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Abstract 

 
According to most theories of financial intermediation, intermediaries diversify risk, transform 

maturity or liquidity, and screen or monitor borrowers. In U.S. Treasury auctions, none of these 

rationales apply. Intermediaries submit their customer bids without transforming liquidity or 

maturity, and they do not screen or monitor borrowers or diversify fiscal policy risk. Yet most 

end investors place their Treasury auction bids through an intermediary rather than submit them 

directly. Motivated by this evidence, we explore a new information aggregation model of 

intermediation. Intermediaries observe each client’s order flow, aggregate that information across 

clients, and use it to advise their clients as a group. In contrast to underwriting theories in which 

intermediaries, by acting as gatekeepers, extract rents but reduce revenue variance, information 

aggregators increase expected auction revenue but also make the revenue more sensitive to 

changes in asset value. We use the model to examine current policy questions, such as the optimal 

number of intermediaries, the effect of non-intermediated bids, and minimum bidding 

requirements. 
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Investors often access financial markets through intermediaries. Sometimes these interme-

diaries have exclusive access to a trading venue. Other times, they lower risk by screening

investments or monitoring borrowers’ behavior. In U.S. Treasury auctions, which are the

world’s largest, intermediaries channel investors’ bids, without diversifying or transforming

risks. Further, in contrast to public offerings of private issuers (e.g., Beatty and Ritter,

1986; Hansen and Torregrosa, 1992), intermediaries in Treasury auctions cannot screen or

monitor the issuer because they do not influence fiscal policy. Despite these limitations,

and even though investors can bid directly through an electronic system, most bids are still

placed through intermediaries. The prevalence of intermediation in a market where none

of the typical rationales apply prompts us to examine a new role for intermediaries and its

consequences for asset prices and auction revenue.

We present a new theory of financial intermediaries who collect information from order

flow, use it to advise clients, and bid for their in-house account.1 Existing work in the

initial public offering (IPO) literature studies the effects of concentrated underwriting,

which typically involves a single lead, or a handful of co-lead, underwriters. It finds that

this structure lowers issuers’ revenues but also revenue variance.2 In Treasury auctions,

there are many information intermediaries, investors have the option of bidding directly

without an intermediary, and intermediaries are subject to minimum bidding requirements.

Finally, intermediaries place very large bids for their own accounts. We show that in this

setting, the conventional wisdom of underwriting is reversed: information intermediaries

raise expected revenue but also revenue variance. By sharing valuable information with

their clients, dealers lower clients’ risk, which encourages them to bid more aggressively

and boost expected auction revenue. At the same time, more precise information about

the asset value makes beliefs and bids more sensitive to changes in that value. Therefore,

auction revenue is also more sensitive to information about the future value and as a

result, more variable. Thus, information aggregation intermediaries provide value both

for investors and for the asset issuer, but their effects on auction revenue are exactly the

opposite from those of a traditional security underwriter.

1Sovereign auction rules regarding the use of client information vary across countries. In the UK, the
Debt Management Office explicitly sanctions that Gilt-edged Market Makers, which have exclusive access to
the auction and route orders for all other bidders, “whilst not permitted to charge a fee for this service, may
use the information content of that bid to its own benefit” (GEMM Guidebook, 2011). We are not aware
of similar rules in the context of U.S. Treasury auctions. In the U.S., a financial intermediary’s use of client
information, including sharing such information with other clients or using the information for other benefit
to such intermediary, may violate legal requirements, be they statutory, regulatory or contractual, and/or
violate market best practices or standards. This paper does not take a view as to whether the described
use of client information with respect to Treasury auction activity is legal or proper. The objective of the
paper is to study the economic effects of order flow dissemination ahead of the auction as a mechanism to
lower auction risk and raise revenues.

2In a “full commitment IPO,” the underwriter generally earns a large first-day secondary market return,
and stabilizes the market value by raising supply elasticity, either offering additional (“greenshoe option”)
or buying some of the securities being offered (Ritter and Welch, 2002).
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The mixed nature of Treasury auctions also introduces negative skewness into auction

revenues. In a mixed auction, investors can choose to bid directly through an electronic

system, or indirectly through the intermediary dealer. When an investor bids directly,

no one observes their order flow and their information remains private. When they bid

through an intermediary, they share their signal realization with the intermediary through

their bidding behavior but also learn information about the overall order flow observed by

the intermediary. An investor whose signal indicates a high future value for the security

expects to take a large position, which will make his utility more sensitive to the auction-

clearing price. Sharing his good news with others will increase the clearing price and

negatively affect his expected utility. Thus, an investor with good news prefers not to

share his information and bids directly. Conversely, when the news is bad, the investor

expects to take a small position in the auction making his utility not as sensitive to the

clearing price. With a low signal, the investor is less concerned about sharing his signal

but also benefits from learning new information from other investors. Thus, low-signal

investors are more likely to bid indirectly through the dealer. But when negative signals

are shared, they affect bids of many investors and their price impact is amplified. Thus

the mixed nature of the auction results in a new financial accelerator channel, which is

characterized by the asymmetric diffusion of information. We use the model to run policy

counterfactuals and determine whether minimum bidding requirements mitigate or amplify

this source of asymmetry and fragility.

In many markets, intermediaries such as market makers or stock brokers collect information

from order flow and use it to advise clients. We consider Treasury auctions in particular

because of their importance (being central to funding the US federal debt) and because

standard roles for intermediaries (as gatekeepers or monitors) do not apply. These auctions

are, however, also complex and unique in their structure. In our modeling, we attempt

to balance a detailed description with a tractable and transparent model which highlights

insights that are broadly applicable. The basis for the model is a standard, common-value,

uniform-price auction with heterogeneous information, and limit and market orders. We

consider a large, finite number of competitive investors. On top of that foundation, we add

five features that distinguish Treasury auctions from other settings.

Feature 1: Information Aggregation In Treasury auctions, primary dealers are the

intermediaries that serve as information aggregators.3 Primary dealers bid on behalf of

3As discussed on the New York Fed’s website, primary dealers are “[... obligated] to: (i) participate
consistently in open market operations to carry out U.S. monetary policy [...], and [to provide] the New York
Fed’s trading desk with market information and analysis helpful in the formulation and implementation of
monetary policy. Primary dealers are also required to participate in all auctions of U.S. government debt
and to make reasonable markets for the New York Fed when it transacts on behalf of its foreign official
account-holders.”
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Figure 1: Information sets

(a) No dealers

p

y1 y2

y3 y4

(b) One dealer
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(c) 2 dealers

p
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y3 y4

(d) One dealer, one di-
rect bidder

p

y1 y2

y3 y4

Note: y1 and y2 are signals observed by small investors; y3 and y4 are signals observed by
large investors; p is the equilibrium price. Dashed lines indicate common information sets.

clients and for their own account. They collect information from order flow and use it to

advise clients. In effect, dealers are pooling the information sets of the clients they advise.

Hortaçsu and Kastl (2012) find that this information pooling effect accounts for a large

part of dealer surplus in Canadian Treasury Auctions. Dealers in US auctions acknowledge

its central role:

“[Observing overall patterns of buying in the Treasury market] can be one of

the greatest benefits of being a primary dealer, since the service itself often

doesn’t pull in big profits directly.” (Reuters, 2011)

Figure 1 illustrates how we model this information pooling. Without any dealers, investors

only bid directly, keeping their private signals private. Each investor conditions their

quantity demanded on the realized market-clearing price, which is a noisy signal about all

agents’ information. Thus, optimal bids use this price information (represented by p in the

figure), making the information set of investor i effectively {yi, p}. With one dealer and no

direct bidding (panel b), the dealer observes all trades and shares all private signals with

all agents. When there are multiple intermediaries, they pool the information of the subset

of clients they advise. The more dealers, the less information pooling (panel c). Investors

who bid independently from the intermediary keep their signal private (panel d).

Feature 2: Strategic Bidding The small number of primary dealers makes the U.S.

Treasury primary market an imperfectly competitive one (Bikhchandani and Huang, 1993).

The strategic aspect of primary dealers’ bids is a central feature of our model. The model

also includes other large strategic bidders that are non primary dealers. Varying the number

of primary dealers in the model does not directly change the competitive structure in the

auction, but it rather transforms a non-dealer strategic investor into an intermediary.

Feature 3: Non-Competitive Bidding A non-competitive bid is a purchase order for
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a given value of Treasuries at whatever the auction-clearing price turns out to be. In

practice these bids are placed by retail investors through Treasury Direct as well as by

foreign and international monetary authorities (FIMA) that hold securities in custody at

the Federal Reserve Bank of New York. We model the demand of non-competitive bidders

as an exogenous shock. These bids function as noise that prevents the market-clearing

price from perfectly aggregating all private information. We estimate that bids from noise

traders account for about 10% of the total.4

The first version of the model (Section 1) incorporates these three features and exam-

ines how the number of dealers affects the trade-off between the market power that an

intermediary enjoys and the information they provide to others.

Feature 4: Direct and Indirect Bidding Treasury auctions are mixed auctions, mean-

ing that investors have the option to bid indirectly, through a dealer, or directly, without

any intermediary. While direct bidding has been historically allowed since 1992, electronic

bidding systems and the elimination of deposit requirements for all bidders have facilitated

direct bids. Direct bidding has grown from 2 percent of all bids in 2003 to 10 percent

in 2014. While auction results do not disclose the number of direct bidders, public re-

marks of Treasury officials suggest there were about 1200 direct bidders in 2001, and 825

in 2004.

Section 4 examines a large, strategic bidder’s choice between a direct or an indirect bid.

The results uncover two valuable lessons. The first is about the optimal number of dealers.

With few dealers who each aggregate the information of many clients, dealers provide a lot

of information, making the benefit of indirect bidding high. However, indirect bidding is

also costly because the investor signal is pooled with signals of other clients, lowering its

value. Our results show that the latter effect dominates. As a result, reducing the number

of dealers to improve information aggregation could be costly as dealer-intermediated bids

could decline.

Second, we show that intermediation can amplify negative shocks to asset values with direct

bidding. This new financial accelerator channel of intermediation arises because bad news

are shared with dealers and thus with other investors, but good news are kept private. As

a result, the distribution of auction revenues is negatively skewed.

Feature 5: Minimum bidding requirements Prior to 1992, being an active coun-

terparty meant being a “consistent and meaningful participant” in Treasury auctions by

submitting bids roughly commensurate with the dealer’s capacity. A 2010 policy change

4Non-competitive bids for all FIMA accounts are capped at $1 billion, so many FIMA bids are placed
competitively although official data do not exist. Because non-competitive bidders are in our model noise
traders we group our estimate of FIMA competitive bids with other non-competitive bids.
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strengthened these requirements. Today, primary dealers are expected to bid at all auc-

tions an amount equal to the pro-rata share of the offered amount, with bids that are

“reasonable” compared to the market. A dealer that consistently fails to bid for a large

enough quantity at a high enough price could lose his primary dealer status.5

Section 5 models such a requirement as a shadow cost for low bids. The cost is based on

the realized price times quantity awarded at auction. By encouraging aggressive bidding,

this policy helps to counteract the monopsony power distortion of primary dealers. Less

use of monopsony power both increases revenue and makes makes investors more willing

to bid through the dealer, which reduces the fragility of the mixed auction. However we

find that with less monopsony power and more price-taking behavior, auction revenues are

not as smooth across states. Thus minimum bidding requirements raise expected revenue,

but also revenue volatility.

We calibrate the full version of the model, using Treasury auction data, in order to do

quantitative policy analysis. The centerpiece of this analysis is an active policy question:

How does the number of dealers affects auction outcomes? This is an important question

because entry into the primary dealer system is regulated. Policy makers have been de-

bating the merits of a robust primary dealer system for decades (see the Brady, Breeden,

and Greenspan (1992) report). In 1960, there were 18 primary dealers (Figure 2). Amid

the rapid rise in federal debt and the sharp increase in interest rate volatility, the number

of primary dealers rose throughout the 1970s to 46 in the mid-1980s. Subsequently, the

population of primary dealers dwindled, reaching its nadir in 2009. The number of pri-

mary dealers has since increased to about 22 today. Our quantitative model reveals that

increasing the number of dealers from 5 to 50 raises expected excess revenue by 15 bps

for the baseline calibration and lowers volatility by 4 bps. Thus, for our baseline calibra-

tion, the revenue benefit of less dealer monopsony power outweighs the cost of diminished

information aggregation.

