
Blueschke, Dmitri; Blueschke-Nikolaeva, Victoria; Savin, Ivan

Working Paper

Slow and steady wins the race: Approximating Nash
equilibria in nonlinear quadratic tracking games

Jena Economic Research Papers, No. 2015-011

Provided in Cooperation with:
Friedrich Schiller University Jena, Faculty of Economics and Business Administration

Suggested Citation: Blueschke, Dmitri; Blueschke-Nikolaeva, Victoria; Savin, Ivan (2015) : Slow and
steady wins the race: Approximating Nash equilibria in nonlinear quadratic tracking games, Jena
Economic Research Papers, No. 2015-011, Friedrich Schiller University Jena, Jena

This Version is available at:
https://hdl.handle.net/10419/121282

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/121282
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

JENA ECONOMIC 
RESEARCH PAPERS 

 
 
 

# 2015 – 011 
 
 
 
 

Slow and steady wins the race: approximating Nash 
equilibria in nonlinear quadratic tracking games  

 
 
 

by 
 
 
 

Dmitri Blueschke 
Viktoria Blüschke-Nikolaeva 

Ivan Savin 
 
 
 
 

www.jenecon.de 
 

ISSN 1864-7057 

 
The JENA ECONOMIC RESEARCH PAPERS is a joint publication of the Friedrich 
Schiller University Jena, Germany. For editorial correspondence please contact 
markus.pasche@uni-jena.de. 
 
Impressum: 
 
Friedrich Schiller University Jena 
Carl-Zeiss-Str. 3 
D-07743 Jena 
www.uni-jena.de  
 
© by the author. 

 

  

http://www.uni-jena.de/


Slow and steady wins the race: approximating Nash

equilibria in nonlinear quadratic tracking games

D. Blueschke∗†, V. Blueschke-Nikolaeva∗ and I. Savin‡§¶‖

Abstract

We propose a meta-heuristic approach for solving nonlinear dynamic tracking

games. In contrast to more ‘traditional’ methods based on linear-quadratic (LQ)

techniques, this derivative-free method is very flexible (e.g. to introduce inequal-

ity constraints). The meta-heuristic is applied to a three-player dynamic game and

tested versus derivative-dependent method in approximating Nash solution in differ-

ent game specifications. We demonstrate the superiority of the proposed approach

in identifying Nash equilibria, where LQ methods are not applicable.

Keywords: Dynamic games; Nash equilibrium; Differential Evolution

JEL Classification: C61, C63, C72, C73, E61.

1 Introduction

We consider infinite dynamic games in discrete time, where payoffs are defined analyt-
ically penalizing differences between outcomes of a nonlinear dynamic system and the
corresponding predefined target paths. The standard game-theoretic solution methods
rely on the linear-quadratic (LQ) optimization techniques deriving analytical response
functions. The OPTGAME algorithm (Blueschke et al. (2013a)) is an example for such
solvers and is used here as a benchmark for approximating Nash and cooperative Pareto-
efficient equilibria.

Over the last few decades a large number of studies tried to extend or rather to
replace classical methods, which impose strong restrictions on the model at hand, by using
different simulation techniques. One of the methods that becomes increasingly popular
is heuristic optimization. It imposes no additional restrictions at the price of being more
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computationally demanding.1 The proposed approach makes use of those strengths of
heuristic methods ensuring convergence to an approximate Nash equilibrium.

To test the proposed approach, we use a three-player dynamic game between fiscal
and monetary policy in a monetary union. In the first step we check the quality of
the approximate Nash solution by comparing the results to the ones of the OPTGAME
algorithm. After that, we solve a ‘non-standard’ extension of this game (in particular,
with an inequality constraint), where the traditional methods are not applicable.

