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No such thing like perfect hammer: comparing

different objective function specifications for optimal

control

D. Blueschke∗ and I. Savin†

Abstract

The linear-quadratic (LQ) optimization is a close to standard technique in the op-

timal control framework. LQ is very well researched and there are many extensions

for more sophisticated scenarios like nonlinear models. Usually, the quadratic ob-

jective function is taken as a prerequisite for calculating derivative-based solutions

of optimal control problems. However, it is not clear whether this framework is so

universal as it is considered. In particular, we address the question on whether the

objective function specification and the corresponding penalties applied, are well

suited in case of a large exogenous shock an economy can experience because of,

e.g., the European debt crisis. While one can still efficiently minimize quadratic

deviations in state and control variables around policy targets, the economy itself

has to go through a period of turbulence with economic indicators, such as unem-

ployment, inflation or public debt, changing considerably over time. In this study

we test four alternative designs of the objective function: a least median of squares

based approach, absolute deviations, cubic and quartic objective functions. The

analysis is performed based on a small-scale model of the Austrian economy and

finds that there is a certain trade-off between quickly finding optimal solution using

the LQ technique (reaching defined policy targets) and accounting for alternative

objectives, such as limiting volatility in the economic performance.

Keywords: Differential evolution; nonlinear optimization; optimal

control; least median of squares; cubic optimization;

quartic optimization
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1 Introduction

Today, several countries in the European Union face difficulties in mitigating their public
budget deficit and debt issues, which were triggered by the last economic crisis. In 2010,
for example, the first bail-out program for Greece (of 110 Billion Euro) was approved by
the Troika of the International Monetary Fund, European Central Bank and European
Commission. In 2013, a 47.5% haircut for deposits above 100 Thousand Euro was applied
for several Cypriot banks. Another bail-out program for Greece is under discussion right
now.

For the Austrian economy (and the other countries of the Euro zone) such an event has
a one-time negative impact on the budget balance. The question for the local government
is how to react to such a budget balance shock. The optimal control framework is a well-
known tool to address such a fiscal policy question. A ‘traditional’ way to consider optimal
control problems is the linear quadratic (LQ) optimization technique. This technique is
mainly based on works by Pontryagin et al. (1962) and Bellman (1957). There are several
more sophisticated numerical algorithms based on the LQ optimization framework, which
allow us to consider nonlinear problems as well, e.g., the OPTCON algorithm developed
by Blueschke-Nikolaeva et al. (2012). However, the common for the LQ framework is its
sensitivity to outliers. The objective function is formulated in quadratic way. A squared
outlier influences the objective function considerably forcing an active use of control
variables, which might be undesirable in certain situations. For example, Fatas and Mihov
(2003) show that an aggressive use of fiscal policy induces significant macroeconomic
instability. Thus, in case of a large exogenous shock, a policy maker faces an additional
task of mitigating the effects of this shock without putting the stability of the whole
system at risk.

In a recent study by Blueschke et al. (2013) a new way of handling optimal con-
trol problems is proposed. The authors test an evolutionary approach for this purpose,
namely Differential Evolution (DE, Storn and Price (1997)), which does not rely on the
LQ framework. The authors apply DE to optimal control problems in nonlinear dynamic
economic systems with asymmetric objective function, where the ‘traditional’ OPTCON
algorithm does not work. Application of the DE method increases computational time
substantially but gives much more flexibility in designing the objective function and dif-
ferent system constraints.1 In the present paper we aim to use this flexibility of the DE
method by introducing and solving an optimal control problem with different specifi-
cations of the objective function. In particular, we test four alternative designs of the
objective function: a least median of squares based approach (LMS), absolute deviations,
cubic and quartic objective functions.

