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to remove the fixed effects bias. We extend this Mundlak equation further by replacing the 
time-varying explanatory variables by the corresponding deviations from the averages over 
time, while keeping the time averages in the equation. It appears that regression on this 
extended equation provides simultaneously the within and in-between estimator, while the 
pooled data estimator is a weighted average of the within and in-between estimator. In 
Section 3 we introduce observed and unobserved fixed effects In Section 4 we demonstrate 
that in this extended setup Probit estimation on panel data sets does not pose a specific 
problem. The usual software will do. In Section 5 we give an empirical example. 
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1.Introduction 

An important field of econometrics is panel econometrics. In most textbooks 
separate chapters are devoted to panel analysis, and several textbooks like 
Baltagi (2006) and Wooldrich (2002) are almost exclusively focusing on panel 
econometrics. The main difficulty in panel econometrics is that the traditional 
linear model it it i ity x zβ γ ε′ ′= + +   offers at least three ways of estimating the 

coefficients. We may apply OLS on the pooled data ( , )it ity x  , we may apply OLS 

on the differences( , )it ity x     from the mean (within), and we may apply OLS on 

the averages over time ( , )it ity x   (in -between). The empirical problem is that 
the results of these three estimation methods for β   may yield very different 
results. Mostly, it is explained by the existence of unobserved individual effects 

iα   that are correlated with the x- variables. This is actually a special case of 
omitted variables bias and/or correlation between the x and the errors. 

Mundlak (1978) and Chamberlain (1984) show that, if the iα  are correlated with 

x, they may be decomposed into a linear function of the time averages ixδ ′   and 
an independent error. Hence, they add the time averages as a second set of 
explanatory variables and take for basic model  it it i i ity x x zβ δ γ ε′ ′ ′= + + +  . 

If the individual effects iα happen to be uncorrelated with x and/or z, they are 
called random effects. 

In this paper we go one step further and replace the itx   in the last equation by

it it ix x x= −  , yielding the extended model it it i i ity x x zβ β γ ε′ ′ ′= + + +

  . This 
implies a loosening of the implicit assumption of the traditional model that
β β= . It may be true or not and empirical testing will decide on it. 

In this paper we will demonstrate in Section 2 that regression on this extended 

model will provide us simultaneously with an estimator  ofβ  ,which is identical 

to  the within- or fixed- effects estimator ŵithinb   , and with an estimator of β   

which equals the in-between estimator înbetb  . When we apply regression under 

the constraint that ŵithinb = înbetb = b̂  , then b̂ will be a weighted average of the 
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estimators ŵithinb and înbetb . In Section 3 we introduce the observed time-

constant variables iZ    and the (possibly correlated) unobserved fixed effects iα  

. In Section 4 we demonstrate that this approach works for the Probit- version of 

the model as well. Contrary to the idea that the Probit model is impossible to 

estimate for panel data and that consequently we have to take recourse to a 

Logit specification, we show that such estimation is possible on the extended 

model by standard software. In Section 5 we give an empirical example. In 

Section 6 we draw some conclusions. 

The upshot of this is that linear panel analysis, based on the model 

it it i i ity x x zβ β γ ε′ ′ ′= + + +

  does not pose special ‘panel problems’, although 

we may still encounter the usual problems found in classical multivariate 

statistics in general and in linear econometrics in particular. It is therefore that 

we argue that panel analysis can be re-integrated in traditional classical 

econometrics, when we replace the traditional model it it i ity x zβ γ ε′ ′= + +  by 

the extended model it it i i ity x x zβ β γ ε′ ′ ′= + + +

 . 

  

 

2. Comparison of the traditional estimators with the estimators of the extended 
model. 

 

First, we consider the linear panel data model in its most simple form. This is 

 1 1, , 0...it it K K it ity x xβ β β ε= + + + +   (2.1) 

where i  (i=1,…,N)  stands for the ith observation unit and t ( t=1,…,T)  for the 
different observation moments. The errors are assumed to be mutually 
independent. Moreover, we assume for the errors zero expectation and homo-
skedasticity. The error covariance matrix is 2. NTIε εσΣ = .  
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The T observations per observation unit i  are denoted as ( )1, ,, ,..., ,1it it K ity x x  

or for short as( ),it ity x . We notice that itx is a (K+1)-vector, where we include 

the constant 1.  