2 Problem Description

We consider infinite dynamic games in discrete time given in tracking form. The play-
ers aim at minimizing quadratic deviations of the equilibrium values from given target
values.2 Each player minimizes an objective function (a loss function) J i:

min
ui

1
,...,ui

T

J i = min
ui

1
,...,ui

T

T∑

t=1

Li
t(xt, u

1
t , ..., u

N
t ), i = 1, ..., N, (1)

with

Li
t(xt, u

1
t , ..., u

N
t ) =

1

2
[Xt − X̃ i

t ]
′Ωi

t[Xt − X̃ i
t ]. (2)

The parameter N denotes the number of players (decision makers). T is the terminal
period of the planning horizon. Xt is an aggregated vector

Xt = [xt u1
t u2

t . . . uN
t ]

′, (3)

consisting of an (nx × 1) vector of state variables and N (ni × 1) vectors of control
variables. The game is infinite due to the action sets of the players, which comprise an
infinite number (continuous space) of alternatives.

The desired levels of the state and the control variables enter (1)-(2) via the terms

X̃ i
t = [x̃i

t ũi1
t ũi2

t . . . ũiN
t ]′. (4)

Finally, (2) contains a penalty matrix Ωi
t weighting the deviations of states and controls

from their desired levels at any period t.
The dynamic system constraining the choices of the decision makers is given in state-

space form by a first-order system of nonlinear difference equations:

xt = f(xt−1, xt, u
1
t , . . . , u

N
t , zt), x0 = x̄0. (5)

x̄0 contains the initial values of the states, zt contains non-controlled exogenous variables.
Equations (1), (2) and (5) define a nonlinear dynamic tracking game problem, which

equilibrium solutions we try to find representing them by N trajectories of control vari-
ables ui

t minimizing the postulated objective functions subject to the dynamic system.

1For a discussion of the matter see Gilli and Schumann (2014).
2A quadratic form prevails as a standard approach (Blueschke and Savin 2015).
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3 Optimization Algorithms

A standard way to solve nonlinear dynamic tracking games is the OPTGAME algorithm.3

As an alternative we propose a ‘meta-heuristic’ approach in finding the equilibrium solu-
tions. To this end, two linked procedures are applied: a heuristic approach (the Differen-
tial Evolution algorithm) for finding individual optimal strategies, and an approach for
finding an approximate game equilibrium.

3.1 Differential Evolution

Differential Evolution (DE) is a population-based optimization technique designed to
tackle complex problems and detect global optima of various objective functions (eligible
for certain constraints).4 We consider dynamic games, where each player optimizes its
own objective function given by (1) - (2), and apply DE for that purpose. A detailed
description of how DE deals with an optimal control problem for a single decision maker
is described in Blueschke et al. (2013b). In short, starting with an initial population of
random solutions (line 2 in Algorithm 1), DE updates this population by linear combi-
nation (line 7: with F being the shrinkage rate) and crossover (line 9: with CR – the
crossover rate) of four different solutions into one selecting the fittest solutions among
the original and the updated population. This continues until some stopping criterion is
met.

For all N players we apply the same DE procedure with the only difference of the
individual number of control variables ni. Each member of the population (each candidate
solution) contains the control variables of player i for all time periods.

Algorithm 1 Pseudocode for Differential Evolution (individual optimization)

1: initialize parameters m,T, p, F and CR

2: randomly initialize P
(1)
j,t,k, j = 1, · · · , ni; t = 1, · · · , T ; k = 1, · · · , p

3: while the stopping criterion is not met do
4: P (0) = P (1)

5: for k = 1 to p do

6: generate r1,r2,r3 ∈1, · · · ,p, r1 6= r2 6= r3 6= k

7: compute P
(υ)
.,.,k = P

(0)
.,.,r1 + F × (P

(0)
.,.,r2 - P

(0)
.,.,r3)

