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O�set Credits in the EU ETS: A�antile Estimation of
Firm-Level Transaction Costs

Helene Naegele∗

DIW Berlin

October 20, 2015

Abstract

International o�set certi�cates trade at lower prices than European Union Allowances (EUAs),
although they are substitutes within the EU Emissions Trading System (EU ETS) for CO2. Firms
therefore had a strong incentive to use the cheaper certi�cates. However, a considerable number
of �rms did not use their allowed o�set quota and, by doing so, seemingly forwent pro�ts. While
most of the literature on emissions trading evaluates the e�ciency of regulation in a frictionless
world, in practice �rms incur costs when complying with regulation. In order to assess the rel-
evance of managerial and information-related transaction costs, this study examines the use of
international o�set credits in the EU ETS. It establishes a model of �rm decision under �xed entry
costs and estimates the size of transaction costs rationalizing �rm behavior using semi-parametric
binary quantile regressions. Comparing binary quantile results with probit estimates shows that
high average transaction cost result from a strongly skewed underlying distribution. I �nd that for
most �rms the bulk of transaction costs stems from participation in the EU ETS in general, rather
than additional participation in the o�set trade.

JEL : C25, D23, H23, Q58.
Keywords : Environmental policy, EU ETS, emissions trading, transaction costs, binary quan-

tile estimation.
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1 Introduction

�eobjective of the EUEmissions Trading System (EUETS) is to achieve the EU’s carbon emission goals
at minimum cost. Instead of imposing a �xed tax, the policy determines an emission level and lets the
market determine the equilibrium price. Ideally, this system ensures that all �rms incur the same price
for emissions, and abatement should be realizedwhere it is cheapest, such that the aggregate abatement
cost is minimized. However, abatement costs are not the only costs arising from an emissions trading
scheme: just like any other regulation, this policy has to be implemented andmanaged by �rms, causing
a wide range of administrative, managerial and information-related transaction costs. Typically, such
transaction costs are unobserved by the econometrician. Presumably, many �rms themselves do not
account explicitly for the value of their employees’ time and resources spent in the course of EU ETS
compliance and optimization. �is study uses �rm-level data to estimate such transaction costs and
argues that their magnitude is relevant for some of the regulated �rms and should be taken into account
when assessing the e�ciency of the EU ETS.

To identify transaction costs, I exploit an important aspect of EU ETS regulation: the possibility
to use not only European certi�cates but also international o�set credits. �e EU ETS has been linked
to the international certi�cate market created through the Kyoto framework. On aggregate, these
additional foreign certi�cates increase the cap for European polluters and decrease their compliance
cost. O�set credits have been cheaper than European credits (European Union Allowances, EAUs)
throughout Phase II of the EU ETS (2008-2012). �e quantity of o�set credits used in the EU is limited
by a �rm-speci�c o�set quota (entitlement) �xed by the regulator. For the �rms, o�set usage was an
unambiguous way to reduce compliance cost. Nevertheless, a considerable share of regulated �rms did
not use any o�set credits.

�is study brings together elements, on the one hand, from literature on the use of o�set certi�cates
in the EU ETS (Trotignon, 2012a; Ellerman et al., 2014) and, on the other hand, theoretical literature
on the impact of transaction costs on emissions trading (Stavins, 1995; Montero, 1998). Moreover, this
research relates to contingent valuation theory and uses binary quantile methodology (Kordas, 2006;
Belluzzo Jr, 2004).

While the abatement incentives of cap-and-trade schemes have been amply discussed, most of the
literature does not consider transaction costs and other frictions arising from practical management
of compliance. However, emissions trading – just like any other market transaction – is unlikely to be
completely free of transaction costs. In his seminal paper, Coase (1960) underlines that the irrelevancy
of initial property allocation for �nal resource allocation holds only if frictions are negligible. �e the-
oretical importance for cap-and-trade regulation of such frictional “costs to use the price mechanism”
is modeled by Stavins (1995) and Montero (1998). Stavins (1995) shows that a major problem arising
from transaction costs is that they make the initial allocation non-neutral, such that free allocation
(like in Phase II of the EU ETS) has an impact on the resulting market equilibrium outcome. Montero
(1998) moreover adds the impact of uncertainty and technology constraints.

Empirical evidence on transaction costs in environmental policy is relatively scarce, as McCann
et al. (2005) note in their literature review on this topic: transaction costs are rarely evaluated, maybe
simply because of their latent unobservable nature. Literature suggests that transaction costs and other
market imperfections have hampered the impact of US environmental trading programs (Tietenberg,
2006; Hahn andHester, 1989). For example, Atkinson and Tietenberg (1991) argue that trading has been
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too scarce to reach a cost-e�cient outcome; they claim that this ine�ciency stems from the bilateral,
sequential nature of trades leading to frictions (and thus transaction costs in a broad sense).

Concerning the EU ETS, the literature generally �nds that small �rms trade more “passively” and
that many �rms seem to lack institutional capacity for optimal trading (Sando� and Schaad, 2009). A
common strategy among German SMEs is to trade only at the end of the year and only if the grand-
fathered allocation is not su�cient (Loeschel et al., 2011). Surveys show that large emi�ers set up
more sophisticated structures to optimize their compliance and face smaller per-tonne transaction costs
(Heindl, 2012; Jaraite and Kazukauskas, 2012; Loeschel et al., 2010, 2011). Similarly supporting the idea
of �xed costs, Jaraite et al. (2010) estimate that per tonne participation costs of the largest �rms were
e0.05 per tonne of emissions, while they were up to e2 per tonne for small �rms. Schleich and Betz
(2004) underline that allocations are so generous that the average need for additional permits for SMEs
is only about 1,250 tCO2e per year, an amount at which participation costs are likely to be higher than
the actual certi�cate cost. Virtually all empirical work on transaction costs in the EU ETS is based on
survey-data, except Jaraite and Kazukauskas (2012) who use transaction data from Phase I (2005-2007),
the test phase of the policy. �ey claim that transaction costs were a substantial factor stopping �rms
from actively trading EUAs, but they do not estimate their magnitude. �e observed trading pa�ern
is consistent with the existence of entry costs: it appears that �rms trade rarely and most transactions
take place between plants belonging to the same �rm (Zaklan, 2012; Jaraite and Kazukauskas, 2012).1

Rather than using survey data, I use administrative data on �rm behavior. Anderson and Sallee
(2011) identify marginal costs of regulating fuel-standards by observing to what extent car producers
use a regulatory loophole of known costs to avoid the fuel-e�ciency standards. Conceptually, this
is close to the present study which identi�es �xed costs by observing what bene�ts �rms forwent
in order to avoid trading. Using binary choice to identify a latent variable, this study relates to the
revealed-preference methodology used in (nonmarket) contingent valuation of environmental goods
(e.g. Benne� and Blamey, 2001). �antile models have been developed by Koenker and Basse� (1978),
but have only recently been applied to binary choice by Kordas (2006). Belluzzo Jr (2004) uses them
to estimate the distribution of willingness-to-pay for a public good, which is analogous to the present
study: transaction costs are measured here from the observed “unwillingness-to-bene�t” of �rms.

While the previously cited literature examines trading schemes with only one type of certi�cates,
the literature on linked schemes with two certi�cate types is limited. Trotignon (2012b) describes how
o�sets have been used in the EU ETS and shows that �rms initially used few o�sets until 2011, when
there was a sharp increase. He estimates the cumulated savings of �rms at e1.5 billion. An aggregate
view going up to the end of Phase II in 2012 is provided by Ellerman et al. (2014).

�is study provides both a descriptive and an analytical contribution to the literature. First, it
describes the observed o�set usage behavior. Among �rms that failed to participate in the o�setmarket,
there are mostly small �rms and more particularly those �rms with relatively generous free allocations
of European certi�cates. Across all �rms, forgone revenue adds up to arounde1.37 billion. In a second
step, I argue that �rms’ reluctance to participate can be explained by transaction costs. Without such
unobserved transaction costs, the o�set entitlement would be an unequivocal “free lunch” opportunity.
�e large share of �rms forgoing these pro�ts can only be rationalized by the interference of some
unobserved frictions: transaction costs, as de�ned in this study, can include employees’ time/salaries,

1However, transaction data needed for such analysis is only available for the Phase I of the EU ETS.
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training and consultancy costs. �ey are assumed �xed and payable whenever a �rm �rst decides to
engage in o�set trading or emissions trading in general; therefore, they might also be called “entry
costs”.

�e theoretical section lays out how transaction costs change the �rms’ optimization problem. It
builds on Stavins (1995), however I introduce a second type of certi�cates and simplify by accounting
only for �xed transaction costs. It establishes that such costs can make the �rms’ free allocation of
permits non-neutral, as �rms with allocations larger than their emission do not need to engage in
emissions trading: they can avoid transaction costs of active trading, such that they are less likely to use
their o�set entitlement. �e model establishes a link between, on one hand, the decision to participate
in the o�set market and, on the other hand, both the initial allocation status and the potential bene�t
from o�set usage. �e fundamental assumption is that a �rm renounces the potential bene�ts from
o�set trading only if the incurred transaction costs are higher than these bene�ts.

