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Abstract

In this paper we report the results from a detailed investigation of the shifts of the world production
frontier function over the period 1980-2010. Analogous to a radar we implement a novel measurement
approach for these shifts using nonparametrically computed productivity measures to scan the frontier
shifts across the entire input-output space. The shifts of the frontier function measured in this way
are analyzed by various regression methods (including robust and nonparametric). The results point
towards substantial non-neutrality of technological progress and furthermore show that technological
progress is more pronounced in regions of high output per worker and in regions where physical and
human capital are intensely used.

JEL classi�cation: C14, E23, O11, O47

Keywords: non-neutral technological change, world production frontier, nonparametric frontier
function

Acknowledgment

I am grateful to Simon Wood for his generous advice on generalized additive models. I would also like to
thank Benny Hampf and participants of the 15th ISS Conference in Jena for discussion and comments.
All errors are mine, of course.

1



1 Introduction

The concept of neutrality of technological progress is important for economic theory and empirical analy-
ses. Neutrality implies a uniform proportional outward shifting of the world technology frontier across the
whole range of input and output quantities. In reality, however, there is a strong prior that technological
progress is uneven and depends on the output level at which an economy operates (e.g. the size or the
development stage of a country) as well as on the mix of inputs employed (Rousseau 2008). Starting
with Atkinson and Stiglitz (1969) as an early predecessor of this literature, a growing body of literature
is challenging the neutrality concept from the theoretical side and from an empirical perspective (see e.g.
Acemoglu and Zilibotti (2001), Acemoglu (2002), Caselli and Coleman (2006)).

More recently, nonparametric methods of e�ciency analysis and in particular the Malmquist productivity
index have been increasingly applied to measure total factor productivity change. This index allows to
decompose productivity change into several components, most notably technological change (shifts of the
frontier function) and e�ciency change (catching up to or falling behind from the frontier function). The
application to macroeconomic productivity research started with Färe et al. (1994) and subsequently
developed with several key contributions. Kumar and Russell (2002) use nonparametric methods of
e�ciency analysis to decompose labor productivity growth into the components technological change,
catching-up and capital accumulation (movements along the frontier function) as a third component for
a sample of 57 countries observed during 1965-90. Henderson and Russell (2005) extend the basic setup
of Kumar and Russell (2002) by incorporating human capital instead of raw labor. Human capital is
constructed there as suggested by Hall and Jones (1999) using results from Mincerian wage equations for
estimating the returns of education in di�erent countries. Badunenko, Henderson and Zelenyuk (2008)
update the study of Kumar and Russell (2002) and are particularly interested in the development during
the 1990s. They also expand the country sample and focus on the analysis of transition economies within
the broader sample. Henderson and Zelenyuk (2007) take account of the estimation uncertainty in the
analysis of Henderson and Russell (2005) by bootstrapping the e�ciency scores. Allen (2012) extends the
time span back to 1820 for an analysis of a subgroup of countries along the lines of Kumar and Russell
(2002). Badunenko, Henderson and Russell (2013) reconsider the study of Henderson and Russell (2005)
by increasing the country sample, updating the time period to 2007 and employing more recent data
on educational attainment (from Barro and Lee). In a di�erent approach, Jerzmanowski (2007) uses
conventional data envelopment analysis jointly with a Cobb-Douglas production function to assess the
validity of the Cobb-Douglas functional form assumption on the one hand and the uneven shifts of the
frontier function at di�erent intensities of physical to human capital on the other hand.

All these studies provide consistent evidence against the neutrality of technological change by nonpara-
metric methods. In this paper we take a systematic look at the non-neutrality of technological change
by implementing a measurement device analogous to a radar for scanning the changes of the world pro-
duction frontier at varying input intensities and output levels. We use data from the recently released
version 8.0 of the Penn World Table jointly with the updated Barro-Lee data set which provide improved
measures of output, physical capital and human capital inputs. Our sample comprises 110 countries
over the period 1980-2010. We separately investigate also the impact of the IT and computer revolution
during the 1990s as well as the impact of the �nancial crisis and the Great Recession.