The least median of squares (LMS) estimator (Rousseeuw 1984) is among the best
known robust estimators for linear problems. It has been widely used in numerous applica-
tions of finance and technology (see, for example, Winker et al. (2011)), and is considered
a standard technique for the robust data analysis. The main advantage in minimizing the
median of squares instead of mean is the robustness or rather non-sensitivity of the LMS
framework to unique large outliers. We apply this framework to design the objective
function in an optimal control problem and check how LMS behave in this case. The
question which we address here is whether LMS style shaped objective function serves
the goal of mitigating instability due to a one-time shock (which can be interpreted as

1The trade-off between flexibility and higher computational demand is well known for heuristic opti-
mization. For a concise discussion of the matter see Gilli and Schumann (2014).
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an outlier) or may this approach even increase the volatility of the resulting states and
controls obtained by the optimal control exercise.

An alternative objective function specification may be in applying on deviations in
states and controls a power different from two (power equal to two corresponds to the
LQ framework). A simple intuition suggests that a power above two shall penalize any
deviation stronger limiting volatility in states and controls generated by the exogenous
shock. In particular, we consider the cubic and quartic penalties, which have not yet been
addressed well in literature.2 In addition, to get a more comprehensive understanding on
how different penalties’ exponents drive resulting optimal paths, absolute deviations (i.e.
power equaling one) are also considered.3

The rest of the paper is structured as follows. In Section 2 we describe a model of
the Austrian economy experiencing an exogenous shock and solve it using the well known
LQ framework. Section 3 contains detailed description of alternative objective function
specifications. Section 4 presents results of the comparative study. Section 5 concludes.

2 The ATOPT Model

In our study we consider a small nonlinear macroeconometric model of the Austrian
economy (ATOPT). The ATOPT model can be seen as an extended Phillips curve con-
nected with a simple model of the public finance sector. The model includes four state
variables (inflation, unemployment rate, budget balance and public debt), one exogenous
non-controlled variable and eight unknown (estimated) parameters. It includes one fiscal
policy instrument, primary balance, which allows a policy maker to control the whole
system. Furthermore, it includes a channel for an external shock acting on the budget
balance. The annual data for the time periods 1987 to 2013 yield 36 observations.4 The
start period for the optimization is 2014 and the end period is 2023 (10 years).

Model equations :
(Standard deviations are given in parentheses)

pit = −0.14
(0.27)

+ 0.60
(0.10)

∗ pit−1 + 5.48
(1.67)

∗
1

urt
, (1)

urt = 6.58
(0.34)

−0.11
(0.04)

∗gr exrt + 0.72
(0.16)

∗ prim balancet, (2)

budget balancet = −2.65
(0.15)

+ 0.69
(0.11)

∗ prim balancet + bb shockt, (3)

debtt = debtt−1 + budget balancet. (4)

Equations (1 - 2) can be regarded as an extended Phillips curve including a non-
linear influence of the unemployment rate (denoted by ‘ur’) on the inflation rate (‘pi’).
The unemployment rate5 is mainly driven by exogenous indicators: the growth rate of

2To the best of our knowledge, the only exception is constituted by Bass and Webber (1966).
3See, for example, Luus et al. (2001) for the application of an absolute values based objective function

in optimal control problems.
4The first three equations are estimated by OLS. The last equation is an identity.
5The unemployment rate can also be considered as a proxy for the economic situation and the output.
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exports (‘gr exr’)6 and the fiscal policy of the national government. For the latter, the
estimated model suggests an expansionary effect of the fiscal policy. The primary balance
is the fiscal policy instrument, which is under direct control of the Austrian government.
In contrast, the budget deficit (or surplus if positive) (denoted by ‘budget balance’) is
estimated based on primary balance as stated in equation (3). Furthermore, the budget
balance can be influenced directly by an exogenous shock (‘bb shockt’). In our study, we
apply a negative shock, which increases the budget deficit. Finally, the changes in the
public debt level (‘debt’) are driven by the budget deficits (or surpluses if positive), as
given in equation (4).