�e empirical section uses this insight to estimate the latent transaction costs necessary to ra-
tionalize �rms’ decision not to participate in the o�set market. �is is the �rst study that estimates
transaction cost using binary quantile regression. I identify the distribution of two cost components:
general transaction cost of trading and o�set-speci�c cost. �e empirical results show that participa-
tion cost in the o�set market is relatively low for most �rms with a median of e905. �e additional
general trading cost is much higher with a median cost of e7,770. However, the estimated distribution
of these costs is highly skewed, such that the means are much higher than the medians (e21,519 for
average general participation plus e83,675 for o�set market participation), resulting from some large
outliers. A probit regression of the conditional mean would thus be misleading about the costs faced by
the majority of �rms. Although these transaction costs are o�en small compared to other production
factors, they make active participation unpro�table for 21% of the �rms. For bigger �rms, investment
in o�set certi�cates remains pro�table.

�e remainder of this article is organized as follows. A�er introducing the institutional and legal
framework of international o�set certi�cates (Section 2.1), I brie�y explain the aggregate impact of
o�set trading in the EU ETS (Section 2.2) and the de�nition of transaction costs in this context (Sec-
tion 2.3). I then set up a model of �rm-behavior in the reference case, i.e. without any transaction/entry
costs (Section 3.1), which is extended by adding entry costs (Section 3.2). Finally, I present the data
and some stylized facts, explain the econometric methodology (Section 4) and present the estimated
distribution of transaction costs (Section 5).

2 Background

�e EU ETS and the international o�set credits are part of a complex regulatory framework. �is
section brie�y explains the key elements of regulation. It further sketches out the aggregate mechanics
of introducing a second type of certi�cates into an emissions trading system. Finally, this section details
what sort of costs fall under this study’s very broad de�nition of the term “transaction costs”.

2.1 Institutional framework

Each year, the EU issues EU emission allowances (EUAs) that sum up to the overall EU ETS emission
cap for that year. In Phase II – the period under study here – virtually all these certi�cates were
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distributed free of charge to the regulated �rms, according to their historic emission levels (called
grandfathered allocation). At the end of each year, �rms have to report their emissions and hand in
(surrender) certi�cates equalling their emissions: one for each tonne of CO2, hence the use of tonnes of
CO2 equivalent (tCO2e) as a unit to measure quantities of certi�cates. Used certi�cates disappear from
the market, unused certi�cates remain valid in subsequent years.

In order to coordinate international e�orts of emission reduction and to lower abatement cost for
EU-based companies, the EU linked the EU ETS to the international framework established by the
United Nations Framework Convention on Climate Change (UNFCCC, 1992) and the Kyoto Protocol.
According to these international conventions, suitable projects that save emissions in unregulated parts
of the world (Kyoto “non-Annex I” countries, in practice mostly India and China) can be validated and
certi�ed by UNEP Risoe. �is procedure then generates of Certi�ed Emission Reductions (CERs, from
Clean Development Mechanism (CDM)) or Emission Reduction Units (ERUs, from Joint Implementa-
tion projects (JI)), which can be used to justify emissions in regulated parts of the world such as EU
countries. CERs and ERUs are commonly called international o�set certi�cates.2 Note that there is no
free distribution of these o�sets, such that �rms need to actively acquire them.

Within their obligations from the EU ETS, �rms could substitute a limited amount of European
certi�cates with such o�set certi�cates. Such a substitution was a�ractive because o�set certi�cates
are generally cheaper than EUAs. However, to ensure that the bulk of emission reduction is achieved
domestically, the EU restricts the quantity of o�sets usable by each �rm. �e exact de�nition of this
quota depends on the national government, but most countries use a percentage share of 10 to 20%
of the grandfathered allocation as a benchmark, cf. Table 4 on page 26 in the Appendix, yielding a
�rm-speci�c o�set entitlement.

�ese quantity limits for o�set use were set upfront for Phase II. In the middle of Phase II (April
2009), an EU directive3 announced that the usage limits of certain o�sets should be transferable (bank-
able) into Phase III (2013-2020), however it was unclear what amounts and which types of certi�cates.4

Due to institutional obstacles, the �nal regulation ensuring the bankability and its conditions only ap-
peared in November 2013,5 i.e. a�er the original claim on Phase II expired. �e present study therefore
considers the end of Phase II to be the temporal limit of o�set use.

�e present study only examines the demand side of o�set certi�cates. One possible alternative
explanation for limited o�set use would be that o�set use was limited by supply side constraints.
However, the central registry of the UNEP shows that the number of o�sets generated until the end
of 2012 was much higher than aggregate o�set usage rights within the EU.6 Market data shows that
o�set prices collapsed to virtually zero a�er the end of Phase II, which shows that the EU ETS demand

2As CERs and ERUs can be used interchangeably under this legislation, I will from now on only use the term “o�sets”
while everything applies equally to CERs and ERUs.

3Directive 2009/29/EC
4O�set certi�cates have been criticized because they rely on the fundamental criterion of additionality, which is virtually

impossible to ensure completely. Some types of certi�cates, in particular those from “industrial gas” projects, seem too easily
manipulated such that they are not further accepted in Phase III of the EU ETS.

5Commission Regulation (EU) No 1123/2013
6�eoretically, in addition to EU �rm-level demand (analyzed in this study) there was scope for additional demand coming

from the state-level; however, at the state-level of the Kyoto framework, o�sets were perfect substitutes for Assigned Amount
Units (AAUs). �ese certi�cates are traded infrequently and bilaterally, mostly directly between participating states, such
that there is no transparent market price. However, given the large AAU overallocation of ex-Soviet Union states (so-called
“hot air”), the evidence suggests that AAUs are sold usually far below the price of EUAs, CERs and ERUs (Aldrich and Koerner,
2012).
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Figure 1: Aggregate market equilibrium, with two alternative o�set supply levels

was the driving force behind o�set valuation.

2.2 Why are o�set certi�cates cheaper? – �eory of the aggregate impact of o�set
credits

International o�set credits cover emissions from geographic regions that are not previously included
in the scope of EU ETS. As such, they are a spatial �exibility mechanism (Stevens and Rose, 2002)
allowing �rms to abate where it is cheapest (other countries, especially developing countries) and have
the abatement credited via the creation of o�set credits. �e creation of o�set certi�cates increases the
overall cap imposed by the EU ETS. Potentially, the cap could increase by an amount equal to the sum
of all �rms’ o�set entitlements. In practice, it depends on prices whether the regulatory o�set quantity
limit or the supply of o�set certi�cates determines the overall amount of certi�cates available.

�e resulting market equilibrium is illustrated in Figure 1: in an unregulated situation, emissions
have no cost and �rms emit E∗unreg’d. Without o�set credits, the standard result for emissions trading
holds: the market clears at the regulated maximum emission level Ē at price pe, equal to the marginal
abatement cost at Ē (Trotignon, 2012b). O�set certi�cates are perfect substitutes for EUAs up to the
regulatory quantity limit. When o�sets are costly to produce (supplyQolow), their availability increases
the overall cap, lowers the price and moves the equilibrium to E∗low, where prices are set at the level
for which o�set supply clears. �is equalizes EUA and o�set prices pelow = polow. When o�set creation
is cheap (supply Qohi), �rms would like to buy more o�set certi�cates than allowed and pollute up to
emission level E∗hi. �e aggregate o�set quantity limit Q̄o is binding in that case. �e resulting con-
strained equilibrium at Ē′, does not ensure equal prices anymore: EUAs trade at marginal abatement
cost pehi of the new emission level Ē′ = Ē+Q̄o. �e over-supply of o�set certi�cates drives their price
down to pohi.

�us, the price di�erential ∆p = pe − po is always positive or at least zero; its magnitude depends
on the di�culty to generate o�sets and on the stringency of the o�set usage quantity limit. Note that
even if EUA and o�set prices are not equalized, the introduction of o�set credits nevertheless reduces
EUA prices from pe to pehi.
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Average transaction costs Cost structure Scope
Heindl (2012) e4,193 (information) Fixed + variable Germany

e4,659 (trading)
e12,223 (all, including MRV)

Jaraite et al. (2010) e146,040 (all, including MRV) Variable Ireland
Loeschel et al. (2010) e1.79/tCO2e if emissions < 25,000t Variable Germany

e0.36/tCO2e if emissions ≥ 25,000t
Loeschel et al. (2011) e8,136 (all, including MRV) Fixed + variable Germany

of which e2,034 for information and trading

Table 1: Overview of transaction cost estimates in the EU ETS in the literature 8

2.3 De�nition of transaction costs

Beyond the direct cost of the emission certi�cates, the EU ETS causes a number of information-related
and management frictions which I summarize under the term transaction costs. As Heindl (2012)
explains, the EU ETS produces costs through di�erent channels:

• Costs from monitoring, reporting and validating emissions (MRV);
• Service charges of the EU registry and other formal administrative costs;
• Salaries of people employed by the �rm for trading and information gathering and forecasting
of allowance prices, and

• Costs induced by �nding trading partners, bargaining, contracting and managing price risk.