A common tension at the core of each model is the trade-off between the dealer’s ability

to use market power and their ability to aggregate information in a way that lowers risk

and raises revenue. This trade-off raises the question of whether one could improve infor-

mation without the adverse effects of market power. Our model embodies the idea that

intermediation and information aggregation are inextricably interlinked: it is the process

of intermediating trades that reveals information to dealers and that empowers them. This

is a tension that optimal auction design must confront.

5See Appendix E in Brady et al. (1992) for pre-1992 policies. In 1997, the New York Fed instituted an
explicit counterparty performance scorecard and dealers were evaluated based on the volume of allotted
securities. In 2010 the NY Fed clarified their primary dealer operating policies. See New York Fed website
for the most recent rules.
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Figure 2: Number of primary dealers
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Note: Data are of the last of the month. Source: Federal Reserve Bank of New York

Contribution to the existing literature. In closely related work, Hortaçsu and Kastl

(2012) also model dealers who observe order flow. Using a share auction model with

discrete bids, they estimate to what extent client order flow is informative about demand

versus asset value. Consistent with their results, we assume that both demand and asset

fundamentals affect bids. We make no attempt to distinguish between these channels.

Instead, we use a more tractable menu auction, which allows us to vary the number of

dealers, understand how indirect/direct bidding choices contribute to fragility, and inform

the debate on minimum bidding requirements.

The idea that multiple dealers fragment a market is similar to Babus and Parlatore (2015),

where investor valuations are heterogeneous and fragmentation inhibits risk-sharing. Ours

is a common-value auction where investor information is heterogeneous and fragmentation

inhibits information-sharing. In addition, our model is tailored to Treasury auctions. It fea-

tures competitive and non-competitive bidders, an option to bid directly, minimum bidding

requirements and information that is partially revealed through the realized market-clearing

price.

The assumptions of our model are informed by many empirical findings. First, we assume

that bidders have private signals about future Treasury values. Indeed, bids contain infor-

mation about the future value of the Treasury (e.g Coutinho, 2013).6 Second, we assume

that bids condition on realized prices, which is the rational response to the winner’s curse.

6Economic conditions affect bidding behavior in non-U.S. markets as well. Using Finnish Treasury data,
Keloharju et al. (2005) find strong uncertainty effects.
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Nyborg et al. (2002) find that Swedish Treasury bidding behavior is consistent with auction

models featuring private information and a winner’s curse. Finally, we assume that dealers

behave strategically and reap benefits from their privileged position. Lou et al. (2013)

argue that “auction concessions”—the fact that Treasury prices decrease into an auction

and recover afterwards— is evidence of dealer rents.

Finally, much of the literature studies how the format of sovereign auctions affects revenues.

Theoretical work by Chari and Weber (1992), Bikhchandani and Huang (1989), Back and

Zender (1993), and Wilson (1979) considers the merits of uniform-price auctions versus

other possible alternatives. Empirical work by Nyborg and Sundaresan (1996), Malvey

et al. (1995) and Malvey and Archibald (1998) compares revenues from 1992-1998 when the

U.S. Treasury used both uniform and discriminatory price auctions. Armantier and Sbäı

(2006) and Hortaçsu and McAdams (2010) use French and Turkish Treasury auction bids

to structurally estimate the benefits of uniform price auctions. This literature complements

our project, which fixes the auction format to a uniform-price menu auction and focuses

on the effect of intermediation.

1 Baseline Auction Model with Primary Dealers

The model economy lasts for one period and agents can invest in a risky asset (the newly

issued Treasury security) and a risk-less storage technology with zero net return. The

risky asset is auctioned by Treasury in a fixed number of shares (normalized to 1) using a

uniform-price auction with a market-clearing price p. The fundamental value of the newly

issued asset is unknown to the agents and normally distributed: f ∼ N(µ, τ−1
f ).

We consider four type of bidders to match key features of Treasury auction participation:

small and large limit-order bidders, intermediaries (or dealers) and non-price contingent

bidders. Limit-order bidders and intermediaries place price-contingent bids, which specify

for each clearing price p, a price-quantity pair. Limit-order bidders can be small (price

takers) or large (strategic bidders). We refer to large and small limit-order bidders as

investors. Dealers are just like large limit-order bidders but they also intermediate bids

from other limit-order bidders. Dealers place bids directly in the auction while small

and other large limit-order bidders bid indirectly through the dealers.7 To understand

the role of intermediation, we study auction revenues as the number of dealers varies.

In these experiments we keep the total number of large (and small) limit-order bidders

fixed. Denoting by NL (NS) the number of large (small) investors, and by ND the total

7We relax this assumption in Section 4.
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number of dealers, when varying ND or NL, the total ND +NL remains unchanged.8 Non-

price-contingent bidders are the fourth type of agent that places bids. Differently from

other investors and dealers, these bidders only place market orders, which only specify

a quantity but not a price (called non competitive bids). In practice, non competitive

bidders are either small retail investors or foreign central banks who roll over expiring debt

or accumulate liquid assets for exchange rate management. The net quantity of market

orders, x, is unknown to other investors and normally distributed x ∼ N(x̄, τ−1
x ).

We index investors (small and large) and dealers with i = 1, . . . , N , where N ≡ NL +NS +

ND. Each small investor has initial wealth Wi, and chooses the quantity of the asset to

hold, qi (which could be negative) at price p per share, in order to maximize his expected

utility, E[− exp(−ρiWi)], where ρi denotes agent i’s coefficient of absolute risk aversion.9

The budget constraint dictates that final wealth is Wi = (W0 − qip)r + qif .

Before trading, each investor and dealer gets a signal about the payoff of the asset. These

signals are unbiased, normally distributed and have private noise:

yi = f + εi,

where εi ∼ N(0, τ−1
ε,i ). Dealer and large investors solve the same problem as small investors

but they also internalize the effect they have on market prices. They maximize their final

utility with risk aversion ρi subject to the same constraints as well as the market clearing

condition. We assume that all large investors and dealers share the same risk aversion and

signal precision: ρi = ρl and τε,i = τε,l for i ∈ {NL,ND}, where with Nj we denote the set

of agents of type j. Similarly, all small investors are symmetric: ρi = ρs and τε,i = τε,s for

i ∈ NS .

Describing Information Sets and Updating Beliefs with Correlated Signals In-

vestors and dealers observe three types of information. They observe their private signals

yi. In addition, primary dealers, who place bids on behalf of their customers, observe their

investors’ bids and advise their clients as a whole by disclosing the average order to all of

their customers. Each intermediary d receives orders from an equal number of investors.

He observes the orders of NS/ND ≡ νs small and NL/ND ≡ νl large investors. Since bids

8When we change the number of intermediaries, we want to isolate the information and competition
aspects on this change. We do not want to change the total demand for the asset by changing the number
or size of market participants.

9We use exponential (CARA) utility here for all agents to keep the problem tractable. Of course, this
rules out wealth effects on portfolio choices. At the same time, we want to capture the idea that investors
with larger balance sheets naturally hold larger positions of risky assets. Therefore, we assign large investors
and dealers a smaller absolute risk aversion. In other words, we are capturing wealth effects with differences
in risk aversion.
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will turn out to be linear functions of beliefs, revealing average bids and revealing aver-

age signals is equivalent. Thus, investment through a primary dealer d allows investors

to observe an average of other investors’ signals ȳd. The final piece of information is the

auction-clearing price p. Of course, the agent does not know this price at the time he

bids. However, the agent conditions his bid q(p) on the realized auction price p. Thus,

each quantity q demanded at each price p conditions on the information that would be

conveyed if p were the realized price. Since p contains information about the signals that

other investors received, the investor uses a signal derived from p to form his posterior

beliefs about the asset payoff. We guess (and later verify) that the market-clearing (settle)

price is a linear function of the average signals {ȳk}NDk=1 and of the market orders x

p = A+BN−1
D

ND∑
d=1

ȳd + Cx, (1)

where

ȳd =
τε,s
∑

k∈Isd
yk + τε,l

(∑
j∈Ild

yj + yd

)
νsτε,s + (1 + νl)τε,l

≡ ωs

∑
k∈Isd

yk + ωl

∑
k∈Ild

yk + ωlyd,

and A, B and C are a function of the number of dealers in the market: A ≡ A (ND),

B ≡ B (ND), C ≡ C (ND). The average signal ȳd from dealer d to the subset of large (I ld)

and small (Isd) investors that place bids through the dealer is a signal-precision-weighted

average of all of the dealer’s customer signals as well as the dealer’s own signal (yd).

It follows that p−A−Cx̄
B provides an unbiased signal about f

p−A− Cx̄
B

∼ N
(
f, (νsτε,s + (νl + 1) τε,l)

−1 + τ−1
p

)
,

where τp = (BC )2τx. For every agent, we use Bayes’ law to update beliefs about f . But

because the signals agents observe have correlated signal errors, we need to use a procedure

that adjusts for this correlation. The following general information structure is one we can

use to solve all of the versions of the model that follow in the paper.

Let S be the vector of all signals (including price signals) available to any agent.

S =
[
y1 . . . yN ȳ1 . . . ȳND

p−A−Cx̄
B

]′
. (2)

While all investors and dealers condition on the p information, each agent in the economy

9



observes a subset of all signals. For example an investor j with dealer d will observe its

own signal j and the mean signal from dealer d ȳd. Let Xj be an operator that selects the

subset of all signals observed by agent j. (See appendix A for definition of this operator.)

Then any investor j assigned to intermediary k conditions his beliefs on the signal vector

XjS = [yj , ȳk, (p−A−Cx̄)/B], and similarly for the intermediary (who conditions on the

the same mean signal as well as its own realization.) Note that XjS is a vector of all the

signals known to agent j at the time when he invests. Of course, some of these signals

are redundant. But our filtering algorithm will put zero weight on signals that provide no

additional information.

We can now solve for the beliefs of any agent j (investor or dealer) who observes the vector

of signals XjS. Since all the uncertain quantities are normally distributed, we have the

following optimal linear projections10

E [f |XjS] = (1− β′1m)µ+ β′XjS where (3)

β ≡ V (XjS)−1 Cov (f,XjS) (4)

V [f |XjS] = V (f)−Cov (f,XjS)′V (XjS)−1 Cov (f,XjS) ≡ τ̂−1
j , (5)

where m is the number of signals selected by XjS, the covariance vector is Cov (f,XjS) =

1mτ
−1
f and the signal variance-covariance V (XjS), is worked out in the appendix.

Although this matrix information structure may seem cumbersome for the simple problem

at hand, it allows us to examine various forms of the model with minimal changes to the

setup. The different versions of the model we explore in the following section will change

two things about the model: The set of signals S and the information sets of each agent,

summarized by a set of Xj ’s.

Equilibrium. A Nash equilibrium is

1. A menu of price-quantity pairs bid by each small investor i that solves

max
qi(p)

E[− exp(−ρWi)|XiS]

s.t. Wi = W0i + qi(f − p).

10Note that the following formulas are just like the OLS formulas in a context where all the means,
variances and covariances of variables are known. The OLS additive constant α is (1N − β)′1Nµ. β is
the infinite sample version of (X ′X)−1X ′y. The conditional mean here is analogous to the optimal linear
estimate in the OLS problem. This equivalence holds because in linear systems, both OLS and Bayesian
estimators are consistent. It also has the Bayesian interpretation as a weighted average of normal priors
and signals, where each is weighted by their relative precision. Here that precision is adjusted to account
for correlation.
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The optimal bid function is the inverse function: p(qi).

