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We develop a new quantile-based panel data framework to study the nature of income 
persistence and the transmission of income shocks to consumption. Log-earnings are the 
sum of a general Markovian persistent component and a transitory innovation. The 
persistence of past shocks to earnings is allowed to vary according to the size and sign of the 
current shock. Consumption is modeled as an age-dependent nonlinear function of assets 
and the two earnings components. We establish the nonparametric identification of the 
nonlinear earnings process and the consumption policy rule. Exploiting the enhanced 
consumption and asset data in recent waves of the Panel Study of Income Dynamics, we find 
nonlinear persistence and conditional skewness to be key features of the earnings process. 
We show that the impact of earnings shocks varies substantially across earnings histories, 
and that this nonlinearity drives heterogeneous consumption responses. The transmission of 
shocks is found to vary systematically with assets. 
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1 Introduction

Consumption decisions and earnings dynamics are intricately linked. Together with the net

value of assets, the size and durability of any income shock dictates how much consumption

will need to adjust to ensure a reasonable standard of living in future periods of the life-

cycle.1 Understanding the persistence of earnings is therefore of key interest not only because

it affects the permanent or transitory nature of inequality, but also because it drives much

of the variation in consumption. The precise nature of labor income dynamics and the

distribution of idiosyncratic shocks also plays a central role in the design of optimal social

insurance and taxation.2

With some notable exceptions (see the discussion and references in Meghir and Pistaferri,

2011), the literature on earnings dynamics has focused on linear models. The random walk

permanent/transitory model is a popular example (Abowd and Card, 1989). Linear mod-

els have the property that all shocks are associated with the same persistence, irrespective

of the household’s earnings history. Linearity is a convenient assumption, as it allows to

study identification and estimation using standard covariance techniques. However, by defi-

nition linear models rule out nonlinear transmission of shocks, and nonlinearities in income

dynamics are likely to have a first-order impact on consumption choices.

The existing literature on earnings shocks and consumption follows two main approaches.

One approach is to take a stand on the precise mechanisms that households use to smooth

consumption, for example saving and borrowing or labor supply, and to calibrate a fully-

specified life-cycle model to the data, see Gourinchas and Parker (2002), Guvenen and Smith

(2014), or Kaplan and Violante (2014), for example. Except in very special cases (as in Hall

and Mishkin, 1982) the consumption function is generally a complex nonlinear function of

earnings components.3 Another approach is to estimate the degree of “partial insurance”

from the data without precisely specifying the insurance mechanisms, see Blundell, Pistaferri

and Preston (2008) for example. Linear approximations to equilibrium conditions from the

optimization problem deliver tractable estimating equations. However, linear approxima-

1See, for example, Jappelli and Pistaferri (2010) and references therein.
2Golosov and Tsyvinski (2014) provide a recent review. In a dynamic Mirrlees tax design setting, optimal

labor distortions for unexpectedly high shocks are determined mainly by the need to provide intertemporal
insurance. Golosov et al. (2013) show that deviations from log normality can have serious repercussions for
capital and labor taxation.

3Interesting recent exceptions are Heathcote, Storesletten and Violante (2014) and the semi-structural
approach in Alan, Browning and Ejrnaes (2014).
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tions may not always be accurate (Kaplan and Violante, 2010). Moreover, some aspects of

consumption smoothing such as precautionary savings or asset accumulation in the presence

of borrowing constraints and nonlinear persistence are complex in nature, making a linear

framework less attractive.

In this paper we develop a new framework to study the nonlinear relationship between

shocks to household earnings and consumption over the life cycle. Our first contribution is

to build and estimate a nonlinear earnings process. In our framework, log-earnings are the

sum of a general Markovian persistent component and a transitory innovation. Our modeling

approach allows to capture the intuition that, unlike in linear models, different shocks may be

associated with different persistence. This approach provides a new dimension of persistence

where the impact of past shocks on current earnings may be altered by the size and sign

of new shocks. In other words, the future persistence of a current shock depends on future

shocks. For example, our framework allows for “unusual” shocks to wipe out the memory

of past shocks. Moreover, in our model the densities of persistent and transitory income

components are nonparametric and age-specific.

Allowing for nonlinear persistence, and more generally for flexible models of conditional

earnings distributions given past earnings, has both theoretical and empirical appeal. Job

ladder models suggest that earnings risk is asymmetric, job loss risk affecting workers at the

top of the ladder while workers at the bottom face opportunities to move up (Lise, 2013).

From an empirical perspective, “unusual” shocks could correspond to job losses, changes

of career, or health shocks. If such life-changing events are occasionally experienced by

households, one would expect their predictive probability distributions over future income

to feature nonlinear dynamic asymmetries.

Consider for example large, negative “unusual” income shocks, which not only have a

direct effect but also cancel out the persistence of a good income history. Using a parallel with

the macroeconomic literature on disaster risk, these shocks could be called “microeconomic

disasters”. While macroeconomic disasters could have potentially large effects on saving

behavior (Rietz, 1988, Barro, 2006), they are so unlikely that they are statistically elusive

events. In contrast, disasters at the micro level happen all the time to some individuals

and therefore their dynamic consequences may have clear-cut empirical content. The notion

of “micro disasters” is also interestingly related to Castañeda, Dı́az-Giménez and Ŕıos-Rull

(2003), who find that allowing for a substantial probability of downward risk for high-income
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households may help explain wealth inequality.4 Such features are prominent in the empirical

results that we report in this paper. They are also consistent with some recent results

independently obtained using administrative tax records (see Guvenen et al., 2015, and

references therein), and they are all at odds with linear models commonly used in the earnings

dynamics literature. Moreover, despite recent advances on models of distributional earnings

dynamics (for example Meghir and Pistaferri, 2004, or Botosaru and Sasaki, 2015), existing

models do not seem well-suited to capture the nonlinear transmission of income shocks that

we uncover in this paper.

Our second contribution is to develop an estimation framework to assess how consumption

responds to earnings shocks. In the baseline analysis we model the consumption policy

rule as an age-dependent nonlinear function of assets and the persistent and transitory

earnings components. We motivate our specification using a standard life-cycle model of

consumption and saving with incomplete markets (as in Huggett, 1993, for example). In this

model, as we illustrate through a small simulation exercise, a nonlinear earnings process with

dynamic skewness will have qualitatively different implications for the level and distribution

of consumption and assets over the life cycle in comparison to a linear earnings model.

The empirical consumption rule we develop is nonlinear, thus allowing for interactions be-

tween asset holdings and the earnings components. However, unlike fully specified structural

approaches we model the consumption rule nonparametrically, leaving functional forms un-

restricted. This flexible modeling approach allows to capture an array of response coefficients

that provides a rich picture of the extent of consumption insurance in the data. Moreover,

there is no need for approximation arguments as we directly estimate the nonlinear con-

sumption rule. We also show how to extend the baseline specification to allow for household

heterogeneity, and for advance information on earnings shocks and habits in consumption.

A virtue of our framework is its ability to produce new empirical quantities, such as non-

parametric marginal propensities to consume, that narrow the gap between policy-relevant

evidence and structural modeling.

In contrast to linear models, our nonlinear model of earnings and consumption cannot

be studied using standard techniques. New econometric methods are needed, beyond the

traditional covariance methods that have dominated the literature. As a result, a large part

of the paper is devoted to the econometric analysis. Nonparametric identification can be

4See also the recent work by Schmidt (2015), who emphasizes the asset pricing implications of income
risk asymmetries.
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established in our setup by building on a recent literature on nonlinear models with latent

variables. Identification of the earnings process builds on Hu and Schennach (2008) and

Wilhelm (2012).5 Identification of the consumption rule relies on novel arguments, which

extend standard instrumental-variables methods (as in Blundell et al., 2008, for example) to

our nonparametric setup.

An important goal of this paper is to devise a tractable estimation approach. To achieve

this, we combine quantile regression methods, which are well-suited to capture nonlinear

effects of earnings shocks, with semiparametric methods based on series expansions in bases

of functions, which are well-suited to model the dependence on conditioning variables (in our

case, past earnings components and arguments of the consumption function). To deal with

the presence of the latent earnings components, we use a sequential estimation algorithm that

consists in iterating between quantile regression estimation, and draws from the posterior

distribution of the latent persistent components of earnings. This flexible approach builds on

the methodology of Arellano and Bonhomme (2015), which we extend to a setup with time-

varying latent variables. Wei and Carroll (2009) introduced a related estimation strategy in

a cross-sectional context.

We take the model to data from the Panel Study of Income Dynamics (PSID) for 1999-

2009 and focus on working age families. Unlike earlier waves of the PSID, these data contain

enhanced information on asset holdings and consumption expenditures in addition to labor

earnings, see Blundell, Pistaferri and Saporta-Eksten (2012), for example. This is the first

household panel to include detailed information on consumption and assets across the life

cycle for a representative sample of households. Our modeling and estimation approach

makes full use of the availability of panel information on earnings, consumption and assets.

In addition, the quantile regression specifications that we use allow us to obtain rather precise

estimates, despite the flexibility of the model and the moderate sample size.

Our empirical results show that the impact of earnings shocks varies substantially across

households’ earnings histories, and that this nonlinearity is a key driver of heterogeneous

consumption responses. Earnings data show clear evidence of nonlinear persistence, where

“unusual” positive shocks for low earnings households, and negative shocks for high earnings

households, are associated with lower persistence than other shocks. Related to this, we find

that conditional log-earnings distributions are asymmetric, skewed to the right (respectively,

5Lochner and Shin (2014) rely on related techniques to establish identification of a different nonlinear
model of earnings.
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left) for households at the bottom (resp., top) of the income distribution. Although most

of our results are based on PSID data, we show that similar empirical patterns hold in

Norwegian administrative data. Regarding consumption, we find a high degree of insurability

of shocks to the transitory and persistent earnings components. We also uncover interesting

asymmetries in consumption responses to earnings shocks that hit households at different

points of the income distribution. Lastly, we find that assets play an important role in the

insurability of earnings shocks.

The fact that new (quantile-based) methods are able to uncover previously unknown

results in PSID survey data, and that these results also hold in administrative “big data”

sets, is important because PSID uniquely provides joint longitudinal data on wealth, income

and expenditures at household level.

The outline of the paper is as follows: In the next section we describe the earnings process

and develop our measure of nonlinear persistence. Section 3 lays out the consumption model

and defines a general representation of partial insurance to earnings shocks. In Section 4 we

establish identification of the baseline model and consider several extensions in Section 5.

Section 6 describes our estimation strategy and the panel dataset. In Section 7 we present

our empirical results. Section 8 concludes with a summary and some directions for future

research.

2 Model (I): Earnings process

We start by describing our nonlinear model of earnings dynamics. In the next section we

will present the consumption model.

2.1 The model

We consider a cohort of households, i = 1, ..., N , and denote as t the age of the household

head. Let Yit be the pre-tax labor earnings of household i at age t, and let yit denote log-Yit,

net of a full set of age dummies. We decompose yit as follows:
6

yit = ηit + εit, i = 1, ..., N, t = 1, ..., T, (1)

where the probability distributions of η’s and ε’s are absolutely continuous.

6Model (1) is additive in η and ε. Given our nonlinear approach, it is in principle possible to allow for
interactions between the two earnings components, for example in yit = Ht(ηit, εit) subject to some scaling
condition. Identification could then be established along the lines of Hu and Shum (2012).
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The first, persistent component ηit is assumed to follow a general first-order Markov

process. We denote the τth conditional quantile of ηit given ηi,t−1 as Qt(ηi,t−1, τ), for each

τ ∈ (0, 1). The following representation is then without loss of generality:

ηit = Qt(ηi,t−1, uit), (uit|ηi,t−1, ηi,t−2, ...) ∼ Uniform (0, 1), t = 2, ..., T. (2)

Note that, given that the PSID earnings data are recorded every other year, (2) is consistent

with both first or second-order Markov assumptions at the yearly frequency. The dependence

structure of the η process is not restricted beyond the first-order Markov assumption. The

identification assumptions will only require η’s to be dependent over time, without specifying

the degree of dependence.

The second, transitory component εit is assumed to have zero mean, and to be indepen-

dent over time and independent of ηis for all s. Even though more general moving average

representations are commonly used in the literature, the biennial nature of our data makes

this assumption more plausible. Model (1)-(2) is intended as a representation of the uncer-

tainty about persistent and transitory labor income in future periods that households face

when deciding how much to spend and save.

In Section 5 we show how our approach can be extended to allow for a moving average

ε component, provided additional time periods are available. We also show how to augment

the model to allow for an unobserved time-invariant household-specific effect in addition to

the two latent time-varying components η and ε.

Survey data like the PSID are often contaminated with errors (Bound et al., 2001). In the

absence of additional information, it is not possible to disentangle the transitory innovation

from classical measurement error. Thus, an interpretation of our estimated distribution of

εit is that it represents a mixture of transitory shocks and measurement error.7

Both earnings components are assumed mean independent of age t. However, the condi-

tional quantile functions Qt, and the marginal distributions of εit, may all depend on t. For a

given cohort of households, age and calendar time are perfectly collinear, so this dependence

may capture age effects as well as aggregate shocks. The distribution of the initial condition

ηi1 is left unrestricted.

7If additional information were available and the marginal distribution of the classical measurement error
were known, one could recover the distribution of εit using a deconvolution argument. The estimation
algorithm that we develop can be modified to deal with this case.
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An important special case of model (1)-(2) is obtained when

yit = ηit + εit, ηit = ηi,t−1 + vit, (3)

that is, when ηit follows a random walk. When vit is independent of ηi,t−1 and has cumulative

distribution function Ft, (2) becomes: ηit = ηi,t−1 + F−1
t (uit). We will refer to the random

walk plus independent shock as the canonical model of earnings dynamics.