8: for j = 1 to ni and t = 1 to T do

9: if u < CR then P
(n)
j,t,k = P

(υ)
j,t,k else P

(n)
j,t,k = P

(0)
j,t,k

10: end for

11: if J(P
(n)
.,.,k) < J(P

(0)
.,.,k) then P

(1)
.,.,k = P

(n)
.,.,k else P

(1)
.,.,k = P

(0)
.,.,k

12: end for

13: end while

3.2 Stochastic approximation of a Nash equilibrium

The dynamic games are characterized by interacting agents, whose strategies determine
the outcome. Here we consider two kinds of game strategies, a cooperative (Pareto

3See Blueschke et al. (2013a) for details on the OPTGAME algorithm.
4For an overview of the heuristic methods see Gilli and Winker (2009).
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optimal) and a non-cooperative (Nash equilibrium) game strategy. In the former case,
players cooperate and act as one player. To this end, a joint objective function is created,

J =
T∑

t=1

N∑

i=1

µiLi
t(xt, u

1
t , . . . , u

N
t ),

N∑

i=1

µi = 1, (6)

according to the individual weights of the players (µi).5 The resulting problem can be
considered as a single-player optimal control problem and solved using Algorithm 1.

To find a Nash solution is a more demanding task. The Nash equilibrium is charac-
terized by the fact that no player can improve her performance by changing only own
strategy. To approximate the equilibrium, we use an iterative method where the players
successively find individual best strategies using the available information about other
players’ choices. The pseudocode of this procedure is given in Algorithm 2.

Algorithm 2 Pseudocode for finding approximate Nash equilibrium

1: set criteria for convergence, set tentative
◦

u

2: while the convergence criterion is not met do
3: for each player i = 1 : N do

4: minui J i = f(x, u1∗, ..., ui, ...,
◦

u
N

) to get ui∗ (see Algorithm 1)
5: end for

6: check convergence, if no convergence set
◦

u = u∗

7: end while

As the convergence criterion we ask the control variables of all players to be the same
as in the previous iteration.6 If the algorithm converges, it means no player can improve
its individual performance by a one-sided deviation from the optimal strategy.7 As a
result, we get a stochastic approximation of the Nash equilibrium.

4 Simulation Results

To test our approach, we use a dynamic macroeconomic model of a monetary union
consisting of two countries (or two blocs of countries) with a common central bank,
which is called MUMOD1.8 The model is calibrated to deal with the problem of public
debt targeting in a situation that resembles the one currently prevailing in the European
Union. MUMOD1 is formulated in terms of deviations from a long-run growth path
and includes following state variables: output (y), real interest rate (r), nominal interest
rate (I), inflation (π), union-wide inflation and output (πE, yE), public debt (D) and
interest rate on bonds (BI). Furthermore, the model includes three decision-makers: the
common central bank decides on the prime rate REt (a nominal rate of interest); the
national governments decide on fiscal policy: git denotes country i’s (i = 1, 2) real fiscal
surplus (or, if negative, deficit), measured in relation to real GDP.

5Li

t
is defined by (2). The parameters µi reflect player i’s ‘power’ in the joint objective function.

6This means that we require them to lie inside an ǫ-tube with ǫ = 1× 10−5.
7We are aware that this convergence is not guaranteed in general. For the future research we plan to

consider a Particle Swarm Optimization (PSO)-based approach increasing the robustness of the meta-
heuristic search.

8For details see Neck and Blueschke (2014).
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4.1 Baseline

First we present results of the baseline scenario of MUMOD1 to show the ability of
our approach to achieve the same solution as calculated by OPTGAME. In the left
panel of Figure 1 we plot simultaneously Pareto and Nash solutions for both meth-
ods: OPTGAME (denoted by ‘Pareto’ and ‘Nash’, respectively) and the proposed meta-
heuristic (‘Pareto DE’ and ‘Nash DE’, respectively).
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Figure 1: Optimal paths for the control variables RE and gi. The left panel reports
baseline solution and the right panel: inequality constraint scenario.

