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Abstract 

 
Novating a single asset class to a central counterparty (CCP) in an over-the-counter derivatives 

trading network impacts both the mean and variance of total net exposures between 

counterparties. When a small number of dealers trade in a relatively large number of asset classes, 

central clearing increases the mean and variance of net exposures, which may lead to increased 

counterparty risk and higher margin needs. There are intermediate cases where there is a trade-

off: The introduction of a CCP leads to an increase in expected net exposures but this increase is 

accompanied by a reduction in variance. We extend the work of Duffie and Zhu (2011) by 

considering general classes of network structures and focus on scale-free and core-periphery 

structures, which have been shown to be accurate models of real-world financial networks. We 

find that a CCP is unlikely to be beneficial when the link structure of the network relies on just a 

few key nodes. In particular, in large scale-free networks a CCP will always worsen expected 

netting efficiency. In such cases, CCPs can improve netting efficiency only if agents have some 

degree of risk aversion that allows them to trade off the reduced variance against the higher 

expected netted exposures. This may explain why, in the absence of regulation, traders in a 

derivatives network may not develop a CCP themselves. 
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1 Introduction
One of the benefits of central clearing is that it reduces the aggregate level of exposures
in the system by netting offsetting claims, which can reduce systemic risk and the
amount of margin required by counterparties. This is true in a world where all asset
classes are simultaneously novated to a central counterparty (CCP). However, Duffie
and Zhu (2011) show that, when a single asset class is switched to central clearing,
bilateral exposures between dealers may increase — as a result of reduced netting
opportunities across pairs of dealers — resulting in an overall loss in netting efficiency.

Duffie and Zhu’s results are not based on actual exposure networks. Rather they
express the total exposure of one dealer to another of all positions in each asset class
by a random variable. They specify a distribution that is assumed to generate these
exposures and their results are based on expected exposures with respect to this distri-
bution. Because they assume homogeneity in the distributions across all dealers, they
can compute the average total exposure with or without a CCP by looking at a single
dealer. In short, all dealers are ex ante the same in their analysis. Taking as given
the distribution used to generate exposures, this allows them to express conditions for
whether or not a CCP is beneficial solely in terms of the number of asset classes and
the number of dealers.

The clear advantage of this approach is that it is not necessary to observe the actual
network exposures; instead it relates the question of whether or not the introduction
of a CCP in a single asset class is beneficial or not to easily observable parameters.
However, a downside of this approach is that the implied networks are too homoge-
neous, which means they may not be realistic. Typically real-world financial networks
have a number of well-connected counterparties coupled with a larger number of more
poorly-connected counterparties. These features have been shown to be well-explained
by scale-free network models (e.g. Soramäki et al (2007), Inaoka et al (2004), Gar-
laschelli et al (2005)) and by core-periphery models (e.g. Craig and von Peter (2014),
Langfield, Liu and Ota (2014), Markose (2012)).

We extend the results of Duffie and Zhu so that they can be applied to any network.
And, in addition to examining the effect of introducing a CCP on the expected net expo-
sures of dealers, we also explore the effect on the variance of these net exposures. The
rationale for this is that risk-averse dealer agents may wish to minimise the variance as
well as the expectation of their net exposures.

We find that, when the number of asset classes is small relative to the number of
dealers, introducing a CCP is likely to reduce both the mean and variance of net expo-
sures. But a CCP is less likely to be beneficial for networks where a high proportion
of the links rely on a few key nodes. In some intermediate cases, introducing a CCP
may have opposite effects on the mean and variance of netted exposures, leading to a
trade-off. The optimal policy then is likely to depend on the degree of risk-aversion
among counterparties and, potentially, regulators.

Both scale-free and core-periphery structures can be generated by simple and intu-
itive processes. These incorporate the growing structure of the network and preferential
attachment: that is, new nodes are likely to attach themselves to nodes which are larger
or more successful. In the case of scale-free networks, new nodes are more likely to
attach themselves to nodes with a large number of existing connections (Barabási and
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Albert (1999)). And core-periphery networks may emerge if there is heterogeneity be-
tween nodes, with links to a particular class of nodes being more attractive (e.g. Van
der Leij, in’t Veld and Hommes (2014)).

We argue that this approach provides an appropriate technique for generating the
unobserved link-structure of the network, while preserving the ex ante symmetry as-
sumptions that are necessary to obtain analytic results. Generating scale-free networks
using the specific network formation process introduced by Dorogovtsev, Mendes and
Samukhin (2001), we find that expected net exposures always increase when a sin-
gle asset is novated to a CCP, regardless of the size of the network. However, for
risk-averse agents the cost of this reduction in netting efficiency may be offset by the
benefit of a reduction in variance. This may be an important justification for regulatory
intervention to introduce a CCP, if the dealer agents are less risk-averse than would
be socially optimal. For smaller core-periphery networks our findings are similar, but
there is a critical size beyond which introducing a CCP is unambiguously good for
netting efficiency in such networks.