2.2 Nonlinear dynamics

Model (1)-(2) allows for nonlinear dynamics of earnings. Here we focus on the ability of this

specification to capture nonlinear persistence, and general forms of conditional heteroskedas-

ticity.

Nonlinear persistence. Let us consider the following quantities

ρt(ηi,t−1, τ) =
∂Qt(ηi,t−1, τ)

∂η
, ρt(τ) = E

[
∂Qt(ηi,t−1, τ)

∂η

]
, (4)

where ∂Qt/∂η denotes the partial derivative of Qt with respect to its first component and

the expectation is taken with respect to the distribution of ηi,t−1.

The ρ’s in (4) are measures of nonlinear persistence of the η component. ρt(ηi,t−1, τ)

measures the persistence of ηi,t−1 when it is hit by a current shock uit that has rank τ .

This quantity depends on the lagged component ηi,t−1, and on the percentile of the shock τ .

Average persistence across η values is ρt(τ).

In the canonical model of earnings dynamics (3) where ηit is a random walk, ρt(ηi,t−1, τ) =

1 irrespective of ηi,t−1 and τ . In contrast, in model (2) the persistence of ηi,t−1 may depend

on the magnitude and direction of the shock uit. As a result, the persistence of a shock to

ηi,t−1 depends on the size and sign of current and future shocks uit, ui,t+1... In particular,

our model allows particular shocks to wipe out the memory of past shocks. Just as in a

job ladder model, an individual can face an increasing risk of a large fall in earnings, see

Lise (2013) for example. The interaction between the shock uit and the lagged persistent

component ηi,t−1 is a key feature of our nonlinear approach and, as we show below, it has

substantive implications for consumption decisions.

It is useful to consider the following specification of the quantile function

Qt(ηi,t−1, τ) = αt(τ) + βt(τ)
′h(ηi,t−1), (5)
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where h is a multi-valued function. Our empirical specification will be based on (5), taking

the components of h in a polynomial basis of functions capable of approximating any con-

tinuous function arbitrarily well as the number of polynomial terms increases. Persistence

and average persistence in (5) are, respectively,

ρt(ηi,t−1, τ) = βt(τ)
′
∂h(ηi,t−1)

∂η
, ρt(τ) = βt(τ)

′
E

[
∂h(ηi,t−1)

∂η

]
,

thus allowing shocks to affect the persistence of ηi,t−1 in a flexible way.8

Conditional heteroskedasticity. As model (2) does not restrict the form of the condi-

tional distribution of ηit given ηi,t−1, it allows for general forms of heteroskedasticity. In par-

ticular, a measure of period-t uncertainty generated by the presence of shocks to the persis-

tent earnings component is, for some τ ∈ (1/2, 1), σt(τ) = E
[
Qt(ηi,t−1, τ)−Qt(ηi,t−1, 1− τ)

]
.

For example, in the canonical model (3) with vit ∼ N (0, σ2
vt
), we have σt(τ) = 2σvtΦ

−1(τ).

An analogous measure of uncertainty generated by the transitory shocks is σεt(τ) = F−1
εt

(τ)−

F−1
εt

(1− τ), where Fεt denotes the cumulative distribution function of εit.
9

In addition, the model allows for conditional skewness and kurtosis in ηit. Along the

lines of the skewness measure proposed by Kim and White (2004), one can consider, for

some τ ∈ (1/2, 1),10

skt(ηi,t−1, τ) =
Qt(ηi,t−1, τ) +Qt(ηi,t−1, 1− τ)− 2Qt(ηi,t−1,

1
2
)

Qt(ηi,t−1, τ)−Qt(ηi,t−1, 1− τ)
. (6)

The empirical estimates below suggest that conditional skewness is a feature of the earnings

process.

Preliminary evidence on nonlinear persistence. Prima-facie evidence of nonlinearity

in the persistence of earnings can be seen from Figure 1. This figure plots estimates of

the average derivative, with respect to last period income yi,t−1, of the conditional quantile

8Regime-switching models that deliver asymmetric persistence are popular in the time series analysis of
business cycles. See for example Evans and Watchel (1993)’s model of inflation uncertainty and Teräsvirta
(1994) on smooth transition autoregressive models.

9The shock uit is a rank. A persistent shock of a magnitude comparable to ηit can be constructed, among
other ways, as ζit = Qt(mt, uit) where mt is the median of ηit.

10Similarly, a measure of conditional kurtosis is, for some α < 1− τ ,

kurt(ηi,t−1, τ , α) =
Qt(ηi,t−1, 1− α)−Qt(ηi,t−1, α)

Qt(ηi,t−1, τ)−Qt(ηi,t−1, 1− τ)
.
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Figure 1: Quantile autoregressions of log-earnings

(a) PSID data (b) Norwegian administrative data
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Note: Residuals yit of log pre-tax household labor earnings, Age 25-60 1999-2009 (US), Age 25-

60 2005-2006 (Norway). See Section 6 and Appendix A for the list of controls. Estimates of

the average derivative of the conditional quantile function of yit given yi,t−1 with respect to yi,t−1.

Quantile functions are specified as third-order Hermite polynomials.

Source: See Appendix A.

function of current income yit given yi,t−1. This average derivative effect is a measure of per-

sistence analogous to ρt in (4), except that here we use residuals yit of log pre-tax household

labor earnings on a set of demographics (including education and a polynomial in age) as

outcome variables. On the two horizontal axes we report the percentile of yi,t−1 (“τ init”),

and the percentile of the innovation of the quantile process (“τ shock”). For estimation we use

a series quantile specification, as in (5), based on a third-order Hermite polynomial.

This simple descriptive analysis not only shows the strong similarity in the patterns of

the nonlinearity of household earnings in both the PSID household survey data and in the

population register data from Norway. It also shows clear differences in the impact of an

innovation to the quantile process (τ shock) according to both the direction and magnitude

of τ shock and the percentile of the past level of income τ init. Persistence is highest when

high earnings households (that is, high τ init) are hit by a good shock (high τ shock), and

when low earnings households (that is, low τ init) are hit by a bad shock (low τ shock). In

both cases, estimated persistence is close to .9 – 1. In contrast, bad shocks hitting high-

earnings households, and good shocks hitting low-earnings ones, are associated with much

9



lower persistence, as low as .3 – .4. In Section 7 we will show that our nonlinear earnings

model that separates transitory shocks from the persistent component, estimated on the

PSID, reproduces the nonlinear persistence patterns of Figure 1.

3 Model (II): Consumption rule

In order to motivate our empirical specification of the consumption function, we start by

describing a standard life-cycle model of consumption and savings. In a simulated version of

the model we outline some possible implications for consumption and asset accumulation of

allowing for a nonlinear earnings specification. We then use this setup to derive the form of

the policy rule for household consumption, and describe the empirical consumption model

that we will take to the data.

3.1 A simple life-cycle model

We consider a simple theoretical framework where households act as single agents. Each

household enters the labor market at age 25, works until 60, and dies with certainty at age

95. Throughout their lifetime households have access to a single risk-free, one-period bond

whose constant return is 1 + r, and face a period to period budget constraint

Ait = (1 + r)Ai,t−1 + Yi,t−1 − Ci,t−1, (7)

where Ait, Yit and Cit denote assets, income and consumption, respectively.

Family log-earnings are given by lnYit = κt + ηit + εit, where κt is a deterministic age

profile, and ηit and εit are persistent and transitory earnings components, respectively. In

period t agents know ηit, εit and their past values, but not ηi,t+1 or εi,t+1, so there is no

advance information. All distributions are known to households, and there is no aggregate

uncertainty. After retirement, families receive social security transfers Y ss
i from the govern-

ment, which are functions of the entire realizations of labor income. Income is assumed not

to be subject to risk during retirement.

In each period t, the optimization problem is represented by

Vt(Ait, ηit, εit) = max
Cit

u(Cit) + βEt

[
Vt+1

(
Ai,t+1, ηi,t+1, εi,t+1

)]
, (8)

where u(·) is agents’ utility, and β is the discount factor. A key element in (8) is the condi-

tional distribution of the Markov component ηi,t+1 given ηit, which enters the expectation.
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Figure 2: Simulation exercise
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Notes: Dashed is based on the nonlinear earnings process (9)-(10); Solid is based on the canonical

earnings process (3).

For a nonlinear earnings model such as (1)-(2), the presence of “unusual” shocks to earnings

may lead to precautionary motives that induce high-income households to save more than

they would do under a linear (“canonical”) earnings model. Even with certainty equivalent

preferences, under model (1)-(2) the discounting applied to persistent shocks will be state

dependent. In Appendix B we illustrate these theoretical insights in a two-period version

of the model. Before describing how we empirically specify the consumption rule, we first

present an illustrative simulation to outline some possible implications on consumption and

assets of nonlinearity in income in this standard model.

Simulation exercise. To simulate the model we follow Kaplan and Violante (2010).

Agents’ utility is CRRA with risk aversion γ = 2. The interest rate is r = 3% and the

11



discount factor is β = 1/(1 + r) ≈ .97. We consider the following process for ηit:

ηit = ρt(ηi,t−1, vit)ηi,t−1 + vit, (9)

and we compare two specifications. In the first specification, ρt = 1 (and vit is normally

distributed), which corresponds to the “canonical” earnings model used by Kaplan and Vi-

olante. In the second specification, nonlinear persistence in income is approximated through

a simple switching process:

ρt
(
ηi,t−1, vi,t

)
= 1− δ

(
1
{
ηi,t−1 < −dt−1

}
1 {vit > bt}+ 1

{
ηi,t−1 > dt−1

}
1 {vit < −bt}

)
,

(10)

where, at each age t, dt is set so that |ηit| > dt with probability τ , and bt is set so that

|vit| > bt with probability τ . In model (9)-(10), the persistence of the η process is equal

to one unless an “unusual” positive shock v hits a low income household or an “unusual”

negative shock v hits a high income household, leading persistence to drop to 1 − δ = .8.

The latter happens with probability τ = .15 in every period. This simple parametric process

is designed to roughly approximate the earnings process that we estimate on PSID data, see

Section 7.

The simulation results are presented in Figure 2. The upper panel shows a clear quali-

tative implication of the nonlinear earnings process is to reduce consumption among those

on higher incomes. A negative shock for those on higher incomes reduces the persistence

of the past and consequently is more damaging in terms of expected future incomes. This

induces higher saving and lower consumption at younger ages. The lower panel shows that

the nonlinear model also results in a higher consumption variance among older households

and steeper accumulation and subsequent decumulation of assets over the life cycle. These

simulation results provide further motivation for the use of a nonlinear earnings model to

study consumption dynamics. In the next subsection we describe the consumption rule that

we take to the data.

3.2 Deriving a consumption rule

In a life-cycle model with uncertainty such as the one outlined in the previous subsection,

the consumption rule is of the form

Cit = Gt (Ait, ηit, εit) , (11)
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for some age-dependent function Gt. We will base our empirical specification on (11). The

consumption rule will be of this nonparametric form provided the state variables at time t are

period-t assets and the latent earnings components. As we show in Section 5, our approach

may be extended to allow for habits or advance information, through simple modifications

of the vector of state variables.11

In documenting dynamic patterns of consumption and earnings, one strategy is to take a

stand on the functional form of the utility function and the distributions of the shocks, and

to calibrate or estimate the model’s parameters by comparing the model’s predictions with

the data. Another strategy is to linearize the Euler equation, with the help of the budget

constraint; with a linear approximated problem at hand, standard covariance-based methods

may be used for estimation. Our approach differs from those strategies as we directly estimate

the nonlinear consumption rule (11). Doing so, we avoid linearized first-order conditions, and

we estimate a flexible rule that is consistent with the life-cycle consumption model outlined

in the previous subsection. This approach allows to document a rich set of derivative effects,

thus shedding light on the patterns of consumption responses in the data.

An empirical consumption rule. Consider a cohort of households. Let cit denote log-

consumption net of a full set of age dummies. Similarly, let ait denote assets net of age

dummies. Our empirical specification is based on

cit = gt (ait, ηit, εit, νit) , t = 1, ..., T, (12)

where νit are independent across periods and independent of (ait, ηit, εit), and gt is monotone

in ν. An economic interpretation for ν is as a taste shifter that increases marginal utility.

In the single-asset life-cycle model of Subsection 3.1 monotonicity is implied by the Bellman

equation, provided ∂u(C,ν′)
∂C

> ∂u(C,ν)
∂C

for all C if ν ′ > ν. Without loss of generality we

normalize the marginal distribution of νit to be standard uniform in each period. From an

empirical perspective the presence of the taste shifters νit in the consumption rule (12) may

also partly capture measurement error in consumption expenditures.

Clearly, the net assets variable ait is not exogenous. In the next section we explain the

stochastic assumptions under which gt is identified.

11There could also be additional borrowing constraints in each period. In that case, the nonparametric
consumption rule in (11) would no longer be differentiable.
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Derivative effects of persistent and transitory income. Average consumption, for

given values of asset holdings and earnings components, is

E [cit|ait = a, ηit = η, εit = ε] = E [gt (a, η, ε, νit)] .

Our framework allows to document how average consumption varies as a function of assets

and the two earnings components, and over the life cycle. In particular, the average derivative

of consumption with respect to η is

φt(a, η, ε) = E

[
∂gt (a, η, ε, νit)

∂η

]
, (13)

while the average derivative with respect to ε is

ψt(a, η, ε) = E

[
∂gt (a, η, ε, νit)

∂ε

]
. (14)

The parameters φt(a, η, ε) and ψt(a, η, ε) reflect the degree of insurability of shocks to

the persistent and transitory earnings components, respectively. We will document how they

vary over the life cycle, and how they depend on households’ asset holdings, by reporting

estimates of the following average derivative effects:

φt(a) = E [φt(a, ηit, εit)] , ψt(a) = E [ψt(a, ηit, εit)] . (15)

Dynamic effects of earnings shocks on consumption. Other measures of interest are

the effects of an earnings shock uit to the η component on consumption profile ci,t+s, s ≥ 0.