�e �rst two sources of participation costs are unavoidable and should thus not explain �rms’ non-
participation in the o�set market. �e la�er two sources of participation costs are directly related to
�rms’ active trading participation and might explain why �rms do not venture into the o�set market.
In the following, the term transaction cost is de�ned as costs arising from trade (direct transaction
costs) and from information gathering about market structure and management (indirect costs); it is
likely to include personnel salaries, recruiting cost, consulting fees, etc. It does not include monitoring
and reporting of emissions, administrative cost for EU/national agencies, and generally any other “un-
avoidable” cost. �is study does not di�erentiate between internal costs and external consultancy costs.
�is is a more narrow de�nition than in some other work which considers the overall cost of estab-
lishing, managing, monitoring and enforcing a policy (Krutilla and Krause, 2010; Joas and Flachsland,
2014).7

Heindl (2012) �nds that information-procurement alone – the biggest upfront cost to entering ac-
tive trading – costs �rms about 17 employee-workdays. He also �nds that information and trading costs
do not depend on �rm size. Most surveys present their results at a per-tonne basis, i.e. interpreting
them as variable (rather than �xed) costs, cf. Table 1.

Typically, these transaction costs are unobserved. However, they clearly exist. A multitude of
news and data providers (Point Carbon), consulting �rms (ICIS/Tschach) and �nancial transaction
services (brokerage like TFS Green, exchange platforms like ICE) have emerged. �e fact that �rms
use such costly services indicates that there must be an information problem. Moreover, descriptive

7In particular, this study concentrates on �rms’ costs and does not take into account what Joas and Flachsland (2014) call
“public-sector costs” incurred by the regulatory authority.

8Mostly own computation from estimated parameters stated in the original studies.
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management literature highlights the discrepancy between actual and intended market practice, with
�rms use simple heuristics instead of full optimization and show reluctance to trade (e.g. Veal and
Mouzas, 2012). As the �nal transaction is virtually cost-free, transaction costs are in this context largely
due to upfront costs of information procurement. Just as an example, se�ing up a trading account at the
ICE – the biggest exchange, clearing about 90% of emission certi�cate trade in Europe – costs e2,500
in direct fees,9 while an individual transaction therea�er costs only cents.1011

3 Model

First, a static model describes �rm’s optimization problem in presence of two types of emission certi�-
cates without transaction costs. In a second step, I examine how optimal behavior changes in presence
of �xed transaction costs. Simply put, �rms always want to use o�set credits, unless transaction costs
are prohibitively high compared to potential pro�ts from using the cheaper o�set credits.

3.1 Emissions trading with o�set credits: least-cost scenario

For the purpose of this study, it is useful to look at �rms’ optimization problem aggregated over Phase
II, which is qualitatively equivalent to looking just at the last year of o�set validity.12As a reference
case, this subsection examines emissions trading with two types of certi�cates without participation
costs. I show that �rms can separate the decision of optimal emission levels (and produced quantities)
from the partitioning between European and o�set certi�cates. �is point considerably simpli�es the
analysis in the subsequent section 3.2, where we concentrate on the la�er decision.

In absence of o�sets, it has been shown (e.g. by Montgomery, 1972) that there is a market equilib-
rium ensuring that marginal abatement cost is constant across �rms and equal to the EUA price pe. �e
present model adds a second type of certi�cates, such that each �rm i solves the following optimization
problem:

max
Yi,Ei,Qei

π = pYi − C(Yi, Ei)− T (Qoi , Q
e
i ) + peAi, (1)

subject to Ei = Qoi +Qei , (2)

T (Qoi , Q
e
i ) = poQoi + peQei , (3)

Qoi ≤ Ki, (4)

where equation (1) is the pro�t maximization with C(Yi, Ei) the production cost, which depends
9As indicated on h�ps://www.theice.com/fees (March 1,2015)
10Convery and Redmond (2007) establish a list of direct transaction fees: brokers have relatively large minimum trade

sizes and take between 1 and 5 cent fee per certi�cate (tCO2e). Exchanges take smaller trades and charge between 0.5 and 3
cent per certi�cate.

11Note that in theory transaction costs could also consist in the actual abatement cost that internationally operating �rms
could incur if they decide to create o�set certi�cates in their own plants abroad, rather than purchasing the certi�cates on a
market place. �is study assumes that the large majority of �rms bought their certi�cates, which is consistent with anecdotal
evidence about o�sets. �is claim cannot be proved however, due to data restrictions. If this claim is not true, the estimations
in this study remain valid, but their interpretation changes from transaction/entry costs to ine�ciencies in the generation of
o�sets.

12Note that allocations and o�set entitlements for the whole period were known to the �rms at the beginning of Phase II
(from the NAPs).
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on emissions Ei and output Yi.13 As usual, I assume that increasing production Yi (at a �xed emission
level) increases cost, i.e.CY (Yi, Ei) > 0, and reducing emissions (at a given production level) increases
cost, CE(Yi, Ei) < 0.14 Qoi are the o�sets used in Phase II and Qei are used EUAs. T (Qoi , Q

e
i ) is the

cost of complying with ETS rules, i.e. the cost of buying the certi�cate quantitiesQei andQoi necessary
to cover the emission level Ei (equations (2) and (3)). At the beginning of Phase II, �rms are given free
allocation of European certi�cates Ai; they can sell super�uous certi�cates at market price pe. �e
�rm-speci�c constantKi in equation (4) is the regulated quota for o�set usage. �e overall amount of
EUAs in the market is �xed by total allocations over all �rms.

�e �rm has to solve three problems simultaneously: decide on the optimal produced quantity Yi,
determine the optimal emission level Ei and split compliance (i.e. an amount of certi�cates equal to
Ei) between international o�set and European certi�cates. �e �rst-order conditions require quantity
to be chosen optimally given production cost C(Yi, Ei) and prices. Let us assume that the produc-
tion function C and prices p are such that there exists a function Y ∗i (Ei) giving the optimal quantity
produced for any given emission level at given prices.15 Compliance cost T (Qoi , Q

e
i ) results from the

cost incurred for both types of certi�cates. To satisfy the �rst-order condition for emissions, marginal
abatement cost has to be equal to marginal compliance cost:16

p
∂Y ∗i (Ei)

∂Ei
− ∂C(Y ∗i (Ei), Ei)

∂Y ∗i (Ei)

∂Y ∗i (Ei)

∂Ei
− ∂C(Y ∗i (Ei), Ei)

∂Ei
=

∂T

∂Ei
(5)[

p− ∂C(Y ∗i (Ei), Ei)

∂Y ∗i (Ei)

]
∂Y ∗i (Ei)

∂Ei
− ∂C(Y ∗i (Ei), Ei)

∂Ei
=

∂T

∂Ei
(6)

−∂C(Y ∗i (Ei), Ei)

∂Ei
= po

∂Qoi
∂Ei

+ pe
∂Qei
∂Ei

(7)

�e compliance cost arises from an optimal partitioning of certi�cates between EUAs and o�sets,
given the price di�erential and the quantity restriction on o�sets. �e marginal cost is either pe or
po depending on which sort of certi�cate is used to cover the last (marginal) emission. As previously
seen, o�sets are perfect substitutes for EUAs up to a certain quantity limit; their price is thus at most
as high as an EUA’s price, but never higher (pe − po =: ∆p ≥ 0).17

�e result is straightforward and illustrated in Figure 2: as a perfect substitute at a lower price, o�set
credits are clearly preferable to EUAs, up to the regulated quota (entitlement). Only if emissions are
above Ki, the �rm complies for remaining emissions by using the more expensive EUAs. Compared
to a system with only EUAs, the �rm saves an amount equal to ∆pKi. �e compliance cost can be
simpli�ed to T ∗(Ei) giving for all emission levels Ei the compliance cost resulting from an optimal
split between European and o�set certi�cates. �e equation for T ∗(Ei) then enters the optimization
problem as a constraint:18

13Emissions Ei and output Yi as well as all other variables are aggregated over the entire Phase II (2008-2012)
14CY and CE denote the partial derivatives with respect to Y and E, respectively.
15A competitive market hypothesis simpli�es this part, but is not essential to the subsequent argument, as long as there

is a single equilibrium quantity Y ∗(E∗).
16Using the competitive market hypothesis and the envelope theorem to get from equation (6) to (7)).
17For the purpose of this study, I only consider situations in which o�set certi�cates are strictly cheaper than EUAs, as

the alternative where both prices are equal is qualitatively not di�erent from a system without o�sets. Moreover, the data
reveals that in practice there has always been a clear price discount for o�set certi�cates.