If we consider all T observations for unit i we store them as the T x(K+2)- matrix 

( )1, ,, ,...,i i K iy x x  or ( ),i iy X . All individual observations, including the constant, 

are stored in the NT x (K+2)- matrix ( ),y X . 

In this paper we will use semi-definite symmetric (TxT)- matrices ,MΣ  and their 

generalized inverses .The generalized inverse will be denoted by +Σ and it is 

defined as the matrix with the same eigenvectors as those ofΣ ; they share the 

zero eigenvalues, while their corresponding non-zero eigenvalues are the 

reciprocals of those of Σ . While those matrices are generally TxT-matrices, we 

will use incidentally block-diagonal (NTxNT) -matrices like NIε ε= ⊗ΣΣ . They 

will be denoted by bold symbols.  

Let us denote the averaging matrix by M   , where 
1M
T
ιι′=   is a (TxT) –matrix 

with each cell equaling 1/T. The matrix M is idempotent of rank 1. We have for 
the vector of averages i iX MX= . Similarly, the demeaning procedure can be 

described by the matrix ( )I M−  with rank (T-1) and we have for the deviations 

from the mean ( )i iX I M X= − .  

Due to the fact that M is idempotent, we have ( )M I M O− =  and hence  

( )i i i iX X X I M MX O′ ′= − = . In a similar way it may be shown, for example, that 

( ) ,  X y X y y X y X oε′ ′ ′ ′= + = =   

  . In short, the deviations are not correlated with 

the time- constant variables. Similarly, we find that 

( ) ( ( ) ( ))X X X M M I M I M Xε ε ε′ ′ ′ ′Σ = Σ + Σ = Σ + − Σ − = Σ
 

     . 

There are in the literature three basic methods to estimate the parameter vector

β  . The first method is of course OLS applied on (2.1).  
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The second method is the so-called in- between estimation. We consider the 

average observations over time. We denote the time averages for observation 

unit i by 1, ,( , ,..., )i i K iy x x and the average error by iε  . Then (2.1) implies for the 

averages  

 1 1, , 0...i i K K i iy x xβ β β ε= + + + +    (i=1,…,N) (2.2) 

where  
21 . NI

Tε εσΣ =  .So it follows that β may be estimated by OLS on (2.2) as 

well. This estimator is called the in-between estimator îbb . We may rewrite (2.2) 
as   

 i i iMy MX Mβ ε= +   (2.3) 

                                  

The third estimator is found by taking the differences from the means. Let us 
denote it it iy y y= −  and let us use the same notation for the other variables. 

Then we find that there holds  

 1 1, ,...it it K K it ity x xβ β ε= + + +     (i=1,…N, t=1,…,T)  (2.4) 

or  

 ( ) ( ) ( )i i iI M y I M X I Mβ ε− = − + −   (2.5) 

 

Applying OLS (without intercept) on (2.4), yields a third estimator. It is the so-

called within-estimator of β , which we denote by ŵib  .  

We see that the error vector ( ),1 ,,...,i i i Tε ε ε=     has a non-diagonal covariance 

matrix  

( ) ( )2.I M I Mε εσΣ = − −


               (2.6)  

This matrix εΣ  is singular of rank T-1. This follows automatically as there are only 
(T-1) independent equations for observation unit i, reflecting the fact that the 
equation for observation (i ,T) follows automatically from the fact that the T 
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demeaned observations add up to zero. In the following context we might, as 
usual, drop the last observation for each observation unit i, which removes the 
singularity. For our following analysis we prefer to use all T data. Then we have 
to replace the usual inverse by the generalized inverse ε

+Σ


  which has the same 

eigenvectors as εΣ  , while the non-zero eigenvalues are replaced by their 
reciprocals. The three OLS- estimators being consistent, they are estimating the 
same parameter vectorβ , except for the within-estimator which does not 
estimate the intercept 0β  . 