2. A menu of price-quantity pairs bid by each strategic player (dealer and large investor)

that maximizes

max
qj ,p

E[− exp(−ρlWj)|XjS] (6)

s.t. Wj = W0,D + qj(f − p), (7)

x+

NS∑
i=1

qi +

ND∑
j=1

qj +

NL∑
k=1

qk = 1. (8)

The second constraint is the market clearing condition and reflects that the dealer

must choose his quantity and the price so that the market clears.

3. An auction-clearing (settle) price that equates demand and supply: x +
∑NS

i=1 qi +∑ND
j=1 qj +

∑NL
k=1 qk = 1.

1.1 Solution: Optimal Menu Bids

Since all investors’ posterior beliefs about f are normally distributed, we can use the

properties of a log-normal random variable to evaluate the expectation of each agent’s

objective function. It then follows that the FOC of the small investors’ problem is to bid

the following set of price-quantity pairs:

qi(p) =
1

ρ
V[f |XiS]−1 (E[f |XiS]− p) . (9)

This is a standard portfolio expression in an exponential-normal portfolio problem. The fact

that it is an auction rather than a competitive market doesn’t change choices. The novelty

of the model is in modeling the large, strategic players (dealers and large investors) and

in thinking carefully about how primary dealers affect the information sets that determine

the conditional mean and variance of the asset payoff.

For a large investor or dealer, we substitute the equation for Wj in the dealer’s problem into

the objective function, evaluating the expectation and taking the log, we can simplify the

strategic investor problem to be maxqj ,p qj(E[f |XjS]−p)− 1
2ρlq

2
jV[f |XjS] s.t. the market

clearing condition (8). Taking the first order condition with respect to qj , we obtain

qj (p) =
E[f |XjS]− p

ρlV[f |XjS] + dp/dqj
≡ML (E[f |XjS]− p) . (10)

The term dp/dqd measures the price impact of a strategic investor bid. As the price impact
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increases, the dealer’s demand becomes less sensitive to his beliefs about the value of the

security.

1.2 Auction Revenue without Dealers

To understand the costs and benefits of having primary dealers, we now consider the

benchmark setup without any primary dealers. In this model, each type of limit order

investor submits bids on their own behalf rather than through intermediaries. The lack of

intermediaries in turn implies absence of any information aggregation.

As a result, the investors’ information set contains only their private signal yi and the price

information (p − A − Cx̄)/B̃, but not the average signal that was previously provided by

the intermediary. Thus, the set of possible signals will remain the same but the vector of

signals observed by each investor i is now XC
i S = [yi, (p−A− Cx̄)/B̃]. The signal vector

XC
i S gives the investor only his own private signal and the price information.

To solve the model, we conjecture a linear auction-clearing (settle) price.

p = A (0) +B (0) N−1
S

N∑
i=1

yi + F (0) N−1
L

NL∑
j=1

yj + C (0)x (11)

Then, we use the price conjecture to determine what information agents’ can extract by

conditioning their quantity demanded on the realized price. That unbiased signal about

the true payoff f is (p−A(0)−C(0)x̄)/(B(0) +F (0)). Using (3) and (5), we find that the

posterior belief is a weighted average of the prior belief µ, the private signal yi and the price

signal. Let βs be the vector of weights used by the small investors and βl be the vector of

weights used by the large investors, so that the beliefs of a small investor are

E [f |XiSi] = (1− βs (1)− βs (2))µ+ βs (1) yi + βs (2)
p−A− Cx̄

B̃

with conditional variance V [f |XiSi] = τ−1
f − τ−1

f (βs(1) + βs(2)) ≡ τ̂−1
s . The beliefs of a

large investor are

E [f |XiSi] = (1− βl (1)− βl (2))µ+ βl (1) yi + βl (2)
p−A− Cx̄

B̃
.

with conditional variance V [f |XiSi] = τ−1
f − τ−1

f (βl(1) + βl(2)) ≡ τ̂−1
l .

We substitute these beliefs into the optimal bid formulas (9) and (10), and use those bid

functions to determine the price that clears the market. This result and all future results

are proven in Appendix A.
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Result 1. Without primary dealers, the auction revenue is (11), where

A (0) = −C (0)

(
1 +

(
NS

τ̂s
ρ
βs (2) +NLML (0)βl (2)

)
A+ Cx̄

B̃

)
+ C (0)

(
NS

τ̂s
ρ

(1− βs (1)− βs (2)) +NLML (0) (1− βl (1)− βl (2))

)
µ

B (0) = C (0)NSρ
−1τ̂sβs (1)

F (0) = C (0)NLML (0)βl (1)

C (0) = −B̃
[
NSρ

−1τ̂s

(
βs (2)− B̃

)
+NLML

(
βl (2)− B̃

)]−1
,

and the elasticity of the large investor’s demand to information is given by

ML (0)−1 = ρlτ̂
−1
l − B̃

[
NSρ

−1τ̂s

(
βs (2)− B̃

)
+ (NL − 1)ML (0)

(
βl (2)− B̃

)]−1
.

The result provides an implicit solutions for the price coefficients. Normally, a competitive

market model has simple closed form solutions for prices. The complication here is two-

fold: 1) there are large strategic agents whose demand is not linear and 2) the average of

investors’ signals ȳ is not equal to the true payoff. The latter effect implies that there is

both public and private signal noise. Both sources of extra complexity are easy to resolve

numerically and are essential in the following model to understand how the number of

dealers affects information aggregation and auction revenue.

1.3 Auction Revenue with ND Dealers

In this case, all the dealers in the market are symmetric, and the beliefs of any investor

bidding through dealer d are the same as the dealer’s beliefs. Using (3) and (5), we find

that this posterior belief takes the form

E [f |XdS] = (1− β(1)− β(2))µ+ β (1) ȳd + β (2)
p−A− Cx̄

B
, (12)

with conditional variance V [f |XdS] = τ−1
f − τ−1

f (β (1) + β (2)) ≡ τ̂−1. As before, we

substitute these beliefs into the first-order conditions for optimal bids and then equate

demand and supply to determine the auction settle price.
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Result 2. With ND primary dealers, auction revenue is given by (1) where

A = C

[
−1 +ND

(
νsρ
−1τ̂ + (νl + 1)ML

)(
(1− β (1)− β (2))µ− β (2)

B
(A+ Cx̄)

)]
(13)

B = NDC
(
νsρ
−1τ̂ + (νl + 1)ML

)
β (1) (14)

C = −B
[
ND

(
νsρ
−1τ̂ + (νl + 1)ML

)
(β (2)−B)

]−1
. (15)

Increasing the number of primary dealers, who bid on behalf of their clients, disperses

information across a larger number of participants. In other words, dealer competition

inhibits information-aggregation. On the other hand, a larger number of dealers increases

competitive pressures and limits rent extraction. This second effect is shut down because

every time a dealer is added, we subtract a large non-dealer investor. Recall that we hold

the number of strategic agents (NL + ND) fixed when we change the number of dealers

ND. We make this assumption to isolate the information aggregation effect.

Auction Revenue Since we normalized the supply of the Treasuries to one, price and

auction revenue are the same. Our objective is to determine what the expected revenue

is, what the variance of that revenue is, and how this mean and variance compare to other

primary dealer arrangements. In every auction, the unconditional expected revenue will

be A+Bµ+ Cx̄ and unconditional revenue variance will be B2V[ȳ] + C2τ−1
x .

2 Mapping the Model to Data

To measure the impact of primary dealers on auction revenue, we calibrate the model pa-

rameters using Treasury auction result data and secondary market prices. Before detailing

the mapping of the model to the data, we provide institutional details that are useful to

understand that mapping.

2.1 Institutional Detail

In 2013 alone, Treasury issued nearly $8 trillion direct obligations in the form of marketable

debt as bills, notes, bonds and inflation protected securities (TIPS), in about 270 separate

auctions.11 An auction begins with an announcement one day to one week ahead of the

11Treasury bills are auctioned at a discount from par, do not carry a coupon and have terms of not more
than one year. Bonds and notes, instead, pay interest in the form of semi-annual coupons. The maturity
of notes range between 1 and 10 years, while the term of bonds is above 10 year. For TIPS, the coupon is
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auction. The announcement specifies CUSIPs (an alphanumeric code uniquely identifying

an asset), offering amount, issue and maturity dates.

There are two types of bids: Competitive bids specify a quantity and a rate (a discount rate

for bills, a nominal yield for notes/bonds, or a real yield for inflation protected securities).

Non-competitive bids specify a total amount (value) to purchase at the market-clearing

rate. Each bidder can only place a single non-competitive bid with a maximum size of $5

million.12 Bids can be direct or indirect. To place a direct bid, investors submit electronic

bids to Treasury’s Department of the Public Debt or the Federal Reserve Bank of New

York. Indirect bids are placed by a depository institution (banks that accept demand

deposits), or dealers on behalf of their clients. On the auction day, bids are received prior

to the auction close. The auction clears at a uniform price, which is determined by first

accepting all non-competitive bids, and then competitive bids in ascending yield or discount

rate order.13

The type of uncertainty faced by Treasury bidders is different from the risks faced by cor-

porate bond investors. Because sovereign secondary markets are deep and liquid, Treasury

investors can hedge issuer-specific risks by shorting already-issued securities. Newly issued

government securities are, however, only imperfect substituted for the outstanding ones

because of differential liquidity (Lou et al. (2013), Amihud and Mendelson (1991) and Kr-

ishnamurthy (2002)). Investors’ demand for specific issues is the key determinant of this

liquidity, and so the key underwriting risks are issue-specific rather than issuer-specific. In

our model, each investor knows their own issue-specific demand for this set of Treasuries.

They use this signal to forecast aggregate future demand. Taken together, the dispersed

signals are informative about the future value of the asset.

Primary dealers are the firms, commercial bank dealer departments or brokers and dealers

not associated to banking organizations, with which the Federal Reserve conducts its open

market operations. Figure 3 illustrates that primary dealers, bidding for their own account,

are the largest bidder category at auctions (57 percent of allotted securities). Indirect

bidders are the second largest at 32 percent. They may bid through depository institutions

applied to an inflation-adjusted principal, which also determines the maturity redeemable principal. TIPS
maturities range between 1 and 30 years.

12Foreign and international monetary authorities (FIMA) that have accounts a the NY Fed can place
bids up to $100 million per account and $1billion in total.

13The rate at the auction (or stop-out rate) is then equal to the interest rate that produces the price
closest to, but not above, par when evaluated at the highest accepted discount rate or yield at which bids
were accepted. The maximum auction award to a single bidder at a given rate is 35 percent of the offering,
less the bidder’s reportable net long position in the security. Competitive bidders can place multiple bids at
different rates without an overall upper bound. This cap is meant to prevent a single bidder from acquiring
a disproportionate amount of securities in the event of a proration, which is when, multiple investors place
bids at the stop-out rate.
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Figure 3: Allotted shares by bidders across all auctions
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Note: Non-competitive bids in the chart exclude indirect FIMA bids. Source: Treasury
auction results.

or other brokers or dealers, but primarily they bid through primary dealers.14 The Federal

Reserve Bank of New York (NY Fed) selects primary dealers. They are not unique to U.S.

but are prevalent in most OECD countries.

2.2 Calibration

We calibrate model parameters using data from two main data sources: Treasury auction

results and market prices. The target moments are shown in Table 1. Our sample starts in

September 2004 and ends in June 2014.To study a comparable sample and estimate yield

curves, we restrict attention to 2-, 3-, 5-, 7- and 10-year notes and exclude bills, bonds and

TIPS.

For each maturity we compute the mean share of securities allotted to primary dealers,

direct and indirect bidders.15 As discussed above, the definition of indirect bidders from

official auction results includes FIMA competitive bids placed through the NY Fed. Because

these bids do not provide information to primary dealers, we attempt to abstract from them

14Brokers and dealers include all institutions registered according to Section 15C(a)(1) of the Securities
Exchange Act. Indirect bidders also include foreign and international monetary authorities placing compet-
itive bids through the New York Fed. These bids are not parsed out in the auction results and we attempt
to estimate their size in the model calibration.