One application of our paper is on the impact on margin requirements of introduc-
ing a CCP. Sidanius and Žikeš (2012) explain the issue and estimate the impact, while
more recent papers including Duffie, Scheicher and Vuillemey (2014) and Campbell
(2014) use actual bilateral exposure data to analyze the issue empirically.

2 A review of the relevant literature

2.1 Articles which follow the framework of Duffie and Zhu (2011)
The framework developed by Duffie and Zhu (2011) has been utilized and developed
by other authors in order to investigate specific problems. Heath, Kelly and Manning
(2013) is perhaps the most similar to our paper in that they assume a core-periphery
structure for the network, rather than maintaining Duffie and Zhu’s assumptions that
all dealers are ex ante the same. They then use a computational approach to compare
the efficiency of various clearing arrangements.

Anderson, Dion and Pérez Saiz (2013) and Cox, Garvin and Kelly (2013) apply
the Duffie and Zhu framework to explore the policy issue of interoperability between
CCPs. They use the model to examine whether a regulator can reduce netted exposures
by mandating trades to be novated to a local CCP, which can link to a global CCP that
clears a range of products. Both papers retain the assumption of a homogeneous link
network, though Cox, Garvin and Kelly allow for some heterogeneity between dealer
agents in the magnitude of exposures (but not the existence of links).

Cont and Kokholm (2014) extend the Duffie and Zhu framework by relaxing the
assumption of normal exposures between counterparties and show using a simulation
approach that Duffie and Zhu’s conclusions are potentially sensitive to different dis-
tributional assumptions. However, they retain the homogeneous network assumption
that Duffie and Zhu use. This is in contrast to our paper, which uses more general
and realistic network structures. While our framework explicitly permits the use of
non-normal exposures, some distributional assumption is necessary in order to obtain
analytical results.
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Our paper makes two key innovations to the Duffie and Zhu model which, to our
knowledge, have not been considered before. First, we look at how the introduction of
a CCP affects the variance, as well as the mean, of net exposures. Second, we provide
an analytical generalization of the model so that it can be applied to any network.

2.2 Other articles on network models of CCPs
There are a variety of papers which use a network approach to examine the contagion
dynamics of OTC derivatives networks, rather than netting efficiency. Markose (2012)
find that the empirical OTC derivatives network aggregated over all products can be
well-described by a modified core-periphery model, and derive summary statistics to
identify institutions which carry the greatest quantity of systemic risk. Borovkova and
Lalaoui El Mouttalibi (2013) use a simulation approach to model the effect of the intro-
duction of a CCP on default cascades in a network. They examine both homogeneous
(Erdős-Rényi) and core-periphery networks, and find that homogeneous networks are
more resilient.

Jackson and Manning (2007) and Galbiati and Soramäki (2012) use different ap-
proaches to examine the desirability of tiering — that is, restricting direct access to the
CCP to a limited set of counterparties. Jackson and Manning examine the impact using
a range of metrics, while Galbiati and Soramäki focus on the impact on exposures mea-
sured as averages over time, or across direct counterparties, in terms of a single asset
class. Song, Sowers and Jones (2014) extend the Galbiati and Soramäki framework to
study the effect of network structure on the maximum exposure risk of the CCP itself,
and use extreme value theory to obtain analytical results.

3 A general network model of exposure netting
We assume that the dealer network is not directly observable but the number of nodes,
their degree distribution and the distribution of the magnitude of bilateral exposures
is known. This is a realistic assumption for dealer networks, where the regulator and
participants often lack exact real-time knowledge of bilateral exposures. This is a gen-
eralization of the assumption made in Duffie and Zhu (2011), where the exact structure
of the network is known. Our framework builds on and extends theirs.

Let N be the number of nodes (i.e. market participants) and let S be a random
variable denoting the number of links a given node has. Links are undirected. Define
Ji to be the set of nodes with which node i has a link. For each i, the size of this set is
determined by a realization of the random variable S.

Let K denote the number of asset classes. Define Xi j to be a K-vector of values
(weights) on the link between nodes i and j. The kth element in each vector, denoted
Xk

i j, represents the net exposure between the two nodes in asset class k. It is positive
or negative according to the direction of the net exposure. Each value is generated
independently with the same known distribution.