Now we add a fourth extended model  

 it it it ity x xβ β ε′ ′= + +



 (2.7) 

or 

 ( ) ( )i i i i iy I M X MX M I Mβ β ε ε= − + + + −   (2.8) 

This model leaves explicitly open thatβ β≠ . If there holds equality, we are back 
in the traditional case, since ( )it it itx x xβ β′ ′+ = . Hence (2.1) is a special case of 

the more general model (2.7). The implicit traditional assumption that β β=  

may now be tested as a hypothesis. We notice that iX is a (TxK)- matrix while  

iX is a (Tx(K+1))- matrix, including the intercept. 

The first term in (2.7) refers to the differences and the second term to the 
averages. Since both terms are uncorrelated we may apply the Frisch –Waugh-
Lovell theorem (Frisch, Waugh (1933), Lovell (1963)).  

Since  x y x y′ ′=  and x xε ε′ ′=   we find that regression on  x  only, i.e., 

 it it ity xβ ε′= +



  (2.9) 

will yield the estimator ˆ
ŵithinb b≡ =( ) 1

X X X y
−

′ ′   , identical with the result when 

regressing on ity as in (2.4).  
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Similarly, dropping the differences in (2.8), OLS yields only the in-between 

estimator. In short ˆ
înbetweenb b≡ . Regression on (2.8) will simultaneously provide 

us with the within – and the in-between estimator. 

We get the explicit formulae:  

   

( )

( )
( )

1

1

1

ˆ ' '

ˆ ' '

ˆ ' '

wi

ib

b X X X y

b X X X y

b X X X y

−

−

−

=

=

=

                             (2.10) 

 

where NIε ε= ⊗ΣΣ
 

 is a (TN x TN) – block- diagonal matrix. For X  we remark 
that the first T rows are identical, and so for the second T-tuple, and so on. We 
may also interpret X  in the formula (2.5) as a (N x(K+1))-matrix, and y as an N 

–vector 1( ,..., )Ny y y′ = . Then the (TN x TN) – block- diagonal matrix εΣ =

NI ε⊗Σ  has to be replaced by the (N x N) - matrix εΣ  as well.  

 

Since the OLS- estimators are unbiased, we may write the differences of the 

estimators with their expectations as ( ) 1ˆ ' 'withb X X Xβ ε
−

− =  

 and  ( ) 1ˆ ' 'ibb X X Xβ ε
−

− =  . Since the errors ,ε ε are uncorrelated, it 

follows that the estimators ˆ ˆ,wi ibb b  are uncorrelated as well. If they are 

(asymptotically) normal, they are mutually independent. 

The covariance matrices of the estimators are: 
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( )

( )

2 1

2
1

ˆcov( ) '

ˆcov( ) '

wi

ib

b X X
NT

b X X
NT

ε

ε

σ

σ

−

−

=

=

 

  (2.11) 

  

where X  is a (NT x(K+1))-matrix. When we take X  to be a (N x(K+1)) the first 

factor becomes 2 Nεσ . 

It is now easy to test the equality of ˆ ˆ and wi ibb b . We notice that 

.
ˆ ˆ ˆ ˆcov( ) cov( ) cov( )wi ib wi ib wi ibb b b b− = + = Σ . Hence, we have the test 

criterion 1 2
.

ˆ ˆ ˆ ˆ( ) ( )wi ib wi ib wi ib kb b b b χ−′− Σ −  . 

The pooled estimator ( ) 1ˆ ' 'b X X X y−= , where we estimate under the 

additional constraint   ˆ ˆ ˆ
wi ibb b b= = , or in terms of the population parameters

β β β= = ,  may now be interpreted as a weighted sum of the within- and in-

between estimator. We write the sum of squared residuals using the zero-

correlation of the means and the deviations as  

 

2 2

,

2 2

,

2 2

( )

( ) . ( )

.

it it
i t

it it i i
i t i

S y x

y x T y x

S T S

β

β β

′= −

′ ′= − + −

= +

∑

∑ ∑ 



             (2.12) 

Differentiation with respect to β  yields the normal equation 

( ) ˆ. .X X T X X b X y T X y′ ′ ′ ′+ = +  

  . 

 We solve for β   and get  
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( ) ( )
( ) ( )( ) ( ) ( )( )

1

1 1

ˆ . .