15We exclude amounts allotted to the Fed’s own portfolio, the System Open Market Account or “SOMA,”
which are an add-on to the auction.
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using a simple imputation.16 We reclassify these bids as part of the noise trader group, as

they do not reflect the short-term issue-specific value (more on this in the next paragraph)

because foreign official investors have long investment horizons invest reflecting foreign

exchange strategies.

To calibrate the auction price and fundamental value we first note that, up to rounding, the

auction price clears at par. The stop-out coupon rate is, instead, a function of issue-specific

value as well as the term structure of interest rates at the time of the auction, which depends

on factors unrelated to the auction, such as monetary policy and inflation expectations.

We focus on issue-specific fundamentals, or the “on-the-run” value of the issue, for two

reasons. First, an investor can easily hedge interest rate risk into the auction by shorting

a portfolio of currently outstanding securities. Second, from the issuer perspective, the

stop-out rate could be very low because of low interest rates, but an issue could still be

“expensive” relative to the rate environment due to auction features, which is what we are

after. To strip out the aggregate interest-rate effects, we assume that the bidder enters

the auction with an interest-rate-neutral portfolio, which holds one unit of the auctioned

security and shorts a replicating portfolio of bonds trading in the secondary market. This

portfolio is equivalent to the excess revenue on the current issue, relative to outstanding

securities. Thus, price p in our model corresponds to the auction price, minus the present

value of the security’s cash-flows, where future cash flows are discounted using a yield

curve.17 The fundamental value f in the model corresponds to the value of the interest-

rate neutral portfolio on the date when the security is delivered to the winning bidders (close

of issue date). The issue date in our sample lags the auction date by an average of 5.5

days with a standard deviation of about 2.3 days. For example, in Table 1, the average

revenue from selling a new coupon-bearing security is 37.18 basis points higher than the

replicating portfolio formed using outstanding securities. Thus, we calibrate the model to

have this average asset payoff. This excess revenue is positive across all maturities. This

is the well-known “on-the-run” premium.

We fit the parameters of the full model (the model of Section 5) to aggregate moments.

The full model differs from the one presented in the previous section for the inclusion of

minimum bidding requirements for dealers, which, as we discuss in the next sections, are

key features of Treasury auctions. The objective function matches a few moments from the

16From Treasury International Capital (TIC), as of August 2014, about $6 trillion of securities are held
by foreign investors, while from the Fed Board’s H.41 release, foreign and international monetary accounts
(FIMA) at the NY Fed are about $3.4 trillion as of that time. Assuming that the portfolio composition and
bidding strategy of FIMA and non-FIMA are similar then an estimate of FIMA’s share of competitive bids
reported as indirect ones is: 3.3/6 X all foreign bids (from investment allotment) less FIMA non-competitive
bids that are reported separately.

17 We estimate a Svensson yield curve following the implementation details of Gürkaynak, Sack, and
Wright (2007) but using intraday price data as of 1pm, which is when the auction closes (data from
Thomson Reuters TickHistory).
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Table 1: Calibration targets and model-implied values.

Data Model

A -17.01 -12.44
Price sensitivity to fundamental 0.97 0.88

C 124.38 114.67
Error Std. Dev. 29.72 25.97

Expected excess revenue 37.18 37.60
Volatility of excess revenue 72.64 69.81

Indirect share 0.25 0.51
Volatility of indirect share 0.09 0.57

Dealer share 0.53 0.42
Volatility of dealer share 0.14 0.20

Direct share 0.10 0.01
Volatility of direct share 0.09 0.01

Note: Prices and excess revenues are all expressed in basis points.

model to their empirical counterparts: the pricing coefficients A, B and C in equation (24),

the mean and variance of the price of the interest-rate-risk-neutral portfolio p at auction,

the mean and variance of the price of the portfolio f at issuance, the mean allotted share

and variance of non-competitive bids x (including the FIMA trades, or market orders), the

mean allotted share to primary dealers,
∑D

d=1 qd, the mean allotted share to indirect bidders

(
∑N

i=1 qi), and the mean allotted share to direct bidders, qL. We obtain sample estimates of

A, B and C by regressing the stop-out-price at each auction on a constant, the end-of-day

secondary price on the issue date of the auction security (data from Bloomberg LP) and

the non-competitive bids. As shown in Table 1, consistent with the model, excess revenues

are positively correlated to the fundamental value on issue date (positive B + F ), and it

also increases with the share of securities allocated to market orders (positive C). The

model moments are computed by making 100000 draws of realization of the fundamental

f , all the signals in the economy yi and the non-competitive demand x from the model,

and calculating the equilibrium outcomes.

Table 2: Calibrated parameters

µ τ
− 1

2
f τ

− 1
2

ε,s τ
− 1

2
ε,l τ

− 1
2

x x̄ ρ ρL χ NS NL ND

40.8 73.5 692.1 282.4 0.06 0.12 64542 908 0.07 240 40 20

Note: µ, τ
− 1

2
f , τ

− 1
2

ε,s and τ
− 1

2
ε,l are all expressed in basis points.
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3 Quantitative Results: Primary Dealers and Auction Rev-

enue

To understand the role of intermediation we first examine auction revenue with either one

or no dealers. This comparison illustrates two competing effects: 1) dealers lower auction

revenue through market power; and 2) dealers reduce uncertainty by pooling information

from their own and their customers’ demands. Lower uncertainty raises the price that risk-

averse investors are willing to bid. Such information pooling increases revenue, particularly

in high-uncertainty times when demand might otherwise collapse.

Since the quantity of Treasury securities sold is normalized to 1, the auction price and

auction revenues are the same. Therefore, in the plots that follow, we report the expected

price and the variance of that price, varying one exogenous parameter at a time. In

each exercise, all parameters other than the one being varied are held at their calibrated

values.

The left panel of Figure 4 plots expected auction revenues as a function of different levels

of fundamental uncertainty as we vary the number of dealers, as well as in the case in

which no dealer is present (line labelled competitive). The expected revenue gain from

the introducing a single dealer into the auction varies from about 5 to about 8 basis

points. The revenue gain comes from dealer information aggregation and is larger when

the fundamental uncertainty about the future asset value (τ−1
f ) is large. The reason the

dealer increases auction revenue is that he is providing his clients with information. This

information makes Treasuries less risky to investors, eliciting stronger bids and increasing

auction revenues.

The right panel of Figure 4 plots the conditional variance of auction revenue with a varying

number of dealers as well as without dealers (line labelled competitive). Dealers increase

the variance of auction revenue and this effect is largest when investors are most uncertain

about the future value of Treasuries. The size of the increase in variance ranges from

30 to 40 basis points. This higher variance arises because dealers make investors better

informed about the future value of Treasury securities. Absent any information about the

future value of a security, bidders would always bid the same amount and revenue would be

constant. With more precise information, bidders condition their bids on this information.

When the fundamental value of the securities fluctuate, investors learn this information

with a high degree of accuracy, and use this information in their bids leading to more

volatile auction revenues.

We also examine how the effect of dealers varies as we change the variance of non-

competitive bids. When these bids are less predictable, auction clearing prices are less
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Figure 4: Dealers increase revenue in times of high uncertainty
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Note: Vertical line denotes the baseline calibration level of fundamental uncertainty.

clear signals about the true value of the asset. As a result, the value of information aggre-

gation increases, which makes dealers more valuable in expected auction revenue terms–but

the magnitude of this effect is, however, limited.

3.1 Dealers as Insurance Against Uncertainty Shocks

In standards models of IPO underwriting, dealers stabilize revenues. In our model, dealers

increase the conditional variance of revenue, but they do provide revenue insurance in

another way, by providing a hedge against uncertainty shocks.

Figure 4 shows that an auction with a dealer delivers lots more revenue than one with-

out when fundamental uncertainty (τ−1
f ) is high. The result comes from the feedback of

uncertainty through price information. In the absence of a dealer, when beliefs are un-

certain, investors make less aggressive bids, meaning that their demand is less sensitive

to the private information they have. However, when bids are less sensitive to private in-

formation, the market-clearing price contains less information, relative to the noise of the

non-competitive bids. Thus, investors are all the more uncertain because the price does

not reveal much information to them either.

The presence of a dealer avoids this problem. By providing investors signals about the

average trade, without noise, investors do not need to only rely on prices to aggregate

information. So, when prices become more noisy signals, the increase in uncertainty does

not affect investors who trade through dealers because they already observe that average

signal from other agents from the dealer. Since the difference between the price information

and the dealer information is greatest when prices have the most noise, and prices have

the most noise when uncertainty is high, auction revenue diverges in high-uncertainty
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times. This ability of dealers to raise revenue in times when it would otherwise be low by

improving the information environment and reducing uncertainty is valuable to Treasury

auctioneers.

Conditional on high uncertainty, revenue is still less predictable with the dealer than with-

out. What we learn is that dealers make revenue more sensitive to the issue-specific value

of the asset, because they aggregate and provide information about that value. But they

make the auction revenue less sensitive to changes in uncertainty.

3.2 Quantitative Results: The Effect of More Dealers

We study mean and variance of auction revenues when increasing the number of dealers.

Adding dealers reduces auction revenues (Figure 4). An auction with 20 dealers earns

about 1.5 bps less on-the-run premium than as an auction with 1 dealer in the baseline

calibration. When prior uncertainty about the future value of the asset is high (precision

τf is low), the reduction in excess revenue doubles.

Increasing the number of dealers reduces revenue because more dealers disperse informa-

tion. With two dealers, each dealer sees half of all the signals. With three dealers, each

observes a third. Each time a new dealer is added, all dealers have less information. Since

dealers disclose their information to their clients, all investors have less precise information

sets, and are therefore more uncertain about the asset value, when the number of dealers

rises. Because they are risk averse, more uncertain investors reduce their bids and average

auction revenue falls.

The standard deviation of auction revenue also declines in the number of dealers (Figure

4 right panel) because dealers are segmenting information sets. When information about

the true value of the asset is less precise, investors’ bids respond less to changes in that

true value. Since investors’ bids are less sensitive to a random variable, they are also less

variable themselves and create less variance in revenue. That effect shows up as a lower

standard deviation of auction revenue from increasing the number of dealers.

4 Mixed Auctions: Choosing Direct or Indirect Bidding

A key distinguishing feature of US Treasury auctions is that they are mixed auctions,

meaning that non-dealer investors can either place intermediated bids through primary

dealers, or bid directly. As shown in this section, the intermediation choice affects auction

revenue, lowers the revenue-maximizing number of dealers and amplifies the effect of low

signals on auction revenue. To explore these effects in a simple setting, we now allow one
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investor to choose between bidding directly or indirectly through an intermediary. Without

loss of generality, we assume that this choice is made by one of the large investors bidding

through dealer 1.

4.1 A Model with Intermediation Choice

The large investor’s choice to bid directly or indirectly (through an intermediary) only

affects the information structure of that investor, its dealer, and other investors bidding

with that same dealer. By affecting the information sets of these investors, the choice to

bid directly affects the information content of the price yp as well.

When the large investor chooses to bid directly on his own behalf, the first dealer’s signal

is the average of the first νs investors’, the first νl − 1 large investors’ and the first dealer’s

signals:

ȳ1 =
τε,s
∑

k∈Is1
yk + τε,l

(∑
j∈Il1

yj + yd

)
νsτε,s + νlτε,l

As in the previous model, investor i who bids through intermediary d observes signals

XiS = [yi, ȳd, yp]. The large investor bidding directly observes only his own signal and the

price information: XLS = [yL, yp].

Solution: Auction Outcomes If the large investor bids indirectly, the problem and

the solution are the same as in the previous section. We solve now for the case with direct

bidding. The following result shows that the auction price is a linear function of the dealer-

level average individual investor signals, ȳd, the signal of the large investor, yNS+1, and of

market orders x. Since the supply of the asset is 1, the price and the auction revenue are

the same.