In the present study, the exogenous shock is modeled ex-ante as if the government
knew what a budget balance shock it would face in few years time due to the European
debt crisis. This is done mainly for simplicity to speed up the calculation and to not
concentrate on the explanatory part of the model given its limitations.7

The ATOPT model, as stated in equations (1 - 4), captures a highly aggregated
dynamics of the Austrian economy. We are aware that this is not sufficient to get accurate
insights into the economic and/or fiscal situation in Austria. Instead, we use this model to
test the performance of proposed approaches in case of a one-time shock, which increases
the budget deficit. The initial values, the target values and the weights of the variables
considered in the objective function are reported in Table 1.

Table 1: Objective variables in the ATOPT model

variable initial value target value weight
—————— ———– ———– ———–
pi 1.6 2 1
ur 7.6 6 1
budget balance -1.5 0 1
debt 74.5 74.5ց60 0.2
prim balance 0.7 0 1

Note: The symbol ց indicates that the target values for the objective variable debt are calculated in a linear decreasing
way starting at initial value 74.5 and reaching the value 60 at the end of the planning horizon.

2.1 Nonlinear quadratic optimal control

In the first step we consider a standard optimum control problem with a quadratic objec-
tive function (a loss function to be minimized) and a nonlinear multivariate discrete-time
dynamic system. The inter-temporal objective function is formulated in quadratic track-
ing form, which is often used in applications of optimal control theory to econometric
models. ‘Traditionally’ it can be written as

J =
T
∑

t=1

Lt(xt, ut) (5)

6Which is a reasonable assumption for the small, trade-dependent Austrian economy.
7However, the exercise can be easily extended to model an unexpected shock. For this reason, one

would have to apply the DE algorithm twice: first, before the shock is known on the entire period of
interest; and second; once shock takes place - at the period between the shock and the remaining part
of the calculation period. Again, given that the focus of the present paper is the specification of the
objective function to be applied and not the economic conclusion the ATOPT model provides, we choose
a simpler ex-ante option.
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with

Lt(xt, ut) =
1

2

(

xt − x̃t

ut − ũt

)′

Wt

(

xt − x̃t

ut − ũt

)

, (6)

where xt is an n-dimensional vector of state variables that describes the state of the
economic system at any point in time t, ut is an m-dimensional vector of control variables,
x̃t ∈ Rn and ũt ∈ Rm are given ‘ideal’ (target) levels of the state and control variables,
respectively. T denotes the terminal time period of the finite planning horizon. Wt is
an ((n + m) × (n + m)) matrix specifying the relative weights of the state and control
variables in the objective function. The Wt matrix may also include a discount factor α,
Wt = αt−1W . Wt (or W ) is symmetric. The dynamics of the system is given by ATOPT
model as stated in equations (1 - 4).

In order to solve the stated nonlinear optimal control problem, the OPTCON algo-
rithm (Blueschke-Nikolaeva et al. 2012) is used. This algorithm allows for a numerical
approximation of a nonlinear solution based on the standard techniques of linear quadratic
optimization (LQ).

2.2 Optimal quadratic control of the ATOPT model in case of

a one-time shock

We apply the nonlinear quadratic framework as stated in previous section to calculate the
optimal fiscal policy for the Austrian economy in presence of an external one-time shock
on budget balance. The start period for the optimization is 2014 and the end period is
2023. We assume the shock to occur in 2016. As we model a negative shock, we set the
variable bb shock (see equation (3) defining the government budget balance) to be -7 in
period 3, i.e. bb shock3 = −7. Thus, it is assumed that due to the exogenous shock the
budget balance of the Austrian economy worsens by 7 percentage points in 2016.

We present here the optimal solution in situations with and without external shock,
in order to show the effects of such a negative event to the Austrian economy. Figure 1
shows the optimal path for the control variable (primary balance), while Figure 2 presents
the optimal paths for the state variables (the rate of inflation, the unemployment rate,
the government budget balance and the public debt).

Graphical results show a strong trade-off between fiscal stability and output oriented
policy, which goes in line with the ‘philosophy’ of the ATOPT model. In the experi-
ment without shock, the LQ approach requires to run a restrictive fiscal policy in order
to stabilize financial situation. The policy is required to be more active at the begin-
ning of the planning horizon (prim balance1 = 4.9), continuously decreasing to the end
(prim balance10 = 1.8).