The analysis proceeds by introducing the nonparametric measurement approach in section 2, explaining
the data handling in section 3, summarizing the dependence of the frontier shifts on the direction of the
e�ciency measurement in section 4 and concluding in section 5.

2 Nonparametric E�ciency Measurement

The empirical analysis reported in this paper centers on the nonparametric approach to e�ciency analysis
introduced by Charnes et al. (1978) and called data envelopment analysis (DEA). In the subsequent
analysis, we apply the input oriented version of DEA to scan the frontier function across an exhaustive
set of directions in the input space and a grid of output levels to track the shifts of the frontier function
between two points in time. The main idea is to �x an input-output point outside of the production
possibility sets of both periods to be compared and then to measure the distance of this point towards
the frontier functions of both periods along a set of directions in the input space and a grid of output
levels. This can be viewed analogous to a radar scanning of the sky and tracking the routes of airplanes.
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The axiomatic approach to e�ciency measurement on which DEA is based departs from the technology set
T = {(x,y) ∈ Rp+q+ : x ≥ 0 can produce y ≥ 0} de�ning the set of feasible input-output combinations
with the input quantities collected in the p-vector x and the output quantities in the q-vector y.1 The
boundary of the technology set is the subset F = {(x,y) ∈ T : (θx,y) /∈ T ∀ 0 < θ < 1 ∧ (x, ρy) /∈
T ∀ ρ > 1} which comprises all input-output combinations leaving the technology set either if inputs
would be reduced (0 < θ < 1) or if outputs would be increased (ρ > 1) by an arbitrary small amount,
or both. This boundary de�nes the frontier function and the radial input-oriented distance function
D(x,y) = sup{δ ≥ 1 : (x/δ,y) ∈ T} according to Shephard (1970) measures the distance towards this
frontier function. The factor δ is inversely related to θ. It is equal to one for all e�cient input-output
points on the frontier function and larger than one if e�ciency can be improved to reach the frontier
function by reducing all inputs proportionately. Thus, δ is a measure of ine�ciency which is larger for a
larger distance towards the frontier function.

For explaining the measurement let the input-output data for n country observations of p inputs be
collected in the p× n matrix X and for q outputs in the q × n matrix Y . Let xi and yi denote the ith
column of X and Y , respectively, which contain the input and output quantities of country i. Then the
linear programming problem to compute the Farrell (1957) distance function via the e�ciency measure
θ can be stated as

max
θ,λ

θ : θxi ≥
n∑
j=1

λjxj , yi ≤
n∑
j=1

λjyj ,

n∑
j=1

λj = 1 , λ1, ..., λn ≥ 0

 (1)

or more compactly in matrix notation

max
θ,λ
{θ : θxi ≥Xλ , yi ≤ Y λ , 1′λ = 1 , λ ≥ 0} . (2)

The frontier function is a piece-wise linear function enveloping the sample of input-output combinations.
The solution value for a country i, θi, can then be transformed to the solution value of the associated
Shephard e�ciency measure δi = 1/θi for country i. A further part of the solution is the n×1 vector λi =
(λ1i, ..., λni)

′ ≥ 0 containing the weight factors by which the input and output quantities of (potentially)
all countries are combined to generate the e�cient input-output combination of country i on the frontier
function. The restriction

∑n
j=1λji = 1′λi = 1 (with 1 as a n×1 vector of ones) allows for variable returns

to scale2 (see Banker et al. (1984)).

To implement the input-oriented radial e�ciency measure analogous to a radar we proceed along the
following steps:

Step 1. We build a grid of points for the input directions and the output levels. For the input directions
we �rst determine the e�cient countries for both periods under investigation3 and then determine a grid
of k = K/L and h = H/L (where H denotes human capital input, K physical capital input and L
raw labor input) such that grid points are at the center of all frontier facets of both periods. For the
output levels we determine a grid of the values of the single output Y of the e�cient countries of both
periods starting with 90 percent of the smallest output level, proceeding with the means of each two
consecutively larger output values and ending with the the smaller of the largest output levels of both
periods. Combining, this leads to a grid with a total of 30938 di�erent points spanning the whole relevant
input-output space where the frontier function actually shifts when we consider the period 1980-2005.
This grid is denoted as the set G.