Result 3. With ND dealers and 1 large investor who bids directly, the auction revenue is

p = A (ND, 1) +B1 (ND, 1) ȳ1 +
B2 (ND, 1)

ND − 1

ND∑
d=2

ȳd + C (ND, 1)x+ F (ND, 1) yNS+1, (16)

where B1 (ND, 1) ≡ B (ND, 1, 1), B2 (ND, 1) ≡ B (ND, 1, 2), and the coefficient formulas

are in the appendix.
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4.2 Understanding Intermediation Choice

Given the solution to the auction outcomes, we study the large investor’s choice of whether

to bid directly or indirectly l ∈ {Ld,Li}. This decision, which determines the information

of the large investor and of its dealer, will affect the distribution of the auction-clearing price

and the signals that the investor will see. We computed the expected utility conditional

on signals and a realized price. But when the investor chooses whether to invest through

a dealer the only signal that he has seen is the realization of his private signal yi. To

solve for the large investor’s choice to bid through a dealer we need to take an additional

expectation over the information that has not yet realized. By computing the expectation

over possible price realizations and what the investor might learn from the dealer, we find

that expected utility takes the form

EU(l) = − exp(ρLWL)(1 + 2θl∆Vl)
− 1

2 exp

(
−

µ2
rl

θ−1
l + 2∆Vl

)
. (17)

The intermediation decision affects utility in three ways: through the expected profit per

unit µrl, the sensitivity of demand to expected profit θl, and through the ex-ante variance

of expected profit ∆Vl. These three terms are:18

µrl ≡ E{E[f |XlS]− p|yi}, (18)

θl ≡ ρLMl

(
1− 1

2
ρLMlV[f |XlS]

)
, (19)

∆Vl ≡ V{E[f |XlS]− p|yi} = V[f − p|yi]− V[f |XlS]. (20)

Trading through a dealer has both costs and benefits for the large investor. We’ll now

discuss these and how they affect the expressions in (17)–(20).

The main cost of intermediation is that it reveals one’s private information yi to others.

This effect shows up as a reduction in µrl, the ex-ante expectation today of expected profit

per share, after all signals are observed. When the large investor bids through a dealer,

their information set and their expectations will be the same as for every other agent who

bids through that dealer d1: E[f |XlS] = E[f |Xd1S]. Information sharing reduces µrl

for two reasons. First, since many investors all condition their bids on this information,

E[f |Xd1S] has a large effect (closer to 1) on the auction-clearing price. Thus the difference

E[f |XlS] − p is closer to zero with intermediation. Second, improving the precision of

other investors’ information raises the expected price p, which in turn, lowers µrl (see eq

(18)). In equation (17), a decrease in µrl decreases expected utility because θl > 0 (see

appendix).

18See appendix for derivations of the following three equations and support for the analysis that follows.
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The advantage of intermediation is that it allows the large investor to observe more in-

formation. Better information allows the large investor to make better trading decisions

and increases his expected utility. This effect shows up through θl. In the appendix we

show that θl > 0 and is strictly decreasing in the posterior variance of the asset payoff

V[f |XlS]. When the large investor trades through a dealer he receives more information,

which decreases V[f |XlS]. This ensures that θLi > θLd. Equation (17) shows that expected

utility is increasing in θl. Thus, the reduction in uncertainty effect embodied in θl works

in favor of dealer-intermediated trade.

Trading through a dealer also affects the ex-ante variance ∆Vl. As already discussed, when

the large investor trades through a dealer the variance of her posterior beliefs V[f |XlS]

is lower. From equation (20) we can see that this increases the ex-ante variance of the

expected profit ∆Vl. The reason for this is that when the agent trades through a dealer

she will receive more information. This means that her beliefs about the profit will change

more, which means a higher ex-ante variance. This change in ∆Vl has two opposing effects

on expected utility. First, an increase in ∆Vl increases the exponential term in equation

(17), which decreases EU(l). This effect arises because the large investor is risk averse and

higher ∆Vl corresponds to more risk in continuation utility. The second effect is that an

increase in ∆Vl reduces (1 + 2θL∆Vl)
− 1

2 , which increases EU(l). The intuition for this is

that when the variance of the expected profit is larger, there are more realizations with

large magnitude (more weight in the tails of the distribution). Since these are the states

that generate high profit, this effect increases expected utility.

Note from equation (17) that as µrl → 0, the first effect disappears and an increase in the

ex-ante variance of the profit will unambiguously increase expected utility. The reason for

this is that the strength of the second effect depends on the mean of the expected profit,

µrl. When µrl 6= 0 the increase in the ex-ante variance ∆Vl increases the probability that

the expected profit E[f |XlS]− p will be close to zero as well as increasing the probability

of large observations. So intuitively the gains from the increase in ex-ante variance larger

when µrl is closer to zero. We use these three effects to understand the intermediation

choice results below.

4.3 Quantitative Results: Intermediation Choice

Figure 5 reveals that a large investor with a medium or high signal always bids directly,

while an investor with a low signal may or may not choose to bid through a dealer. Why

trade through a dealer when the signal is low? The magnitude of the cost of intermediation

(represented by a decrease in µrl in (18)) depends on the large investor’s private signal yi.

To see the effect of yi, first note that on average, p will usually fall below E[f |XlS], reflecting
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Figure 5: Mixed auctions.
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a risk premium in the return on the risky asset. If the large investor observes a signal yi that

is below the prior mean µ, it lowers the ex-anted expectation E{E[f |XlS] − p|yi} toward

zero. The closer this expected value is to zero the lower the expected profit from trading,

which means that that the cost of sharing one’s information is low. The economic force

here is that investors with low signals are awarded fewer securities, on average. (See low

large investor allocation in Table 3.) If they do not expect to hold many Treasuries, they

are neither helped or hurt (in expectation) if the auction price incorporates their private

information. Thus, the cost of bidding through a dealer is very low when the investor’s

private signal is low. Therefore, in these low-signal states, investors choose intermediation.

In summary, large investors who observe bad news bid through the dealer.

The benefit of bidding through a dealer is the ability to observe the dealer’s information.

This information benefit (represented by a higher θl in (17)) is invariant in the investor’s

private signal yi. Since a low private signal reduces the cost of intermediation µrl and leaves

the benefit θl unchanged, low private signals make intermediation more attractive.

Figure 5 also illustrates that with more dealers (moving to the right), the large investor is

more likely to bid indirectly. There are two competing effects underlying this relationship.

When the number of dealers is large, each dealer aggregates fewer signals and provides less

precise information to their clients (θl is lower). Thus the benefit of intermediation is less.

On the other hand, sharing the private signal is less costly with more dealers because the

dealer will reveal the signal to fewer other clients (µrl is higher). Also, the dealer benefits

less from investors’ signals when more dealers reduce the competitive power of any one

dealer. Our results teach us that for the calibrated parameter values, the expected return

effect (µrl) dominates. Thus, for around 20 dealers (the current level), intermediation is

more valuable when the number of dealers is large.
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This result offers an important caveat to the discussion in the previous section about

the optimal number of dealers. If policy-makers lower the number of dealers to improve

information aggregation, this smaller set of dealers imply that intermediation may become

less desirable. The net effect of limiting dealer entry could be to reduce intermediated

trade, and with it, auction revenue.

As in the previous models, expected auction revenue and its standard deviation are higher

when agents bid through dealers. When the number of dealers increases, revenue falls in

cases where the bidders eschew intermediaries and bid directly.

4.4 A New Financial Accelerator Channel of Intermediation

This result reveal a new channel through which financial intermediaries can amplify shocks.

When signals about the value of a financial asset are negative, this information is more

likely to be shared with a dealer and his clients. Positive signals are less likely to be shared

because an investor who receives a positive signal then expects to take a large portfolio

position in the asset and faces a high expected cost from sharing his information. But

sharing a bad signal places that signal in the information set of many more investors and

causes a large number of investors to demand less of the asset. Thus, bad signals may

affect the demand of more investors than good signals do and have a larger effect on asset

prices.

This effect shows up as a distribution of auction revenues that has unconditional negative

skewness. The first panel of Table 3 reveals that the unconditional skewness is −1.05. The

fourth panel reveals that most of this skewness comes from states where the large investor

receives a low signal. When shocks are good, they have a moderate effect on the asset price

and the auction revenue. But with a bad realization of the asset’s value, large investors

observe negative signals. These investors choose to share their low signals with primary

dealers, which in turn lowers the demands of other investors and has a significantly negative

effect on auction revenues.

5 Minimum Bidding Requirements

The final feature of Treasury auctions that we examine is the requirements that primary

dealers be consistent, active participants in Treasury auctions. A familiar tension reap-

pears: Our analysis demonstrates how such a bidding requirement reduces market power,

but also discourages investors’ use of dealers. When more investors bid directly, dealers

are less able to aggregate information.
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In any given auction, there is no strict bidding requirement. But if on average, a dealer is

not awarded a sufficient quantity of Treasuries, his primary dealer status could be revoked.

To capture the essence of this dynamic requirement in a static model, we model the bidding

requirement as a cost levied on a dealer who purchases too little. Conversely, a dealer who

purchases a large dollar amount of Treasuries faces a relaxed bidding constraint in the

future. We model this benefit as a current transfer. Thus, for a dealer who purchases

a dollar amount qp of Treasuries through the auction, we assume a low-bid penalty of

χ0 − χqp, or equivalently a benefit of χqp− χ0.

We introduce this minimum bidding policy in the model from the previous section. The

investors’ objectives are the same as before. But the dealers’ problem becomes

max
qD,p

E[− exp(−ρlWD)|XDS] (21)

s.t. WD = W0,D + qD(f − p)− χ0 + χqDp, (22)

and subject to the market-clearing condition (8). By substituting the equation for WD in

the dealer’s problem into the objective function, evaluating the expectation and taking the

log, and dropping the constant terms that do not affect optimization, we can simplify the

dealer’s bidding problem to be: maxqD,p qD(E[f |XDS]− p(1− χ))− 1
2ρlq

2
DV[f |XDS], s.t.

the market clearing constraint (8). Taking the first order condition with respect to qD, we

obtain

qD (p) =
E[f |XDS]− p(1− χ)

ρlV[f |XDS] + (1− χ)dp/dqD
≡MD (E[f |XDS]− p(1− χ)) . (23)

Note that the bidding requirement shows up like a dealer price subsidy, encouraging the

dealer to purchase more of the asset. It also mitigates the effect of dealer market power by

multiplying the dp/dqD term by a number less than one. It does not change expectations

or the investors’ problem, except through the change in equilibrium price coefficients. The

following results show how the penalty χ affects the pricing coefficients. As before, there

are two cases: one where the large bidder bids directly and another where they bid through

dealer 1. We explore each in turn.

Result 4. In an auction with ND dealers and 1 large investor who bids directly, the auction

revenue is

p = A (ND, 1, χ) +B1 (ND, 1, χ) ȳ1 +
B2 (ND, 1, χ)

ND − 1

ND∑
d=2

ȳd + C (ND, 1, χ)x+ F (ND, 1, χ) yNS+1.

(24)
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where the coefficients A, B1 (ND, 1, χ), B2 (ND, 1, χ), F (ND, 1, χ) and C (ND, 1, χ) are

given by (34)-(38) in the Appendix.

Note that the cost of bidding too little χ enters directly only through the coefficient C.

However, the penalty χ also changes the dealers’ demand coefficients MD,1 and MD,2;

by making dealers less responsive to the price, it changes the large investor’s demand

coefficients ML,1, ML,2 and ML,0 as well.

By examining the price impact of a dealer, we see that one clear effect of minimum bidding

requirements is to help counteract the tendency of dealers to use their market power to

hold price low. The proof of Result 4 shows that, for dealer 1,

dp

dqd
= −

{(
νsτ̂1ρ

−1 + (νl − 1)ML,1

)(β1(2)− B̃
B̃

)
+ χ (ND − 1)MD,2

+ (ND − 1)
(
νsτ̂2ρ

−1 + νlML,2 +MD,2

)(β2(2)− B̃
B̃

)
+ML,0

(
βL(2)− B̃

B̃

)}−1

.

Notice that the bidding cost raises the term in brackets, which is raised to the power −1 and

multiplied by −1, to make it positive. Thus, an increase in the penalty χ make the effect

of dealer demand on the price smaller. This reduces the strategic power of dealers.