In the scenario with the shock, the LQ approach requires to run an even more re-
strictive fiscal policy in the ‘shocked’ period trying to compensate the negative impact
of the shock (prim balance3 = 8.3 and budget balance3 = −3.9 vs. bb shock3 = −7).
In order to measure the volatility of such a discretionary policy, we calculate a weighted
variance (WV ar) of the time series involved. In particular, after calculating variances
of each specific variables (both the control and the states), we aggregate them into one
indicator using the weights applied in the earlier stage of optimization. This has an ad-
vantage of differently accounting for the variables (given that they have different units of
measurement and, as a result, different order of variance involved), but at the same time
not using any other arbitrary weights increasing the number of parameters affecting the
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Figure 1: Control variable (LQ solution)

results.8

WV ar in the non-shocked scenario for the LQ framework is 22.71 and rises to 72.50
in the shocked scenario. The LQ framework is more or less forced to require a very active
fiscal policy, due to quadratic costs of the outlier event. Such an intensive and restrictive
fiscal policy has a relatively strong negative impact on the economic situation with the
unemployment rate rising by more than two percentage points in one period.

In the next section we test alternative forms of objective function specification. A
special attention should be paid to the excess volatility of fiscal policy.

3 Different Objective Function Specifications

In this section, we describe four alternative objective function specifications for optimal
control framework. The proposed alternatives include an experiment using the idea of
least median of squares (LMS), absolute deviations (ABS), a cubic objective function
(CUB) and a quartic objective function (QUART).

8An alternative would have been to measure the coefficient of variation (CV), which standardizes
the variances by the corresponding averages making it easy to compare between different variables and
aggregate them into one single indicator. However, given that some of our variables have averages close
to zero, this biases the result making CV not applicable.
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Figure 2: State variables for ATOPT (LQ solution)

Least median of squares

We reformulate the objective function ‘J’ (equations (5)-(6)) using the median of squares
instead of the sum of squares on the corresponding states but not the control(s).9 The
intuition behind using a robust method like LMS is that it will devote little attention to
the external shock taking place making the framework more robust to external effects. In
particular, one can expect the volatility of the optimal paths of the states and controls
be lower using LMS than without it. As a result we get the following objective function:

J =
N
∑

i=1

median(Lxi

1 , L
xi

2 , ..., L
xi

T ) · T +
T
∑

t=1

Lu
t , (7)

Lx
t (xt) =

1

2
(xt − x̃t)

′
W x

t (xt − x̃t) , (8)

Lu
t (ut) =

1

2
(ut − ũt)

′
W u

t (ut − ũt) . (9)

9We also have tested the possibility in applying the median-of-squares both on the states and con-
trols, but the resulting dynamics of the variables under consideration becomes even more volatile and
intractable in such a case and we do not proceed in considering it further. Results are available on
request.
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Lx
t represents the squared deviations between the state variables and their target values.

Lu
t represents the squared deviations between the control variables and their target values.

As stated above and given in equation (7), the objective function for states is calculated
as a median (over time) of squares (corresponds to the LMS approach). The control
variables are handled in a traditional way in the objective function by summarizing the
squares (corresponds to LQ framework). The difference in levels between Lx and Lu needs
to be adjusted by factor T as given in equation (7).

Absolute values

We calculate the objective function based on normal (non-quadratic or rather power
equaling to one) deviations. In order to prevent the problem of offsetting positive and
negative numbers, the absolute values of the calculated deviations are used.

J =
T
∑

t=1

Lx
t +

T
∑

t=1

Lu
t , (10)

Lx
t (xt) =

1

2
|xt − x̃t|

′
W x

t , (11)

Lu
t (ut) =

1

2
|ut − ũt|

′
W u

t . (12)

Cubic objective function

In this scenario the deviations from the targets are penalized by factor three. Similar
to the previous scenario, we use the absolute values of deviations before calculating the
exponent in order to prevent the problem of positive and negative numbers.

