18 99.40 99.60 99.90 50.68 42.88 42.56 47.54 46.50 42.50 49.50 18.74 13.16 15.48 17.46 13.40 14.90 16.30

1.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 92.20 88.04 91.44 92.30 90.60 92.80 93.80 44.68 34.76 41.00 42.92 34.20 38.70 41.90

2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.94 99.88 99.98 99.94 99.90 100.0 100.0 89.08 83.92 90.06 89.66 85.70 89.30 90.10

DGP 7 DGP 8 DGP 9

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 6.38 7.26 6.60 7.46 6.70 6.20 6.20 6.38 7.26 6.66 7.46 6.70 6.20 6.20 6.38 7.26 6.66 7.46 6.70 6.20 6.20

1.1 18.54 17.28 21.10 20.22 19.10 20.80 20.90 13.50 13.20 15.38 15.26 15.00 15.60 15.50 19.52 19.46 21.80 21.84 21.10 21.80 22.30

1.2 46.52 44.60 51.98 49.74 49.20 55.10 53.40 30.50 29.64 35.06 34.16 32.90 37.50 37.10 50.46 49.64 55.38 54.54 53.80 59.30 58.60

1.3 75.86 74.32 82.30 80.50 75.40 82.60 81.50 52.40 51.12 59.68 57.36 51.80 59.50 58.00 81.54 80.56 85.74 84.60 81.70 85.70 84.90

1.5 97.98 97.62 98.98 98.70 98.10 99.40 99.00 85.18 84.76 90.22 89.38 87.70 91.50 91.20 99.12 99.14 99.46 99.46 99.50 99.80 99.80

2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.62 99.68 99.92 99.92 99.80 99.90 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 3: reports power results for all DGPs according to the DP, LM- and Wald-type tests for τ = 0.5, ǫ = 0.15 and T = 1000.
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In large samples (cf. Table 3) the tests behave qualitatively almost identical for all

DGPs. They attain reasonable power even when the break size is still low. Except for

breaks in the ARCH coefficient (DGP 3) all DGPs exhibit monotonic power functions.

Nevertheless, they behave quantitatively different. In case of a break in the unconditional

variance, DGP 1, the DP is slightly superior bearing in mind that the LS tests are

slightly oversized. Within the LS test the expWald ≻ expLM ≻ supWald and supLM. For

a break in the conditional variance (DGPs 2-4) the supLM performs worst. Concerning

the double shift DGPs 5 and 6 the sup and mean tests are slightly inferior to the exp

version of the tests. The DP test also performs quite well in this double-shift context.

Regarding the smoothly inflating shifts in DGPs 7-9 the mean version of the tests seems

to be superior. The supversion and the DP test (i.e. the tests allowing for a breakpoint

estimation) perform rather similarly for smoothly inflating volatilities.

All in all the Wald tests are superior to the DP and the functionals of the LM tests,

whereas the expWald performs best.

3.3 Non-monotonic power

In his seminal article Vogelsang [1999] discusses the issue of non-monotonic power of

CUSUM, LM and Wald tests when testing for a mean shift in time series. The non-

monotonicity is caused by the LRV estimation of the process. If the bandwidth is

estimated via the data-dependent method of Andrews [1991], excessive lags are chosen

in the AR(1) approximation as the AR coefficient is biased towards one causing the LRV

to become very large.

Robust alternatives concerning the LRV estimation resulting in monotonic power func-

tions have i.a. been proposed by Juhl and Xiao [2009], Kejriwal [2009] or Yang and

Vogelsang [2011]. In terms of testing for breaks in volatility on the other hand, Xu

[2013a] shows that the AR coefficient is no longer biased resulting in monotonic power

functions for the tests. Concretely he argues that once the mean of the squared series

is subject to a structural change, the same applies to the volatility of the squared series

which prevents the long-run kurtosis estimator from selecting excessive lags.

In the present case Θ= γ0+2
∑∞

r=1γr marks the LRV of ηt in all tests. Hence, in order for

Θ to be finite the autocovariances γr have to be finite. That is for r > 0, E(η2t ) <∞ while

for r = 0 additionally E(η4t ) <∞ has to be fulfilled ∀ t = (1, . . . ,T ). If the latter condition is

not fulfilled the tests suffer from non-monotonic power leading to the following theorem.