. ( . . . )

b X X T X X X y T X y

X X T X X X X X X X y X X T X X X X X X T X y

−

− + − +

′ ′ ′ ′= + + =

′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + +

  



        



 

This is a matrix-weighted average ˆ ˆ ˆ
wi wi ib ibb W b W b= +  with weights 

( ) ( )1
.wiW X X T X X X X

−
′ ′ ′= +     and ( ) ( )1

.ibW X X T X X X X
−

′ ′ ′= +   , respectively. We 

may write the weights even more elegantly as ( ) ( )1
wiW X X X X−′ ′=   and 

( ) ( )1
ibW X X X X−′ ′= . 

We see that the within-estimator gets the upper weight if the inter-temporal 

variation is large and inter-individual variation is small, while the within –

estimator becomes relatively unimportant if inter-temporal variations per 

individual are small, but inter-individual variations are relatively large.    

If the equality ˆ ˆ=wi ibb b holds, we have for their   joint estimatorb̂

( )
2

1ˆcov( ) 'b X X
NT

εσ −= . 

 

3. Observed and unobserved fixed effects. 

 

It is frequently found that the estimators ˆ ˆ,wi ibb b  yield statistically different 

estimates of the parameter vectorβ , which contradicts the model equation 

(2.1). The traditional way to repair this contradiction is to extend the model by 

adding a vector of M observed effects Z and/or an unobserved individual fixed 

effect iα  .The equation runs  

                           0it it i i ity x Zβ γ α β ε′ ′= + + + +  (3.1) 

The corresponding extended version is  
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 0it it i i i ity x x Zβ β γ α β ε′ ′ ′= + + + + +

   (3.2) 

   

We notice that (3.2) is again a sum of two uncorrelated sets of explanatory 
variables, viz., X  and ( , , )X Z α  . The role of X  and Z  are the same. The role 

of α is that of an omitted variable. If it correlates with X  or Z , it creates an 

‘omitted variable’- bias for the estimators of β  and γ  . If it does not correlate, 
it is just a random effect, which may be added to the in-between error yielding 
a composite in-between error i i iη ε α= +  with corresponding co-variance 

matrix ( )2 2 Iη ε ασ σΣ = + .  

We may regress y on X only, yielding the within-estimator. The within- estimator 
is estimated from the normal equation  

 ( )X X X yβ′ ′=     (3.3) 

The within –estimator is not affected by the presence of Z and α , since 

, ,X y ε

  are uncorrelated with Z  and α . For the same reason the within- 

estimator and its covariance- matrix is not affected by the presence of  random 

effects. 

We denote the extended matrix of explanatory variables by ( , )XZ X Z=   . 

The in - between estimator is estimated from the normal equations  

 
( ) ( )
( ) ( )

( )
( )

[ ]
'   '

'   '

X X X Z X
y

ZX Z Z Z

β
α

γ

′      = −   ′      

  (3.4) 

where we notice that the relevant covariance matrix is ( )2 2 Iη ε ασ σΣ = + .The 

estimators of β   and γ are not consistent if ( )X oα′ ≠  and/or Z oα′ ≠ . This 

is nothing else than the omitted variable bias when we apply OLS on  the 
equation 0it i i i ity x Zβ γ α β ε′ ′= + + + +  .  
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Notice that the pooled estimator is also affected by the presence of Z  and α . 

This is easily shown by the fact that the pooled estimator, as we saw in the 

previous section, may be interpreted as a weighted sum of the within- and in-

between -estimator. If one of the two estimators is biased, it is obvious that the 

weighted average will be biased as well. 

Alternative interpretation 

An alternative explanation for an observed difference between the estimators 

ˆ ˆ,wi ibb b   is that the difference is not caused by an imperfect specification of the 

model equation, but that the two estimators stand for two different effects. 

We may interpret (3.2) as a decomposition between the structural time invariant 

effects of the average iX  X and Z ,  and the effect of the temporal deviation

itX . An example of an economic theory where such a model seems relevant is 

Friedman’s (1956) permanent income theory. Consumption ity  is there 

explained by permanent income iX and the income fluctuations itX  about the 

mean.  