Step 2. We �x the position of the radar at the origin of the input space and control the direction by
the point (x0, y0) where y0 denotes one of the grid values for the output level and x0 denotes the input
coordinates. The latter are determined by projecting the grid values for the input vector (K,H,L) =
L·(k, h, 1) on a circle with the radius of the observed combination of minimum input values of the e�cient
�rms in each of both periods, denoted by (Kmin, Hmin, Lmin). Thus, with r =

√
K2

min +H2
min + L2

min and

d =
√
k2 + h2 + 1 we compute x0 = r

d · (k, h, 1). In this way, the e�ciency towards the frontier functions

1See Färe and Primont (1995) and Hackman (2008) for detailed expositions of the axiomatic approach.
2This lets the analysis be less restrictive than in the case of studies assessing non-neutrality from a plot of Y/L against

K/L where constant returns to scale are implicitly imposed.
3This is done by computing (1) for all countries and both periods and selecting the observations with θ = 1.
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of both periods is measured along a ray through the origin and a point well outside both frontier functions
with properly determined intensities of physical and human capital.

In order to see this more clearly, �gure 1 shows the situation for the setting to which we stick later in
the empirical implementation with a single output Y and physical capital K and human capital H as
two inputs, while ignoring raw labor L in the �gure. The thick solid lines depict the frontier isoquants
in the input space (left panel) for the periods t = 1 and t = 2 and the same output level as well as the
production frontiers in the input-output space (right panel) for a prototypical input X and the periods
t = 1 and t = 2. The radar is positioned at the origin and rotates along the circle through the point
(Hmin,Kmin) in the input space and along the vertical line at Xmin in the input-output space. The arrows
indicate the direction vectors for the e�ciency measurement.

Figure 1: Radar Scanning in Input Space (left) and in Input-Output Space (right)
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Step 3. Denoting the �xed position of the radar by x0 = (K0, H0, L0) and y0 = (Y0) we solve the linear
programs

max
θ1,λ
{θ1 : θ1x0 ≥X1λ , y0 ≤ Y 1λ , 1

′λ = 1 , λ ≥ 0} (3)

for the �rst period (with the corresponding input and output data in X1 and Y 1) and

max
θ2,λ
{θ2 : θ2x0 ≥X2λ , y0 ≤ Y 2λ , 1

′λ = 1 , λ ≥ 0} (4)

for the second period (with the corresponding input and output data in X2 and Y 2). The computations
of the e�ciency measures are performed using the package FEAR for R, being documented in Wilson
(2008).

From these calculations we obtain measures of the distance towards the frontier function of period 1 as
the solution value θ̂1 for all grid points in the set G of program (3) and towards the frontier function of

period 2 as the solution value θ̂2 of program (4) for each speci�ed direction. In �gure 1 along the steeper

ray through the points a, b and c we get θ̂1 = 0c
0a and θ̂2 = 0b

0a (with 0a denoting the length of the line from

the origin 0 to the point a, etc.). Along the �atter ray through the points d, e and f we get θ̂1 = 0f
0d and

θ̂2 = 0e
0d . Note that the e�ciency measures depend only on the shifts of the frontier function at di�erent

regions of the input space along the particular ray chosen. The Farrell e�ciency measures θ̂1 and θ̂2 are
then transformed to the Shephard measures δ̂1 = 1/θ̂1 and δ̂2 = 1/θ̂2. For measuring the extent and
the direction (forward or backward) of the movement of the frontier function in the speci�ed direction
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we compute the average annual (log) percentage growth rate ∆ ln δ̂ = 100
∆t · (ln δ̂2 − ln δ̂1) over the time

span from period 1 to period 2 (with ∆t as the length of this time span). Positive values of this change
measure indicate productivity improvements by the a forward shifting frontier part along the chosen ray
while negative values indicate productivity deteriorations by a backward shifting frontier part.4 The right
part of �gure 1 shows that the extent of the frontier function shifts may also be di�erential at di�erent
output levels.