Theorem 1. Let {ηt} be a mean-zero α−mixing stochastic process with bounded second
moment E(η2t ) = σ2 <∞. If E(η4t )→∞ we have that CUS Q→ 0, LM→ 0 and Wald→ 0
even for increasing volatility breaks. �

Actually, m tends to zero as E(η4t )→∞ reducing the LRV estimator to γ̂0. Hence,

decreasing power arises through the fact that the moment condition fails rather than

through a bias in the estimation of the AR(1) coefficient for the bandwidth selection.

As a simple example consider the GARCH(1,1) process ηt = htut with h2
t = ω+αu2

t−1+

βh2
t−1 and iid innovation {u} with E(ut) = 0 and E(u2

t ) = 1. Then E(η2m
t ) is only given under

the condition that
∑m

i=0 m!αiβm−iE(u2i
t )/((m− i)!i!) < 1, cf. He and Teräsvirta [1999]. As
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µ2 ≡ E(η2t ) = α+ β and κ ≡ E(η4t ) = β2
+2αβ+α2E(u4), and noting that κ < 1 implies that

µ2 < 1, Θ <∞ only if κ < 1.

Consider e.g. the case where α= β= 0.4 with normally distributed errors. We then have

µ2 = 0.8 and κ = 0.96. If however α switches to 0.5, κ = 1.31 and the upper considerations

imply that the tests would have decreasing power for detecting the break in unconditional

variance.

To underline these considerations we carry out some simple simulations seeking the

varying coefficient GARCH(1,1) which has also been utilized by Hillebrand [2005] and

Xu [2013a]. The process is given by ηt = htut where ht = ω+αtu2
t−1+βh

2
t−1 and u iid∼ N(0,1).

The ARCH coefficient is time dependent under the alternative switching from α0 to α1

a time [τT ] with τ ∈ [0,1], that is αt = (α0+ (α1−α0))1{t≥[τT ]}. We test for a break in the

unconditional variance process σ2
t ≡ η2t , i.e. H0 : σ2

t = σ
2 vs. H1 : σ2

t is not constant over

t for the supLM test.3

We consider four DGPs based on different specifications of the GARCH parameter β

under the Null: (i) DGP1: β = 0, (ii) DGP2: β = 0.4, (iii) DGP3: β = 0.75 and (iv) DGP4:

β = 0.75 and u ∼ t(8), where α0 = 0.1 in all specifications. (i) describes the ARCH(1)

specification being used by Deng and Perron [2008], (ii) has been considered in Xu

[2013a] and Xu [2013b] while (iii) and (iv) are persistent versions of (ii). ω is specified

such that the annualized volatility Σ =
√

250ω/(1−α−β) equals 0.1 under the Null.

3Results for the supLM test are available upon request.
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T = 500 T = 1000 T = 2000

α1 κ Σ DP LM DP LM DP LM

0.1 0.03 0.10 0.037 0.038 0.037 0.038 0.040 0.040
0.2 0.12 0.11 0.071 0.069 0.125 0.107 0.233 0.197
0.3 0.27 0.11 0.157 0.142 0.361 0.292 0.713 0.641
0.4 0.48 0.12 0.276 0.234 0.630 0.548 0.935 0.898
0.5 0.75 0.13 0.381 0.318 0.756 0.691 0.951 0.937
0.6 1.08 0.15 0.455 0.392 0.797 0.743 0.915 0.894
0.7 1.47 0.17 0.481 0.414 0.753 0.708 0.875 0.858
0.8 1.92 0.21 0.465 0.412 0.675 0.636 0.791 0.769
0.9 2.42 0.20 0.436 0.392 0.597 0.571 0.706 0.690
1.0 3.00 ∞ 0.409 0.386 0.558 0.540 0.626 0.616

Table 4: displays the power of the DP and LM test under volatil-
ity shifts with ht = ω+ (α0+ (α1−α0))1t≥[λT ]u2

t−1, λ = 0.5,
ω = 3.6e−05 and α0 = 0.1.