As said before, whether the hypothesis ib wiβ β=  is justified can be statistically 

tested.   
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4. Application to qualitative panels. 

 

The present findings facilitate our approach to linear panel analysis. However, 

the main surprising novel result of this analysis is its consequence for the 

Ordered Probit analysis of panel data. In the established literature it is taken for 

granted that panel equations cannot be estimated by Ordered Probit. See, for 

instance, Chamberlain (1984), or Cameron and Trivedi (2005), who state in 

Section 23.4.3. of their magnificent book ‘’ Fixed Effects estimation is possible for 

the panel logit model, using the conditional MLE, but not for other binary panel 

models such as panel probit’. This is based on the following reasoning. 

 Let the latent model be   the traditional version 

 0it it i i ity x Zβ γ α β ε′ ′= + + + +   (4.1) 

where the error  according to the Ordered Probit – model is assumed to follow  

a N(0,1)- distribution. We can apply OP on (4.1) .In that case the established 

result is that the OP-estimators are ML-estimators; consequently, the ML-

estimators ÔPb  will tend to the probability limits ÔLSb obtained by OLS on (4.1). 

However, if there are fixed effects, ÔLSb will be biased as we saw. 

The usual way out in the panel- OLS-model is to look at the equation (2.4), viz., 

 'it it ity X β ε= +

   (4.2) 

However, now we observe the y’s only qualitatively as belonging to one of J 

ordered response categories{ }1j jyµ µ− < ≤ ; we do not have the qualitative  

analogue of ity  . Hence, we cannot apply OP on (4.2). 

Let us now apply OP on the latent model 
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 0it it i i i ity x x Zβ β γ α β ε′ ′ ′= + + + + +

   (4.3) 

where the error is assumed to follow  a N(0,1)- distribution. When we could apply 

OLS on the quantitative observations ity  following (4.3), the within – and in-

between estimators would be simultaneously and consistently be estimated on 

(4.3) by ŵib  and îbb . It is well-known that if we only know the observations as 

belonging to ordered classes, while the errors are  N(0,1)- distributed, then we 

may apply OP and the OP-estimators, being M L- estimators, are consistent. 

However, we are still assuming that errors are N(0,1)- distributed. The latter 

assumption is unnecessarily restrictive. If the errors have   an arbitrary variance  

0σ > , the estimation under the false assumption that  1σ = will yield OP-

estimators which are all multiplied by 1/σ , but which have the same ratio to 

each other. 

In the qualitative panel context the observations of ity are belonging to known 

ordered classes. Hence, we may apply OP on (4.3) and we estimate the 

parameters ,  or ,ib wiβ β β β  up to an unknown  proportionality factor ψ  = 1/σ  

(>0). 

The coefficients and their covariance matrix may be estimated by OP by using 

traditional software. The estimators are consistent. Hence ˆ ˆ.OP OLSb bψ≈  and 

ˆ ˆ.OP OLSb bψ≈ . If there are fixed effects α  we encounter the same problems as 

in the OLS-case for the in-between and the pooled case. In case of correlation 

the estimators ˆ ˆ,OP OPb γ will be biased.   However, ˆ
OPb  will be consistent. It is 

immune for fixed effects. Again, it is possible to test whether ˆ ˆ
OP OPb b= .This is 

relatively easy as the estimators ˆ ˆ,OP OPb b are uncorrelated. This follows when we 
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consider the joint covariance matrix. It may be written as 
1

1

N

i i i
i

w x x
−

=

 ′  
∑  (see 

Cameron and Trivedi, p.469), where ,i i ix x x ′ ′ ′=
 
  . It is easy to see that the 

non-diagonal blocks in this matrix are a sum of zeroes and therefore zero 

themselves. 

The difference between the traditional model and our model is that the existing 

literature states that the within- estimator wiβ  can only be derived by regressing 

on the differences ity  , while we showed above that regressing on the original 

observations ity yields the same estimator. This fact sets us free from the 

necessity to find a counterpart for the difference ity  in the Probit –context. The 

impossibility to define the difference ity  in the Probit –context led researchers 

to the conviction that estimation of a qualitative linear panel model by OP was 

impossible. However, since it appears that also for the quantitative model using 

ity is not needed at all, it follows logically that this is not necessary for OP either. 