Step 4. We summarize the dependence of ∆ ln δ̂ on the chosen directions by regressing ∆ ln δ̂ on the two
ratios k = K/L, h = H/L and the output level Y without and with considering interactions. As methods
for estimating these response surface regressions we use OLS as well as a robust linear regression method
known as the MM estimator. In addition, we also use nonparametric estimation methods such as the
generalized additive model (GAM) without interactions up to a fully nonparametric estimation which
also accounts for interactions. These estimation methods are brie�y reviewed in the subsequent section
4 together with the results. Before we turn to issues of data handling in the next section.

3 Data Handling

The data for the empirical analysis are taken from the latest release of the Penn World Table (PWT,
version 8.0), which now provides GDP data constructed from the output side rather than from the
expenditure side. In addition, the data base also contains improved measures of the labor force and capital
stocks. This lets the PWT 8.0 be much better suited for the purpose of macroeconomic productivity
analysis. Feenstra et al. (2013) document the data base in detail and Feenstra et al. (2009) provide a
conceptual comparison of output-side and expenditure-side real GDP measures. Also available now is
a new version of the Barro-Lee data set on educational attainment data and information about average
schooling years at primary, secondary and higher levels. This data set has also been updated and expanded
and now covers the period 1950 to 2010 in 5-year intervals for 146 countries. Barro and Lee (2013)
provide a documentation of the primary data sources, procedures and comparisons with other human
capital measures.

As output variable for country i and year t we use real output per worker computed as the output-side
real GDP at chained PPPs (series rgdpo in the PWT), denoted Yit. Raw labor input Lit is measured
by the number of workers in the economy (number of persons engaged, emp). Capital stocks Kit are
used as the physical capital input variable. The PWT 8.0 unfortunately contains no direct real capital
measure at chained PPPs analogous to the output measure. Instead, the series ck contains the capital
stock at current PPPs (that is in PPPs but not real) whereas the series rkna contains the capital stock
at constant 2005 national prices (that is real but not in PPPs). To solve this dilemma, we take the series
cgdpo, containing output-side GDP at current PPPs, and multiply the ratio of the capital stock ck to
this output-side GDP at current PPPs with the output-side real GDP at chained PPPs (rgdpo) to reach
a real capital measure at chained PPPs (i.e. we compute rk = (ck/cgdpo) · rgdpo).5

Human capital per worker is constructed according to the suggestion of Hall and Jones (1999) based on
previous work on Mincerian wage equations of Psacharopoulos (1994). Accordingly, the log of human
capital per worker is a piece-wise linear function with returns to education of 0.134 up to the fourth year
of education, 0.101 up to the eighth year and 0.068 beyond the eighth year. Formally, the human capital
measure Hit is thus

Hit = hit · Lit = exp(φ(Eit)) · Lit with φ(Eit) =

 0.134 · Eit for 0 ≤ Eit ≤ 4
0.536 + 0.101 · Eit for 4 < Eit ≤ 8
0.940 + 0.068 · Eit for Eit > 8

where Eit denotes the average years of schooling in the population aged at least 25 years from Barro and
Lee (2013), labeled there as the series yr_sch. This measure of human capital is also used by Henderson
and Russell (2005) and by Badunenko et al. (2013).

4By a forward shifting frontier part we mean a frontier function part shifting towards the origin. Analogously, backward
shifting means shifting away from the origin.

5The alternative way to compute rk = (rkna/rgdpna) · rgdpo with the series rgdpna as the real GDP at constant 2005
national prices leads to a real capital stock series which is very highly correlated (correlation coe�cient ≈ 0.99) with the
variant we opt for here.
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Both the PWT 8.0 and the new Barro-Lee dataset have been extended to the year 2010. To increase
country coverage we restrict the empirical analysis to the period 1980-2010. We exclude countries which
are either exceptional since they are merely large cities than countries (Hong Kong, Luxembourg and
Singapore) or which are relatively small major oil producing countries (Bahrain, Brunei, Kuwait, Quatar,
Saudia Arabia). Since the analysis in this paper focuses exclusively on the shifts of the frontier function
those countries can be very in�uential and potentially can heavily bias the results. In addition, we exclude
16 mainly former Soviet Republics and Eastern European countries under Soviet hegemony with no data
for the subperiod 1980-1990. These countries experienced their rather special transformation phase from
a central planning economy during the 1990s. This leaves us with n = 110 countries with complete
observations for the period 1980-2010 as well as all �ve year averages.