18�e pro�t’s last term in equation (1) peAi is a choice-independent lump-sum transfer and can be dropped from the
maximization equation.
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Figure 2: Deciding on the optimal quantity of EUAs and o�sets (no entry cost, reference case)

max
Ei

π(Y ∗(Ei), Ei) = pY ∗(Ei)− C(Y ∗(Ei), Ei)− T ∗(Ei) (8)

such that T ∗(Ei) =

{
poEi, if 0 < Ei ≤ Ki

pe(Ei −Ki) + poKi, if Ki < Ei
(9)

3.2 Entry costs for both certi�cate markets

Wewill now see how �xed participation costs on the o�set market change the �rm’s problem. I assume
that �rms face some general entry cost to participate in any certi�cate trading, i.e. the cost of se�ing
up a trading department no ma�er the type of certi�cates, and an additional cost to participate in the
o�set market. �ey can avoid both costs if they use only their freely allocated European certi�cates.
Firms with optimal emissions bigger than their allocation are forced to buy certi�cates and cannot
avoid the general participation cost. Compliance cost from equation (3) has now two additional terms:

T (Qoi , Q
e
i , Ei) = poQoi + peQei + 1oT o + 1eT e, (10)

= peEi + 1e(T e + 1o(T o −∆pQ
o
i )), (11)

where 1o = 1 i� Qoi > 0 (12)

1e = 1 i� Qoi > 0 and/or Qei > Ai (13)

where a �rm incurs general information entry costs T e if it buys any certi�cates, but needs to pay
an additional information cost T o to participate in the less well-known o�set market. �is speci�-
cation also implements the idea that �rms which are “long” in equilibrium, i.e. which received more
free allocations than needed for their optimal emissions (Ai > E∗i ), are not obliged to actively trade
certi�cates. “Short” �rms need to enter the market to buy some certi�cates anyways and should thus
consider the general participation cost T e sunk when deciding about o�set usage.19 �e impact of

19�is de�nition is not ideal: rather than conditioning on �rms being forced to trade, one would like to condition on �rms
actually trading. However, the data does not allow this distinction. As a consequence, the estimate for transaction costs is
downward biased.
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transaction costs on o�set usage and incurred total cost depends on the relative magnitudes of T o,
T o + T e andKi∆p.

total
compliance cost T ∗(E)

emissions E

pe

pe

T e

KTo

∆p

A

(a) High entry costs

total
compliance cost T ∗(E)

emissions E

pe

pe

T e+T o−K∆p

K ATo

∆p

To+Te

∆p

(b) Intermediary entry costs

total
compliance cost T ∗(E)

emissions E

pe

po

pe

K(To+Te)
∆p

A

(c) Low entry costs

Figure 3: Deciding on the optimal quantity of European and o�set certi�cates (with entry cost on both
markets)

Figure 3 illustrates the three possible situations. In Figure 3a, o�set entry costs are high such that
T o > Ki∆p. In this case, entering the o�set market is not useful at any emission level. Firms still have
to incur entry cost T e to enter the EUA market if their emissions are higher than their free allocation,
which results in a discontinuity at Ei = Ai. In Figure 3b, T o is relatively low, but T o + T e is so high
that o�sets alone are unpro�table. As T o < Ki∆p, �rms which already incur entry price T e (because
Ei > Ai) also buy o�set certi�cates. �ere is thus a similar discontinuity as in 3a, but the jump is
reduced from T e to T e +T o−Ki∆p, because the �rm cashes in some gains from o�set usage. Finally,
Figure 3c shows the situation if both entry costs are relatively low such that a �rm uses o�sets as soon
as its emissions are above the threshold.

Cases (a) and (b) illustrate situations in which entry costs may make initial allocation non-neutral,
as they produce a jump in the cost curve. Following the “Coase theorem”, initial allocation does not
ma�er for the �nal outcome if bargaining is possible and cheap. In presence of transaction cost how-
ever, such as in Figure 3, initial allocation has an impact on �rms’ probability to use o�set credits.

�e direct e�ect of participation costs on total compliance cost T ∗(E) does not impact the marginal
cost-bene�t analysis: both above and below Ai, �rms face a marginal price of pe. Even in case (c), the
slope of the cost curve is pe formost �rms and only the very exceptional �rms face amarginal certi�cate
price of po.

Let “allocation status” 1longi be a dummy variable indicating that allocation Ai is larger than emis-
sionsE∗i , such that optimizing compliance simpli�es to the decision whether to use o�set certi�cates:20

max
{1oi }

1oi (∆pKi − T o − 1longi T e) (14)

where 1oi = 1 i� Qoi > 0

A �rm participates if it is worth incurring the entry costs, which depend on the allocation status –
long or short – of the �rm. �e empirical section uses the prediction that a short �rm not participating
must imply that ∆pKi < T o and a long �rm not participating shows that ∆pKi < T o + T e, while

20See Appendix on page 27 for more details on the potential interaction of transaction costs and allocation status.
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the same inequalities are reversed for participating �rms. Note that this solution implies an “all-or-
nothing” decision as long as entry cost is �xed. Observe as well that in spite of these frictions, marginal
abatement cost is equalized across the large majority of �rms at the level of pe, just like in the no-cost
reference case.

1oi =

{
1 if ∆pKi > T o − 1longi T e,

0 otherwise.

An important assumption is that �rms take prices as given here: every individual �rm is too small
to consider its own impact on the price level, i.e. there is no market power on the certi�cate market. On
the aggregate, pe depends on the number of �rms using o�set certi�cates. To the extent that transaction
costs reduce access to the o�set market, they are not neutral for pe and thus for Y ∗ and E∗.21

4 Data and empirical research design

I use administrative data from the EU. Descriptive data analysis reveals some stylized facts, that my
empirical analysis relies on: (a) o�set certi�cates are indeed cheaper than European certi�cates, (b)
virtually all �rms has emissions greater than their o�set entitlement and many of them smaller than
their free allocation, (c) a non-negligible number of �rms does not use their o�set entitlements (22%)
and (d) the size distribution of �rms is very unequal.

4.1 Data sources

�is study mainly relies on the data of the European ETS Registry (European Union Transaction Log,
EUTL) which is a compilation of member states’ national registries of Phase I and II (2005-2012). �is
comprehensive administrative data comprises the allocated EUAs, veri�ed emissions and used (surren-
dered) certi�cates (EUAs, CERs and ERUs) for all 13,590 plants subject to ETS compliance obligations
in Phase II. Moreover, a matching with Bureau van Dijk’s Orbis company database reveals ownership
structures that link many of these individual plants.22 �is matching is important as the relevant de-
cision is likely to happen at the �rm level, even though regulation, allocation and o�set entitlements
are de�ned at plant level. A�er some data cleaning,23 there remain around 9,000 plants belonging to
4,578 �rms. Over half of the plants belong to �rms owning just one plant.

�e plant-speci�c o�set quantity limitKi is the product of a nation-speci�c o�set quota multiplied
by the plant’s free allocationsAi over Phase II.�emagnitude of this quota has been chosen by national
governments, but the EU has restricted the maximum to 22%, as implemented in Germany or Spain. For
the purpose of this study, the limits have been computed by this rule and veri�ed using the International
Credit Entitlement tables published by the EUTL in 2014. Allocations have been relatively generous

21�ere are second-order e�ects as well, as participation costs impact the demand for o�sets: this decreases the o�set price
po and increases the EUA price pe. While these price e�ects are essential for a general equilibrium and welfare assessment,
they are not informative on transaction costs and are beyond the scope of this study.

22For more information on this matching, see Jaraite et al. (2013) or their website
h�p://fsr.eui.eu/CPRU/EUTLTransactionData.aspx

23Plants from countries that do not participate in the standard way described in Section 2.1 (Estonia, Iceland, Lithuania,
Liechtenstein, Malta and Norway; 220 plants) and some which have o�set-use beyond the legal limit (most likely because
of merger and acquisition transactions which are unobserved in this data set; 94 plants) are excluded. Around 3,000 plants
never register any emission or cease existing in 2011 and 2012, so they are excluded as well.
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Figure 4: Prices of EU certi�cates and o�sets (source: www.theice.com)

such that 80% of the �rms could cover all of their emissions using only grandfathered allocations (they
will further be called “long” �rms). However, o�set entitlementKi has been so small that only ameager
2.8% of �rms is able to comply by using o�sets only. Table 2 shows that free allocation has on average
been just above emissions. Firms have a wide variety of sizes, with some �rms owning up to 158 plants
and being active in 11 sectors or 17 countries.

Mean Median SD Min Max
Number of countries active 1.13 1 .728 1 17
Number of plants 1.88 1 5.03 1 158
Number of sectors active (NACE de�nition) 1.12 1 .566 1 11
Free allocated EUAs (ktCO2e) 1,975 112 13,831 .015 380,586
Emissions (ktCO2) 1,919 78.5 16,148 .003 563,608
International credit entitlement (ktCO2e) 272 12 2,335 .001 91,537
Used o�set credits (ktCO2e) 208 8.34 1,494 0 55,536
Savings from o�set use (k e) 799 31.2 5,836 0 217,412
Unexploited pro�ts from o�sets (k e) 627 22 7,370 .00465 200,316
Firms using all o�set entitlement (in %) 50.5
Firms using no o�sets (in %) 22
Observations 4578

Table 2: Descriptive �rm statistics

4.2 Price spread and realized savings

�eoretically, o�sets are expected to trade at a lower price compared to EUAs or at best at equal price
if the o�set supply is relatively scarce. Indeed, o�sets have always traded at a positive discount from
EUAs. Figure 4 shows that the price di�erential was rather small in the beginning. A�er few months,
the spread became clearer and o�sets have been up to e7 cheaper than EUAs. �e spread increased
with time and was rather volatile. On average the price di�erence was e3.60.