For example, the contemporaneous effect can be computed, using the chain rule and equation

(13), as

E

[
∂

∂u

∣∣∣
u=τ

gt (a,Qt(η, u), ε, νit)

]
= φt (a,Qt(η, τ), ε)

∂Qt(η, τ)

∂u
.

This derivative effect depends on η through the insurance coefficient φt, but also through the

quantity ∂Qt(η,τ)
∂u

as the earnings model allows for general forms of conditional heteroskedas-

ticity and skewness.

In the empirical analysis we will report finite-difference counterparts to these derivative

effects (“impulse responses”), and document strong asymmetries in the effect of earnings

shocks on consumption at different points of the income distribution.
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4 Identification

The earnings and consumption models take the form of nonlinear state-space models. A

series of recent papers (notably Hu and Schennach, 2008, and Hu and Shum, 2012) has

established conditions under which nonlinear models with latent variables are nonparamet-

rically identified under conditional independence restrictions. Here we rely on techniques

developed in this literature in order to establish identification of the models we consider.

4.1 Earnings process

Consider model (1)-(2), where ηit is a Markovian persistent component and εit are indepen-

dent over time. We assume that the data contain T consecutive periods, t = 1, ..., T . So,

for a given cohort of households, t = 1 corresponds to the age at which the household head

enters the sample, and t = T corresponds to the last period of observation.12 For that co-

hort, our aim is to identify the joint distributions of (ηi1, ..., ηiT ) and (εi1, ..., εiT ) given i.i.d.

data from (yi1, ..., yiT ). In the following, all conditional and marginal densities are assumed

to be bounded away from zero and infinity. With some abuse of notation, in the absence of

ambiguity we use f(a|b) as a generic notation for the conditional density fA|B(a|b), and for

simplicity we omit the i index in density arguments.

Operator injectivity. The identification arguments below rely on the concept of operator

injectivity, which we now formally define. A linear operator L is a linear mapping from a

functional space H1 to another functional space H2. L is injective if the only solution h ∈ H1

to the equation Lh = 0 is h = 0.

One special case of operator injectivity (“deconvolution”) obtains when Yi2 = Yi1 + ǫi1,

with Yi1 independent of ǫi1, and [Lh](y2) =
∫
h(y1)fǫ1(y2 − y1)dy1. L is then injective

if the characteristic function of ǫi1 has no zeros on the real line. The normal and many

other standard distributions satisfy this property.13 If the marginal distributions fY2
and fǫ1

are known, injectivity implies that h = fY1
is the only solution to the functional equation

∫
h(y1)fǫ1(y2 − y1)dy1 = fY2

(y2). In other words, fY1
is identified from the knowledge of fY2

and fǫ1 .

12We consider a balanced panel for simplicity but our arguments can be extended to unbalanced panels.
13Injectivity also holds if the zeros of the characteristic function of ǫi1 are isolated. See Carrasco and

Florens (2011) and Evdokimov and White (2012).
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Another, important special case of operator injectivity (“completeness”) is obtained when

L is the conditional expectation operator associated with the distribution of (Yi1|Yi2), in

which case [Lh](y2) = E [h(Yi1) |Yi2 = y2]. L being injective is then equivalent to the dis-

tribution of (Yi1|Yi2) being complete. Completeness is commonly assumed in nonparametric

instrumental variables problems, see Newey and Powell (2003). While completeness is a

high-level assumption, recent work provides primitive conditions for it in specific cases; see

D’Haultfoeuille (2011) and Andrews (2011).

Building block for identification. To establish nonparametric identification of the earn-

ings process, we rely on results from Hu and Schennach (2008) and Wilhelm (2012). In the

context of a panel data model with measurement error, Wilhelm (2012) provides conditions

under which the marginal distribution of εi2 is identified, given three periods of observations

(yi1, yi2, yi3). We provide a brief summary of the identification argument used by Wilhelm

in Appendix C.

The key condition that underlies identification in this context is the fact that, in the

earnings model with T = 3, log-earnings (yi1, yi2, yi3) are conditionally independent given

ηi2.
14 This “Hidden Markov” structure fits into the general setup considered in Hu and

Schennach (2008). Hu (2015) provides a recent survey of applications of this line of work.

The identification of the marginal distribution of εi2 is derived under several high-level

assumptions. In particular, it requires that the distributions of (yi2|yi1) and (ηi2|yi1) both

satisfy completeness conditions. This requires that ηi1 and ηi2 be statistically dependent,

albeit without specifying the form of that dependence. An intuition for this is that if η’s

were independent over time there would be no way to distinguish them from the transitory

ε’s.

Identification of the earnings process. Returning to the earnings dynamics model (1)-

(2), let now T ≥ 3. Suppose that the conditions in Wilhelm (2012) are satisfied on each of

the three-year subpanels t ∈ {1, 2, 3} to t ∈ {T − 2, T − 1, T}. It follows from Wilhelm’s

result that the marginal distributions of εit are identified for all t ∈ {2, 3, ..., T −1}. By serial

independence of the ε’s, the joint distribution of (εi2, εi3, ..., εi,T−1) is thus also identified.

Hence, if the characteristic functions of εit do not vanish on the real line, then by a

deconvolution argument the joint distribution of (ηi2, ηi3, ..., ηi,T−1) is identified. As a result,

14Indeed, f(y1, y2, y3|η2) = f(y1|η2)f(y2|η2, y1)f(y3|η2, y2, y1) = f(y1|η2)f(y2|η2)f(y3|η2).
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all Markov transitions fηt|ηt−1
are identified for t = 3, ..., T −1, and the marginal distribution

of ηi2 is identified as well (so we need T ≥ 4 to identify at least one Markov transition).

Moreover, it is easy to show that the conditional distributions of ηi2|yi1 and yiT |ηi,T−1 are

identified.15

Note that, in the case where εi1, ..., εiT have the same marginal distribution, then the

distributions of the initial and terminal components εi1, ηi1, and εiT , ηiT are also identified.

However, the first and last-period distributions are generally not identified in a fully non-

stationary setting. In the empirical analysis we will impose time-stationary restrictions, and

pool different cohorts of households together in order to identify the distributions of η’s and

ε’s at all ages, see Section 6.

4.2 Consumption rule

Let us now turn to the identification of the consumption rule (12). We make the following

assumptions, where we denote zti = (zi1, ..., zit).

Assumption 1 For all t ≥ 1,

i) ui,t+s and εi,t+s, for all s ≥ 0, are independent of ati, η
t−1
i , and yt−1

i . εi1 is independent

of ai1 and ηi1.

ii) ai,t+1 is independent of (at−1
i , ct−1

i , yt−1
i , ηt−1

i ) conditional on (ait, cit, yit, ηit).

iii) the taste shifter νit in (12) is independent of ηi1, (uis, εis) for all s, νis for all s 6= t,

and ati.

Part i) in Assumption 1 requires current and future earnings shocks, which are indepen-

dent of past components of earnings, to be independent of current and past asset holdings

as well. At the same time, we let ηi1 and ai1 be arbitrarily dependent. This is important,

because asset accumulation upon entry in the sample may be correlated with past earnings

shocks.

Part ii) in Assumption 1 is a first-order Markov condition on asset accumulation. It is

satisfied in a standard life-cycle model with one single risk-less asset, see equation (7). The

assumption also holds in such a model when the interest rate rt is time-varying and known

15Indeed we have fy2|y1
(y2|y1) =

∫
fε2(y2 − η2)fη2

|y1
(η2|y1)dη2. Hence, as the characteristic function of

εi2 is non-vanishing, fη
2
|y1

(·|y1) is identified for given y1. A similar argument shows that fyT |η
T−1

(yT |·) is
identified for given yT .
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to households. More generally, the assumption allows the latent components of earnings ηit

and εit to affect asset holdings separately.

Lastly, part iii) in Assumption 1 requires taste shifters to be independent over time, inde-

pendent of earnings components, and independent of current and past assets. In particular,

this rules out the presence of unobserved heterogeneity in consumption. We will relax this

condition in Section 5.

The identification argument proceeds in a sequential way, starting with period 1.

First period’s assets. Let us start by analyzing period t = 1. Letting yi = (yi1, ..., yiT ),

we have

f(a1|y) =

∫
f(a1|η1)f(η1|y)dη1, (16)

where we have used that, by Assumption 1i), f(a1|η1, y) and f(a1|η1) coincide. We can

rewrite (16) as

f(a1|y) = E [f(a1|ηi1) | yi = y] , (17)

where the expectation is taken with respect to the density of ηi1 given yi, for a fixed value

a1.

Hence, provided the distribution of (ηi1|yi) (which is identified from the earnings process,

see Subsection 4.1) is complete, the density f(a1|η1) is identified from (17). We will return

below to the requirement that f(η1|y) be complete. In fact, given that we are working

with bounded density functions, it is sufficient that the distribution of (ηi1|yi) be boundedly

complete; see Blundell, Chen and Kristensen (2007) for analysis and discussion. Note also

that, under bounded completeness, the density f(a1, η1|y) = f(a1|η1)f(η1|y) is identified.

First period’s consumption. We have, using the consumption rule and Assumption

1iii),

f(c1|a1, y) =

∫
f(c1|a1, η1, y1)f(η1|a1, y)dη1, (18)

or equivalently

f(c1|a1, y) = E [f(c1|ai1, ηi1, yi1) | ai1 = a1, yi = y] , (19)

where the conditional expectation is taken at fixed c1. Under completeness in (yi2, ..., yiT )

of the distribution of (ηi1|ai1, yi) (which is identified from the previous paragraph),16 the

16Here by completeness in Yi2 of the distribution of (Yi1|Yi2, Xi) we mean that the only solution to
E [h(Yi1, Xi)|Yi2, Xi] = 0 is h = 0. This is the same as (Yi1, Xi)|(Yi2, Xi) being complete. Note that,
similarly as before, the weaker condition of bounded completeness suffices.
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densities f(c1|a1, η1, y1) and f(c1, η1|a1, y) are thus identified.

Second period’s assets. Turning to period 2 we have, using Assumption 1i) and iii),

f(a2|c1, a1, y) =

∫
f(a2|c1, a1, η1, y1)f(η1|c1, a1, y)dη1, (20)

from which it follows that the density f(a2|c1, a1, η1, y1) is identified, provided the distri-

bution of (ηi1|ci1, ai1, yi) (which is identified from the previous paragraph) is complete in

(yi2, ..., yiT ).

In addition, using Bayes’ rule and Assumption 1i) and iii),

f(η2|a2, c1, a1, y) =

∫
f(y|η1, η2, y1)f(η1, η2|a2, c1, a1, y1)

f(y|a2, c1, a1, y1)
dη1.

So, as the density f(η1|a2, c1, a1, y1) is identified from above, and as by Assumption 1

f(η1, η2|a2, c1, a1, y1) = f(η1|a2, c1, a1, y1)f(η2|η1), it follows that f(η2|a2, c1, a1, y) is iden-

tified.

Subsequent periods. To see how the argument extends to subsequent periods, consider

second period’s consumption. We have, using Assumption 1iii),

f(c2|a2, c1, a1, y) =

∫
f(c2|a2, η2, y2)f(η2|a2, c1, a1, y)dη2. (21)

Provided the distribution of (ηi2|ai2, ci1, ai1, yi) (which is identified from the previous para-

graph) is complete in (ci1, ai1, yi1, yi3, ..., yiT ), the density f(c2|a2, η2, y2) is identified.

By induction, using in addition Assumption 1ii) from the third period onward, the joint

density of η’s, consumption, assets, and earnings is identified provided, for all t ≥ 1, the dis-

tributions of (ηit|c
t
i, a

t
i, yi) and (ηit|c

t−1
i , ati, yi) are complete in (ct−1

i , at−1
i , yt−1

i , yi,t+1, ..., yiT ).

Discussion. An intuitive explanation for the identification argument comes from the link

to the nonparametric instrumental variables (NPIV) literature, see for example Newey and

Powell (2003). In period 1, for a fixed a1, (17) is analogous to an NPIV problem where

ηi1 is the endogenous regressor and yi = (yi1, ..., yiT ) is the vector of instruments. Likewise,

conditional on (ai1, yi1), (yi2, ..., yiT ) are the “excluded instruments” for ηi1 in (19). Using

leads of log-earnings for identifying consumption responses is a common strategy in linear

models, see for example Hall and Mishkin (1982) and Blundell et al. (2008). In subsequent

periods, lagged consumption and assets are used as instruments, together with lags and leads
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of earnings. Again, this strategy is a familiar one in linear models. Here we generalize it to

deal with nonlinear, nonparametric models of earnings, consumption and assets.

The identification arguments depend on (bounded) completeness conditions, which relate

to the relevance, in a nonparametric sense, of the instruments. To illustrate this, consider

the completeness of the distribution of (ηi1|yi) in (yi2, ..., yiT ), which we use to show the

identification of the consumption rule in the first period, see (19). Here we abstract from

assets for simplicity. The completeness condition then depends on the properties of the

earnings process. As an example, consider the case where T = 2, and (ηi1, yi1, yi2) follows a

multivariate normal distribution with zero mean. Then ηi1 = αyi1 + βyi2 + ζ i, where ζ i is

normal (0, σ2), independent of (yi1, yi2). It can be easily shown that β 6= 0 if Cov(ηi1, ηi2) 6= 0,

in which case the distribution of (ηi1|yi1, yi2) is complete in yi2.
17 As in the identification of

the earnings process, identification of the consumption rule thus relies on η’s being dependent

over time.