4 Response Surface Estimates

In our framework we are working in a four-dimensional input-output space spanned by physical capital,
human capital, raw labor and the output. Our direction vector is also three-dimensional with the output
level as the fourth dimension. Even if we reduce the dimension by one through the application of the
ratios k and h there remains the task to systematically determine in which way ∆ ln δ̂ jointly depends
on k, h and Y . This is done by means of regression analysis which is the device to estimate so-called
response surfaces de�ned as �a regression model in which each observation corresponds to one experiment,
the dependent variable is some quantity that was estimated in the experiments, and the independent
variables are functions of the various parameter values, chosen by the experimenter, which characterize
each experiment� (Davidson and MacKinnon 1993, pp. 755f.). In this application, the experiment
consists of the choice of a particular combination of direction vector and output level from the set G and
the outcome of the experiment is the frontier shift measured along this direction at the indicated output
level. The response surfaces serve to summarize the dependence of the frontier shifts on the entire set of
directions.

The response surfaces are estimated by di�erent regression methods. The �rst method is ordinary linear
least squares regression (OLS) with heteroskedasticity and autocorrelation consistent standard errors
computed according to the proposal of Lumley and Heagerty (1999). Autocorrelation may be caused
by the systematic scan of the entire frontier and may bias the standard errors. On the other hand,
the exogeneity of the regressors is guaranteed by the design of the experiment so that inconsistency of
regression parameter estimates is not a problem. Moreover, the large sample available lets the e�ciency
loss due to heteroskedasticity and autocorrelation not be particularly important (this fact will be seen
later from the large t-statistics we obtain).

Since outliers may in�uence the estimation of the frontier function and therefore the assessment of its
shifts and we are also not quite sure about the functional form of the response surfaces, we apply a robust
regression estimators and nonparametric regression methods. The MM-estimator of Yohai (1987) is a
robust regression estimator speci�cally designed to combine the advantages of a high breakdown point
(the fraction of contaminated observations in the sample that can lead to an arbitrarily large deviation
of the estimator) and high estimation e�ciency.6

Nonparametric regressions are computed as generalized additive models (GAM) when no interactions of
the angles are supposed. For the computation we use the penalized likelihood approach implemented by
Wood in the R-package �mgcv�. The details of the functionalities available in the package are described
at length in Wood (2006) with brief overview given in Wood (2001). The �t is computed using thin
plate regression splines which avoid the choice of knot locations (see Wood (2003)). When interactions
are allowed for, two-dimensional and three-dimensional spline bases are used. The number of knots is
generally not critical. Smoothing parameters are chosen by the restricted maximum likelihood estimation
(REML) approach.

6This goal is achieved by using an initial M-estimator searching for the regression parameters associated with the
smallest robust measure of scale of the residuals (actually an S-estimator), followed by a second M-estimation which can
be computed by the iteratively reweighted least squares (IRWLS) algorithm. Maronna et al. (2006, pp. 124�.) provide a
formal exposition. The implementation used in this paper is that of Yohai et al. (1991) in the R-package �robust�.
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4.1 Results Without Interactions Included

In the remainder of this section we analyze di�erent speci�cations of the response surface regressions for
the period 1980-2005. To limit the e�ects of single years we compare the frontier functions of the �ve
year averages 1976-1980 as the �rst period and 2001-2005 as the second period of the inputs and the
output. The subperiod 1995-2005 will be analyzed later on to explore the impact of the IT and computer
revolution separately. Likewise, the period 2005-2010 covering the e�ects of the �nancial crisis and the
Great Recession is also analyzed separately below.

The response surfaces are �rst estimated without including interactions. This means that we simply
regress ∆ ln δi on the output levels Yi and the directions indicated by ki and hi (all in natural logs) as
the basic linear speci�cation

∆ ln δi = β0 + β1 lnYi + β2 ln ki + β3 lnhi + ui

or on three additive sets of one-dimensional spline functions in the case of the basic GAM speci�cation

∆ ln δi = β0 + s1(lnYi) + s2(ln ki) + s3(lnhi) + ui

where the functions s1(·), s2(·) and s3(·) are represented by the splines. Note that in this section i indexes
an element of the set G of directions and thus i ∈ {1, ..., 30938}.