�is price spread has allowed �rms to achieve considerable savings,24 reaching e217.4 million for
24Savings are approximated by multiplying the annual average price spread with the amount of o�set certi�cates used in

that year, because the actual transaction details (date/price) are not observed.
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Figure 5: Ratio of used o�set credits over overall o�set entitlement (source: EUTL and own computa-
tions)

the largest �rm.Altogether, �rms have saved an overall amount ofe3.6 billion. However, the aggregate
additional unused 288 million tCO2e certi�cates could have generated another e1.37 billion at 2012
prices. Among participants, �rms have saved on averagee799,000 while the median is onlye31,200.25

4.3 Evidence for transaction costs

As mentioned before, many �rms did not use their o�set entitlements. Given the large supply of o�set
certi�cates and their relatively low price, this is surprising. One potential explanation for �rms not
participating in the market is that their expected pay-o� was not high enough to cover transaction
costs of information procurement, such as the cost of hiring additional personnel or devoting existing
resources to compliance optimization.

�e stylized facts supporting this idea are (a) a largely binary behavior between using either the
maximum allowed or no o�sets at all; (b) the non-neutrality of EUA allocation status for participating
in the o�set market; and (c) an increasing likelihood of participating in the o�set market as o�set
entitlement increases.

Firms have mostly followed an “all-or-nothing” strategy in their o�set usage, suggesting the pres-
ence of �xed participation cost: Figure 5 shows the used o�sets as a percentage of the total o�set
entitlement. One can see two frequency spikes: over half of the �rms use all their o�set entitlements
and almost a quarter of the �rms use none. Finally the last quarter of �rms use some but not all of
their o�set entitlement. While per-unit costs would lead to a marginal trade-o� and intermediate us-
age rates, a �xed cost incurred for market entry could explain such a binary behavior. It is interesting
to note that many multi-plant �rms with intermediary usage are composed of plants that expose an
all-or-nothing behavior: it seems likely that this results from coordination problems within �rms.

�e main consequence of transaction costs is that they make initial allocation non neutral (Stavins,
1995). With �xed costs, �rms with large credit entitlements should participate more as entry costs
become small compared to the potential gain. Moreover, short �rms are legally bound to trade so that

25�ese numbers take prices as given, so they cannot be interpreted as the general-equilibrium savings from o�set usage:
as seen in Section 2.2, the counterfactual EUA price in absence of o�set credits would have been higher than the observed
prices. �e de facto achieved savings from o�set usage are probably higher than my esstimates used in Table 2. Stephan et al.
(2014) estimate demand elasticity as being relatively high, such that actual �rms’ savings may be as high as e20 billion, as
o�set availability decreased the overall stringency of the cap. Moreover, it does not include the incurred transaction costs.
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they should consider general trading cost as sunk, whereas the o�set-speci�c cost applies to both long
and short �rms. Figure 6a shows the interaction between the size and the allocation status: at lower size
deciles, �rms use o�sets relatively rarely, with a large di�erence between long and short �rms. As size
increases, �rms become more likely to use more o�sets, while at the same time the di�erence between
long and short �rms becomes less marked. At the tenth size decile, virtually all �rms participate and
there is no signi�cant di�erence between long and short �rms’ behavior.

Assuming that �rms take rational decisions, plants that do not participate must estimate their par-
ticipation cost to be higher than their potential pro�t, such that the mean o�set entitlement multiplied
by the mean price spread should give us a lower bound of the magnitude of these transaction costs
(similar to the reasoning in A�anasio and Paiella, 2011). At the same time, the opposite is true for
participating �rms. �ese two distributions largely overlap, but Figure 6b shows that the means and
medians are strongly di�erent. In general non-participating �rms tend to be smaller, with half of �rms
below 3,600 tCO2e of o�set entitlements (while the median is 16,600 tCO2e for participating �rms).
Nevertheless, the distributions both stretch out until above 50,000 tCO2e, showing that the separation
is not clear cut. �e largest non-participant �rm has 262,000 tCO2e entitlement, and the 9 percentiles
of the potential pro�t distribution above this value all participate. Among participating �rms, the size
distribution of long and short �rms is similar. On the opposite, small short �rms are overrepresented
in the non-participating group. �is gives us an order of magnitude of avoided transaction costs.

Figure 6b shows that the size distribution of �rms’ o�set entitlements is highly unequal, and similar
inequality is true for emissions, number of plants and grandfathered allocations. �e empirical methods
used need to be chosen such that they are robust to these rare and extremely large outlier �rms.

26Density estimation using Gaussian kernel from density() in R, with smoothing bandwidths calculated by Silverman’s
rule of thumb; for readability, the graph is cut at 50 ktCO2e, although both densities continue beyond. Crosses and circles
indicate median values.
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4.4 Econometric methodology

�e model gives us an indication about the link between �rm behavior (using any o�set credits or
not) and the magnitudes of the unknown entry costs T o and T e to be estimated, relative to the known
quantities Ai, Ei and ∆pKi. We want to measure the unobserved (latent) �xed transaction cost TC∗i ,
while observing only the binary outcome 1oi equal to 1 if TCi is smaller than ∆pKi:27

1oi = 1{∆pKi > TC∗i }

= 1{ ∆pKi︸ ︷︷ ︸
potential pro�t

> T o + T e1longi + εi︸ ︷︷ ︸
entry cost

} (15)

In this binary choice setup, ∆pKi is the �rm-speci�c cut-o� value relevant for the decision to
participate. Other than inmost binary choice se�ings, e.g. standard probit, a �rm-speci�c cut-o� allows
us to identify an intercept as it �xes a scale for the two estimated parameters T o and T e in terms of
units of ∆pKi (i.e. Euros).28 �is method to use preference revelation is similar to the methodology of
contingent valuation, o�en used to analyze “willingness-to-pay” (WTP). Here, rather than estimating
WTP, I interpret the foregone pro�ts as “unwillingness-to-bene�t” to identify transaction costs.29

If the error term was assumed to be iid following a normal distribution, equation (15) would de-
scribe a probit model in which coe�cients are normalized such that the coe�cient of the potential
pro�t equals 1. �e other coe�cients then measure transaction costs in Euros. �is relates to the con-
tingent valuation literature, where willingness-to-pay is estimated by normalizing the utility of income
to 1.30 However, the stylized facts presented in Section 4 strongly suggest that this homoskedastic nor-
mality assumption does not hold. If the distribution of transaction costs is skewed, an estimation of
the mean cost is not the most representative summary statistic as it might be driven by large outliers.

Following empirical work from Kordas (2006) and Belluzzo Jr (2004), I estimate a range of binary
quantile regressions to analyze the whole conditional distribution of transaction costs rather than only
the conditional mean. �is semi-parametric method is more robust to non-symmetric error distribu-
tions and outliers. For all quantiles τ ∈ [0, 1], I de�ne the conditional quantile QTC∗(τ) as the τ th

quantile of the transaction cost distribution FTC∗ :

QTC∗(τ |1longi ) := F−1
TC∗(τ) = T oτ + T eτ 1longi (16)

�ese quantiles are identi�ed using the observed o�set-market participation 1oi and the monotone
transformation of equation (15). �en Q1oi (τ) may be wri�en as:

Q1oi (τ |1
long
i ,∆pKi) = 1{∆pKi ≥ T oτ + T eτ 1longi } (17)

�e probit regression draws its identi�cation from the conditional mean assumption E(εi|x) = 0

27We observe a transformation of the latent variable by an indicator function, which is a monotone transformation. See
Koenker and Hallock (2001) on the equivariance of quantile estimates to monotone transformations.

28Ki is measured in tCO2e of o�set entitlement and ∆p is the average price spread measured in e/tCO2e.
29Note that unlike most of the contingent valuation literature this study does not use survey methods, in other words,

I am working with revealed preferences rather than stated preferences. I therefore avoid much of the standard critique of
contingent valuation methodology, which questions the validity of survey answers, cf. Diamond and Hausman (1994)

30�e standard normalization of a probit sets the standard deviation σ to 1; in contrast, the standard deviation is a free
parameter here.
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and the normality assumption, while the following methodology estimates the median and thus is
identi�ed over the assumption that the conditional median error is zero. �e earliest estimator using
this semi-parametric assumption is the maximum score estimator by Manski (1975). At the median
(with τ = .5) this estimator maximizes the number of “correct predictions” using an indicator function:

max
T oτ ,T

e
τ

Snτ (T oτ , T
e
τ ; ∆pKi) = n−1

n∑
i=1

[1oi − (1− τ)]1{∆pKi − T oτ − T eτ 1longi ≥ 0} (18)

Similarly to the median, we can estimate other conditional quantiles. While this estimator is rela-
tively intuitive, it is not continuous, which makes it di�cult to optimize and determine standard errors.
To solve this problem, Horowitz (1992) formulates a smoothed maximum score estimator using a ker-
nel function to get a continuous function of the estimated parameters, which is extended to quantiles
other than the median by Kordas (2006). �e smoothed binary quantile estimator at quantile τ ∈ (0, 1)

is the solution to the following problem:

max
T oτ ,T

e
τ

S∗nτ (T oτ , T
e
τ ;hn,∆pKi) = n−1

n∑
i=1

[1oi − (1− τ)]Φ
(

(∆pKi − T oτ − T eτ 1longi )/hn

)
(19)

where Φ(·) is a continuous, di�erentiable kernel function and hn an appropriate bandwidth that
tends to zero as sample size increases.