T = 500 T = 1000 T = 2000

α1 κ Σ DP LM DP LM DP LM

0.10 0.27 0.10 0.057 0.062 0.038 0.043 0.044 0.046
0.20 0.44 0.11 0.222 0.201 0.120 0.111 0.239 0.200
0.30 0.67 0.13 0.572 0.519 0.359 0.298 0.709 0.636
0.35 0.81 0.14 0.708 0.655 0.505 0.434 0.858 0.802
0.40 0.96 0.16 0.775 0.729 0.627 0.542 0.938 0.899
0.45 1.13 0.18 0.814 0.776 0.725 0.646 0.951 0.930
0.50 1.31 0.22 0.790 0.765 0.759 0.690 0.948 0.931
0.55 1.51 0.32 0.769 0.742 0.792 0.723 0.934 0.918
0.60 1.72 ∞ 0.781 0.778 0.785 0.735 0.918 0.903

Table 5: displays the power of the DP and LM test under volatil-
ity shifts with ht = ω+ (α0+ (α1−α0))1t≥[λT ]u2

t−1+0.4ht−1,
λ = 0.5, ω = 2e−05 and α0 = 0.1.

T = 500 T = 1000 T = 2000

α1 κ Σ DP LM DP LM DP LM

0.100 0.74 0.10 0.217 0.223 0.250 0.254 0.282 0.293
0.125 0.80 0.11 0.346 0.341 0.472 0.465 0.643 0.635
0.150 0.86 0.12 0.596 0.576 0.812 0.797 0.956 0.947
0.175 0.92 0.14 0.820 0.794 0.965 0.957 0.998 0.997
0.200 0.98 0.17 0.931 0.914 0.995 0.992 0.999 0.998
0.225 1.05 0.25 0.974 0.962 0.992 0.991 0.997 0.994
0.250 1.13 ∞ 0.983 0.981 0.994 0.993 0.996 0.995

Table 6: displays the power of the DP and LM test under volatil-
ity shifts with ht =ω+ (α0+ (α1−α0))1t≥[λT ]u2

t−1+0.75ht−1,
λ = 0.5, ω = 6e−06 and α0 = 0.1.

T = 500 T = 1000 T = 2000

α1 κ Σ DP LM DP LM DP LM

0.100 0.76 0.10 0.188 0.204 0.229 0.239 0.257 0.266
0.125 0.82 0.11 0.272 0.276 0.386 0.383 0.512 0.497
0.150 0.89 0.12 0.456 0.450 0.654 0.630 0.840 0.821
0.175 0.96 0.14 0.662 0.628 0.863 0.842 0.978 0.970
0.200 1.04 0.17 0.820 0.795 0.954 0.944 0.992 0.990
0.225 1.13 0.25 0.909 0.885 0.978 0.972 0.993 0.990
0.250 1.22 ∞ 0.897 0.881 0.967 0.963 0.979 0.975

Table 7: displays the power of the DP and LM test under volatil-
ity shifts with ht =ω+ (α0+ (α1−α0))1t≥[λT ]u2

t−1+0.75ht−1,
λ = 0.5, ω = 6e−06, u ∼ t(8) and α0 = 0.1.
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Under the alternative α1 ∈ [0.1,1− β], specifying an IGARCH model at the upper

limit of the interval. We consider three different sample sizes of T = (500,1000,2000)

with breakpoint specifications of τ = (0.5,0.9)4. The number of replications is M = 5000.

Tables 4-7 return size and power results for the four DGPs.

For the ARCH(1) in Table 4 one can clearly see for both tests that the power becomes

larger with an increasing ARCH coefficient up to a value of about 0.6 (0.7) in large

(small) samples only to decrease if the break becomes bigger. In fact the power increases

with increasing κ given that κ is smaller than one and decreases once the condition is

no longer fulfilled, i.e. once the LRV of the squared process is no longer finite. This

corresponds to the upper considerations that the LRV becomes infinite for κ > 1 leading to

a power drop in both tests. Furthermore the power seems to be the lower the higher the

value of κ gets - regardless of the size of the switch in annualized volatility. Concerning

the sample size the power drop occurs earlier and is bigger for large T . As obviously

more observations are drawn in large samples the probability of drawing a large outlier

causing the LRV to converge to infinity is also higher for large T which results in the

diverse behavior of the power concerning T .

Tables 5 to 7 support these findings although the power drop is not as big as for DGP1.