Analogously to (2.8) we may estimate wiβ from the latent model (2.9) 

it it ity xβ ε′= +

 . 

 

5. Empirical example 

 

As an illustration of the above we use the data of Vella and Verbeek (1998)1.First, 

we estimate an equation where the variable y to be explained is continuously 

observed. Then we discretize y into two events: positive or negative and we 

explain those discrete events by Probit, assuming the same now latent model 

                                                           
1 These data are downloadable from the Journal of Applied Econometrics-data archive. 
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equation2. Vella and Verbeek use data from the National Longitudinal Survey 

(Youth Sample). The set consists of 545 observations of young full-time working 

males who have completed their schooling by 1980. Annual observations of the 

wage are available for 1980-1987. Here we use the data to estimate a standard 

Mincerian wage equation with some additional explanatory variables. We use 

the following time-constant explanatory variables: years of schooling (School), 

Black and Hispanic. The time -varying explanatory variables are: a proxy for labor 

market experience (Experience = Age - 6 - School) and its square, being married 

or not (Married), and union membership (Union). Controls for region of 

residence are added as well.  We distinguish three kinds of variables: the time 

constant variables Z, the demeaned variables x and the averages of X, denoted 

by x . 

 

OLS-results. 

 

The results of five different estimation methods are presented in Table 1. First 

we look at  OLS on  x x∆ =  and x alone. Then we add other Z –variables. Then 

we add the random effects error structure (see e.g. Cameron and Trivedi,Section 

23.2.3). Finally, we look at the fixed effects estimation where y ( not y ) is 

regressed on x x∆ =  only and the in-between method where y ( not y ) is 

regressed on  x and Z.  

First, we look at the middle panel. It appears that the estimates of the time-

varying explanatory variables are exactly the same under the four methods by 

which they are estimated. Second, we see from the first and third panel that the 

estimates are identical as well. The standard errors of the random effects model 

                                                           
2 Discretizing into two classes only yields the hardest case. The more classes are distinguished, the more the 
data will look like continuously observed. 
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and the in-between estimation are identical. The Random Effects-standard 

errors are the correct ones, and as expected the Pooled OLS-standard errors 

differ considerably. Comparing the first and second column of Table 1 we see 

that adding the Z- variables changes the time- constant  - effects , but not the 

effects of x∆ . There are indeed individual fixed effects, which are (partly) 

covered by the Z- variables. All the results are in line with the theory developed 

above. Finally, comparison of the second and third panel of Table 1 shows that 

the coefficients of xand x are dramatically different, while the traditional model 

y x x xβ β β′ ′ ′= = +  would suggest that they not differ statistically. Our 

conclusion for this data set is that the model y xβ ′=  is not appropriate and 

that y x xβ β′ ′= +  is the preferred alternative. 

 

 

HERE TABLE 1 
 

 

Probit results. 

 

In Section 4 we argued that Probit may be applied on the latent model  

 

 0' 'it it wi i ib i i ity X X Zβ β γ β α ε′= + + + + +   (5.1) 

 

In the continuous model the presence of the fixed effect iα  gives difficulties if it is 

correlated with iX  and/or iZ . The same difficulty appears in the Probit –context as 
well. 
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When we like to compare the outcomes of the OP-estimation with the OLS-results of 

the same data set, we have at first to create discrete events. Therefore, we discretize 

the data set by distinguishing the two discrete events 0, 0it ity y≤ > . 

The problem when applying Probit is that the error variance εσ  in the original data set 
will not be equal to one, as  is  usually assumed when applying Probit. However, (5.1) 
is equivalent to  

 01 ' ' i it
it it i iy X X Z

ε ε ε ε ε ε ε

β α εβ β γ
σ σ σ σ σ σ σ

′= + + + + +


   (5.2) 

This equation has error variance equal to one. Hence, it follows that if we apply 

standard Probit on (5.1) we will get consistent estimators of the ratios between the 

coefficients. 

Now we apply Probit on the discretized versions of the equations estimated in Table 1. 

This yields Table 2. 