Table 1 reports the response surface regression estimates with all three methods. We �nd positive e�ects
of Y and h which are highly signi�cant with large t-statistics. The e�ect of k is negative but insigni�cant in
the OLS regression while it gains signi�cance in the robust MM regression.7 Goodness of �t is reasonably
large with R2s of about 43% for the OLS and 37% for the MM regressions. The results imply that shifts
of the frontier function depend on the output level and also on the direction as chosen by k and h, which
provides strong evidence of non-neutrality.

The GAM regression results show that all three spline terms are highly signi�cant with quite large e�ective
degrees of freedom (edf). This points to a pronounced degree of nonlinearity in the relationship which
simultaneously is also evidence in favor of non-neutrality of technological change. This is supported by
the increase of the R2 measure to about 62%. To analyze this nonlinear relationship in more detail �gure
2 shows the response surface estimated by the GAM in the form of contour plots. These plots shows the
levels of the �tted values of the regression evaluated at various combinations of Y , k and h in di�erent
shadings. The shading is dark gray for negative values of the response surface and becomes lighter for
increasing values of the response. Note that the axes are denominated in natural logs. Since three
variables (Y , k, h) in�uence the response and contour plots are only suited to depict two-dimensional
relationships, the �gure shows the results as the response on the k-h space for di�erent quantiles of Y
(i.e. 0.1, 0.25, 0.5, 0.75, 0.9).

Figure 2 shows that for low quantiles of Y productivity growth at the frontier is positive only in regions
of the k-h space where h is large jointly with k being either large or small (see the upper left and right
region in the �gure). Productivity growth at large h and small k may be due to small (in terms of output)
and presumably less manufacturing oriented countries. The region where productivity is positive and the
frontier function shifts forward becomes much larger when higher quantiles of Y are considered. Here,
the magnitude of the productivity change also increases. In case of the 0.9-quantile of Y backward shifts
of the frontier function associated with negative productivity growth at the frontier are observable only
for small h values and medium values of k. Thus the frontier shifts forward at high levels of human
capital per worker, physical capital per worker and output pointing to the force of complementarities.
The forward shift at high levels of human capital per worker and low levels of physical capital per worker
is puzzling, however. The entire set of results suggests the presence of interaction e�ects to which we
turn now.

7This gain of signi�cance may be viewed with caution, however, since the standard errors of the OLS regression are
corrected for autocorrelation and heteroskedasticity (see above), but the standard errors of the MM estimation are not
corrected.
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Table 1: Pure Linear Regression Results

OLS MM GAM
c -4.776

(53.046)
-2.808

(61.573)
c -0.097

(23.400)
lnY 0.346

(52.841)
0.178

(49.789)
s1(lnY ) 8.878

(0.000)
ln k -0.028

(1.329)
-0.039

(11.187)
s2(ln k) 8.668

(0.000)
lnh 0.760

(10.958)
0.873

(87.137)
s3(lnh) 6.445

(0.000)
R2 0.429 0.372 R2 0.619
n 30938 30938 n 30938
Note: Reported in parentheses below the regression coe�cients are t-statistics. For

the spline terms s(·) the e�ective degrees of freedom are reported with the p-values

of the associated F -statistics for the joint signi�cance in parentheses.

Figure 2: GAM Regressions without Interactions (Period 1980-2005)
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Table 2: Regression Results with Two-Way Interactions

OLS MM GAM
c -4.231

(20.000)
-1.443

(22.854)
c -0.097

(59.983)
lnY 0.366

(22.828)
0.136

(26.123)
s12(lnY, ln k) 28.303

(0.000)
ln k -0.209

(5.058)
-1.261

(93.513)
s13(lnY, lnh) 27.385

(0.000)
lnh 0.071

(0.455)
3.507

(89.395)
s23(ln k, lnh) 26.545

(0.000)
lnY · ln k -0.004

(1.220)
0.082

(74.324)
lnY · lnh -0.006

(0.625)
-0.295

(93.148)
ln k · lnh 0.224

(13.678)
0.271

(97.372)
R2 0.467 0.502 R2 0.942
n 30938 30938 n 30938
Note: Reported in parentheses below the regression coe�cients are t-statistics. For

the spline terms s(·) the e�ective degrees of freedom are reported with the p-values

of the associated F -statistics for the joint signi�cance in parentheses.