This may be due to the fact that κ cannot reach such large values as in DGP1. E.g. in

DGP3 maxκ = 1.13 which in finite samples does not seem to imply a convergence of Θ to

infinity fast enough to lead to a drop in power. We can however at the least observe a

“stagnation” of power in all DGPs once κ > 1 in spite of increasing annualized volatility.

3.4 Density estimation of break points

In order to assess how correctly the real breakpoint τ is estimated in the employed testing

procedures we want to plot the density of the true break point estimators. Hence, only

the testing procedures whose test statistic is based upon a supremum are being considered

here, namely the DP-, supLM and supWald-test. Since DGPs of process type III lack a

distinct break point and double shifting processes do not qualify well (DGPs 5-6) only

DGPs 2-4 are under consideration.5

For T = 200 and τ = 0.5 we conduct the CUSQ-test M = 5000 times and compare the

test statistic to the 5% critical value of 1.358. For our purpose we assume the maximum

break specification, such that Σ = 2, meaning that c.p. the processes switch as follows:

DGP 2: µ0 = 2 ·10−5 → µ1 = 8 ·10−5

DGP 3: α0 = 0.1 → α1 = 0.48

DGP 4: β0 = 0.4 → β1 = 0.78.

(5)

Within the sample the break point value implied by the maximum test statistic that

exceeds the critical value is chosen as our estimated break point. For all three τ we

plot the estimated τ∗ and obtain the nonparametric density estimator of the break point

estimators f (τ∗), whereby the dotted lines depict the mode of f (τ∗). Figure 3 plots the

4We report only the results for τ = 0.5 here. Results for τ = 0.9 are available upon request.
5Results for DGP 1 and DGPs 5-6 are available upon request.
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density for T = 200.
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Figure 3: displays the density of the breakpoints in case of DGP 2-4 for T = 200, Σ = 2 and all τ.

At first sight the DGPs behave qualitatively analogical over all three tests, which is

why we differentiate between the DGPs instead of the tests in the following discussion.

We also yield qualitatively similar results for the different sample sizes not shown here,

but can be found in the appendix. For DGP 2 we obtain leptokurtic densities with

a peak centered at the true τ, indicated by the dotted lines. The densities especially

of the least-squares tests are positively skewed. The results for DGP 4 show likewise

patterns as in case of DGP 2 but not as good as for DGP 2. The densities are less peaked

around the insinuated τ and yet more positively skewed. They even show a tendency

for a multimodal distribution, which is due to the truncation at the upper bound with

ǫ = 0.15 and hence, τ = 0.85. Notably, the least-squares tests perform very alike for all

DGPs. However, in case of DGP 3 we have to discuss the results for all τ separately.

For τ = 0.3 the density is neither leptokurtic nor centered around the assumed τ and

altogether performs worst particularly in regard of the DP test. It is noticeable that in
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DP supLM supWald

τ 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

DGP 2

T = 200

x0.5 0.340 0.510 0.700 0.320 0.515 0.715 0.320 0.515 0.715
sd 0.096 0.048 0.033 0.125 0.081 0.047 0.125 0.081 0.048

T = 500

x0.5 0.318 0.504 0.700 0.306 0.506 0.704 0.306 0.506 0.704
sd 0.058 0.022 0.014 0.054 0.036 0.028 0.054 0.036 0.028

T = 1000

x0.5 0.309 0.504 0.700 0.302 0.502 0.702 0.392 0.560 0.737
sd 0.032 0.022 0.008 0.016 0.016 0.015 0.192 0.118 0.054

DGP 3

T = 200

x0.5 0.590 0.590 0.720 0.745 0.695 0.775 0.710 0.670 0.770
sd 0.162 0.115 0.077 0.174 0.130 0.072 0.181 0.132 0.074

T = 500

x0.5 0.466 0.550 0.714 0.516 0.594 0.750 0.500 0.592 0.750
sd 0.167 0.098 0.059 0.203 0.127 0.059 0.202 0.126 0.059

T = 1000

x0.5 0.404 0.535 0.710 0.390 0.560 0.737 0.392 0.560 0.737
sd 0.154 0.085 0.042 0.192 0.118 0.054 0.192 0.118 0.054

DGP 4

T = 200

x0.5 0.360 0.510 0.700 0.335 0.525 0.715 0.335 0.520 0.715
sd 0.131 0.066 0.041 0.170 0.103 0.054 0.169 0.103 0.054