Next, we turn to the case where the large investor bids indirectly, through dealer 1.

Result 5. In an auction with N dealers and 1 large investor who bids indirectly through

dealer 1, the auction revenue is

p = A (ND, 0, χ) +
B (ND, 0, χ)

ND

ND∑
d=1

ȳd + C (ND, 0, χ)x. (25)

where A (ND, 0, χ), B (ND, 0, χ) and C (ND, 0, χ) are given by (39), (40) and (41) in the

Appendix.

As before, the minimum bidding penalty χ affects directly the pricing coefficient C. It

also affects A and B through the coefficients MD and ML that multiply expected profit to

produce dealers’ and the large investors’ demands.

Results An increase in the penalty χ for low bidding does raise the expected revenues

(Figure 6, left scale) by incentivizing dealers to make larger bids. This effect is intuitive.

However, contrary to policy wisdom, low-bid penalties do not reduce auction revenue risk.

Figure 6 (right scale) shows that more stringent bidding requirements increase the volatility

of auction revenue. Variance rises because the greater quantity demanded by dealers makes
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Figure 6: Auction with a Low-Bid Penalty.
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Note: Auction outcomes as a function of the low-bid penalty χ, assuming that the large investor bids

indirectly.

Figure 7: Intermediation Decision with a Low-Bid Penalty.
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the price level more informative about the issue-specific value of the asset f . So, when

investors condition their bids on the realized auction-clearing price, they end up having a

demand that is more responsive to the random value. The more sensitive response to a

random variable is the increase in revenue variance.

But minimum bidding requirements do induce investors to bid through the dealers. Figure

7 shows that for sufficiently high costs χ, investors almost always choose intermediated

bidding. The high cost acts like a price subsidy and helps to offset their incentive to bid

low that comes from market power. If dealers acts less strategically, they also use investors’

information in less strategic ways. As a result sharing private information with a dealer is

less costly and encourages bidding through the dealer.
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6 Conclusions

The vast majority of US Treasury auction bids are placed by a small set of primary dealers

for either their own or their customers’ accounts. Using data from U.S. Treasury auc-

tions, we estimate a structural auction model to quantify the costs and benefits of the

primary dealer system. The model allows us to do counter-factuals and policy evaluation.

We estimate the effects of increasing dealer entry, allowing investors to bid directly, and

changing minimum bidding requirements. Overall we find that despite their pricing power,

the primary dealer system sustains revenues by aggregating information. Policies aimed at

reducing dealers’ market power also adversely affect their ability to aggregate information.

Better information aggregation is important because it increases expected auction revenue.

However, information aggregation also increases auction revenue variance because the bids

of better-informed investors are more sensitive to changes in Treasuries’ value.

The common theme throughout the paper is a reversal of the common wisdom about dealers

as underwriters. The prevailing thinking about underwriters is that they lower auction

revenue, but also revenue risk. In the information model that we present, we find the exact

opposite: when investors bid through dealers, both mean and variance of auction revenue

increase. The stark difference in these predictions highlights how policy prescriptions may

be heavily dependent on the role of intermediation. While many intermediaries perform

roles other than information aggregation, this role is a key one in Treasury auctions and

is likely to be present in some form in other markets as well. Thus the unique features of

Treasury auctions makes them a useful laboratory to isolate and investigate this new facet

of intermediation.
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A Technical Details

Let Z be the vector of orthogonal shocks.

Z =
[
ε1 . . . εN x

]′
. (26)

Then, we can represent the vector of signals as

S = 1N+ND+1f + ΠZ,

where 1N+ND+1 is an (N +ND + 1)× 1 vector of ones and the (N +ND + 1)× (N +ND + 1) matrix Π is
given by

Π =



INS 0 0 0
0 INL 0 0
0 0 IND 0

ωs · 1′νs · · · 0′νs ωl · 1′νl · · · 0′νl ωl · · · 0 0
...

. . .
...

...
. . .

...
...

. . .
...

...
0′νs · · · ωs · 1′νs 0′νl · · · ωl · 1′νl 0 · · · ωl 0

ωs
ND
· 1′NS

ωl
ND
· 1′NL

ωl
ND
· 1′ND

C
B


.

where IN denotes the N × N identity matrix. The matrix Π tells us how signals weight the orthogonal
shocks. Each private signal yi has a weight of one on its own signal noise. The price signal (p−A−Cx̄)/B
is the average of all the N + 1 signals, plus supply noise x. Thus, its weight on each small signal noise is
ωs, on large investor’s noise ωl, and ωl on each dealer’s signal noise.

This representation of signals as linear combinations of independent shocks allows us to express signal
variance and covariances easily as

Cov (f,XjS) = Cov (f,Xj (1N+ND+1f + ΠZ))

= Xj
(
E
[
1N+1f

2 + ΠZf
]
− E [f ]E [1N+1f + ΠZ]

)
= 1mτ

−1
f (27)

V (XjS) = XjV (1N+ND+1f + ΠZ)X ′j = Xj
(
τ−1
f 1N+ND+11′N+ND+1 + ΠV [Z] Π′

)
X ′j , (28)

where the variance matrix of the shocks is V [Z] = diag([τ−1
ε,s 1NS , τ

−1
ε,l 1NL , τ

−1
ε,l 1ND , τ

−1
x ]).

The X operators that select the relevant signals that each agent observes are as follows. In each case, the
operator X is a linear matrix operation. It is described by a matrix of zeroes and ones that pre-multiplies
the vector of all signals.

Xi =

 1′i 0 0
0′N 1 0
0′N 0 1


where 1i is an (N × 1) vector of n zeros with a 1 in the ith position and 0N is an N × 1 vector of zeros.
The matrix Xi is constructed so that it picks off from the vector of all signals S only the signals that agent
i observes.

Competitive model without dealers In the model without intermediation, the X operators
that select the relevant signals that each agent observes are as follows.

XC
i =

[
1′i 0 0
0′N 0 1

]
.
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B Proofs

Proof of Result 1: Price in the no dealer model. Recall that the price conjecture in this
model is

p = A (0) +B (0)N−1
S

NS∑
i=1

yi + F (0)N−1
L

NL∑
j=1

yj + C (0)x.

Then, an investor’s unbiased price signal is

p−A− Cx̄
B̃

=
B

B̃
N−1
S

NS∑
i=1

yi +
F

B̃
N−1
L

NL∑
j=1

yj +
C

B̃
(x− x̄) .

That is an unbiased signal about f . However, the price signal and the private signals have correlated
signal errors. The β coefficients are formed using the optimal linear projection formulas correct for this
covariance.

The small investors’ demand functions (bids) in the competitive market model are given by equation (9)
and the large investors’ bids by equation (10). Substituting these bids into the market clearing condition
x+

∑N
i=1 qi = 1 yields

x+ ρ−1τ̂s

NS∑
i=1

(E[f |Xi, S]− p) +ML

NL−1∑
j=1

(E[f |Xj , S]− p) + qL = 1.

Substituting for E[f |Xi, S], we obtain

1 = x+ ρ−1τ̂s

NS∑
i=1

(
(1− βs (1)− βs (2))µ+ βs (1) yi + βs (2)

p−A− Cx̄
B̃

− p
)

+ML

NL−1∑
j=1

(
(1− βl (1)− βl (2))µ+ βl (1) yi + βl (2)

p−A− Cx̄
B̃

− p
)

+ qL.

Taking the derivative with respect to qL, we obtain

0 =

(
NS τ̂sρ

−1 βs (2)− B̃
B̃

+ (NL − 1)ML
βl (2)− B̃

B̃

)
dp

dqL
+ 1,

so that ML is given implicitly by

M−1
L = ρLτ̂

−1
l −

(
NS τ̂sρ

−1 βs (2)− B̃
B̃

+ (NL − 1)ML
βl (2)− B̃

B̃

)−1

.

Solving

1 = x+ ρ−1τ̂s

NS∑
i=1

(
(1− βs (1)− βs (2))µ+ βs (1) yi + βs (2)

p−A− Cx̄
B̃

− p
)

+ML

NL∑
j=1

(
(1− βl (1)− βl (2))µ+ βl (1) yi + βl (2)

p−A− Cx̄
B̃

− p
)

for p and matching coefficients yields the implicit solution to the price equation in the result. The existence
of a set of coefficients verifies the price conjecture.

Since the supply of the asset is one, auction revenue is the price of the asset.

Proof of Result 2: Price in the N dealer model with all investors bidding
through a dealer. The small investors’ demand functions (bids) in the competitive market model
are given by equation (9) and the large investors’ bids by equation (10). Substituting these bids into the
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market clearing condition x+
∑N
i=1 qi = 1 yields

1 = x+

ND∑
d=1

(
νsτ̂ ρ

−1 + (νl + 1)ML

)
(E [f |XdS]− p) .

Substituting in (12) for the conditional expectation and then taking the derivative with respect to qL, we
obtain the price impact of a large investor

0 = 1 +
(
NS τ̂ ρ

−1 + (NL +ND − 1)ML

)(β(2)−B
B

)
dp

dqL
,

so that ML is given implicitly by

M−1
L = ρLτ̂

−1 −B
((
NS τ̂ ρ

−1 + (NL +ND − 1)ML

)
(β(2)−B)

)−1
.

Finally, solving the market clearing condition for the settle price and equating the coefficients, we obtain
the coefficient expressions in the result.

Proof of Result 3: Price when the large investor bids directly. In this setting, we
can represent the vector of signals as

S = 1N+ND+1f + ΠDZ,

where the (N +ND + 1)× (N + 1) matrix ΠD is given by

ΠD =



INS 0 0 0
0 INL 0 0
0 0 IND 0

ωs,2 · 1′νs · · · 0′νs 0 ωl,2 · 1′νl−1 · · · 0′νl ωl,2 · · · 0 0
...

. . .
...

...
...

. . .
...

...
. . .

...
...

0′νs · · · ωs · 1′νs 0 0′νl · · · ωl · 1′νl 0 · · · ωl 0
B1

B̃
ωs,2 · 1′νs · · · B2

B̃(ND−1)
ωs · 1′νs ωl,2

F

B̃

B1

B̃
ωl,2 · 1′νl−1 · · · B2

B̃(ND−1)
ωl · 1′νl

B1

B̃
ωl,2 · · · B2

B̃
ωl

C

B̃


.

As before, each agent in the economy observes a subset of these signals, given by Xj , a matrix of zeros
and ones. This equilibrium has the following information structure.

• Individual investor i ∈ Id bidding through dealer d observes his own private signal yi. In addition,
the dealer tells them the average of the signals of the dealer’s customers, ȳd. Finally, the investor
can condition on the settle price p. Thus, for an investor bidding through dealer d observes

Xi =

 1′i 0 0′D 0
0′N 0 1′d 0
0′N 0 0′D 1

 , i ∈ Id.

• The large investor bidding directly on the other hand observes only his own signal and conditions
on the price, so that

XL =

[
0′N 1 0′D 0
0′N 0 0′D 1

]
.

The belief updating in this case is similar to the setting studied in the previous Section. The beliefs of an
investor bidding through dealer d coincide with the beliefs of the dealer. All investors use the price to form
a second unbiased signal about f , which is given by:

yp =
B1

B̃
ȳ1 +

B2

B̃

1

ND − 1

ND∑
d=2

ȳd +
F

B̃
yL +

C

B̃
(x− x̄) .
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As in the previous Section, the average signal of dealer d’s clients is contained in the price signal yp. Using
equation (3), we find that the beliefs of the investors bidding through dealer 1 are

E [f |X1S] = (1− β1 (1)− β1 (2))µ+ β1 (1) ȳ1 + β1 (2) yp,

and the conditional variance of beliefs is

V [f |X1S] = τ−1
f (1− β1 (1)− β1 (2)) ≡ τ̂−1

1 .

Similarly, the beliefs of investors bidding through dealer 2 are

E [f |XdS] = (1− β2 (1)− β2 (2))µ+ β2 (1) ȳd + β2 (2) yp, d = 2, . . . , ND,

and the conditional variance of beliefs is

V [f |XdS] = τ−1
f (1− β2 (1)− β2 (2)) ≡ τ̂−1

2 .