�e estimation of this model involves the optimization over a complex function, in particular when
using the discrete version of equation (18). I use R to implement Kordas’ S-Plus/Fortran code to perform
simulated annealing following the algorithm of Go�e et al. (1994). Simulated annealing has the advan-
tage of being more robust to starting values, local optima and discrete parts of the objective function;
although computationally more demanding, the full code including bootstrapping runs in less than six
hours . With a large sample such as the one used in this study, results of Manski’s discrete quantile
maximum estimator and Horowitz’ smoothed estimator turn out to be virtually identical. Standard
errors for both estimators are calculated by bootstrap methods.

5 Estimation results

�e results show that transaction costs are roughly e100,000 on average, which results from a skewed
distribution: many �rms face small transaction costs, while a few �rms have very high costs. In par-
ticular, the o�set-speci�c cost is much smaller for most �rms. �is section illustrates how quantile
regressions can add valuable information if the underlying distribution is asymmetric.

�e binary quantile regression estimates the distribution of transaction costs from which each �rm
draws its realized transaction cost. Note that this is di�erent from transaction costs for di�erent sizes
of �rms. As this distribution is not assumed to follow a known functional form, it is described here
by estimating 19 quantiles, from the 5th to the 95th percentile in steps of 5 percentage points. For
be�er readability, Table 3 shows only selected quantiles, while Figure 7 shows the full estimation for
all quantiles (19 separate estimations).

�e transaction cost components are measured in units of potential pro�t, i.e. in euros. �e median
o�set-speci�c cost T o is estimated around e905, which means that a short �rm with enough o�set
entitlement to generate e905 of o�set revenue has a 50% chance of participating. While transaction
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All �rms Manufacturing Electricity
τ T̂ o T̂ e T̂ o T̂ e T̂ o T̂ e

o�set-sp. general o�set-sp. general o�set-sp. general
0.05 35.0*** 1.0 950.6*** 12.5 35.6*** -13.2

[ 25; 152] [-94; 587] [345; 1,308] [-89; 2,335] [21; 143] [-87; 1,140]
0.1 35.0*** 1.0 1,013.8*** 936.0 32.7*** -.7

[ 30; 344] [-96; 1,824] [354; 1,359] [-64; 2,919] [25; 284] [-93; 1,373]
0.25 472.9*** 2,817.5*** 965.0*** 2,732.8*** 338.5*** 4,198.3***

[35; 587] [1,444; 4,675] [330; 1,378] [797; 4,429] [32; 906] [718; 7,867]
0.5 904.7*** 7,769.5*** 1,045.3*** 5,417.8*** 917.0*** 7,695.8***

[378; 2,753] [3,976; 10,616] [340; 1,538] [4,015; 10,696] [393; 5,169] [2,880; 15,417]
0.75 9,352.6*** 17,876.2*** 1,295.6*** 21,376.0*** 12,587.2*** 15,291.6**

[2,746; 12,741] [9,995; 30,478] [393; 11,331] [11,276; 36,002] [3,970; 26,390] [1,466; 29,466]
0.9 28,392.9*** 57,135.0** 21,426.0*** 63,250.2*** 88,307.2*** 108,950.3*

[17,596; 99,858] [1,712; 165,116] [11,018; 52,336] [32,879;132,068] [29,228;170,252] [1,223; 141,695]
0.95 201,919.4*** 7,184.6*** 301,294.8*** 13,588.2* 165,532.4*** 31,900.4*

[79,334;304,069] [264; 476,038] [23,545;309,215] [102; 486,145] [65,021;236,666] [5,274; 388,442]
Mean 83,675 21,519 123,133 64,269 65,322 62,542
Probit 109,557*** 44,302*** 173,656*** 98,911*** 48,632** 4,059
N 4,578 2,938 1,640
Function optimized by simulated annealing, signi�cance and point-wise 95% con�dence intervals are determined by bootstrap (500
replications). Columns 1 and 2 show the result of the binary quantile regression, dependent variable is the o�set participation
dummy, regressors are o�set entitlement (normalized to one), allocation dummy and a constant. Columns 3 to 6 show the result of
the same regressionwith additional dummies for sector a�liation (and their interactionwith the allocation dummy). Manufacturing
includes cement, pulp and paper, glass, ceramics, metals, oil re�ning and “other”.

Table 3: Estimates from the binary quantile estimator

costs are relatively low around e500 for the lower quarter of the transaction cost distribution, their
values are high at the upper end with e201,919 for the highest quantile (τ = .95). �e distribution for
T e indicates that long �rms (with generous initial allocations) are much more reluctant to participate.
At the median, their behavior is consistent with an additional cost equivalent to e7,770. �is goes up
to the higher quantile estimates around e41,900 for τ = 0.95. A long �rm thus needs e7,770+ e905=
e8,675 to have a 50% participation probability.

�e quantile analysis reveals that the transaction cost distribution spans a large range and is
strongly skewed : while the di�erence between the median quantile and lower quantiles is small, there
are large outliers driving the estimates of the highest quantiles. Consequently, the means (lower part
of Table 3)31 can be misleading about the transaction cost distribution. Of a similar order of magnitude,
the probit estimates (of the conditional mean) are also much higher than the median.32 Figure 7 plots
probit estimates with a cross and adds the distribution of the normal error to represent the distribution
implied by probit assumptions.33 It shows that in spite of the similar means, quantile and probit esti-
mates are signi�cantly di�erent for most quantiles and yield very di�erent views on the transaction
cost distribution.

Note that for virtually all quantiles, the impact of allocation status is stronger than the o�set-
speci�c transaction cost: the bulk of transaction costs stems from the general cost component T e.

31Means from the quantile regression are computed with the following steps: (a) estimate quantile parameters in 5% steps
from the 5th percentile to the 95th; (b) predict participation probability depending on �rm characteristics (see Appendix D);
(c) impute transaction cost from τ equal to predicted probability; and (d) take average across all observed �rms.

32More detail on these parametric estimations can be found in the Appendix on page 29.
33Due to the renormalization, the error term does not follow a standard normal distribution, instead having a larger

standard deviation.
34�antile estimates for all 5th percentiles from 5% to 95%. �e do�ed green line is the mean estimate from probit, the

shaded bands represent the point-wise 95% con�dence intervals.
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Figure 7: Estimated transaction cost (in e) - quantile plot34

�is means that it is not the o�set trading per se, but rather the cost of emissions trading in general
that stopped �rms from using their o�set entitlement. However this �nding is completely hidden if
we look only at the means, both from probit and from quantile regression (Table 3), which show that
transaction cost for o�set are on average larger than the ones for general trading. �ere are some large
outliers in the distribution of T o.

A straightforward way to make these results more intuitive is to switch the axis of the standard
quantile plot Figure 7 in order to get the estimated cumulated density function of �rm’s transaction
costs as shown in Figure 8a. From there, one can infer a probability density function from this CDF by
using standard kernel density methods as in Figure 8b. Again, these �gures show how the high mean
of T o is driven by some large outliers: the tail of the probability density function of the o�set-speci�c
transaction cost shows a bump that is driven by the only four non-participating �rms with potential
pro�ts above e200,000. �e mean may be considered a misleading statistic in such a case.
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Figure 8: Estimated transaction costs35

Figure 9 compares the estimated probability of participating in the o�set market from the probit
and quantile model to the observed frequencies at di�erent entitlement magnitudes. Particularly for

35Pdf in Fig. 8b estimated from Fig. 8a using kernel density in R.
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smaller emi�ers, the quantile method predicts participation probability much be�er than the probit.
Analoguously, the �t of the quantile estimation is strong if evaluated with the method outlined by
Kordas (2006), i.e. checking that predicted and observed probabilities roughly coincide (cf. Appendix on
page 31). However, the be�er �t does not come as a surprise: the quantile model �ts 38 free parameters,
while the probit only �ts three free parameters.
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Figure 9: Observed frequencies and predicted probabilities of quantile method and probit (cut at 40,000
tCO2e for be�er readability)

5.1 Sector-speci�c results

While a full sector-speci�c analysis is not possible with a data set of this size, the right-hand side of
Table 3 shows the result if I broadly separate manufacturing and electricity-generating �rms. Elec-
tricity and heat generation account for one third of all �rms, and half of total emissions.36 Electricity
�rms are known to have active and sophisticated compliance and trading behavior, likely because of
the experience from electricity trading (Heindl, 2012).