4.2 Results With Two-Way Interactions Included

In the following we make the speci�cation more �exible by including interactions. We start with two-way
interactions where the response surface regressions are for OLS and MM

∆ ln δi = β0 + β1 lnYi + β2 ln ki + β3 lnhi + β4 lnYi ln ki + β5 lnYi lnhi + β6 ln ki lnhi + ui.

In the case of the basic GAM speci�cation we have

∆ ln δi = β0 + s12(lnYi, ln ki) + s13(lnYi, ln ki) + s23(ln ki, lnhi) + ui

where the functions s12(·, ·), s13(·, ·) and s23(·, ·) are now representing two-dimensional spline bases.

Looking at the OLS regression results in table 2 we �nd a signi�cantly positive linear e�ect of Y , a
signi�cantly negative e�ect of k and an insigni�cantly positive e�ect of h. This pattern is also found in
the MM regressions with much larger t-statistics there. From the interaction terms the most important
seems to be the interaction of k and h reassuring that productivity growth is substantially and signi�cantly
larger in regions of the input space with large intensities of both physical and human capital. Here OLS
and MM regressions agree to a large degree. Goodness of �t is improved by only a narrow margin in the
case of the OLS regression but much more in the case of the MM regression.

The results of the GAM model show a much improved goodness of �t with an R2 increasing to 94%. The
spline terms are highly signi�cant altogether. The estimated response surfaces are depicted in �gure 3
where we can observe that productivity growth tends to be always largest for largest values of both k
and h. For values of Y below the median there is also an extended region of positive productivity growth
and forward shifting frontier function parts for small values of k and medium to large values of h.

4.3 Results With Three-Way Interactions Included

From the above results we get the overall impression that forward shifts of the frontier function are most
pronounced when the intensities of both physical and human capital are large and the output level is
large as well. This is tested by introducing an additional three-way interaction term lnYi · ln ki · lnhi in
the OLS and MM regressions. The response surfaces are depicted by estimating a GAM regression with
a three-dimensional spline term, leading to the speci�cation ∆ ln δi = β0 + s(lnYi, ln ki, lnhi) + ui.

9



Figure 3: GAM Regressions with Two-Way Interactions (Period 1980-2005)
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The linear regression estimates with the OLS and MM estimators reported in table 3 show that the
three-way interaction e�ect is positive and highly signi�cant in both cases. Its explanatory power is not
overly important since the R2 measures increase only marginally compared to the previous case with
just the two-way interactions. In the case of the GAM (which here actually is a fully nonparametric
three-dimensional spline �t) the increase in the R2 measure is somewhat larger. The contour plots of
the response surface in �gure 4 shows the same features as the previously shown plot for the two-way
interactions.

4.4 Frontier Shifts during the 'Productive Decade' 1995-2005

In the following we consider the subperiod 1995-2005. During this period the impact of the computer and
IT revolution also materialized in productivity statistics where Robert Solow8 could not �nd these e�ects
previously (see Oliner et al. (2007) for a review). Here we focus on the fully nonparametric estimates
with input-output data from the �ve-year averages over 1991-1995 to the �ve-year averages 2001-2005 as
the �rst and second subperiods, respectively. The fully nonparametric estimates are now based on 30442
observations9 and are associated with an R2 of about 94%. The results are depicted in �gure 5 in the
same way as above.

Productivity growth is indeed much larger during this decade for all output levels. It is positive for the
lowest output quantiles (0.1, 0.25) except for the smallest h and k. For the other output quantiles (0.5,
0.75, 0.9) we �nd a quite sharp divide between forward shifts of the frontier function at large k and

8Recall the famous quote from Solow (1987): �You can see the computer age everywhere but in the productivity statis-
tics.�.