As the graphical results nearly coincide, Table 1 gives more details on comparison
between the two alternatives. The meta-heuristic approximates the analytical solutions
fairly well. In the case of the Nash solution, the new approach gives the same results
for all individual objective functions. In the case of the Pareto solution, it even slightly
outperforming the OPTGAME in respect to

∑
Ji. However, the proposed method is

extremely computationally demanding exceeding OPTGAME by factors 100 - 1500. This
clearly indicates that for a ‘normal’ case (where an analytical solution is available) the
meta-heuristic approach is not useful. Its usage is justified only for situations where an
analytical solution is not available (or reliable) as presented in the next section.
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Table 1: Results for the MUMOD1 dynamic game

baseline inequality constraint

OPTGAME Meta-heuristic

Pareto Nash Pareto Nash Pareto Nash

J1 79.72 76.73 79.34 76.73 53.93 56.82

J2 38.75 72.14 39.11 72.14 28.62 44.59

J3 118.33 152.36 118.34 152.36 97.05 122.24∑
Ji 236.80 301.23 236.79 301.23 179.6 223.64

cpu 2.1s 2.1s 281s 3459s 321s 3597s

4.2 Inequality constraint

The main reason of applying the proposed method is its flexibility allowing to solve certain
scenarios of dynamic tracking games, which cannot be addressed (or extremely difficult
to address) by ‘traditional’ methods. To illustrate such a ‘useful’ application, we consider
a modification of the MUMOD1 model. In the baseline scenario, the control variable of
the central bank is assigned with an importance (weight) by factor three in comparison to
the controls of national governments. The main justification for it is the fact that this is
the only way to get a certain analytical solution. Figure 2 presents results for a scenario
where the prime rate has the same weight as other controls, namely one.
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Figure 2: prime rate REt controlled by the central bank (W (RE) = 1)

The central bank is required to set REt negative in periods 2-6 (Figure 2). Since
2014, the ECB uses negative interest rates, mainly as a discount window, while the prime
rate is still positive (0.05%). There is a discussion whether a negative prime rate is a
reasonable instrument. However, a prime rate equaling -2.5% is clearly inappropriate.
The standard way to get a proper analytical solution is to assign a higher weight to the
concerned variable. However, without a theoretic justification this changes the conditions
of the game and can produce misleading results.

In contrast, by exploiting the flexibility of the meta-heuristic we can easily restrict
the prime rate from being negative without changing its weight. The introduction of
an inequality constraint (RE ≥ 0) is one way to do so. Thus, the prime rate has a
significantly higher weight (equal to 100) only for its negative values, and 1 otherwise.9

9Taking inequality constraints into account is only one example, where the meta-heuristic is useful.
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Thus, we force (in a smooth way) the prime rate to stay non-negative without the risk of
uncontrolled jumps of this variable. In contrast, to introduce inequality constraints into
the OPTGAME algorithm is very difficult.

Right panel of Figure 1 shows the paths of the control variables. The central bank is
forced to hold its interest level close to zero in the first seven periods due to the inequality
constraint. Comparing the results to the ones given in the left panel, one observes a
significant change regarding the Nash equilibrium, namely, a more expansionary monetary
policy is required. For brevity reasons, we skip the interpretation of the results. Table 1
summarizes the objective function values and the computational time for the case with
the inequality constraint.

5 Conclusion

We propose a meta-heuristic approach to solve an infinite dynamic tracking game in
discrete time and identify a cooperative (Pareto optimal) and a non-cooperative (Nash
equilibrium) game strategies. We both demonstrate that the meta-heuristic indeed allows
us to obtain a fairly well approximation of the analytically calculated Nash equilibrium,
but also show that thanks to its flexibility the new approach can be easily extended to
games that are extremely difficult to solve by ‘traditional’ algorithms. As an example,
we consider an extension of the MUMOD1 model including inequality constraints. For
further research we leave application of the proposed method to different dynamic games
and extension to more robust algorithms (e.g., PSO-based) to ensure better convergence.
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