J =
T
∑

t=1

Lt(xt, ut), (13)

with

Lt(xt, ut) =
1

2

((

xt − x̃t

ut − ũt

)′)1.5

Wt

((

xt − x̃t

ut − ũt

))1.5

. (14)

Quartic objective function

Finally, we calculate the deviations between state variables and the corresponding target
paths to the power four.

J =
T
∑

t=1

Lt(xt, ut), (15)

with

Lt(xt, ut) =
1

2

((

xt − x̃t

ut − ũt

)′)2

Wt

((

xt − x̃t

ut − ũt

))2

. (16)
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4 Optimal Control Results

The four presented objective function alternatives and the nonlinear dynamic system
given by the ATOPT model constitute four different optimal control problems. The stated
problems are solved using the Differential Evolution method as proposed by Blueschke et
al. (2013).10

primary balance

 

 

2014 2017 2020 2023
−1

0

1

2

3

4

5

6

7

8

9
LMS
Absolute
LQ
Cubic
Quartic
target

Figure 3: Optimal paths of control variable

Figures 3 and 4 show the optimal results for the four proposed objective function
specifications in presence of a one-time shock. The LQ approach requires to run an
extremely restrictive fiscal policy in the third period (2016) trying to compensate the
negative impact of the shock. The LMS approach allows to smooth the effects of the one-
time shock but increases the overall volatility and significantly differs from the optimal
path both in control and state variables. Thus, the robust characteristics of the original
LMS approach do not hold for optimal control problems.

The ABS scenario produces results dramatically deviating from other alternatives.
Considering the absolute deviations in the objective functions allows one to give much less
importance to the one-time shock but at the same time it does ignore larger deviations in

10It is worth mentioning that we conducted a series of simulation experiments to tune DE parameters,
as described in Blueschke et al. (2013, p. 825-826), and as a result set for the LMS objective function
specifications: the scale factor F = 0.5, the crossover rate CR = 0.8, the population size p = 50×m×T

(where m is the number of controls and T is the number of time periods involved), while the number of
DE generations gmax = 2500. These parameters are taken sufficiently large to ensure convergence. For
the remaining objective function specifications being apparently simpler to solve, we set the following
parameters: F = 0.4, CR = 0.1, p = 10 ×m × T , while gmax = 750. For each objective function DE is
restarted ten times.
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Figure 4: Optimal paths of state variables

states as well. In such a case, the government is required to run an extremely expansionary
fiscal policy with strong positive effects for the unemployment but drastic consequences
for the public finance with the public debt exceeding 100% of GDP at the end of the
planning horizon.

The cubic and the quartic objective functions, in contrast, restrict the volatility of the
optimal paths of the corresponding states and controls, thus, constituting a more robust
way a policy maker can respond to an exogenous shock. The reason is that the penalty
rises exponentially for any deviation from the targets stated so that the effects of the
shock are absorbed by a larger number of periods. Clearly, the larger the exponent of the
penalty, the smoother the paths of the corresponding variables.

Table 2 summarizes the results for the LQ framework and its four alternatives in terms
of:

• minimal objective function values J achieved. These values are estimated using
different function specifications and respective penalties applied making them in-
comparable between each other;

• standard deviation in DE results over restarts and cpu time required to obtain the
results (per restart);

• minimal objective function values estimated with quadratic penalties (i.e. applying
LQ framework to the states and controls achieved with different objective functions)
LQJ . This presents a LQ-normalized and, thus, more comparable basis for the
functions but also – as expected – indicates LQ results to be the best;
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• the above-mentioned weighted variance (WV ar), which allows to compare the ob-
jective functions in terms of the volatility in state and control time series.

First column in Table 2 contains the objective function values for the uncontrolled
solution which uses the initial states of the corresponding systems and is aimed only for
comparison with the optimal results. Second column contains optimal objective values as
calculated by the OPTCON2 algorithm. Fifth column gives the objective values as calcu-
lated by Differential Evolution (DE) using a standard objective function (LQ framework)
demonstrating that DE converges to basically the same solution as OPTCON but taking
considerably more time (’cpu’). Third column gives the objective values as calculated by
DE using LMS objective function (LMS), while fourth column contains the results for the
objective function with absolute values (ABS). The last two columns state the results for
cubic (CUB) and quartic (QUART) objective functions.