5 Extensions

In this section we introduce several extensions of the baseline model. We start by show-

ing how to incorporate household unobserved heterogeneity. Even if a fully unstructured

distinction between unobserved heterogeneity and individual dynamics in a finite horizon

panel is not possible, finite-dimensional fixed effects can be included nonparametrically in

the consumption and earnings equations as long as T is sufficiently large.

5.1 Household heterogeneity

In the baseline model, households differ ex-ante in their earnings due to heterogeneous

initial conditions ηi1 and level of assets ai1. In contrast, the consumption rule is fully ho-

mogeneous. As accounting for unobserved heterogeneity in preferences or discounting, for

example, may be empirically important, we now develop an extension of the model that

allows for a household-specific effect ξi.
18 With unobserved heterogeneity the consumption

17Denoting as φ the standard Gaussian density, taking Fourier transforms (for a fixed y1 value) in

∫ ∞

−∞

g(η1, y1)
1

σ
φ

(
η1 − αy1 − βy2

σ

)
dη1 = 0

yields g(·, y1) = 0, provided β 6= 0.
18Heterogeneity in discount factors is also a popular mechanism in quantitative macro models to generate

realistic wealth inequality. See for example Krusell and Smith (1998), and Krueger, Mitman and Perri (2015).
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rule takes the form

cit = gt (ait, ηit, εit, ξi, νit) , t = 1, ..., T. (22)

For simplicity we consider scalar heterogeneity ξi. Depending on the number of available

time periods, a vector of unobserved heterogeneity could be allowed for.

We make the following assumption.

Assumption 2

i) ui,t+s and εi,t+s, for all s ≥ 0, are independent of ati, η
t−1
i , yt−1

i , and ξi. εi1 is indepen-

dent of ai1, ηi1 and ξi.

ii) ai,t+1 is independent of (at−1
i , ct−1

i , yt−1
i , ηt−1

i ) conditional on (ait, cit, yit, ηit, ξi).

iii) the taste shifter νit in (22) is independent of ηi1, (uis, εis) for all s, νis for all s 6= t,

ati, and ξi.

In a similar spirit as Assumption 1, Assumption 2 leaves the distribution of (ξi, ηi1, ai1)

unrestricted. Therefore, ξi is treated as a “fixed effect”.

The identification strategy proceeds in two steps. First we have, by Assumption 2i) and

iii), for all t ≥ 1,

f(ct, at|y) =

∫
f(ct, at|ηt, yt)f(ηt|y)dηt,

or, equivalently,

f(ct, at|y) = E
[
f(ct, at|ηti, y

t
i) | yi = y

]
,

where the expectation is taken for fixed (ct, at). Let t = 3. f(c3, a3|η3, y3) is thus identified,

provided the distribution of (η3i |yi) is boundedly complete in (yi4, ..., yiT ). In particular, this

argument requires that T ≥ 6.

For the second step, we note that, by Assumption 2,

f(c3, a3|η3, y3) =

∫
f(a1, c1, a2|η1, y1, ξ)f(c2, a3|a2, η2, y2, ξ)f(c3|a3, η3, y3, ξ)f(ξ|η

3, y3)dξ.

(23)

For fixed (a3, η3, y3), equation (23) is formally analogous to the nonlinear instrumental vari-

ables set-up of Hu and Schennach (2008). Hence the consumption rules, the asset evolution

distributions, and the distribution of the latent heterogeneous component ξi, will all be non-

parametrically identified under the conditions of Hu and Schennach’s main theorem. These

conditions include injectivity/completeness conditions analogous to the ones we have used

21



in the baseline model, as well as a scaling condition. For example, in a consumption model

that is additive in νit (as in our empirical application), a possible scaling condition (and the

one we use) is that the mean of ci3, conditional on ξi and some values of (ai3, ηi3, yi3), is

increasing in ξi. In that case identification is to be understood up to an increasing transfor-

mation of ξi.
19 Consumption rules and asset distributions for t ≥ 4 can then be identified

by relying on additional periods or, alternatively, under time-stationarity assumptions by

pooling information from different cohorts (see Section 6).

Unobserved heterogeneity in earnings. It is possible to allow for unobserved hetero-

geneity in earnings as well, in addition to heterogeneity in the initial condition ηi1. Specifi-

cally, let ηit be a first-order Markov process conditional on another latent component ζ i:

ηit = Qt(ηi,t−1, ζ i, uit), (24)

where uit is i.i.d. standard uniform, independent of ηt−1
i and ζ i. εit is independent over time,

independent of ηis for all s, and independent of ζ i.

With a vector-valued ζ i, (24) would nest linear earnings models with slope heterogeneity

as in Guvenen (2007) and Guvenen and Smith (2014), for example. A simpler case is our

baseline model (1)-(2) augmented with a household-specific fixed-effect, that is

yit = ηit + ζ i + εit, (25)

where ηit + ζ i = Qt(ηi,t−1, uit) + ζ i is first-order Markov conditional on ζ i.

Consider the scalar-ζ i case for concreteness, and take T = 5. In this model, (yi1, yi2), yi3,

and (yi4, yi5) are conditionally independent given (ηi3, ζ i).
20 By Hu and Schennach (2008)’s

theorem, for bivariate latent (ηi3, ζ i), and under suitable injectivity conditions, the marginal

distribution of εi3 is thus identified given five periods of earnings data. As a result, the

joint density of η’s is identified by a similar argument as in Section 4. Identification of the

densities of ζ i and of ηit given (ηi,t−1, ζ i) can then be shown along the lines of Hu and Shum

19Arellano and Bonhomme (2015) apply Hu and Schennach (2008)’s results to a class of nonlinear panel
data models.

20Indeed,

f(y1, y2, y3, y4, y5|η3, ζ) = f(y1, y2|η3, ζ)f(y3|η3, ζ, y1, y2)f(y4, y5|η3, ζ, y3, y2, y1)

= f(y1, y2|η3, ζ)f(y3|η3, ζ)f(y4, y5|η3, ζ).
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(2012), under a suitable scaling condition. A scaling condition is implicit in equation (25),

which is the model we implement.

5.2 Additional extensions

Here we briefly consider extensions of the setup to allow for dependence in the ε’s, advance

information, and habit formation. We focus on identification. The estimation strategy

outlined in the next section can be modified to handle each of these extensions.

Dependence in the transitory earnings component. In the baseline model εit are

independent over time. It is possible to allow for serial dependence while maintaining iden-

tification. To see this, consider the setup where εit is an m-dependent process with m = 1

(for example, an MA(1) process), and consider a panel with T ≥ 5 periods. Then it is easy

to see that yi1, yi3 and yi5 are conditionally independent given ηi3. As a result, identification

arguments based on “Hidden Markov” structures (Hu and Schennach, 2008, Wilhelm, 2012)

can be applied.

Advance information. If households have advance information about future earnings

shocks, the consumption rule (12) takes future earnings components as additional arguments,

see Blundell et al. (2008). For example, consider a model where households know the

realization of the one-period-ahead persistent component, in which case

cit = gt
(
ait, ηit, ηi,t+1, εit, νit

)
, t = 1, ..., T − 1. (26)

Identification can be established using similar arguments as in the baseline model. To see

this, consider first period’s consumption. We have

f(c1|a1, y) =

∫ ∫
f(c1|a1, η1, η2, y1)f(η1, η2|a1, y)dη1dη2.

It can be shown that f(η1, η2|a1, y) is identified under completeness in (yi2, ..., yiT ) of the

distribution of (ηi1, ηi2|yi), using the earnings process and first period’s assets. If the distri-

bution of (ηi1, ηi2|ai1, yi) is complete in (yi2, ..., yiT ) it thus follows that f(c1|a1, η1, η2, y1) is

identified. In this case we need at least two “excluded instruments” in yi for (ηi1, ηi2). The

other steps in the identification arguments of Section 4 can be similarly adapted.

Lastly, similar arguments can be used to show identification in models where households

have advance information about future transitory shocks εi,t+s, as well as in models where
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the consumption rule depends on lags of η’s or ε’s, for example in models where ηit follows

a higher-order Markov process.

Consumption habits. In the presence of habits, the consumption rule takes the form

cit = gt (ci,t−1, ait, ηit, εit, νit) , t = 2, ..., T. (27)

Identification can be shown under similar conditions as in Section 4. For example, in the

second period equation (21) becomes

f(c2|c1, a2, a1, y) =

∫
f(c2|c1, a2, η2, y2)f(η2|c1, a2, a1, y)dη2.

Provided the distribution of (ηi2|ci1, ai2, ai1, yi) is identified, and that it is complete in

(ai1, yi1, yi3, ..., yiT ), it thus follows that the density f(c2|c1, a2, η2, y2) is identified. Intu-

itively, in the presence of habits the first lag of consumption cannot be used as an “excluded

instrument” as it affects period-t consumption directly.

6 Data and estimation strategy

6.1 Data

Panel data on consumption, income and assets are rare. The PSID began the collection

of detailed data on consumption expenditures and asset holdings in 1999, in addition to

household earnings and demographics. An annual wave is available every other year. We

use data for the 1999-2009 period (six waves).

Earnings Yit are total pre-tax household labor earnings. We construct yit as residuals from

regressing log household earnings on a set of demographics, which include cohort interacted

with education categories for both household members, race, state and large-city dummies, a

family size indicator, number of kids, a dummy for income recipient other than husband and

wife, and a dummy for kids out of the household. Controls for family size and composition are

included so as to equivalize household earnings (likewise for consumption and assets below).

Education, race and geographic dummies are included in an attempt to capture individual

heterogeneity beyond cohort effects and the initial persistent component of earnings ηi1.
21

21Removing demographic-specific means in a preliminary step has been the standard practice in the em-
pirical analysis of earnings dynamics. A more satisfactory approach would integrate both steps, specially
given our emphasis on nonlinearities. However, except for age, we did not attempt a richer conditioning in
light of sample size.

24



We use data on consumption Cit of nondurables and services. The panel data contain

information on health expenditures, utilities, car-related expenditures and transportation,

education, and child care. Recreation, alcohol, tobacco and clothing (the latter available

from 2005) are the main missing items. Rent information is available for renters, but not for

home owners. We follow Blundell, Pistaferri and Saporta-Eksten (2012) and impute rent ex-

penditures for home owners.22 In total, approximately 67% of consumption expenditures on

nondurables and services are covered. We construct cit as residuals of log total consumption

on the same set of demographics as for earnings.

Asset holdings Ait are constructed as the sum of financial assets (including cash, stocks

and bonds), real estate value, pension funds, and car value, net of mortgages and other

debt. We construct residuals ait by regressing log-assets on the same set of demographics

as for earnings and consumption. These log-assets residuals will enter as arguments of the

nonlinear consumption rule (12).

To select the sample we follow Blundell et al. (2012) and focus on a sample of partici-

pating and married male heads aged between 25 and 60. We drop all observations for which

data on earnings, consumption, or assets, either in levels or log-residuals, are missing. See

Appendix A for further details. In the analysis we focus on a balanced subsample of N = 792

households.

Table 1 shows mean total earnings, consumption and asset holdings, by year. Compared

to Blundell et al. (2012), households in our balanced sample have higher assets, and to a less

extent higher earnings and consumption. We also can see a large and increasing dispersion

of assets across households. The evolution of assets may partly reflect the housing boom

and bust, including the effect of the Great recession at the end of the sample. Although our

framework could be used to document distributional dynamics along the business cycle, we

abstract from business cycle effects in this paper.

Lastly, the sample that we use is relatively homogeneous. Including households with

less stable employment histories would be interesting, but it would require extending our

framework. We return to this point in the conclusion.

22Note that, as a result, consumption responds automatically to variations in house prices. An alternative
would be to exclude rents and imputed rents from consumption expenditures.
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Table 1: Descriptive statistics

1999 2001 2003 2005 2007 2009

Earnings
Mean 87,120 93,777 96,289 98,475 103,442 102,893
10% 34,863 37,532 36,278 35,005 35,533 31,992
25% 50,709 53,000 52,975 54,696 53,813 52,451
50% 73,423 77,000 76,576 78,944 80,292 79,181
75% 102,211 106,000 105,292 109,391 113,604 112,607
90% 145,789 152,000 150,280 154,971 171,688 163,879

Consumption
Mean 30,761 34,784 37,553 43,199 44,511 40,598
10% 15,804 17,477 18,026 20,365 21,634 20,008
25% 20,263 21,786 22,834 26,322 28,341 26,167
50% 26,864 29,366 31,924 37,381 38,704 34,570
75% 36,887 41,030 45,071 51,529 53,239 47,300
90% 48,977 53,870 62,864 73,338 73,715 67,012

Assets
Mean 224,127 283,539 311,664 387,830 447,323 406,290
10% 19,016 26,100 28,494 38,287 41,854 33,592
25% 48,095 59,600 69,397 83,137 101,005 85,179
50% 114,096 137,500 159,230 191,663 217,599 188,354
75% 248,000 301,750 345,549 413,955 489,224 384,625
90% 535,827 586,000 654,437 830,462 939,583 867,786

Notes: Balanced subsample from PSID, 1999-2009. N = 792, T = 6. In 2001 dollars.
Source: See Appendix A.
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6.2 Empirical specification

Earnings components. The earnings model depends on the Markovian transitions of the

persistent component Qt(·, ·), the marginal distributions of εit, and the marginal distribution

of the initial persistent component ηi1. We now explain how we empirically specify these

three components.