Results (Table 3 and Figure 10) show that this sector separation explains some of the observed
transaction cost heterogeneity: while costs are similar around the median for manufacturing and elec-
tricity �rms, I do not �nd any large outlier in the electricity sector, such that this sector’s means are
considerably lower compared to manufacturing. �e high result at the 95th percentile of the pooled
estimation is driven only by a handful of manufacturing �rms.

�e estimates for several quantiles of the general cost T e are not signi�cant for electricity and heat
generation �rms. Moreover the probit estimate is not signi�cant. As virtually all large electricity �rms
trade emission certi�cates, it is di�cult to precisely identify this general component. For manufac-
turing however, estimates are very similar to the ones for the general case: means are much higher
than medians, o�set-speci�c cost are less relevant than general cost for most of the distribution and
the means nevertheless are higher for T o.

36Readers familiar with the EU ETS might �nd these numbers low. Note that the electricity market is characterized by
large �rms owning many plants, such that their share in the overall number of �rms appears small. Moreover, I use NACE
2 codes of the �rms’ main activity rather than the activity code that led the �rm to be regulated under the EU ETS; e.g.
hospitals (main activity) fall under the EU ETS regulation, because they typically run large fossil-fuel power generators for
back-up power and heating.
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Figure 10: Sector-speci�c quantile estimation results (in e)

6 Conclusion

Within their obligations from the EU ETS, �rms had the opportunity to reduce expenses by using
their right to substitute European certi�cates with international o�set certi�cates. A priori it is always
pro�table to use the cheaper o�set certi�cates. However, many �rms do not make full use of their
o�set entitlement. A�er brie�y explaining the aggregate mechanics of o�sets in the EU ETS, this study
explains the theoretical impact of �xed transaction costs on o�set usage and estimates the distribution
of �xed transaction costs necessary to rationalize �rms’ participation in the o�set market.

Prior work has used survey data to show that compliance with the EU ETS generates managerial
costs. To the best of my knowledge, this is the �rst study establishing a framework to assess these
transaction costs empirically through the use of administrative data. �ese entry costs are estimated
to be at the median e7,770 (average e21,519) for general participation in the certi�cate market (be it
EUA or o�set certi�cates) plus e905 (average e83,675) for o�set participation. Overall, the empirical
results underline that the behavior on the o�set market is signi�cantly impacted by initial allocation:
for most �rms transaction costs are largely due to general participation in emissions trading, rather
than the o�set market speci�c setup costs. However, this average hides a large heterogeneity that is
best captured by a quantile estimation that suggests that these means are driven by some large outliers.
As a consequence, this study illustrates the advantage of using binary quantile methods rather than
usual parametric approaches that focus on the mean.

Environmental policy aims at reducing ecological harm at minimum cost to society. Most academic
and policy-related work accounts for direct compliance or abatement cost of the EU ETS. However
– just like any regulation – the EU ETS causes administrative and management-related transaction
costs. My estimates suggest that these costs are relevant in practice: �rms signi�cantly deviate from
the least-cost scenario. Indeed, designing policy is “an empirical ma�er” as Montero (1998) puts it.
Usually, optimal regulation aims at giving the optimal incentive structure, while this study argues that
regulatory complexity also creates costs. As the objective of a regulation becomes more complicated,
there appears to be a trade-o� between incentive perfection and a need to keep complexity for the
regulated �rms at bay – incentives only work as intended if they are understood and implemented at
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low cost. In this perspective, this paper aims at contributing to the practical debate about the shape of
environmental policy. Empirical evidence for transaction costs calls for more simple permit designs,
rather than more sophisticated (but complicated) policy designs. �e problem is even more stringent
if the costs impact �rms di�erently, such as the �xed costs estimated in this study, where only large
�rms bene�t from the cost reduction of o�set certi�cates. On this last point, some action has been
taken on national level with programs excluding small emi�ers from the scheme, e.g. the UK “Small
emi�er and hospital opt-out” program.

My residual de�nition of transaction costs addresses only part of the actually arising transaction
costs: all other costs that are not choice-dependent, i.e. cannot be in�uenced by �rm behavior, cannot
be captured with my methodology, e.g. costs due to monitoring and reporting and registry fees.37 In a
way, my estimates are thus the lower bound of the costs that should be included in the policy discussion.
More importantly, these transaction costs are not synonymous with overall e�ciency loss: while e�ort
spent in information gathering is certainly not welfare-improving, a real welfare e�ect analysis would
need to look at the bigger picture of the general equilibrium. It would be interesting to estimate the
impact of o�set certi�cates on EUA prices, as well as to further dig into the price distortions (both on
EUAs and o�sets) caused by transaction costs.

�e estimated transaction cost is a “black box” measuring all the frictions stopping �rms from
investing in o�sets. It remains to be analyzed exactly what these costs include and how they could
consequently be reduced to implement a less distortionary policy. In fact, this study cannot di�erenti-
ate between �nancial costs and more “behavioral” reasons, such as ina�ention, salience, risk aversion,
misperceptions, etc. Importantly, �rms’ aversion to use o�sets could also be due to reputation con-
siderations, as o�sets have received bad press in most countries.38 However, we are talking about the
behavior of �rms, such that psychological factors should play less a role than they do for consumer
decisions. Finally, the claim that frictions are considerable remains valid even if they stem from be-
havioral factors rather than purely e�ciency-driven cost considerations.

37Registry fees in Phase II ranged from e100 for the period to e15,000 per year, depending on the country and (for some
countries) emission size, cf. EUTL website.

38�e VAT tax fraud as well as cyber-a�acks on registries in 2010 and 2011 touched mostly European certi�cates and
should not impact this study’s results. However, there was considerable public discussion about the actual additionality of
o�sets. Note that while this might explain �rms’ unwillingness to use o�sets in general, it seems unlikely that it a�ects the
identi�cation of the general transaction cost component.
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A National o�set entitlement rules

Annual
Cap Ph.II
(MMt
CO2e)

O�set
limit (%)

Annual
o�set
limit
(MMt
CO2e)

Banking/
Borrow-
ing

Industry Energy Other
sector
di�erenti-
ation

Included
in this
study

Austria 30.7 10 3.1 Yes/yes
Belgium 58.5 8.4 4.9 - Flanders

24%
Flanders
7%

Walloon
4%

Walloon
8%

Bulgaria 42.3 12.6 5.3 Yes/yes
Cyprus 5.48 10 0.5 Yes/yes
Czech Rep. 86.8 10 8.7 Yes/yes
Denmark 24.5 17 4.2 Yes/yes 6.50% 28.70%
Estonia 12.72 10 1.3 No/no (started only in 2011) No
Finland 37.6 10 3.8 Yes/Yes 8 / 8.5% 8.5 /9.5

/23.9%
France 132.8 13.5 17.9 Yes/Yes
Germany 453.1 22 99.7 Yes/Yes
Greece 69.1 9 6.2 Yes/Yes
Hungary 26.9 10 2.7 -
Ireland 22.3 10 2.2 Yes/Yes 5% 11% Cement

11%
Italy 195.8 15 29.4 Yes/no 7.2% Electricity

19.3%
”Other”
com-
bustion
7.2%

Ferrous
metal
16.7%

Re�neries
13.2%

Latvia 3.43 10 0.3 Yes/Yes
Lithuania 8.8 20 1.8 No/no No
Luxembourg 2.5 10 0.3 Yes/Yes
Malta 2.1 10 0.2 Yes/Yes No
Netherlands 85.8 10 8.6 Yes/Yes
Norway 13 Yes/No 13% of actual emissions No

(rather than allocation)
Poland 208.5 10 20.9 Yes/No
Portugal 34.8 10 3.5 Yes/Yes
Romania 75.9 10 7.6 Yes/Yes
Slovakia 30.9 7 2.2 Yes/Yes
Slovenia 8.3 15.8 1.3 Yes/Yes
Spain 152.3 20.6 31.4 Yes/No 7.90% 42%
Sweden 22.8 10 2.3 Yes/Yes
UK 246.2 8 19.7 Yes/No 8% 9.30%

Table 4: O�set limits collected from National Allocation Plans by Elsworth et al. (2012)
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B Are emissions constrained by transaction costs?

In Section 3.2, I claim that �rms do not strategically constrain (or “manipulate”) their emissions to be
just below allocation level, even though �rms face a cost curve that jumps when emissions increase
beyond this level (Figure 3a). �is assumption is important, as I use the fact that short �rms, with emis-
sions above allocations, are constrained to trade while long �rms can choose whether to incur trading
entry costs. However, this methodology is �awed if transaction costs lead �rms to manipulate their
allocation status. �is section argues, that this case is unlikely to be relevant in practice. Firms choose
their production and emissions given production cost and certi�cate prices; the additional transaction
cost is likely to be smaller than the cost of adjusting emissions and production. Empirically, there is
no signi�cant discontinuity around the allocation status threshold.