In terms of the LQ-normalized objective function values (LQJ) all alternatives except
ABS show more or less similar results. Certainly, the scenario with LQ function to be
minimized demonstrates the best result, but this simply indicates that the DE algorithm
does its work well. If one would have normalized the results not on the quadratic but,
e.g., on the quartic objective function, there is no doubt, the QUART result would have
been the lowest. However, taking the volatility (WVar) into account there are significant
differences in performance. While higher order of power in the objective function leads
to a reduction of the volatility, the LMS and the ABS approaches results in much higher
instability of the Austrian economy.

Hence, the actual trade-off one is facing is to find an optimum within the shortest
computational time (second column in Table 2) or use a more sophisticated objective
function accounting for additional policy objectives. In this particular case, the alterna-
tives applying on deviations from the targets a power above two seem most promising.
The larger the power, the smaller the variance in states and controls over time. Thus,
we find that using larger exponents on deviations in states and controls one can better
restrict volatility in macroeconomic variables while ensuring that the system reacts to
the external shocks and minimizes its deviations from the targets given.

5 Conclusions and Outlook

In this paper we compare alternative forms of objective function specifications in the
context of nonlinear dynamic optimal control problems experiencing a one-time exogenous
shock. Given that the alternative specifications are not necessarily well-behaved, we
optimize them not by means of linear-quadratic optimization technique but using an
evolutionary algorithm, namely Differential Evolution.

Applying the alternative functional forms on a new small-scale model of the Austrian
economy (ATOPT), we find that the traditional (quadratic) objective function performs
not as good as its alternatives (using a power above two) in restricting volatility of the
resulting optimal paths of the corresponding states and controls. The latter, in fact, has
an important side effect on macroeconomic instability, which a policy maker tends to
avoid. This serves as a first evidence that the (historical) dominance of the quadratic
tracking form objective function specification present in literature, due to its convenience
in applying LQ framework in finding its optimum, may not be an optimal choice for
various problems and model scenarios to be considered. Hence, a more thorough selection

11
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Table 2: Results for the ATOPT model with different settings

OPTCON2 Differential Evolution

uncontr optimal LMS ABS LQ CUB QUART

n
o
sh
o
ck

J 693.20 188.91 126.36 73.75 188.91 2021.34 4437.39

std n/a n/a (0.0000) (0.0000) (0.0003) (0.0006) (0.0009)

cpu .001s .5s 487s 472s 99s 310s 284s

LQJ n/a 188.91 240.39 547.45 188.91 212.61 208.92

WVar n/a 22.71 138.62 178.55 22.71 18.37 11.54

w
it
h
sh
o
ck

J 1076.56 291.43 207.25 91.95 291.43 3760.97 9776.78

std n/a n/a (0.0000) (0.0000) (0.0007) (0.0010) (0.0022)

cpu .001s .5s 665s 521s 116s 316s 315s

LQJ n/a 291.43 334.71 884.78 291.43 321.96 320.05

WVar n/a 72.50 198.52 304.38 72.50 62.90 56.73

Note: Results for LQJ (linear-quadratic J) for alternative objective function specifications are obtained by re-evaluating
the identified optimal sets of states and controls with standard LQ function. Results on WV ar (weighted variance) are
calculated by estimating variance in the distribution of the states and controls obtained and accounting for the weights of
the variables in the optimal control exercise as given in Table 1.

of a suitable objective function accounting for multiple objectives pursued by policy maker
is necessary.

To sum up, the study demonstrates that other functional forms of an objective function
can be easily applied when using the DE method for solving optimal control problems.
Moreover, it is illustrated that the quadratic functional form is not a ’perfect hammer’
accounting for different objectives one has. Formulation of more exact functional forms
better addressing specific objectives one is willing to balance remains problem-specific
and is left for further research.
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