Finally, the direct bidder averages his signal and the signal from the price to obtain

E [f |XLS] = (1− βL (1)− βL (2))µ+ βL (1) yL + βL (2) yp

and

V [f |XLS] = τ−1
f (1− βL (1)− βL (2)) ≡ τ̂−1

L .

Turn now to solving for the price impact of large investors bidding through dealer 1. Substituting demand
functions into the market clearing constraint, we obtain

1 = x+ qL +
(
νsτ̂1ρ

−1 + (νl − 1)ML,1

)
((1− β1 (1)− β1 (2))µ+ β1 (1) ȳ1 + β1 (2) yp − p)

+

ND∑
d=2

(
νsτ̂2ρ

−1 + (νl + 1)ML,2

)
((1− β2 (1)− β2 (2))µ+ β2 (1) ȳd + β2 (2) yp − p)

+ML,0 ((1− βL (1)− βL (2))µ+ βL (1) yNS+1 + βL (2) yp − p) .

Taking the derivative with respect to the demand of the large investor, we obtain

dp

dqL
= −B̃

{(
νsτ̂1ρ

−1 + (νl − 1)ML,1

) (
β1(2)− B̃

)
+ (ND − 1)

(
νsτ̂2ρ

−1 + (νl + 1)ML,2

) (
β2(2)− B̃

)
+ML,0

(
βL(2)− B̃

)}−1

.

Thus, ML,1 is given implicitly as the solution to

M−1
L,1 = ρlτ̂

−1
1 −

{(
νsτ̂1ρ

−1 + (νl − 1)ML,1

)(β1(2)− B̃
B̃

)
+ (ND − 1)

(
νsτ̂2ρ

−1 + (νl + 1)ML,2

)(β2(2)− B̃
B̃

)
+ML,0

(
βL(2)− B̃

B̃

)}−1

.

Similarly, ML,2 is given implicitly as the solution to

M−1
L,2 = ρlτ̂

−1
2 −

{(
νsτ̂1ρ

−1 + νlML,1

)(β1(2)− B̃
B̃

)
+
[
(ND − 1)

(
νsτ̂2ρ

−1 + (νl + 1)ML,2

)
−ML,2

](β2(2)− B̃
B̃

)
+ML,0

(
βL(2)− B̃

B̃

)}−1

,

and ML,0 as the solution to

M−1
L,0 = ρlτ̂

−1
L −

{(
νsτ̂1ρ

−1 + νlML,1

)(β1(2)− B̃
B̃

)
+
[
(ND − 1)

(
νsτ̂2ρ

−1 + (νl + 1)ML,2

)](β2(2)− B̃
B̃

)}−1

.
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Finally, we use the market clearing condition

1 = x+
(
νsτ̂1ρ

−1 + νlML,1

)
((1− β1 (1)− β1 (2))µ+ β1 (1) ȳ1 + β1 (2) yp − p)

+

ND∑
d=2

(
νsτ̂2ρ

−1 + (νl + 1)ML,2

)
((1− β2 (1)− β2 (2))µ+ β2 (1) ȳd + β2 (2) yp − p)

+ML,0 ((1− βL (1)− βL (2))µ+ βL (1) yNS+1 + βL (2) yp − p) .

Equating coefficients, we obtain

A = −C
(

1−
(
νsρ
−1τ̂1 + νlML,1

) [
(1− β1 (1)− β1 (2))µ− β1 (2)

A+ Cx̄

B̃

])
+ C (ND − 1)

(
νsρ
−1τ̂2 + (νl + 1)ML,2

) [
(1− β2 (1)− β2 (2))µ− β2 (2)

A+ Cx̄

B̃

]
+ CML

[
(1− βL (1)− βL (2))µ− βL (2)

A+ Cx̄

B̃

]
(29)

B1 = C
(
νsρ
−1τ̂1 + νlML,1

)
β1 (1) (30)

B2 = C
(
νsρ
−1τ̂2 + (νl + 1)ML,2

)
(ND − 1)β2 (1) (31)

C = −B̃
[(
β1 (2)− B̃

) (
νsρ
−1τ̂1 + νlML,1

)
+ (ND − 1)

(
β2 (2)− B̃

) (
νsρ
−1τ̂2 + (νl + 1)ML,2

)
+ML,0

(
β0 (2)− B̃

)]−1

(32)

F = CML,0β0 (1) , (33)

and B̃ = B1 +B2 +F . This verifies the price conjecture. Since supply of the asset is one, price and revenue
are equal.

Proof of Result 4: A large investor who bids directly and a dealer with mini-
mum bidding requirements. All the conditional expectations and variances are the same as in
the previous model (proof of Result 3 holds up until this point). Recall that, when a large investor bids
directly, the price impact of dealer 1 is different from that of other dealers since he has one fewer large
investors.

Turn now to solving for the price impact of dealer 1. Substituting demand functions into the market clearing
constraint, we obtain

1 = x+ qd1 +
(
νsτ̂1ρ

−1 + (νl − 1)ML,1

)
((1− β1 (1)− β1 (2))µ+ β1 (1) ȳ1 + β1 (2) yp − p)

+

ND∑
d=2

(
νsτ̂2ρ

−1 + νlML,2 +MD,2

)
((1− β2 (1)− β2 (2))µ+ β2 (1) ȳd + β2 (2) yp − p)

+ χ (ND − 1)MD,2p+ML,0 ((1− βL (1)− βL (2))µ+ βL (1) yNS+1 + βL (2) yp − p) ,

where the first line is the demand of the small investors (unchanged), the second line is the other dealers
(where the minimum bidding penalty χ enters), and the third line is the demand of the large investor
(unchanged). Taking the derivative with respect to qd1 , we obtain(

dp

dqd1

)−1

= −
(
νsτ̂1ρ

−1 + (νl − 1)ML,1

)(β1(2)− B̃
B̃

)
− χ (ND − 1)MD,2

− (ND − 1)
(
νsτ̂2ρ

−1 + νlML,2 +MD,2

)(β2(2)− B̃
B̃

)
−ML,0

(
βL(2)− B̃

B̃

)
.
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Similarly, the sensitivity of the price to the demand of any other dealer d is given by:(
dp

dqd

)−1

= −
(
νsτ̂1ρ

−1 + (νl − 1)ML,1 +MD,1

)(β1(2)− B̃
B̃

)
− χ (ND − 2)MD,2 − χMD,1

−
[
(ND − 1)

(
νsτ̂2ρ

−1 + νlML,2 +MD,2

)
−MD,2

](β2(2)− B̃
B̃

)
−ML,0

(
βL(2)− B̃

B̃

)
.

Thus, the constant (MD,1) that maps expected profit into demand for dealer 1 solves

M−1
D,1 = ρlτ̂

−1
1 − (1− χ)

{(
νsτ̂1ρ

−1 + (νl − 1)ML,1

)(β1(2)− B̃
B̃

)
+ χ (ND − 1)MD,2

+ (ND − 1)
(
νsτ̂2ρ

−1 + νlML,2 +MD,2

)(β2(2)− B̃
B̃

)
+ML,0

(
βL(2)− B̃

B̃

)}−1

,

and the constant (MD,2) that maps expected profit into demand for any other dealer d solves

M−1
D,2 = ρlτ̂

−1
2 − (1− χ)

{(
νsτ̂1ρ

−1 + (νl − 1)ML,1 +MD,1

)(β1(2)− B̃
B̃

)
+ χMD,1 + χ (ND − 2)MD,2

+
[
(ND − 1)

(
νsτ̂2ρ

−1 + νlML,2 +MD,2

)
−MD,2

](β2(2)− B̃
B̃

)
+ML,0

(
βL(2)− B̃

B̃

)}−1

.

Similarly, in this case, the price sensitivity to the demand of a large investor bidding through dealer 1
is (

dp

dqL,1

)−1

= −
(
νsτ̂1ρ

−1 + (νl − 2)ML,1 +MD,1

)(β1(2)− B̃
B̃

)
− χMD,1 − χ (ND − 1)MD,2

− (ND − 1)
(
νsτ̂2ρ

−1 + νlML,2 +MD,2

)(β2(2)− B̃
B̃

)
−ML,0

(
βL(2)− B̃

B̃

)
,

the price sensitivity to the demand of a large investor bidding through any other dealer d is(
dp

dqL,d

)−1

= −
(
νsτ̂1ρ

−1 + (νl − 1)ML,1 +MD,1

)(β1(2)− B̃
B̃

)
− χMD,1 − χ (ND − 1)MD,2

−
[
(ND − 1)

(
νsτ̂2ρ

−1 + νlML,2 +MD,2

)
−ML,2

](β2(2)− B̃
B̃

)
−ML,0

(
βL(2)− B̃

B̃

)
,

and the price sensitivity to the demand of a large investor bidding directly is(
dp

dqL,0

)−1

= −
(
νsτ̂1ρ

−1 + (νl − 1)ML,1 +MD,1

)(β1(2)− B̃
B̃

)
− χMD,1 − χ (ND − 1)MD,2

− (ND − 1)
(
νsτ̂2ρ

−1 + νlML,2 +MD,2

)(β2(2)− B̃
B̃

)
.

Thus, the constant ML,1 that maps expected profit into demand for a large investor bidding through dealer
1 solves

M−1
L,1 = ρlτ̂

−1
1 −

{(
νsτ̂1ρ

−1 + (νl − 2)ML,1 +MD,1

)(β1(2)− B̃
B̃

)
+ χMD,1 + χ (ND − 1)MD,2

+ (ND − 1)
(
νsτ̂2ρ

−1 + νlML,2 +MD,2

)(β2(2)− B̃
B̃

)
+ML,0

(
βL(2)− B̃

B̃

)}
,

the constant ML,2 that maps expected profit into demand for a large investor bidding through dealer 2
solves

M−1
L,2 = ρlτ̂

−1
2 −

{(
νsτ̂1ρ

−1 + (νl − 1)ML,1 +MD,1

)(β1(2)− B̃
B̃

)
+ χMD,1 + χ (ND − 1)MD,2

+
[
(ND − 1)

(
νsτ̂2ρ

−1 + νlML,2 +MD,2

)
−ML,2

](β2(2)− B̃
B̃

)
+ML,0

(
βL(2)− B̃

B̃

)}
,
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and the constant ML,0 that maps expected profit into demand for the direct bidder solves

M−1
L,0 = ρlτ̂

−1
l −

{(
νsτ̂1ρ

−1 + (νl − 1)ML,1 +MD,1

)(β1(2)− B̃
B̃

)
+ χMD,1 + χ (ND − 1)MD,2

+ (ND − 1)
(
νsτ̂2ρ

−1 + νlML,2 +MD,2

)(β2(2)− B̃
B̃

)}
.

Finally, we use the market clearing condition again to solve for price p

1 = x+
(
νsτ̂1ρ

−1 + (νl − 1)ML,1 +MD,1

)(
(1− β1 (1)− β1 (2))µ+ β1 (1) ȳ1 + β1 (2)

p−A− Cx̄
B̃

− p
)

+

ND∑
d=2

(
νsτ̂2ρ

−1 + νlML,2 +MD,2

)(
(1− β2 (1)− β2 (2))µ+ β2 (1) ȳd + β2 (2)

p−A− Cx̄
B̃

− p
)

+ χMD,1p+ χ (ND − 1)MD,2p+ML,0

(
(1− βL (1)− βL (2))µ+ βL (1) yNS+1 + βL (2)

p−A− Cx̄
B̃

− p
)
.