Let ϕk, for k = 0, 1, ..., denote a dictionary of bivariate functions, with ϕ0 = 1. Letting

ageit denote the age of the head of household i in period t, we specify

Qt(ηi,t−1, τ) = Q(ηi,t−1, ageit, τ)

=
K∑

k=0

aQk (τ)ϕk(ηi,t−1, ageit). (28)

In practice we use lower-order products of Hermite polynomials for ϕk.

We specify the quantile function of εit (for t = 1, ..., T ) given ageit, and that of ηi1 given

age at the start of the period agei1, in a similar way. Specifically, we set

Qε(ageit, τ) =
K∑

k=0

aεk(τ)ϕk(ageit),

Qη
1
(agei1, τ) =

K∑

k=0

a
η1
k (τ)ϕk(agei1),

with outcome-specific choices for K and ϕk.

The series quantile model (28) provides a flexible specification of the conditional distri-

bution of ηit given ηi,t−1 and age. Similarly, our quantile specifications flexibly model how

εit and ηi1 depend on age, at every quantile. We include the age of the household head as

a control, while ruling out dependence on calendar time. This choice is motivated by our

desire to model life-cycle evolution, as well as by the relative stationarity of the earnings dis-

tributions (conditional on age) during the 1999-2009 period that we consider. The functional

form in (28) does not enforce monotonicity in τ but our estimation method will produce an

automatic rearrangement of quantiles if needed.

Note that the identification argument of Section 4.1 allows to nonparametrically recover,

for each cohort entering the sample at age j, the distributions of ε at ages j+2, j+4, j+6,

and j + 8 (based on biennial data). In our dataset, j belongs to {25, ..., 50}. Pooling across

cohorts, we obtain that the distributions of ε are nonparametrically identified at all ages

between 27 and 58 years. In turn, the joint distribution of η’s is nonparametrically identified
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in this age range. Identification at ages 25, 26 and 59, 60 intuitively comes from parametric

extrapolation using the quantile models.

Consumption rule. We specify the conditional distribution of consumption given current

assets and earnings components as follows:

gt(ait, ηit, εit, τ) = g(ait, ηit, εit, ageit, τ)

=
K∑

k=1

bgkϕ̃k(ait, ηit, εit, ageit) + bg0(τ), (29)

where ϕ̃k is a dictionary of functions (in practice, another product of Hermite polynomials).

Equation (29) is a nonlinear regression model. In contrast with (28), the consumption

model is additive in τ . It would be conceptually straightforward to let all coefficients bgk

depend on τ , although this would lead to a less parsimonious specification.

Assets evolution. We specify the distribution of initial assets ai1 conditional on the initial

persistent component ηi1 and the age at the start of the period agei1 as

Qa(ηi1, agei1, τ) =
K∑

k=0

bak(τ)ϕ̃k(ηi1, agei1), (30)

for different choices for K and ϕ̃k.

We then specify how assets evolve as a function of lagged assets, consumption, earnings,

the persistent earnings component η, and age, as follows:

ait = ht(ai,t−1, ci,t−1, yi,t−1, ηi,t−1, υit),

where

ht(ai,t−1, ci,t−1, yi,t−1, ηi,t−1, τ) = h(ai,t−1, ci,t−1, yi,t−1, ηi,t−1, ageit, τ)

=
K∑

k=1

bhkϕ̃k(ai,t−1, ci,t−1, yi,t−1, ηi,t−1, ageit) + bh0(τ),

(31)

for some K and ϕ̃k.
23

23In a previous version of the paper we estimated the model imposing that ηi,t−1 does not enter (31),
which is still consistent with the budget constraint (7) and avoids the modeling of predetermined assets. We
obtained qualitatively similar empirical results.
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Implementation. The functions aQk , a
ε
k and a

η
1

k are indexed by a finite-dimensional pa-

rameter vector θ. Likewise, the functions bg0, b
h
0 , and b

a
k are indexed by a parameter vector µ

that also contains bg1,...,b
g
K ,b

h
1 ,...,b

h
K .

We base our implementation on Wei and Carroll (2009) and Arellano and Bonhomme

(2015). As in these papers we model the functions aQk as piecewise-polynomial interpolating

splines on a grid [τ 1, τ 2], [τ 2, τ 3], ... , [τL−1, τL], contained in the unit interval. We extend the

specification of the intercept coefficient aQ0 on (0, τ 1] and [τL, 1) using a parametric model

indexed by λQ. All aQk for k ≥ 1 are constant on [0, τ 1] and [τL, 1], respectively. Hence,

denoting aQkℓ = aQk (τ ℓ), the functions aQk depend on {aQ11, ..., a
Q
KL, λ

Q}.

In practice, we take L = 11 and τ ℓ = ℓ/L+ 1. The functions aQk are taken as piecewise-

linear on [τ 1, τL]. An advantage of this specification is that the likelihood function is available

in closed form. In addition, we specify aQ0 as the quantile of an exponential distribution on

(0, τ 1] (with parameter λQ−) and [τL, 1) (with parameter λQ+).
24

We proceed similarly to model aεk, a
η
1

k , and bak. Moreover, as our data show little evi-

dence against consumption being log-normal, we set bg0(τ) to α + σΦ−1(τ), where (α, σ) are

parameters to be estimated. We proceed similarly for bh0(τ).
25 We use tensor products of

Hermite polynomials for ϕk and ϕ̃k, each component of the product taking as argument a

standardized variable.26

Extensions: adding household unobserved heterogeneity. We also implement two

extensions of the model that allow for household unobserved heterogeneity in consump-

tion/assets and earnings, respectively. In the first extension we model log-consumption as

cit = g(ait, ηit, εit, ageit, ξi, νit), (32)

24As a result, we have

aQk (τ) =
1

λQ−
log

(
τ

τ1

)
1{0 < τ < τ1}+

L−1∑

ℓ=1

(
aQkℓ +

aQk,ℓ+1
− aQkℓ

τ ℓ+1 − τ ℓ
(τ − τ ℓ)

)
1{τ ℓ ≤ τ < τ ℓ+1}

−
1

λQ+
log

(
1− τ

1− τL

)
1{τL ≤ τ < 1}.

25We also estimated a version of the model with more flexible specifications for bg0(τ) and b
h
0 (τ), based on

quantiles on a grid with L = 11 knots. We found very similar results to the ones we report below.
26For example, at/std(a), ηt/std(y), εt/std(y), and (aget −mean(age))/std(age) are used as arguments

of the consumption rule.
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which we specify similarly as in (29), with parameters b̃gk. As a scaling condition we impose

that
K∑

k=1

b̃gkϕ̃k(0, 0, 0, age, ξ) = ξ, for all ξ, (33)

where age denotes the mean value of age in the sample. Likewise, we model assets as

ait = h(ai,t−1, ci,t−1, yi,t−1, ηi,t−1, ageit, ξi, υit), (34)

with a similar specification as in (31). Lastly, we specify

ξi = q(ai1, ηi1, agei1, ωi),

with ωi uniform on (0, 1), using a series quantile modeling as in (30).

In the second extension we allow for an additive household-specific effect ζ i in log-earnings

and model yit = ηit+ ζ i+εit, where ηit is given by (2). Here we allow for flexible dependence

between ηi1, ζ i and agei1 through another series quantile model.

6.3 Estimation algorithm

The algorithm is an adaptation of techniques developed in Arellano and Bonhomme (2015)

to a setting with time-varying latent variables. The first estimation step recovers estimates

of the earnings parameters θ. The second step recovers estimates of the consumption pa-

rameters µ, given a previous estimate of θ. Our choice of a sequential estimation strategy,

rather than joint estimation of (θ, µ), is motivated by the fact that θ is identified from the

earnings process alone. In contrast, in a joint estimation approach, estimates of the earnings

process would be partly driven by the consumption model.

Model’s restrictions. Let ρτ (u) = u(τ − 1{u ≤ 0}) denote the “check” function of

quantile regression (Koenker and Bassett, 1978). Let also θ denote the true value of θ, and

let

fi(η
T
i ; θ) = f(ηTi |y

T
i , age

T
i ; θ)

denote the posterior density of ηTi = (ηi1, ..., ηiT ) given the earnings data. As the earnings

model is fully specified, fi is a known function of θ.

We start by noting that, for all ℓ ∈ {1, ..., L},

(
aQ0ℓ, ..., a

Q
Kℓ

)
= argmin

(aQ0ℓ,...,a
Q
Kℓ)

T∑

t=2

E

[∫
ρτℓ

(
ηit −

K∑

k=0

aQkℓϕk(ηi,t−1, ageit)

)
fi(η

T
i ; θ)dη

T
i

]
, (35)
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where aQkℓ denotes the true value of aQkℓ = aQk (τ ℓ). To see that (35) holds, note that the

objective function is smooth (due to the presence of the integrals) and convex (because of

the “check” function). The first-order conditions of (35) are satisfied at true parameter

values as, by (28), for all k ∈ {0, ..., K}, ℓ ∈ {1, ..., L}, and t ≥ 2,

E

[
1

{
ηit ≤

K∑

k=0

aQkℓϕk(ηi,t−1, ageit)

} ∣∣∣∣∣ η
t−1
i , ageTi

]
= τ ℓ.

Likewise, we have, for all ℓ,

(aε0ℓ, ..., a
ε
Kℓ) = argmin

(aε0ℓ,...,aεKℓ)

T∑

t=1

E

[∫
ρτℓ

(
yit − ηit −

K∑

k=0

aεkℓϕk(ageit)

)
fi(η

T
i ; θ)dη

T
i

]
, (36)

and, for all ℓ,

(a
η1
0ℓ , ..., a

η1
Kℓ) = argmin

(aη10ℓ ,...,a
η1
Kℓ)

E

[∫
ρτℓ

(
ηi1 −

K∑

k=0

a
η1
kℓϕk(agei1)

)
fi(η

T
i ; θ)dη

T
i

]
. (37)

In addition to (35)-(36)-(37), the model implies other restrictions on the tail parameters

λ, which are given in Appendix C. All the restrictions depend on the posterior density

fi. Given the use of piecewise-linear interpolating splines, the joint likelihood function of

(ηTi , y
T
i |age

T
i ; θ) is available in closed form, and we provide an explicit expression in Appendix

C. In practice, this means that it is easy to simulate from fi. We take advantage of this

feature in our estimation algorithm.

Turning to consumption we have

(
α, b

g

1, ..., b
g

K

)
= argmin

(α,bg1,...,b
g
K)

T∑

t=1

E

[ ∫ (
cit − α−

K∑

k=1

bgkϕ̃k(ait, ηit, yit − ηit, ageit)

)2

...× gi(η
T
i ; θ, µ)dη

T
i

]
,

where

gi(η
T
i ; θ, µ) = f(ηTi |c

T
i , a

T
i , y

T
i , age

T
i ; θ, µ)

denotes the posterior density of (ηi1, ..., ηiT ) given the earnings, consumption, and asset data.

Moreover, the variance of taste shifters satisfies

σ2 =
1

T

T∑

t=1

E



∫ (

cit − α−
K∑

k=1

b
g

kϕ̃k(ait, ηit, yit − ηit, ageit)

)2

gi(η
T
i ; θ, µ)dη

T
i


 . (38)
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Likewise, for assets we have

(
αh, b

h

1 , ..., b
h

K

)
= argmin

(αh,bh
1
,...,bh

K)

T∑

t=2

E

[ ∫ (
ait − αh −

K∑

k=1

bhkϕ̃k(ai,t−1, ci,t−1, yi,t−1, ηi,t−1, ageit)

)2

...× gi(η
T
i ; θ, µ)dη

T
i

]
,

with a similar expression for the variance of bh0(υit) as in (38).

Lastly we have, for all ℓ,

(
b
a

0ℓ, ..., b
a

Kℓ

)
= argmin

(ba0ℓ,...,baKℓ)
E

[∫
ρτℓ

(
ai1 −

K∑

k=0

bakℓϕ̃k(ηi1, agei1)

)
gi(η

T
i ; θ, µ)dη

T
i

]
,

with additional restrictions characterizing tail parameters given in Appendix C.

Overview of the algorithm. Here we describe the estimation of the earnings parameters

θ. Estimation of the consumption parameters µ is similar. The estimation algorithms are

described in more detail in Appendix C.

A compact notation for the restrictions implied by the earnings model is

θ = argmin
θ

E

[∫
R(yi, η; θ)fi(η; θ)dη

]
,

where R is a known function and θ denotes the true value of θ.

Our estimation algorithm is closely related to the “stochastic EM” algorithm of Celeux

and Diebolt (1993). Stochastic EM is a simulated version of the classical EM algorithm of

Dempster et al. (1977), where new draws from η are computed in every iteration of the

algorithm.27 One difference is that, unlike in EM, our problem is not likelihood-based. In-

stead, we exploit the computational convenience of quantile regression and replace likelihood

maximization by a sequence of quantile regressions in each M-step of the algorithm.

Starting with a parameter vector θ̂
(0)
, we iterate the following two steps on s = 0, 1, 2, ...

until convergence of the θ̂
(s)

process:

1. Stochastic E-step: Draw η
(m)
i = (η

(m)
i1 , ..., η

(m)
iT ) for m = 1, ...,M from fi(·; θ̂

(s)
).

2. M-step: Compute

θ̂
(s+1)

= argmin
θ

N∑

i=1

M∑

m=1

R(yi, η
(m)
i ; θ).

27Nielsen (2000b) compares the stochastic EM algorithm with the simulated EM algorithm of McFadden
and Ruud (1994), where in contrast the same underlying uniform draws are re-used in every iteration.
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Note that, as the likelihood function is available in closed form, the E-step is straight-

forward. In practice we use a random-walk Metropolis-Hastings sampler for this purpose,

targeting an acceptance rate of approximately 30%. The M-step consists of a number of

quantile regressions. For example, the parameters aQkℓ are updated as

min
(aQ0ℓ,...,a

Q
Kℓ)

N∑

i=1

T∑

t=2

M∑

m=1

ρτℓ

(
η
(m)
it −

K∑

k=0

aQkℓϕk(η
(m)
i,t−1, ageit)

)
, ℓ = 1, ..., L,

which is a set of standard quantile regressions, associated with convex objective functions.