T = 500

x0.5 0.334 0.506 0.700 0.312 0.510 0.708 0.312 0.510 0.708
sd 0.088 0.038 0.020 0.113 0.073 0.041 0.113 0.073 0.041

T = 1000

x0.5 0.317 0.503 0.700 0.304 0.504 0.704 0.304 0.504 0.704
sd 0.061 0.023 0.010 0.060 0.045 0.027 0.060 0.045 0.027

Table 8: reports the median an standard deviation for the breakpoints of all sample sizes over
all tests for DGPs 2-4.

case of τ = 0.5 and 0.7 the density is even bimodal for the least squares tests and that the

peak centers around τ = 0.85 for all three τ, where the sample is truncated. The reason

is that DGP 3 exhibits outliers causing the jump in the variance (α0 = 0.1→ α1 = 0.48)

and suffers from an infinite kurtosis as already pointed out in the preceding section, c.f.

3.3.

In large samples, T = 1,000, the density peaks around the insinuated τ for all τ∗ in

case of DGP 2 and DGP 4. The least squares test obtain slightly more leptokurtic

densities compared to the DP test. While the positive skewness of the least squares tests

is identical for all τ and nearly negligible, the positive skewness of the DP test declines

in τ. In case of DGP 3 the DP break point estimator performs slightly better, since the

densities for all τ are unimodal and again, the positive skewness declines in τ. Although

the least squares tests peak around the true τ, in large samples they nevertheless have a

second mode at the truncation point. All in all is the DP break point estimator slightly

better in case of DGP 3 in large samples, but yields little less good results than the least

squares counterparts in case of DGP 2 and DGP 4.

To confirm the findings from Figure 3 Table 8 describes the median and the standard
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Figure 4: plots the returns of the 7 time series.

deviation of the break point estimators according to the previous graphic. It is striking

that the standard deviation for τ= 0.3 is always the highest for all three tests. The earlier

the break happens the higher is the dispersion of the break point estimator. Because of

an early break the probability for a maximum peak within the remaining sample period

is high, since the sample fluctuations increase significantly after the break. Hence, it is

probable that a higher peak than the break point occurs and is chosen as the supremum

of the test statistic. On the other hand is it more unlikely to find a higher peak than

the break point, when the break happens at τ = 0.5 or τ = 0.7.

4 Empirical Analysis

As an empirical example we consider 7 financial time series, namely the returns of 4

stock market indices (S&P 500, FTSE 100, DAX 30, Nikkei 225) and 3 exchange rates

(Euro, Pound and Yen) to the Dollar. We have daily data taken from Datastream from

01/01/2000 until 10/30/2013 yielding T = 3,608 observations for each variable. Figure 4

returns a plot of the data.

In order to get a first idea of the behavior of the tests we determine the volatility

break points for each series conducting the DP, the supLM and the supWald test. The

breakpoint is estimated via the iterated cumulative sums of squares (ICSS) algorithm of

Inclan and Tiao [1994] where α = 0.05 throughout the analysis.

Defining Ji(τ) as the value of the statistic of test i at τ ∈ [0,1], the breakpoint es-

timator in the single break case is simply defined as the point where the maximum

of the respective test statistic, conditional on rejecting the Null, is reached. Hence,

τ∗ := arg max
1≤τ≤T

Ji(τ) | Ji(τ∗) > Qαi where Qαi marks the critical value of test i and level α.

In the multiple break case this procedure is carried out iteratively. Starting with one
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Break Date

# Breaks 1 2 3 4 5 6 7

S&P 500

DP 4 06/17/02 05/20/03 09/04/08 12/21/11
supLM 5 07/05/02 04/03/03 09/04/08 06/12/09 12/21/11
supWald 5 07/05/02 04/03/03 09/04/08 06/12/09 12/21/11

FTSE 100

DP 7 06/12/02 04/17/03 07/23/07 04/06/09 12/15/11 08/06/12 05/27/13
supLM 6 08/06/01 06/14/02 04/18/03 07/23/07 04/06/09 08/06/12
supWald 6 08/06/01 06/13/02 04/18/03 07/23/07 04/06/09 08/06/12