 

HERE TABLE 2 
 

 

Comparing the ratios is facilitated by constructing Table 2A where we divided the first 

column in Table 2 by  0.243, the  coefficient of ΔExperience . Similar divisions are 

applied to columns 2,3,4. In this way all coefficients of ΔExperience are set equal to 

one and comparison of the different methods becomes easy. This division is, of course, 

also applied for the standard deviations. This yields the four corresponding columns in 

table 2 A, which are easily compared. For the last column we multiply the cells in the 

last column by the factor 335/313.  This yields a comparable version of the fifth column. 

This yields an auxiliary table 2A, where the columns are comparable, and ideally, 

should be equal. 

 

HERE TABLE 2A 
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Taking into account the standard deviations we see that the columns are roughly 

equivalent and also equivalent to the results in Table 1. Looking at the second 

column in the second panel we find from Table 1 that the ratios are -0.004/0.116 

=-0.034, and then 0.38, 0.71. The corresponding ratios in Table 2A are   -0.031, 

0.363, and 0.988.  

Taking into account the standard deviations we see that the columns in Table2 

are not significantly different and also in line with the results in Table 1. 

Our main conclusion is that Probit on panel data is possible and yields consistent 

estimators.  

 

6. Conclusion  

 

In this paper we reconsidered the econometric approach to linear panel data 

analysis. We argue that the usual panel data model should be replaced by a 

model that at least includes two sets of variables: the deviations from the mean 

and the averages over time. We call this the extended model. When we do that 

we find that the in- between estimator and the within-estimator can be found 

simultaneously from the same regression equation. The two estimators appear 

to be uncorrelated. The pooled estimator is a weighted average of the first two 

estimators. By this simple extension of the model it is possible to analyze linear 

panels by the usual cross-section methodology. In other words, we can get rid of 

the rather ad hoc specifications focusing on within or in-between effects. In this 

extended model there is no need for an a priori assumption on equality of the 
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inter-temporal and inter- individual effects. It is rather a hypothesis which can 

be tested empirically. The extension of OLS to qualitatively ordered variables to 

be explained by means of Ordered Probit does not offer any special problem for 

the extended panel model. Henceforth, Ordered Probit can be used for the 

analysis of qualitative panel data. 

The results obviously are also relevant for regional panels, and treatment 

evaluations (dif- in- dif studies ). In this paper we looked only at one-way models 

(see Cameron and Trivedi ,section 21.8.)  , variables are only indexed by i   or i,t  

but generalizations to two-way models where variables are indexed by i or t  or 

i,t are obvious. Also this approach seems applicable to more than two indexes. 

The results of this study suggest that a special place for linear panel data analysis 

in econometrics as a specific subfield of econometrics is perhaps less obvious 

than it is thought by now. 
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Table 1: Estimation on the Vella and Verbeek (1998)-data. 

Variable OLS  OLS Random 
Effects 

Fixed 
Effects 

Between 

Time constant explanatory variables  
Constant  0.572 0.572  0.572 
  (0.109)** (0.224)*  (0.224)* 
School  0.092 0.092  0.092 
  (0.005)** (0.011)**  (0.011)** 
Black  -0.129 -0.129  -0.129 
  (0.024)** (0.049)**  (0.049)** 
Hispanic  -0.034 -0.034  -0.034 
  (0.022) (0.046)  (0.046) 

Time varying explanatory variables 
ΔExperience 0.116 0.116 0.116 0.116  
 (0.012)** (0.011)** (0.008)** (0.008)**  
ΔExperience2 -0.004 -0.004 -0.004 -0.004  
 (0.001)** (0.001)** (0.001)** (0.001)**  
ΔMarried 0.045 0.045 0.045 0.045  
 (0.026) (0.025) (0.018)* (0.018)*  
ΔUnion 0.082 0.082 0.082 0.082  
 (0.027)** (0.026)** (0.019)** (0.019)**  

Time-means of the time varying explanatory variables 
M: Experience -0.023 -0.048 -0.048  -0.048 
 (0.025) (0.024)* (0.050)  (0.050) 
M: Experience2 -0.001 0.005 0.005  0.005 
 (0.002) (0.002)** (0.003)  (0.003) 
M: Married 0.225 0.160 0.160  0.160 
 (0.020)** (0.020)** (0.041)**  (0.041)** 
M: Union 0.246 0.273 0.273  0.273 
 (0.023)** (0.023)** (0.046)**  (0.046)** 

Dependent variable: log(hourly wage). Standard errors between parenthesis. **,* = significant at 1%, 5%. Dummies for living in the North 
East, North Central and South (reference West, in deviation from their mean) and their means across time were also added to the 
specification. 
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Table 2: Probit estimation on the Vella and Verbeek (1998)-data. 