We proceed in a similar way to update all other parameters. See Appendix C for details.

In practice we first estimate the effect of age on mean log-earnings by regressing them

on a quartic in age. We then impose in each iteration of the algorithm that εit and age are

uncorrelated (although we allow for age effects on the variance and quantiles of εit). We

take M = 1, stop the chain after a large number of iterations, and report an average across

the last S̃ values θ̂ = 1

S̃

∑S

s=S−S̃+1 θ̂
(s)
, and similarly for consumption-related parameters

µ̂. The results for the earnings parameters are based on S = 500 iterations, with 200

Metropolis-Hastings draws in each iteration. Consumption-related parameters are estimated

using 200 iterations with 200 draws per iteration. In both cases we take S̃ = S/2. In our

experiments we observed that the algorithm may sometimes get “stuck” on what appears

to be a local regime of the Markov chain. We started the algorithm from a large number of

initial parameter values, and selected the estimates yielding the highest average log-likelihood

over iterations. The non-selected values tended to give very similar pictures to the ones we

report below.

Properties. Nielsen (2000a) studies the statistical properties of the stochastic EM algo-

rithm in a likelihood case. He provides conditions under which the Markov Chain θ̂
(s)

is

ergodic, for a fixed sample size. He also characterizes the asymptotic distribution of θ̂ as the

sample size N tends to infinity. Arellano and Bonhomme (2015) characterize the asymptotic

distribution of θ̂ in a case where the optimization step is not likelihood-based but relies on

quantile-based estimating equations. The estimator θ̂ is root-N consistent and asymptoti-

cally normal under correct specification of the parametric model, for K and L fixed. We use

the parametric bootstrap for inference.

Finally, note that an alternative, nonparametric approach, would be to let K and L

increase with N at an appropriate rate so as to let the approximation bias tend to zero.
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See Belloni, Chernozhukov and Fernandez-Val (2011) for an analysis of inference for series

quantile regression, and Arellano and Bonhomme (2015) for a consistency analysis in a panel

data model closely related to the one we consider here. Studying inference in our problem

as (N,K,L) jointly tend to infinity is an interesting avenue for future work.

7 Earnings and consumption in the PSID

In this section we present our empirical results. We start by describing how earnings and

consumption respond to income shocks. We then report simulation exercises based on the

estimated model. Lastly, we present the results of several additional specifications.

7.1 Earnings

We start by commenting on the empirical estimates of the earnings process. Figure 3 (a)

reproduces Figure 1 (a). It shows estimates of the average derivative of the conditional

quantile function of log-earnings residuals yit given yi,t−1 with respect to yi,t−1 in the PSID

sample. The figure shows clear evidence of nonlinear persistence, which depends on both the

percentile of past income (τ init) and the percentile of the quantile innovation (τ shock). This

empirical pattern is also present for male wages, see Figure D1 in Appendix D, where we

also report similar patterns in the Norwegian data for individual income. We then estimate

the earnings model,28 and given the estimated parameters we simulate the model.29 Figure

3 (b), which is based on simulated data, shows that our nonlinear model reproduces the

patterns of nonlinear persistence well. In contrast, standard models have difficulty fitting

this empirical evidence. For example, we estimated a simple version of the canonical earnings

dynamics model (3) with a random walk component and independent transitory shocks.30

Figure 3 (c) shows that the average derivative of the quantile function is nearly constant

(up to simulation error) with respect to τ shock and τ init. This stands in sharp contrast with

the data, and suggests that interaction effects between earnings shocks and past earnings

components are key.

Figure 3 (d) then shows the estimated persistence of the earnings component ηit in model

28We use tensor products of Hermite polynomials of degrees (3, 2) for the conditional quantile function of
ηit given ηi,t−1 and age, and second-order polynomials for εit and ηi1 as a function of age.

29We draw 20 earnings values per household. In the simulation we impose that the support of simulated η
draws be less than 3 times the empirical support of log-earnings residuals. This affects very few observations.

30Estimation is based on equally-weighted minimum distance using the covariance structure predicted by
the canonical model.
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Figure 3: Nonlinear persistence

(a) Earnings, PSID data (b) Earnings, nonlinear model
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(c) Earnings, canonical model (d) Persistent component ηit, nonlinear model
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Note: Graphs (a), (b), and (c) show estimates of the average derivative of the conditional quantile

function of yit given yi,t−1 with respect to yi,t−1, evaluated at percentile τ shock and at a value of

yi,t−1 that corresponds to the τ init percentile of the distribution of yi,t−1. Graph (a) is based on the

PSID data, graph (b) is based on data simulated according to our nonlinear earnings model with

parameters set to their estimated values, and graph (c) is based on data simulated according to the

canonical random walk earnings model (3). Graph (d) shows estimates of the average derivative of

the conditional quantile function of ηit on ηi,t−1 with respect to ηi,t−1, based on estimates from the

nonlinear earnings model.
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Figure 4: Densities of persistent and transitory earnings components

(a) Persistent component ηit (b) Transitory component εit
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Note: Nonparametric estimates of densities based on simulated data according to the nonlinear

model, using a Gaussian kernel.

(1)-(2). Specifically, the graph shows ρt(ηi,t−1, τ) from equation (4), evaluated at percentiles

τ init and τ shock and at the mean age in the sample (47.5 years). Persistence in η’s is higher

than persistence in log-earnings residuals, consistently with the fact that Figure 3 (d) is

net of transitory shocks. Persistence is close to 1 for high earnings households hit by good

shocks, and for low earnings households hit by bad shocks. At the same time, persistence

is lower, down to .6 – .8, when bad shocks hit high-earnings households or good shocks hit

low-earnings ones.

Component densities. Figure 4 shows estimates of the marginal distributions of the

persistent and transitory earnings components at mean age. While the persistent component

ηit shows small departures from Gaussianity, the density of εit is clearly non-normal and

presents high kurtosis and fat tails. These results are qualitatively consistent with empirical

estimates of non-Gaussian linear models in Horowitz and Markatou (1996) and Bonhomme

and Robin (2010).

Lastly, in Figure 5 we report the measure of conditional skewness in (6), for τ = 11/12,

for both log-earnings residuals (left graph) and the η component (right). Panel (b) shows

clear evidence that ηit is positively skewed for low values of ηi,t−1, and negatively skewed for

high values of ηi,t−1. This is in line with the evidence of nonlinear persistence reported in

Figure 3 (d): when low-η households are hit by an unusually positive shock, dependence of
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Figure 5: Conditional skewness of log-earnings residuals and η component

(a) Log-earnings residuals yit (b) Persistent component ηit
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Note: Conditional skewness sk(y, τ) and sk(η, τ), see equation (6), for τ = 11/12. Log-earnings

residuals (left) and η component (right). The x-axis shows the conditioning variable, the y-axis

shows the corresponding value of the conditional skewness measure.

ηit on ηi,t−1 is low with the result that they have a relatively large probability of outcomes

far to the right from the central part of the distribution. Likewise, high-η households have a

relatively large probability of getting outcomes far to the left of their distribution associated

with low persistence episodes. Panel (a) similarly shows evidence of conditional asymmetry

in log-earnings residuals, although the evidence seems less strong than for η.

These results suggest that conditional skewness is a key feature of earnings processes

in the PSID. In addition, Figure D2 in Appendix D shows that the Norwegian administra-

tive data presents a similar pattern of conditional skewness. This feature, and the related

nonlinear persistence of earnings, are not easy to capture using existing models of earn-

ings dynamics. As a notable example, models with variance dynamics such as Meghir and

Pistaferri (2004) do not seem able to reproduce the nonlinear asymmetric effects apparent

in Figures 3 and 5.

Inference. In Figures D3 and D4 in Appendix D we report 95% pointwise confidence bands

for the persistence of log-earnings in the PSID, log-earnings simulated from our nonlinear

model, and the η component, as well as conditional skewness of log-earnings and η. The

bands are calculated using the parametric bootstrap. We see that the main evidence on

nonlinear persistence and conditional skewness seems rather precisely estimated.
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7.2 Consumption

We next turn to consumption-related parameters. Figure 6 (a) shows estimates of the av-

erage derivative, with respect to yit, of the conditional mean of cit given yit, ait and ageit.

The function is evaluated at percentiles of log-assets and age (τassets and τage, respectively),

and averaged over yit. We use tensor products of Hermite polynomials with degrees (2, 2, 1)

in the estimation of the consumption rule. The derivative effects lie between .2 and .3.

Moreover, the results indicate that consumption of older households, and of households with

higher assets, is somewhat less correlated to variations in earnings. Figure 6 (b) shows the

same response surface based on simulated data from our full nonlinear model of earnings

and consumption. The fit of the model, though not perfect, seems reasonable. In particular,

the model reproduces the main pattern of correlation with age and assets. While the covari-

ances between log-earnings and log-consumption residuals are well reproduced, the baseline

model does not perform as well in fitting the dynamics of consumption, as it systematically

underestimates the autocorrelations between log-consumption residuals (not shown). In Sub-

section 7.4 below we report the results of a specification allowing for household unobserved

heterogeneity in consumption, where the fit to consumption dynamics is improved.

Figure 6 (c) shows estimates of the average consumption response φt(a) to variations

in the persistent component of earnings, see equation (15). 1 − φt(a) can be regarded as

a measure of the degree of consumption insurability of shocks to the persistent earnings

component, as a function of age and assets. On average the estimated φt(a) parameter

lies between .3 and .4, suggesting that more than half of earnings fluctuations is effectively

insured. Moreover, variation in assets and age suggests the presence of an interaction effect.

In particular, older households with high assets seem better insured insured against earnings

fluctuations.

In Figure 6 (d) we report estimates of ψt(a) to variations in the transitory component of

earnings, see equation (15). The coefficient is negative, especially so for older individuals.

While consistent with some of the empirical results reported in Blundell et al. (2012), a

negative response coefficient may seem puzzling. Note, however, that ε’s are purely transitory

so the η component is driving the main quantitative implications for the life-cycle evolution of

earnings and consumption. The simulation exercises that we present next aim at illustrating

the effects of earnings shocks on these life-cycle patterns.

Finally, in Figure D5 in Appendix D we report 95% pointwise confidence bands for φt(a)
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Figure 6: Consumption responses to earnings shocks, by assets and age

(a) Consumption response to earnings (b) Consumption response to earnings
PSID data Nonlinear model
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(c) Consumption response to ηit (d) Consumption response to εit
Nonlinear model Nonlinear model
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Note: Graphs (a) and (b) show estimates of the average derivative of the conditional mean of cit,

with respect to yit, given yit, ait and ageit, evaluated at values of ait and ageit that corresponds to

their τassets and τage percentiles, and averaged over the values of yit. Graph (a) is based on the PSID

data, and graph (b) is based on data simulated according to our nonlinear model with parameters set

to their estimated values. Graphs (c) and (d) show estimates of the average consumption responses

φt(a) and ψt(a) to variations in ηit and εit, respectively, evaluated at τassets and τage; see equation

(15).
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and ψt(a) based on the parametric bootstrap. The evidence of insurability of shocks to the

persistent earnings component is quite precisely estimated.

7.3 Model simulations

In this subsection we simulate life-cycle earnings and consumption according to our nonlin-

ear model, and document the evolution of earnings and consumption following a persistent

earnings shock. In Figure 7 we report the difference between the earnings paths of two types

of households: households that are hit at age 37 by either a large negative shock to the

persistent earnings component (τ shock = .10), or by a large positive shock (τ shock = .90), and

households that are hit by a median shock τ = .50 to the persistent component. We report

age-specific medians across 100,000 simulations of the model.31 At the start of the simulation

(age 35) all households have the same persistent component indicated by the percentile τ init.

With some abuse of terminology we refer to the resulting earnings and consumption paths

as “impulse responses”.

Earnings responses reported in Figure 7 are consistent with the presence of strong in-

teraction effects between the rank in the distribution of earnings component (τ init) and the

sign and size of the shock to the persistent component (τ shock). While a large negative

shock (τ shock = .10) is associated with a 7% drop in earnings for low earnings households

(τ init = .10), a similar shock is associated with a 19% drop for high-earnings households

(τ init = .90). We also find strong interaction effects in the response to large positive shocks

(τ shock = .90). Moreover, the persistence of these shocks over the life cycle also depends on

the initial condition. For example, Figure 7 (e) shows a very slow recovery from a negative

earnings shock when starting from a high-earnings position, while graph (a) shows a quicker

recovery.

In graphs (g) and (h) of Figure 7 we report results based on the “canonical model” of

earnings dynamics where η is a random walk, see equation (3). In this model, there are by

assumption no interaction effects between income shocks and the ranks of households in the

income distribution. The implications of the nonlinear earnings model thus differ markedly

from those of standard linear models.

In Figure 8 we report the results of a similar exercise to Figure 7, but we now focus on

consumption responses. We see that the nonlinearities observed in the earnings response

31We also computed age-specific quantiles across simulated households, but we do not report them here
for brevity.
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Figure 7: Impulse responses, earnings

Nonlinear model
τ init = .1

(a) τ shock = .1 (b) τ shock = .9
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(c) τ shock = .1 (d) τ shock = .9
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(e) τ shock = .1 (f) τ shock = .9
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Canonical model
(g) τ shock = .1 (h) τ shock = .9
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Note: Persistent component at percentile τ init at age 35. The graphs show the difference between

a household hit by a shock τ shock at age 37, and a household hit by a .5 shock at the same age.