DAX 30

DP 7 08/30/01 06/14/02 06/17/03 01/21/08 07/16/09 08/01/11 08/06/12
supLM 6 08/30/01 06/14/02 05/20/03 01/15/08 04/03/09 08/06/12
supWald 6 08/30/01 06/14/02 05/20/03 01/15/08 04/03/09 08/06/12

NIKKEI 225

DP 3 12/18/03 01/04/08 05/20/09
supLM 3 12/18/03 01/04/08 12/16/08
supWald 3 12/18/03 01/04/08 12/16/08

$/e

DP 4 09/26/01 08/16/04 08/11/08 11/16/11
supLM 4 04/23/01 08/11/08 05/25/09 03/12/12
supWald 4 04/23/01 08/11/08 05/25/09 03/12/12

 L/$

DP 4 06/22/01 01/05/04 08/08/08 11/15/11
supLM 5 04/20/01 01/05/04 08/08/08 06/10/09 11/24/11
supWald 5 04/20/01 01/05/04 08/08/08 06/10/09 11/24/11

U/$

DP 3 08/07/07 08/17/09 05/02/11
supLM 4 06/07/06 08/07/07 04/01/09 02/21/13
supWald 4 06/07/06 08/07/07 04/01/09 02/21/13

Table 9: returns the estimated break dates for the 3 tests and 7 series. The dates were estimated
conducting the ICSS algorithm of Inclan and Tiao [1994] with α = 0.05 and ε = 0.15.

breakpoint the sample is divided around this very point and the test is implemented

within both subsamples. If further breakpoints are detected this procedure is repeated

until the test cannot reject any more. Additionally a minimum segment size h should

be specified in advance. We set h = 200, i.e. we allow breaks to occur every 10 months

at most. Furthermore breaks are allowed to occur in the interval τ ∈ [ε,1− ε] where ε

is again specified as 0.15. The results are given in Table 9 displaying the number of

estimated breaks and the corresponding break dates for the three tests over the seven

series.

As one can clearly see the supLM and the supWald test yield (with very few exceptions)

the same results. Not only are the number of breaks identical for each series, also the

estimated break dates do almost not differ between the tests. This is, of course, not very

surprising regarding the similarity of the test statistics.6

The DP test however leads to different results in some situations. For the S&P 500 and

two exchange rates fewer breaks are found. On the other hand the DP test detects more

breaks for the DAX 30 and the Nikkei 225. If a break is found within some time period

6We also reduced the window size to h = 100. The supLM and supWald tests still did not differ in the

number of detected breaks. The breakpoint estimation however varied much stronger.
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Figure 5: displays the boxplots for the p-values of the respective test on constant volatility for
the S&P 500 with ε = 0.15.

by all three tests the estimated break dates do not differ much over the tests. There also

seems to be a tendency of (on average) fewer breaks in volatility in the currencies than

in the equity series. Hence, the number and the timing of the break does indeed differ

considerably between the tests.

In order to get a more detailed look into the behavior of the tests, we consider rolling

window estimations for each test over the seven series. Hence, we determine the test

statistics and the corresponding p-value for each window for each test and series and

are thus able to examine and compare the distribution of the p-values over the different

tests.

Concretely we test for a single break within a window of size h = 200 with ε = 0.15.

That is, for each test and series we derive 3,408 p-values and are thus able to compare

the distribution of the latter between the different tests applied to real data. Figures 5

and 6 return boxplots for the p-values of each volatility break test for the S&P 500 and

the $/e series.7 Table 10 displays the rejection frequencies over the series and tests.

That is, specifying α= 0.05 the table returns for how many per cent of the 3,408 statistics

the hypothesis of constant volatility has been rejected.

The median of the p-value of the DP test is clearly higher for each series compared to

the other tests. Hence, the LM and Wald tests tend to reject more often than the DP

test in this environment. Furthermore the p-values of the DP test tend to vary more

in between its lower and upper quartile whereas the variation in the tails seems to be

higher for the LM and Wald tests. Hence, we observe more variation within the “core”

of the distribution for the DP test whilst a larger amount of outliers occurs for the LM

and Wald tests.

7Results for the remaining series can be found in the appendix.
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Figure 6: displays the boxplots for the p-values of the respective test on constant volatility for
the $/e exchange rate with ε = 0.15.