Variable Probit  Probit Random 
Effects 
Probit 

Fixed 
Effects 

Between 

Time constant explanatory variables  
Constant  -2.974 -4.699  -2.802 
  (0.315)** (1.008)**  (0.306)** 
School  0.236 0.385  0.218 
  (0.016)** (0.050)**  (0.015) 
Black  -0.335 -0.619  -0.313 
  (0.069)** (0.225)**  (0.067)** 
Hispanic  -0.079 -0.183  -0.074 
  (0.063) (0.206)  (0.061) 

Time varying explanatory variables 
ΔExperience 0.243 0.256 0.409 0.239  
 (0.032)** (0.033)** (0.042)** (0.031)**  
ΔExperience2 -0.008 -0.008 -0.012 -0.008  
 (0.002)** (0.002)** (0.003)** (0.002)**  
ΔMarried 0.082 0.093 0.154 0.081  
 (0.068) (0.070) (0.092) (0.067)  
ΔUnion 0.244 0.253 0.407 0.235  
 (0.071)** (0.073)** (0.093)** (0.070)**  

Time-means of the time varying explanatory variables 
M: Experience 0.051 -0.026 -0.110  -0.007 
 (0.070) (0.072) (0.223)  (0.070) 
M: Experience2 -0.010 0.005 0.013  0.003 
 (0.004)* (0.005) (0.014)  (0.005) 
M: Married 0.476 0.332 0.575  0.315 
 (0.054)** (0.056)** (0.185)**  (0.055)** 
M: Union 0.688 0.790 1.357  0.743 
 (0.063)** (0.065)** (0.215)**  (0.064)** 

Dependent variable: log(hourly wage). Standard errors between parenthesis. The standard errors reported for the Pooled OLS-estimation 
are OLS- and clustered across individuals-standard errors. **,* = significant at 1%, 5%. Dummies for living in the North East, North Central 
and South (reference West, in deviation from their mean) and their means across time were also added to the specification. 
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Table 2A: Probit estimates normalized. 
 

Variable Probit Probit Random 
Effects 
Probit 

Dummy Dummy 

Time constant explanatory variables  
Constant  -11.62 -11.49  -11.72 
  (1.230)** (2.465)**  (1.280)** 
School  0.922 0.941  0.912 
  (0.062)** (0.122)**  (0.063) 
Black  -1.309 -1.513  -1.309 
  (0.270)** (0.550)**  (0.280)** 
Hispanic  -0.309 -0.447  -0.309 
  (0.246) (0.504)  (0.255) 

Time varying explanatory variables 
ΔExperience 1.000 1.000 1.000 1.000  
 (0.132)** (0.129)** (0.103)** (0.130)**  
ΔExperience2 -0.033 -0.031 -0.029 -0.033  
 (0.008)** (0.008)** (0.007)** (0.008)**  
ΔMarried 0.337 0.363 0.377 0.339  
 (0.280) (0.273) (0.225) (0.280)  
ΔUnion 1.004 0.988 0.995 0.983  
 (0.292)** (0.285)** (0.227)** (0.293)**  

Time-means of the time varying explanatory variables 
M: Experience 0.210 -0.102 -0.269  -0.029 
 (0.288) (0.281) (0.545)  (0.293) 
M: Experience2 -0.041 0.020 0.032  0.013 
 (0.016)* (0.020) (0.034)  (0.021) 
M: Married 1.959 1.297 1.406  1.317 
 (0.222)** (0.219)** (0.452)**  (0.230)** 
M: Union 2.831 3.086 3.318  3.107 
 (0.259)** (0.254)** (0.526)**  (0.268)** 

 

 

 