Age-specific medians across 100,000 simulations. Graphs (a) to (f) correspond to the nonlinear

model. Graphs (g) and (h) correspond to the canonical model (3) of earnings dynamics.
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Figure 8: Impulse responses, consumption

Nonlinear model
τ init = .1

(a) τ shock = .1 (b) τ shock = .9
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(c) τ shock = .1 (d) τ shock = .9
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(e) τ shock = .1 (f) τ shock = .9
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Canonical model
(g) τ shock = .1 (h) τ shock = .9
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Note: See notes to Figure 7. Graphs (a) to (f) correspond to the nonlinear model. Graphs (g) and

(h) correspond to the canonical model of earnings dynamics (3) and a linear consumption rule.
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Figure 9: Impulse responses by age and initial assets

Earnings
τ init = .9, τ shock = .1 τ init = .1, τ shock = .9

(a) Young (b) Old (c) Young (d) Old
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Consumption
τ init = .9, τ shock = .1 τ init = .1, τ shock = .9
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Note: See notes to Figures 7 and 8. Initial assets at age 35 (for “young” households) or 51 (for

“old” households) are at percentile .10 (dashed curves) and .90 (solid curves).
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matter for consumption too. For example, while a large negative shock (τ shock = .10) is

associated with a 2% drop in consumption for low earnings households, it is associated with

an 8% drop for high-earnings households. We also observe differences in persistence across

the different scenarios.

In addition, graphs (g) and (h) of Figure 8 report results based on the canonical earnings

model with a linear log-consumption rule.32 The fact that the canonical model assumes away

the presence of interaction effects between income shocks and households’ positions in the

income distribution appears at odds with the data.

Lastly, in Figure 9 we perform similar exercises, while varying the timing of shocks and

the asset holdings that households possess. Graphs (a) to (d) suggest that a negative shock

(τ shock = .10) for high-earnings households has a higher impact on earnings at later ages:

the earnings drop is 40% when the shock hits at age 53, compared to 20% when a similar

shock hits at age 37. The impact of positive shocks for low earnings individuals seems to

vary little with age.

Graphs (e) to (h) in Figure 9 show the consumption responses. The results suggest that,

while the presence of asset holdings does not seem to affect the insurability of earnings shocks

for younger households, it does seem to attenuate the consumption response for households

who are hit later in the life cycle. These results are consistent with the estimates of the

“partial insurance” coefficient φt(a) as a function of assets and age reported in Figure 6.

7.4 Additional empirical results

We turn to document how allowing for household unobserved heterogeneity in earnings and

consumption affects the empirical results.

Household heterogeneity in earnings. In Figure 10 we report the nonlinear persistence

and conditional skewness of the η component in model (25) that allows in addition for an

additive household-specific effect. Graph (a) shows that, compared to Figure 3, allowing

for a household effect reduces persistence. Interestingly, the nonlinear pattern here is more

pronounced than in the homogeneous case. Persistence is close to one for values of τ init

and τ shock that are close to each other, but it is substantially lower when a large positive

(respectively negative) shock hits a low-earnings (resp. high-earnings) household. Graph (b)

32Specifically, cit is modelled as a linear function of ηit, εit, and an independent additive error term i.i.d.
over time. The model is estimated by equally-weighted minimum distance.
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Figure 10: Household heterogeneity in earnings

(a) Nonlinear persistence of ηit (b) Conditional skewness of ηit
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Note: (a) Estimates of the average derivative of the conditional quantile function of ηit on ηi,t−1 with

respect to ηi,t−1, based on estimates from the nonlinear earnings model with an additive household-

specific effect. (b) Conditional skewness sk(η, τ), see equation (6), for τ = 11/12, based on the

same model.

shows that the ηit component is positively skewed when ηi,t−1 is low, but that it becomes

increasingly less positively skewed as ηi,t−1 increases, similarly to the results from the baseline

model.

Household unobserved heterogeneity in consumption. Estimating a model with

household unobserved heterogeneity in consumption, as in (22), delivers interesting insights.

In Figure 11 we report the life-cycle patterns of log-consumption of households subject to

different earnings shocks at the same age (37 years old) while being at different points

in the income distribution, averaged over ξi. Comparing the results with Figure 8 shows

that allowing for unobserved heterogeneity tends to decrease the magnitude of consumption

responses to variations in earnings. For example, a large positive shock (τ shock = .90) is

associated with a 9% increase in consumption for low earnings households, compared to a

12% increase according to the baseline model without unobserved heterogeneity. We also see

that effects on consumption seem to revert more quickly towards the median in the model

with heterogeneity. In Appendix D, Figures D6 and D7 provide additional results based on

this model.
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Figure 11: Impulse responses, consumption, model with household unobserved heterogeneity
in consumption
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Note: See notes to Figures 7 and 8. Nonlinear model with household unobserved heterogeneity in

consumption.
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8 Conclusion

In this paper we have developed a nonlinear framework for modeling persistence that sheds

new light on the nonlinear transmission of income shocks and the nature of consumption

insurance. In this framework, household income is the sum of a first-order Markov persistent

component and a transitory component. The consumption policy rule is an age-dependent,

nonlinear function of assets, persistent income and transitory income. The model reveals

asymmetric persistence patterns, where “unusual” earnings shocks are associated with a drop

in persistence. It also leads to new empirical measures of the degree of partial insurance.

We provide conditions under which the model is nonparametrically identified, and we

develop a tractable simulation-based sequential quantile regression method for estimation.

These methods open the way to identify and estimate nonlinear models of earnings and

consumption dynamics. They also provide new tools to assess the suitability of existing

life-cycle models of consumption and savings, and potentially help guide the development of

new models.

Our results suggest that nonlinear persistence and conditional skewness are key features

of earnings processes. These features, which are present in both the PSID and in Norwegian

administrative data, are not easy to capture using existing models of earnings dynamics, mo-

tivating the development of new econometric methods to document distributional dynamics.

Estimating models that allow for persistent and transitory components of income on a rel-

atively homogeneous sample of households from the PSID, we find evidence of nonlinear

persistence and conditional asymmetries in earnings, and that this nonlinearity has substan-

tial effects on consumption. The results are robust to allowing for additional unobserved

heterogeneity in earnings and consumption, and they are rather precisely estimated.

The nonlinearities observed in the earnings responses are shown to have a key role in

consumption choices. For example, we found that while a large negative shock is associated

with a relatively small drop in consumption for low earnings households, it is associated

with a sizable drop for high-earnings households. We also identified clear differences in

persistence across different demographic groups. The results suggest that, while the presence

of asset holdings does not affect the insurability of earnings shocks for younger households,

it does attenuate the consumption response for households who are hit later in the life

cycle. Standard linear models, which assume away the presence of interaction effects between

income shocks and the position in the income distribution, deliver qualitatively different
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predictions that appear at odds with the data.

The next step in our agenda will be to generalize the nonlinear model to allow for other

states or choices, such as evolution of household size and both intensive and extensive margins

of labor supply. Lastly, in this paper we have abstracted from the role of business cycle

fluctuations. In a recent paper on US Social Security Data for 1978-2010, Guvenen, Ozcan

and Song (2012) find that the left-skewness of earnings shocks is counter-cyclical. In future

work it will be interesting to apply our framework to document distributional dynamics over

the business cycle.
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APPENDIX

A Data appendix

A.1 PSID data

We use the 1999-2009 Panel Study of Income Dynamics (PSID) to estimate the model. The
PSID started in 1968 collecting information on a sample of roughly 5,000 households. Of these,
about 3,000 were representative of the US population as a whole (the core sample), and about
2,000 were low-income families (the Census Bureau’s SEO sample). Thereafter, both the original
families and their split-offs (children of the original family forming a family of their own) have
been followed. The PSID data were collected annually until 1996 and biennially starting in 1997.
A great advantage of PSID after 1999 is that, in addition to income data and demographics, it
collects data about detailed asset holdings and consumption expenditures in each wave. To the
best of our knowledge this makes the PSID the only representative large scale US panel to include
income, hours, consumption, and assets data. Since we need both consumption and assets data,
we focus on the 1999-2009 sample period.

We focus on non-SEO households with participating and married male household heads aged
between 25 and 60, and with non missing information on key demographics (age, education, and
state of residence). To reduce the influence of measurement error, we also drop observations with
extremely high asset values (20 millions or more), as well as observations with total transfers more
than twice the size of total household earnings. When calculating the relevant consumption, hourly
wage and earnings moments, we do not use data displaying extreme ”jumps” from one year to the
next (most likely due to measurement error). Furthermore, we do not use earnings and wage data
when the implied hourly wage is below one-half the state minimum wage. See Blundell, Pistaferri
and Saporta-Eksten (2012) for further details of the sample selection.

A.2 Norwegian register data

Sample selection. We use Norwegian register data for the years 2005 and 2006 only. We select
a balanced panel of households were the male head is Norwegian, resident in Norway, age 25-60
and has no income from self-employment. Our measure of household disposable income pools the
individual disposable income of the spouses (if the male has a spouse). We further select only
households whose disposable income exceeds one basic amount in both years. This leaves us with
a balanced sample of 789,982 households. See Blundell, Graber and Mogstad (2014) for details.

Residual log-income. In each year, we regress the log of household disposable income on
dummies for region, marital status, number of children, education, and a 4th order polynomial in
age and the interaction of the latter two to obtain the residual income.

Quantile regression. We use an equidistant grid of 11-quantiles and a 3rd degree Hermite
polynomial.

B Consumption responses in a two-period model

Consider a standard two-period setup, with a single risk-free asset. Let At denote beginning-of-
period-t assets, and assume that A3 = 0. Agents have CRRA utility. The Euler equation (assuming
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β(1 + r) = 1 for simplicity) is

C−γ
1 = E1

[
((1 + r)A2 + Y2)

−γ
]
,

where γ denotes risk aversion and the expectation is conditional on period-1 information. Here we
have used the budget constraint A3 = (1 + r)A2 + Y2 − C2 = 0. Equivalently,

C−γ
1 = E1

[(
(1 + r)2A1 + (1 + r)Y1 − (1 + r)C1 + Y2

)−γ
]
. (B1)

LetX1 = (1+r)A1+Y1 denote “cash on hand” (as in Deaton, 1991). Let also Y2 = E1(Y2)+σW .
We will expand the Euler equation as σ → 0. We denote the certainty equivalent consumption level
as

C1 =
(1 + r)X1 + E1(Y2)

2 + r
.

Expanding in orders of magnitude of σ we have

C1 ≈ C1 + aσ + bσ2 + cσ3. (B2)

It is easy to see that a = 0, as E1(W ) = 0. Hence,

C−γ
1 ≈ C

−γ
1

(
1−

γ

C1

bσ2 −
γ

C1

cσ3
)
. (B3)

Moreover, by (B1) and (B2),

C−γ
1 ≈ E1

[(
C1 − (1 + r)bσ2 − (1 + r)cσ3 + σW

)−γ
]
,

from which it follows that

C−γ
1 ≈ C

−γ
1 E1

[
1 +

γ

C1

(1 + r)bσ2 +
γ

C1

(1 + r)cσ3 −
γ

C1

σW

+
γ(γ + 1)

2

(
1

C1

)2

σ2W 2 − γ(γ + 1)

(
1

C1

)2

(1 + r)bσ3W

−
γ(γ + 1)(γ + 2)

6

(
1

C1

)3

σ3W 3

]
. (B4)

Finally, equating the coefficients of σ2 and σ3 in (B3) and (B4), using that E1(W ) = 0, and
denoting as R = (1 + r)X1 + E1(Y2) the expected period-2 resources, we obtain

b = −
γ + 1

2R
E1(W

2), c =
(2 + r)(γ + 1)(γ + 2)

6R2
E1(W

3).

This yields the following expression for period-1 consumption

C1 ≈
(1 + r)X1 + E1(Y2)

2 + r︸ ︷︷ ︸
certainty equivalent

−
γ + 1

2R
E1((Y2 − E1(Y2))

2)
︸ ︷︷ ︸

precautionary (variance)

+
(2 + r)(γ + 1)(γ + 2)

6R2
E1((Y2 − E1(Y2))

3)
︸ ︷︷ ︸

precautionary (skewness)

.

(B5)
Note that E1((Y2 −E1(Y2))

2) is the conditional variance of Y2, and E1((Y2 −E1(Y2))
3) is its condi-

tional third-order moment.

53



Example: a simple nonlinear earnings process. To illustrate the effect of earnings shocks
on consumption in this model, we consider the following simple earnings process (in levels):

Y2 = Y D
2 + ρ(Y P

1 , V2)Y
P
1 + V2 + Y T

2 ,

where Y D
2 is the deterministic component, Y P

2 = ρ(Y P
1 , V2)Y

P
1 +V2 is the persistent component, and

Y T
2 is the transitory component. We set ρ(Y P

1 , V2) = 1− δ if (Y P
1 < −c, V2 > b) or (Y P

1 > c, V2 <
−b), and ρ(Y P

1 , V2) = 1 otherwise. Moreover, Pr(V2 > b) = Pr(V2 < −b) = τ , with τ < 1/2, and
we assume that V2 and Y T

2 are symmetrically distributed with zero mean. This earnings process
has the following properties:

• If |Y P
1 | ≤ c, then the process coincides with the “canonical” earnings model (in levels). So

E1(Y2) = Y D
2 + Y P

1 , E1((Y2 − E1(Y2))
2) = Var(V2) + Var(Y T

2 ), and E1((Y2 − E1(Y2))
3) = 0.

• If |Y P
1 | > c, E1(Y2) = Y D

2 + (1− δτ)Y P
1 (“state-dependent persistence”).