Furthermore it seems noticeable that for the currency series the p-values of the tests

are substantially larger compared to the equity series. This also corresponds to the upper

findings that on average there are fewer breaks in the currency series than in the equity

series. By recalling Figure 4 we note that volatility shifts seem to be smoother in the

currency data than for the equity series, since for the latter a distinctive clustering effect

in volatility can be observed. Additionally the simulation study showed that for smooth

transitions the power of detecting a volatility shift is rather low which may be a possible

explanation for these effect.

Hence, we can conclude that there may indeed be some severe differences between the

tests when it comes to break detection and estimation even in real data examples. First

the DP test tends to reject the hypothesis of constant volatility less often than LM and

Wald tests for the existing data. Regarding the e/$ series the range even amounts to

26%. Second all tests seem to exhibit less power for detecting a volatility shift when the

break is rather smooth than abrupt. This may be exemplified by the finding that in the

currency series much fewer volatility shifts are found than in the equity series.

5 Conclusion

In this paper we analyze volatility break tests by conducting a simulation analysis as well

as empirical examples using equity and exchange rate data. Concerning the simulations

we find that for some DGPs the difference over the tests is rather high whereas for other

DGPs it does not seem to play an important role which test is utilized.

In small samples the expWald test exhibits the highest power. However, it is slightly

oversized. In large samples the difference is not as distinct. Still, for double shifting

DGPs the DP test seems to be superior to the other tests. In case of DGP 3 non-
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Test

DP supLM meanLM expLM supWald meanWald expWald Range

S&P 500 0.44 0.54 0.54 0.59 0.61 0.57 0.63 0.19
FTSE 100 0.41 0.56 0.58 0.59 0.61 0.61 0.63 0.22
DAX 30 0.51 0.64 0.64 0.68 0.71 0.67 0.73 0.22
NIKKEI 225 0.40 0.46 0.44 0.50 0.52 0.47 0.53 0.13
e/$ 0.18 0.33 0.40 0.40 0.39 0.42 0.44 0.26
 L/$ 0.22 0.36 0.39 0.40 0.41 0.41 0.44 0.22
U/$ 0.17 0.24 0.26 0.28 0.31 0.29 0.33 0.16

Table 10: returns the rejection frequencies concerning the respective test on constant volatility
with α = 0.05 and ε = 0.15. The frequencies are calculated on the basis of 3,408 rolling
window estimations for each test and series.

monotonic power functions in large samples are observed for all tests. In this process

the ARCH coefficient switches in such a way that for large breaks the kurtosis of the

process is no longer finite. As a consistent estimation of the long-run variance of the

squared process depends on the finite assumption the power eventually drops once this

assumption is no longer fulfilled.

Regarding the empirical example we find that less breaks are found in the exchange

rate data than in the equity data. This may be caused by the fact that we rather observe

a smooth behavior of volatility and not a distinct clustering behavior in the exchange

rate data. Another reason could be that the exchange rate data may have more outliers

instead of clustering behavior. As the simulations show in these situations the tests

perform rather poorly. Additionally we perform rolling window estimations in order to

compare the p-values of the tests over a broad range of window estimations. Hereby

the results of the simulation study are confirmed. Further we find a substantially lower

amount of breaks in the currency data.

All in all perform the least squares tests in most of the situations fairly similar which

is due to the fact, that the test statistics are very akin. But in regard of the power we

can state that the Wald test can be slightly superior. Since it becomes more difficult to

differentiate between break and outlier when the volatility shift occurs rather smoothly

than abrupt, all of the tests seem to fail to appropriately detect breaks, cf. 3.2 and 4.

Nevertheless, were we able to derive slightly better results for the DP test especially

when the least squares tests miscarry in case of DGP 3, cf. 3.4. Hence, there is a point

in choosing a particular test, depending on the tested situation.