First, note that the �rm faces the same marginal cost pe for emissions both below and above the
jump of Figure 3a and 3b, such that marginal abatement cost does not play a role. However, overall
compliance cost increases; the �rm thus compares two situations: one where emissions are reduced
to allocation level Ai, such that optimal production is Y ∗(Ai) and entry costs are not incurred, and
another situation where E∗i > Ai is chosen such that marginal abatement cost equals pe and entry
cost is incurred. �e �rm reduces its emissions to Ai if the change in pro�t ∆π resulting from this
reduction is positive:

∆π = π(Y ∗(Ai), Ai)− π(Y ∗(E∗i ), E∗i ) (20)

= (Y ∗(Ai)− Y ∗(E∗i ))p− C(Y ∗(Ai), Ai) + C(Y ∗(E∗i ), E∗i )− T ∗(Ai) + T ∗(E∗i ) (21)

= p(Y ∗(E∗i )− Y ∗(Ai))− C(Y ∗(E∗i ), E∗i ) + C(Y ∗(Ai), Ai)− pe(E∗ −A)− T e −min{T o −∆pKi, 0}
(22)

By assumption, we are looking here at cases where optimal emissionsE∗i > Ai and thus Y ∗(E∗i ) >

Y ∗(Ai); by de�nition of the optimal emission level E∗i , ∆π would always be negative without the
transaction cost terms of equation (21) (or, to be more precise, the le�-hand side of equation (�)). As
seen on Figure 3, the change in incurred transaction cost is either T e, as on Figure 3a, or T e+T o−∆pK ,
see Figure 3b.

Anecdotal and survey evidence (Loeschel et al., 2010, 2011) suggests that �rms do not have precise
and continuous control over their emissions, or rather that there are considerable transaction costs to
obtain such control. Only large companies regularly track their emissions throughout the year. �e
trading scheme’s incentives to reduce emissions do not work on a short-term “accurate to the tonne”
level, but rather on a long-term technology-inducing level.

Most technologies are such that in the short term the actual technological margin to reduce emis-
sions without a complete corresponding reduction of output is limited; reducing emissions by a certain
share is thus equivalent to reducing production by the same share. A�er all, emissions are just one
production cost factor among many others and the short-run �exibility of the cost function is usually
low (meaning that emission reductions are to a large extent matched by reductions in the produced
outcome). Emission reductions are mostly accomplished in the long term through technical change,
whereas this study is looking at short term behavior. Even for a small di�erence between E∗i and Ai
it is likely that ∆π is strictly negative.

A priori this case thus seems not so relevant in practice. However, it cannot be veri�ed fully, as
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information on prices p, quantities Y and production costs are not available, neither cost function
C(Y,E) nor the pro�t change ∆π can be estimated. Instead, one way of gathering (descriptive) evi-
dence on this point comes from checking whether we observe any crowding or “bunching” of emission
levels just below E = A. If many �rms were manipulating their allocation status, the distribution of
this ratio would be somewhat discontinuous around E/A = 1. Figure 11 implements McCrary’s test
for continuity (McCrary, 2008). �e estimated densities on the le� and on the right of the cut-o� where
A = E seem smooth on Figure 11a: at a discontinuity magnitude of .0116 (in logs) and a standard error
of .1133, we cannot reject the hypothesis that there is no bunching around the threshold, or put di�er-
ently, that the ratio’s density function is continuous around this point. Moreover, restraining emissions
to become long should be particularly relevant for �rms that do not use o�set certi�cates, as they incur
transaction costs anyways. �erefore Figure 11b shows the McCrary test only for the �rms that do not
participate in the o�set market: while the discontinuity appears somewhat clearer here, there is still
no signi�cant bunching at E = A (discontinuity estimate at -.3910 with standard error of .2766).

A notable exception might be emission savings by electricity generating plants, as some �rms have
scope for fuel-switching across di�erent plants and emission costs are a more important cost factor in
this industry. However, the McCrary test also does not show a signi�cant jump if we are looking at
electricity �rms only.

While theoretically not fully sound, the assumption of exogenous allocation status thus seems
empirically valid and in line with anecdotal evidence.

0
.5

1
1.

5
2

D
en

si
ty

 e
st

im
at

e 
(%

)

0 .5 1 1.5 2
Ratio emissions/allocation

(a) All �rms
– discontinuity estimate (in log) .0117, se .1133

0
.5

1
1.

5
2

D
en

si
ty

 e
st

im
at

e 
(%

)

0 .5 1 1.5 2
Ratio emissions/allocation

(b) Only �rms which do not submit o�sets
– discontinuity estimate (in log) -.3910, se .2766

Figure 11: McCrary’s test for continuity of the running variable (ratio emissions/allocations) 39

39Estimated using Stata DCdensity command by Brian Kovak.
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C Parametric estimation results

A standardway to estimate the parameters of equation (15) is to assume a standard normally distributed
error term εi. �e model then becomes similar to a standard probit model: ∆pKi is included as a
regressor and coe�cients are then normalized such that the coe�cient onKi equals -1. �e estimation
equation reads:

1oi = 1
{
β0 + β11longi + β2∆pKi + εi > 0

}
(23)

Standard statistical packages normalize the standard deviation σ to 1. A re-normalization then
yields the parameters of interest:40

T̂ o = − β̂0

β̂2

; T̂ e = − β̂1

β̂2

; σ̂ =
1

β̂2

(24)

�e stylized facts presented in Section 4 strongly suggest that this homoskedastic normality as-
sumption does not hold. As shown before, the distribution of o�set entitlements is highly skewed with
some �rms more than 500 times bigger than the (relatively low) median. Moreover, some �rms with
highKi still do not exploit their o�set entitlement, such that the distribution of εi from the transaction
cost equation (15) is likely to have some large outliers. �e (conditional) mean is a statistic much more
sensitive to outliers than the (conditional) median; di�erently put, the normal distribution assumption
has light tails which consequently give large weight to outliers.

A slightly more �exible functional form relaxing the homoskedasticity assumption, would be the
mixed probit: error terms are still assumed to have a normal distribution, but the variance scales with
the size (hereKi) of the �rm. In such a location-scale model, the variance of each εi depends on some
scaling variable and a parameter γ (to be estimated):

εi ∼ N (0, σ2
i ), where σi = exp(Kiγ) (25)

�is section shows the results for both assumptions, while claiming that they are not an accurate
description of the data. �e results the probit estimation in both the homoskedastic and (linearly)
heteroskedastic versions are shown in Table 5.41 �e costs indicated are measured in euros, as they
are normalized by the cut-o� value’s ∆pKi coe�cient. �e estimate for T o, the transaction cost for
o�set usage, is larger than the estimate for T e, while both are signi�cant. When I include the sectors,
the estimates for transaction costs in the manufacturing sector are much higher than in the electricity
and heat generation sector. In particular, general trading cost T e seems not relevant for electricity and
heat generating �rms.

40Standard errors for the re-arranged parameters are computed using Stata’s nlcom command, based on the delta method.
41Estimated using Stata oglm command by Williams (2010).
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Probit Heterosk. probit Probit with sectors Heterosk. probit
with sectors

T̂ o (intercept) 109557∗∗∗ 102660∗∗∗
(4.24) (4.36)

T̂ e (1long) 44302∗∗∗ 42798∗∗∗
(3.70) (3.79)

T̂ o Manufacturing 171436∗∗∗ 161416∗∗∗
(4.48) (4.63)

T̂ e Manufacturing 96475∗∗∗ 92138∗∗∗
(4.42) (4.53)

T̂ o Electricity 48383∗∗ 278077∗∗∗
(2.58) (4.54)

T̂ e Electricity 4169 5065
(0.25) (0.32)

σ 192950∗∗∗ 182835∗∗∗ 192434∗∗∗ 182472∗∗∗
(5.77) (6.04) (5.82) (6.09)

γ 6.96e-08∗∗∗ 6.95e-08∗∗∗
(18.15) (18.24)

R2 .1274 .128 .1372 .1378
Completely determined 371 . 369 .
N 4578 4578 4578 4578
t statistics in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 5: Parametric mean estimates for transaction costs

30



D �antile regression �t

Kordas (2006) suggests verifying the �t of the quantile regressions by predicting probability intervals
for each observation and verifying that each interval group has a participation rate close to the pre-
dicted probability. Predicting probabilities from the binary quantile regression is simple: one needs to
�nd the smallest quantile τ̂i such that the pro�t-net-of-transaction costs is positive:

τ̂i = argmin{τ : ∆pKi − T o − 1longi T e ≥ 0} (26)

�en this gives us an interval for the conditional participation probability:

P̂i ∈ [1− τ̂i, 1− τ̂i,−1] (27)

where τ̂i,−1 is the quantile immediately preceding τ̂i.
For the data used in this study this gives the predicted and observed probabilities displayed in

Table 6. Except for the lowest quantile, themodels seem to �t the data reasonably well. On the opposite,
the probit model predicts for all �rms a participation probability above 50%: one could says that all
non-participating �rms are unpredicted outliers (false-negatives) with the probit model.

Predicted probability <15% [15-
25%]

[25-
35%]

[35-
45%]

[45-
55%]

[55-
65%]

[65-
75%]

[75-
85%]

>85%

Number of observations 85 130 65 49 153 414 613 971 2098
Observed frequency 11% 17% 32% 43% 46% 58% 72% 81% 94%

Table 6: Speci�cation test of binary regression quantile models (predicted and observed probabilities)
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