• If |Y P
1 | > c, E1((Y2−E1(Y2))

2) = τ(1−τ)δ2(Y P
1 )2+2τδE(V2|V2 > b)|Y P

1 |+Var(V2)+Var(Y T
2 )

(“state-dependent risk”).

• Lastly, if Y P
1 < −c, E1((Y2 − E1(Y2))

3) > 0, and if Y P
1 > c, E1((Y2 − E1(Y2))

3) < 0 (“state-
dependent skewness”). For example, if Y P

1 < −c we have

E1((Y2 − E1(Y2))
3) = −τ(1− 2τ)δY P

1

[
(1− τ)δ2(Y P

1 )2 − 3δY P
1 E(V2|V2 > b)

+3(E(V 2
2 |V2 > b)− E(V 2

2 ||V2| ≤ b))
]

> 0.

Discussion. State-dependent persistence implies that low and high earnings households respond
less to variations in Y P

1 than middle-earnings households. Low-earnings households save less than
in the canonical linear model, while high-earnings households save more.

State-dependent risk implies that both low and high earnings households save more than in the
canonical model because of higher variability of earnings. As shown by (B5), the effect is increasing
in risk aversion and higher for low assets households. Note that the effect is scaled by expected
resources R. Compared to the canonical linear earnings model, this effect will tend to increase
savings for high earnings households and decrease savings for low earnings households.

Lastly, state-dependent skewness implies that, compared to the canonical model, high earnings
households save more, and low earnings households save less.

Overall, the comparative statics for high earnings households are unambiguous, while the com-
bined effect for low-earnings households is ambiguous.33

C Technical Appendix

C.1 Summary of the argument in Wilhelm (2012)

We consider model (1)-(2) with T = 3. We omit i subscripts for conciseness. Let L2(f) denote the
set of squared-integrable functions with respect to a weight function f . We define Ly2|y1 as the linear
operator such that Ly2|y1h(a) = E [h(y2)|y1 = a] ∈ L2(fy1) for every function h ∈ L2(fy2). Similarly,
let Lη2|y1

be such that Lη2|y1
h(a) = E [h(η2)|y1 = a] ∈ L2(fy1) for every function h ∈ L2(fη

2
). We

denote as R
(
Ly2|y1

)
the range of Ly2|y1 , that is

R
(
Ly2|y1

)
= {k ∈ L2(fy1), s.t. k = Ly2|y1h for some h ∈ L2(fy2)}.

33Note that here A1 is taken as exogenous. In a complete model of the life cycle, household assets will be
different when facing a nonlinear or a linear (“canonical”) earnings process.
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Assumption C1
(i) Ly2|y1 and Lη

2
|y1 are injective.

(ii) There exists a function h ∈ L2(fy3) such that

E [h(y3)|y1 = a] ∈ R
(
Ly2|y1

)
, and (C6)

E [y2h(y3)|y1 = a] ∈ R
(
Ly2|y1

)
. (C7)

Thus, there exist s1 and s2 in L2(fy2) such that

E [h(y3)|y1 = ·] = Ly2|y1s1, and E [y2h(y3)|y1 = ·] = Ly2|y1s2.

(iii) Let s̃1(y) = ys1(y). The Fourier transforms F(s1), F(s̃1), and F(s2) (where F(h)(u) =∫
h(x)eiuxdx) are ordinary functions. Moreover, F(s1)(u) 6= 0 for all u ∈ R.

Part (i) is an injectivity/completeness condition. Part (ii) is not standard. It is related to
the existence problem in nonparametric instrumental variables. Horowitz (2009) proposes a test
for (C6) in the case where Ly2|y1 is a compact operator. Part (iii) is a high-level assumption; see
Wilhelm (2012) for more primitive conditions.

By Assumption C1-(ii) we have, almost surely in y1,

E [h(y3)|y1] = E [s1(y2)|y1] ,

E [y2h(y3)|y1] = E [s2(y2)|y1] .

Moreover, s1 and s2 are the unique solutions to these equations by Assumption C1-(i).
Hence, given the model’s assumptions

E [E (h(y3)|η2) |y1] = E [E (s1(y2)|η2) |y1] a.s.

It thus follows from the injectivity of Lη
2
|y1 in Assumption C1-(i) that, almost surely in η2,

E [h(y3)|η2] = E [s1(y2)|η2] . (C8)

Likewise, E [y2h(y3)|η2] = E [s2(y2)|η2]. Hence

η2E [h(y3)|η2] = E [s2(y2)|η2] a.s. (C9)

Combining (C8) and (C9), we obtain

η2E [s1(y2)|η2] = E [s2(y2)|η2] a.s.

That is, almost surely in η2,

η2

∫
s1(y)fε2(y − η2)dy =

∫
s2(y)fε2(y − η2)dy. (C10)

The functional equation (C10) depends on s1 and s2, which are both uniquely determined given
the data generating process, and on the unknown fε2 . By Assumption C1-(iii) we can take Fourier
transforms and obtain

iF(s1)(u)
dψε2

(−u)

du
+ F(s̃1)(u)ψε2

(−u) = F(s2)(u)ψε2
(−u), (C11)

where ψε2
(u) = F(fε2)(u) is the characteristic function of ε2.

Noting that ψε2
(0) = 1, (C11) can be solved in closed form for ψε2

(·), because F(s1)(u) 6= 0
for all u by Assumption C1-(iii). This shows that the characteristic function of ε2, and hence its
distribution function, are identified.
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C.2 Estimation algorithm

Additional model restrictions. The tail parameters λ satisfy simple moment restrictions. For
example, we have

λ
Q

− = −

∑T
t=2 E

[∫
1
{
ηit ≤

∑K
k=0 a

Q
k1ϕk(ηi,t−1, ageit)

}
fi(η

T
i ; θ)dη

T
i

]

∑T
t=2 E

[∫ (
ηit −

∑K
k=0 a

Q
k1ϕk(ηi,t−1, ageit)

)
1
{
ηit ≤

∑K
k=0 a

Q
k1ϕk(ηi,t−1, ageit)

}
fi(ηTi ; θ)dη

T
i

] ,

(C12)
and

λ
Q

+ =

∑T
t=2 E

[∫
1
{
ηit ≥

∑K
k=0 a

Q
kLϕk(ηi,t−1, ageit)

}
fi(η

T
i ; θ)dη

T
i

]

∑T
t=2 E

[∫ (
ηit −

∑K
k=0 a

Q
kLϕk(ηi,t−1, ageit)

)
1
{
ηit ≥

∑K
k=0 a

Q
kLϕk(ηi,t−1, ageit)

}
fi(ηTi ; θ)dη

T
i

] ,

(C13)
with similar equations for the other tail parameters.

Likelihood function. The likelihood function is (omitting the conditioning on age for concise-
ness)

f(yTi , c
T
i , a

T
i , η

T
i ; θ, µ) =

T∏

t=1

f(yit|ηit; θ)
T∏

t=1

f(cit|ait, ηit, yit;µ)
T∏

t=2

f(ait|ai,t−1, yi,t−1, ci,t−1, ηi,t−1;µ)

×
T∏

t=2

f(ηit|ηi,t−1; θ)f(ai1|ηi1;µ)f(ηi1; θ). (C14)

The likelihood function is fully specified and available in closed form. For example, we have

f(yit|ηit; θ) = 1 {yit − ηit < Aε
it(1)} τ1λ

ε
− exp

[
λε− (yit − ηit −Aε

it(1))
]

+
L−1∑

ℓ=1

1 {Aε
it(ℓ) ≤ yit − ηit < Aε

it(ℓ+ 1)}
τ ℓ+1 − τ ℓ

Aε
it(ℓ+ 1)−Aε

it(ℓ)

+1 {Aε
it(L) ≤ yit − ηit} (1− τL)λ

ε
+ exp

[
−λε+ (yit − ηit −Aε

it(L))
]
,

where Aε
it(ℓ) ≡

∑K
k=0 a

ε
kℓϕk(ageit) for all (i, t, ℓ). Note that the likelihood function is non-negative

by construction. In particular, drawing from the posterior density of η automatically produces
rearrangement of the various quantile curves (Chernozhukov, Galichon and Fernandez-Val, 2010).

Estimation algorithm: earnings. Start with θ̂
(0)

. Iterate on s = 0, 1, 2, ... the two following
steps.

Stochastic E-step: Draw M values η
(m)
i = (η

(m)
i1 , ..., η

(m)
iT ) from

f(ηTi |y
T
i ; θ̂

(s)
) ∝

T∏

t=1

f(yit|ηit; θ̂
(s)

)f(ηi1; θ̂
(s)

)
T∏

t=2

f(ηit|ηi,t−1; θ̂
(s)

),

where a ∝ b means that a and b are equal up to a proportionality factor independent of η.
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M-step: Compute, for ℓ = 1, ..., L,

(
â
Q,(s+1)
0ℓ , ..., â

Q,(s+1)
Kℓ

)
= argmin

(aQ
0ℓ
,...,a

Q
Kℓ)

N∑

i=1

T∑

t=2

M∑

m=1

ρτℓ

(
η
(m)
it −

K∑

k=0

aQkℓϕk(η
(m)
i,t−1, ageit)

)
,

(
â
ε,(s+1)
0ℓ , ..., â

ε,(s+1)
Kℓ

)
= argmin

(aε
0ℓ
,...,aε

Kℓ)

N∑

i=1

T∑

t=1

M∑

m=1

ρτℓ

(
yit − η

(m)
it −

K∑

k=0

aεkℓϕk(ageit)

)
,

(
â
η1,(s+1)
0ℓ , ..., â

η1,(s+1)
Kℓ

)
= argmin

(aη1
0ℓ

,...,a
η1
Kℓ)

N∑

i=1

M∑

m=1

ρτℓ

(
η
(m)
i1 −

K∑

k=0

a
η1
kℓϕk(agei1)

)
,

and compute

λ̂
Q,(s+1)

− = −

∑N
i=1

∑T
t=2

∑M
m=1 1

{
η
(m)
it ≤ Â

Q,(s+1)
itm

}

∑N
i=1

∑T
t=2

∑M
m=1

(
η
(m)
it − Â

Q,(s+1)
itm

)
1
{
η
(m)
it ≤ Â

Q,(s+1)
itm

} ,

where

Â
Q,(s+1)
itm ≡

K∑

k=0

â
Q,(s+1)
k1 ϕk(η

(m)
i,t−1, ageit),

with similar updating rules for λ̂
Q,(s+1)

+ , λ̂
ε,(s+1)

− , λ̂
ε,(s+1)

+ , λ̂
η1,(s+1)

− , and λ̂
η1,(s+1)

+ .

In practice, we start the algorithm with different choices for θ̂
(0)

, and we select the parameter
values that correspond to the highest average log-likelihood over iterations.

Estimation algorithm: consumption. Similar to the earnings case. One difference is that in

the stochastic E-step we draw η
(m)
i from

f(ηTi |y
T
i , c

T
i , a

T
i ; θ̂, µ̂

(s)) ∝
T∏

t=1

f(yit|ηit; θ̂)f(ηi1; θ̂)
T∏

t=2

f(ηit|ηi,t−1; θ̂)

×f(ai1|ηi1; µ̂
(s))

T∏

t=2

f(ait|ai,t−1, ci,t−1, yi,t−1, ηi,t−1; µ̂
(s))

×
T∏

t=1

f(cit|ait, ηit, yit; µ̂
(s)).
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D Additional Results

Figure D1: Nonlinear earnings persistence in log-wages (PSID, males) and individual income
(Norwegian administrative data)

PSID Norwegian administrative data
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Note: Estimates of the average derivative of the conditional quantile function of yit given yi,t−1 with

respect to yi,t−1, evaluated at percentile τ shock and at a value of yi,t−1 that corresponds to the τ init
percentile of the distribution of yi,t−1. Age 25-60. Left: PSID, male log wages residuals, 1999-2009;

right: Norwegian administrative data, individual log-earnings residuals, years 2005-2006.
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Figure D2: Conditional skewness, Norwegian administrative data
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Note: Conditional skewness of log-earnings measured as in (6) for τ = 1/10. Age 25-60, years

2005-2006.
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Figure D3: Nonlinear persistence, 95% confidence bands

(a) Earnings, PSID data (b) Earnings, nonlinear model
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(c) Persistent component ηit, nonlinear model
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Note: See notes to Figure 3. Pointwise 95% confidence bands. Parametric bootstrap, 500 replica-

tions.
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Figure D4: Conditional skewness of log-earnings residuals and η component, 95% confidence
bands

(a) Log-earnings residuals yit (b) Persistent component ηit
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Note: See notes to Figure 5. Pointwise 95% confidence bands. Parametric bootstrap, 500 replica-

tions.

Figure D5: Consumption responses to earnings shocks, by assets and age, 95% confidence
bands

(a) Consumption response to ηit (b) Consumption response to εit
Nonlinear model Nonlinear model
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Note: See notes to Figure 6. Pointwise 95% confidence bands. Parametric bootstrap, 200 replica-

tions.
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Figure D6: Consumption responses to earnings shocks, by assets and age, model with
household-specific unobserved heterogeneity

(a) Consumption response to earnings (b) Consumption response to earnings
PSID data Nonlinear model
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(c) Consumption response to ηit (d) Consumption response to εit
Nonlinear model Nonlinear model
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Note: See the notes to Figure 6. Consumption and assets model with household-specific unobserved

heterogeneity.
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Figure D7: Impulse responses by age and initial assets, model with household-specific unob-
served heterogeneity

τ init = .9, τ shock = .1 τ init = .1, τ shock = .9
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Note: See notes to Figures 9. Consumption and assets model with household-specific unobserved

heterogeneity. In the simulations ξi is set to zero.
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