To conclude it could be of interest for future work to be able to state if the volatility

break happens in the conditional or unconditional variance or further to tell if the break

occurs in higher moments or yet in distribution.
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6 Appendix

A Figures
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Figure 7: displays the density of the breakpoints in case of DGP 2-4 for T = 500, Σ = 2 and all τ.
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Figure 8: displays the density of the breakpoints in case of DGP 2-4 for T = 1000, Σ = 2 and all
τ.
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Figure 9: displays the boxplots for the p-values of the respective test on constant volatility for
the FTSE 100 with ε = 0.15.
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DGP 1 DGP 2 DGP 3

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 6.06 6.54 7.20 7.60 8.30 8.20 8.30 5.50 5.50 6.12 6.42 6.40 6.00 7.40 5.36 5.50 6.12 6.42 6.40 6.00 7.40

1.1 20.07 17.28 22.90 21.50 20.30 24.60 23.30 20.10 17.38 22.50 21.70 22.30 25.20 25.90 17.44 16.16 19.80 19.08 21.00 22.20 23.20

1.2 58.12 50.62 59.24 57.76 54.40 60.00 60.30 58.28 50.96 59.36 58.22 54.70 60.00 59.30 38.86 34.76 41.46 40.26 38.50 42.20 42.70

1.3 88.04 83.68 87.70 88.00 88.40 89.90 90.60 88.26 83.54 88.00 88.04 86.00 89.10 89.40 58.28 52.42 61.10 60.56 58.90 65.00 64.60

1.5 99.78 99.58 99.80 99.78 99.70 99.80 99.80 99.82 99.50 99.78 99.82 99.60 99.80 99.80 74.96 69.54 78.10 77.70 74.60 81.10 81.20

2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 78.96 75.96 82.54 82.76 81.40 84.10 84.80

DGP 4 DGP 5 DGP 6

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 5.36 5.50 6.12 6.42 6.40 6.00 7.40 6.06 6.54 7.20 7.60 8.30 8.20 8.30 4.52 5.72 5.84 6.36 7.30 7.00 7.80

1.1 20.90 18.20 22.94 22.48 23.00 18.30 26.70 6.38 5.80 6.48 7.12 7.40 6.90 8.50 3.68 4.30 5.22 5.00 5.60 5.10 5.90

1.2 58.06 51.56 59.04 58.40 54.60 59.80 59.60 13.46 9.98 10.56 12.70 11.90 11.70 13.90 5.00 4.48 5.68 5.68 4.60 6.00 6.00

1.3 86.96 82.50 86.52 86.86 85.50 87.80 88.10 22.48 16.44 17.60 20.60 21.00 20.80 23.90 8.58 5.84 7.72 8.60 6.90 8.60 10.10

1.5 99.52 99.14 99.46 99.48 99.40 99.50 99.50 50.60 39.16 46.24 47.78 46.90 50.40 53.70 19.76 13.08 17.74 18.42 15.30 19.20 20.40

2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 94.08 87.46 95.74 94.84 89.20 96.20 95.90 54.68 40.98 56.30 54.02 46.90 59.00 58.20

DGP 7 DGP 8 DGP 9

LM Wald LM Wald LM Wald

Σ DP sup mean exp sup mean exp DP sup mean exp sup mean exp DP sup mean exp sup mean exp

1 5.70 5.70 6.38 6.62 7.30 7.80 8.00 5.70 5.70 6.38 6.62 7.30 7.80 8.00 5.70 5.70 6.38 6.62 7.30 7.80 8.00

1.1 11.14 11.00 13.42 13.26 11.80 13.60 14.60 8.76 8.28 10.58 10.16 8.60 10.90 10.30 11.70 12.16 14.26 14.16 13.80 14.70 14.70

1.2 26.00 25.50 31.14 30.30 30.00 32.90 33.30 17.38 16.58 21.58 20.50 21.40 22.60 24.00 28.62 29.16 33.58 33.44 33.70 35.00 36.10

1.3 44.88 43.46 53.52 50.74 46.80 54.10 51.90 28.70 27.24 34.92 33.12 29.70 35.50 35.90 51.06 51.12 58.68 57.10 53.30 59.30 58.30

1.5 78.44 76.70 86.02 83.90 80.80 87.00 85.80 52.90 52.02 62.58 60.10 58.50 65.60 63.70 85.22 84.82 90.72 89.44 87.80 90.70 90.90

2 99.62 99.34 99.92 99.88 99.70 100.0 100.0 90.38 89.68 95.36 94.64 91.10 95.60 95.40 99.90 99.92 100.0 100.0 100.0 100.0 100.0

Table 11: reports power results for nine DGPs according to the DP, LM- and Wald-type tests for τ = 0.5, ǫ = 0.15 and T = 200.
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