Equating coefficients, we obtain the system of equations for the price coefficients

A = C

(
−1 +

(
νsτ̂1ρ

−1 + (νl − 1)ML,1 +MD,1

)(
(1− β1 (1)− β1 (2))µ− β1(2)

B̃
(A+ Cx̄)

))
+ C (ND − 1)

(
νsτ̂2ρ

−1 + νlML,2 +MD,2

)(
(1− β2 (1)− β2 (2))µ− β2(2)

B̃
(A+ Cx̄)

)
+ CML,0

(
(1− βL (1)− βL (2))µ− βL(2)

B̃
(A+ Cx̄)

)
(34)

B1 = C
(
νsτ̂1ρ

−1 + (νl − 1)ML,1 +MD,1

)
β1 (1) (35)

B2 = C (ND − 1)
(
νsτ̂2ρ

−1 + νlML,2 +MD,2

)
β2 (1) (36)

F = CML,0βL(1) (37)

C−1 = −ML,0

(
βL(2)− B̃

B̃

)
−
(
νsτ̂1ρ

−1 + (νl − 1)ML,1 +MD,1

)(β1(2)− B̃
B̃

)
− χMD,1

− (ND − 1)
(
νsτ̂2ρ

−1 + νlML,2 +MD,2

)(β2(2)− B̃
B̃

)
− (ND − 1)χMD,2. (38)

This verifies the price conjecture. Since supply of the asset is one, price and revenue are equal.

Proof of Result 5: Auction price with minimum bidding requirements and a
large bidder who bids through a dealer. When the large investor bids indirectly through a
dealer, all dealers have a symmetric market impact. In particular, from the market clearing constraint, we
have:

1 = x+

ND∑
d=1

(
νsτ̂ ρ

−1 + νlML +MD

)(
(1− β (1)− β (2))µ+ β (1) ȳd + β (2)

p−A− Cx̄
B

− p
)

+ χNDMDp,

where the last term is the new term that arises because of the minimum bidding penalty χ.

Taking the derivative with respect to qd, we obtain the price impact of a dealer d:

dp

dqd
= −

[(
ND

(
νsτ̂ ρ

−1 + νlML +MD

)
−MD

) β(2)−B
B

+ χ (ND − 1)MD

]−1

.

Using the dealer’s first order condition, we find the constant (MD) that maps expected profit into demand
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solves

M−1
D = ρlτ̂

−1 − (1− χ)

[(
ND

(
νsτ̂ ρ

−1 + νlML +MD

)
−MD

) β(2)−B
B

+ χ (ND − 1)MD

]−1

.

Similarly, the price impact of any large investor is:

dp

dqd
= −

[(
ND

(
νsτ̂ ρ

−1 + νlML +MD

)
−ML

) β(2)−B
B

+ χNDMD

]−1

,

and ML is given implicitly as the solution to

M−1
L = ρlτ̂

−1 −
[(
ND

(
νsτ̂ ρ

−1 + νlML +MD

)
−ML

) β(2)−B
B

+ χNDMD

]−1

.

Finally, solving the market clearing condition for the settle price and equating the coefficients, we obtain
the following coefficients

A = C

(
−1 +ND

(
νsτ̂ ρ

−1 + νlML +MD

)(
(1− β (1)− β (2))µ− β(2)

B
(A+ Cx̄)

))
(39)

B = CND
(
νsτ̂ ρ

−1 + νlML +MD

)
β(1) (40)

C = −
[
ND

((
νsτ̂ ρ

−1 + νlML +MD

)(β(2)−B
B

)
+ χMD

)]−1

. (41)

C Analysis of the intermediation choice

Derivation of expected utility Whether the large investor invests directly or through the first
intermediary we can write his expected utility conditional on his information set XlS as

− exp(ρLWL) exp
(
− ρLqi(E[f |XlS]− p) +

1

2
ρ2Lq

2
iV[f |XlS]

)
.

Substituting in the large investor’s optimal portfolio and taking the expectation conditional on yi gives

EU(l) = − exp(ρLWL)E
{

exp
(
ρLMl

(1

2
ρLMlV[f |XlS]− 1

)
(E[f |XlS]− p)2

)∣∣∣yi}. (42)

Given yi, the only random variable in the expectation is E[f |XlS]−p. This is a sum of two normal random
variables, so it is also normally distributed. Using the formula for the expected value of the exponential of
a quadratic function of a normal random variable, the formula for expected utility in equations (17)–(20)
follows from equation (42).

Effect of intermediation on EU(l) through µrl First note that θl > 0. This follows from
equation (19) because Ml > 0 and

ρLMLV[f |XLS] =
ρLV[f |XLS]

ρLV[f |XLS] + dp
dqL

< 1.

Therefore, from equation (17), EU(l) is strictly increasing in µrl.

When the large investor invests through an intermediary it causes µrl to decrease through two channels.
This decrease expected utility. The first channel is that it causes the price to increase. This happens
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through the constant in the price function A.

A =− C
(

1− (νsρ
−1τ̂1 + νlML)

[
(1− β(1)− β(2))µ− β(2)

A+ Cx̄

B

])
+ C(ND − 1)(νsρ

−1τ̂1 + (νl + 1)ML)
[
(1− β(1)− β(2))µ− β(2)

A+ Cx̄

B

]
+ CML

[
(1− β(1)− β(2))µ− β(2)

A+ Cx̄

B

]
.

The constant A will differ in the two cases because: 1) The coefficients in the price function differ—C
differs for the two cases and B and B̃ differ; 2) The weights that the agents place on their prior beliefs
and signals differ—β, β1, β2 and βL; and 3) The posterior precisions and the stategic considerations of the
agents differ—ML, ML,0, ML,1 and ML,2.

We are interested in the effect of changes in the precisions of the agents’ posterior beliefs on A. To assess
this affect we’ll consider how changes in these precisions cause the M ’s to change and ignore the effects of
other variables on A. To help with this note two features of the expressions for A. First, it should be the
case that C > 0 because the price should increase in x (the demand of the agents who are not sensitive to
the price). Second, if µ > 0 and sufficiently large, then all the terms in square brackets in both expression
will be strictly positive. These terms are the posterior expected payoff of the asset for investors when s̄d = 0
for all d and p = 0.

When these conditions on C and µ are satisfied, an increase in the posterior precision of all agents beliefs will
cause A to increase. This is because ML is increasing in the precision of the large investor’s posterior beliefs
and when precisions of the dealers’ posterior beliefs increase it will cause ML > max{ML,0,ML,1,ML,2}.
An increase in A causes µrL to decrease.

The second channel is that the large investor’s information has more influence on the price when he invests
through a dealer and this reduces the ex-ante expected profit µrl. The expected profit in the two cases can
be written as

E[f |XLd]− p = (1− βL(1)− βL(2))µ+ βL(1)yNS+1 + βL(2)yp

−
[
A+B1ȳ1 +

B2

ND − 1

ND∑
d=2

ȳd + Cx+ Fyi
]
,

E[f |XLi]− p = (1− β(1)− β(2))µ+ β(1)ȳ1 + β(2)yp −
[
A+

B

ND

ND∑
d=1

ȳd + Cx
]
.

In the first equation the effect of the large investor’s private signal, yNS+1, on the price depends on βL(1)−F
and in the second case the effect of the agent’s private signal, ȳ1, on the price depends on β(1)− B

ND
. We

show numerically that βL(1) − F > β(1) − B
ND

, which shows that the large investor gains more from her
private signal when she invests directly.

µrLi =
(τfµ+ τεlyi

τf + τε,l

)
−A−B

[
ωsνs + ωl

(NDνl − 1

ND

)
+ ωl

](τfµ+ τεlyi
τf + τε,l

)
−BN−1

D ωlyi − Cx̄,

µrLd =
(τfµ+ τεlyi

τf + τε,l

)
−A−

[
B1(ωs,2νs + ωl,2νl) +B2(ωsνs + ωl(νl + 1))

](τfµ+ τεlyi
τf + τε,l

)
− Fyi − Cx̄.

Effect of intermediation on EU(l) through ∆Vl When the large investor invests through
the intermediary he receives the signal ȳ1 in addition to yi and yp. This decreases the variance of his
posterior beliefs, V[f |XlS].19 To see that θl is strictly decreasing in V[f |XlS] it helps to write θl in the

19This statement is true holding fixed the information contained in p. When the large investor invests
through a dealer the price will be a less precise signal of the asset payoff, which will offset the decrease in
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following form:

θl =

(
ρL

ρLV[f |XlS] + dp
dqL

)(
1− 1

2

[
1

1 + ( dp
dqL

)/(ρLV[f |XlS])

])
.

Since θl > 0 and the terms in both sets of large round parentheses are strictly decreasing in V[f |XlS], θl
is strictly decreasing in V[f |XlS]. We can see from equation (17) that EU(l) is strictly increasing in θl.
Therefore EU(l) is strictly decreasing in V[f |XlS].

To compute ∆Vl we need to compute V[f−p|yNS+1], given by equation (20) in these notes (we have already
discussed computing V[f |XlS]). The general formula for this is

V [f − p|yNS+1] = V (f − p)−Cov (f − p, yNS+1)2 V (yNS+1)−1 ,

with V (yNS+1) = τ−1
f + τ−1

el .

When the large investor invests through a dealer, we can represent the price as

p = A+Bf + Cx̄+BΠp,IZ,

where Πp,I is the last row of the Π matrix in the main text. Then:

V (f − p) = V ((1−B) f −BΠp,IZ) = (1−B)2 τ−1
f +B2Πp,IV (Z) Π′p,I

Cov (f − p, yNS+1) = Cov ((1−B) f −BΠp,IZ, f + εNS+1) = (1−B) τ−1
f − B

ND
ωlτ
−1
el .

When the large investor invests directly, we instead have

p = A+ B̃f + Cx̄+ B̃Πp,dZ,

where B̃ = B1 +B2 + F . Then:

V (f − p) = V
((

1− B̃
)
f − B̃Πp,dZ

)
=
(

1− B̃
)2
τ−1
f + B̃2Πp,dV (Z) Π′p,d

Cov (f − p, yNS+1) = Cov
((

1− B̃
)
f − B̃Πp,dZ, f + εNS+1

)
=
(

1− B̃
)
τ−1
f − Fτ−1

el .

V[f |XlS]. We conjecture that this effect is not large enough to fully offset the decrease.
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Table 3: Descriptive statistics for the calibrated, simulated model with direct and indirect
bidding and low-bid penalty. Revenue is in basis points, and allocations are in percent.

Panel A: Full Sample

Revenue Dealer allocation Direct allocation Indirect allocation

Mean 37.5957 42.0538 0.5868 50.8466
Std. Dev. 69.8128 20.1859 0.7675 57.0472

Skew -0.0150 0.0072 0.9225 0.1887
Kurtosis 3.0101 3.0185 2.5776 4.6919

Panel B: Direct Bidding

Revenue Dealer allocation Direct allocation Indirect allocation

Mean 52.7388 41.3514 1.3302 45.0985
Std. Dev. 66.7869 20.3264 0.5887 21.0972

Skew 0.0019 0.0033 0.0870 0.0011
Kurtosis 3.0634 3.0590 3.0824 3.0663

Panel C: Indirect Bidding

Revenue Dealer allocation Direct allocation Indirect allocation

Mean 25.6443 42.6081 0.0000 55.3831
Std. Dev. 69.8299 20.0570 0.0000 73.6539

Skew 0.0126 0.0126 - -0.0126
Kurtosis 2.9827 2.9827 - 2.9827

Panel D: High signal

Revenue Dealer allocation Direct allocation Indirect allocation

Mean 56.6878 42.5339 1.4342 43.8340
Std. Dev. 66.6329 20.2831 0.5781 21.0393

Skew 0.0091 0.0089 0.0739 -0.0081
Kurtosis 3.0774 3.0716 3.1070 3.0837

Panel E: Low signal

Revenue Dealer allocation Direct allocation Indirect allocation

Mean 17.3851 40.2359 0.0000 64.0946
Std. Dev. 69.5897 19.9880 0.0000 73.4005

Skew 0.0250 0.0250 - -0.0250
Kurtosis 2.9751 2.9751 - 2.9751
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Figure 8: Distribution of simulated outcomes

(a) Signals observed by large investor
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(b) Auction clearing price
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(c) Shares allocated to dealers
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(d) Shares allocated to direct bidders
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(e) Beliefs before intermediation decision
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(f) Beliefs after intermediation decision
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