9Of course, the number of observations changes when the period changes since the number of observations depends on
the number of countries on the frontier function in both periods and the number of combinations of k, h and Y resulting
from this. Recall step 1 in the outline of the measurement procedure above.
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Table 3: Regression Results with Three-Way Interactions

OLS MM GAM
c -5.535

(44.161)
-2.086

(21.712)
c -0.097

(101.908)
lnY 0.479

(55.229)
0.189

(23.599)
s(lnY, ln k, lnh) 88.912

(0.000)
ln k 0.172

(4.318)
-1.087

(44.223)
lnh 1.359

(9.047)
4.302

(49.023)
lnY · ln k -0.037

(12.157)
0.067

(32.737)
lnY · lnh -0.118

(12.155)
-0.362

(49.342)
ln k · lnh -0.154

(2.711)
0.067

(3.020)
lnY ·ln k·lnh 0.033

(8.584)
0.017

(9.244)
R2 0.470 0.502 R2 0.980
n 30938 30938 n 30938
Note: Reported in parentheses below the regression coe�cients are t-statistics. For the

spline terms s(·) the e�ective degrees of freedom are reported with the p-values of the

associated F -statistics for the joint signi�cance in parentheses.

Figure 4: GAM Regressions with Three-Way Interactions (Period 1980-2005)
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Figure 5: GAM Regressions with Three-Way Interactions (Period 1995-2005)
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backward shifts at low k. Thus, productivity growth is driven by physical capital and the importance
of human capital seems to be reduced during this period. The role of capital (esp. IT-related capital)
is also stressed by Jorgenson and Vu (2005) and by Jorgenson (2001) for the US economy. See also the
analysis of Czernich et al. (2011) for the growth e�ects of broadband access in OECD countries during
this period.

4.5 Frontier Shifts during the Great Recession

Now we turn to the subperiod 2005-2010, covering the years of the �nancial crises which led to the
breakdown of Lehmann Brothers and triggered the so-called Great Recession. We focus again on the
fully nonparametric estimates with input-output data now from the �ve-year averages over 2001-2005
to the �ve-year averages 2006-10 as the �rst and second subperiods, respectively.10 Figure 6 shows the
nonparametric estimates which are based on 23324 observations and are associated with an R2 of about
94%. It appears that we observe predominantly positive productivity growth for low output quantiles
and are faced with marked backward shifts of the frontier function for the larger output quantiles. For
larger output quantiles, forward shifts of the frontier function can only be detected in the regions with
a high intensity of physical capital. Thus it appears that less developed countries were also less a�ected
by the Great Recession.

10The Great Recession ended o�cially in 2009 but the recovery was still incomplete in the following years, see e.g. Ng
and Wright (2013).
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Figure 6: GAM Regressions with Three-Way Interactions (Period 2005-2010)
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5 Conclusion

In the above analysis we implement a measurement device analogous to a radar for tracking the shifts of
the world production frontier along a set of speci�ed directions for the whole input-output space spanned
by raw labor input, physical capital input, human capital input and the output variable. The bottom line
of our �ndings is that we establish vivid evidence against the neutrality of technological progress for our
sample of 110 countries over the period 1980-2010. This is also in accord with the other nonparametric
studies reviewed in the introduction, although these studies focus on other aspects of macroeconomic
productivity change and take di�erent methodological approaches.

Using both parametric and nonparametric response surface estimates we �nd that the forward shifts of
the frontier function induced by technological progress appear to be more pronounced in regions of the
frontier function where human capital is more intensely used per worker. Simultaneously, physical capital
per worker is either particularly high or particularly low in these regions. Moreover, forward shifts of the
frontier function are more pronounced when the output level is higher and in that case largest when both
intensities of human and physical capital are large. All this is strong evidence against the neutrality of
technological progress and points to the importance of scale e�ects. The analysis of subperiods shows as
the impact of the computer and IT revolution during the 1990s forward shifts of the frontier function are
more widespread and we observe again the mutual enforcement of h, k and Y . The years of the Great
Recession are characterized by dominating backward shifts of the frontier function at high output levels
except when the intensity of physical capital is large and largely independent of the intensity of human
capital.

Future work will consider a more detailed evaluation of the nonparametric results and of the speci�c
countries driving the frontier shifts. A more in-depth investigation of the impact of IT would also be a
promising line of research within the radar framework.
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