First consider the situation without a CCP. Suppose nodes i and j are linked. Define
Y K

i j ≡max
(

∑
K
k=1 Xk

i j,0
)

to be the value of note i’s netted exposure to node j. Note that
positive net exposures in one asset class can be partially or wholly offset by negative
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net exposures in another asset class with the same counterparty. If i and j are not
linked, then the net exposure is zero. The total net exposure of node i therefore equals
∑ j∈Ji Y

K
i j .

Now define the function f as the expected net exposure between any two nodes:

f (K)≡ E
[
Y K

i j
]

(1)

The expected total netting efficiency for a given node i is:

φN,K ≡ E

[
∑
j∈Ji

Y K
i j

]

= E

[
E

[
∑
j∈Ji

Y K
i j |S

]]
= E [S f (K)]

= E [S] f (K) ,

(2)

where we have used the fact that each Y K
i j is independent from one another, and from S.

Similarly, the variance of the exposure between two nodes after netting is:

g(K)≡ Var
[
Y K

i j
]

(3)

and the variance of the total netting efficiency of the network is:

vN,K ≡ Var

[
∑
j∈Ji

Y K
i j

]
. (4)

We can evaluate this expression using the law of total variance:

vN,K = E

[
Var

[
∑
j∈Ji

Y K
i j |S

]]
+Var

[
E

[
∑
j∈Ji

Y K
i j |S

]]
= E [Sg(K)]+Var [S f (K)]

= E [S]g(K)+Var [S] f (K)2.

(5)

3.1 Novating a single asset class to a CCP
Now we introduce a CCP in a single asset class. Without loss of generality, let the
centrally cleared asset class be the one labelled K. The net exposure of a given node i
becomes:

∑
j∈Ji

Y K−1
i j +max

(
∑
j∈ Ji

XK
i j ,0

)
︸ ︷︷ ︸

Y S
i,CCP

(6)

where the first term is the sum of a node’s exposures to the other nodes, and the second
term is its netted exposure to the CCP. We can rewrite the second term as Y S

i,CCP, with
the S superscript arising because the size of Ji has distribution S.
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Note that, for a given realized value of S, the two terms in (6) are independent: the
first term is determined entirely by exposures arising from the first K−1 assets, while
the second is determined entirely by exposures due to asset K.

Now, when there is a CCP, the expected total net exposure of node i is:

φ̃N,K = E

[
E

[
∑
j∈Ji

Y K−1
i j +Y S

i,CCP|S

]]
= E [S f (K−1)+ f (S)]

= E [S] f (K−1)+E [ f (S)] ,

(7)

and the variance of the total net exposure of node i is:

ṽN,K = E

[
Var

[
∑
j∈Ji

Y K−1
i j +Y S

i,CCP|S

]]
+Var

[
E

[
∑
j∈Ji

Y K−1
i j +Y S

i,CCP|S

]]
= E [Sg(K−1)+g(S)]+Var [S f (K−1)+ f (S)]

= E [S]g(K−1)+E [g(S)]+Var [S f (K−1)+ f (S)] .

(8)

Using (2) and (7), the change in expected net exposure that results from novating a
single asset class to a CCP is:

φ̃N,K−φN,K = E [S] f (K−1)+E [ f (S)]−E [S] f (K) . (9)

Using (5) and (8), the change in variance that results from novating a single asset class
to a CCP is:

ṽN,K− vN,K =

Var [S f (K−1)+ f (S)]−Var [S] f (K)2−E [S] (g(K)−g(K−1))+E [g(S)] .
(10)

These results show that introducing a CCP may change both the mean and variance
of total net exposures. Assuming some degree of risk aversion, reduction in either the
mean or the variance is likely to be positive for users of the system, since it means
that counterparty risk — and total margin needs — are lower either in expectation or
volatility. Therefore we can say that a CCP brings netting benefits when either (9) or
(10) are negative.

Note that in the case K = 1, the CCP clears all of the asset classes that the dealers
trade with one another so we would always expect the introduction of a CCP to improve
netting, as it does not disrupt any of the existing bilateral netting sets. This is confirmed
by equations (9) and (10), which both have negative right-hand sides when K = 1.1

We assume that the agents in our network prefer to reduce both the expected value
and variance of total net exposures. It is quite possible, however, that introducing a
CCP may increase the expected value of total net exposures and reduce the variance,
or vice versa. In such cases there will be a trade-off between the two effects. Whether
this increases overall welfare or not will depend on the utility functions of the agents:

1To show this, note that f (0) = 0 = g(0) and use the fact that the max(·,0) function is sub-additive.
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we might expect relatively risk-averse agents to place more weight on the reduction in
variance and less weight on the increase in expected exposures. One key focus of this
paper is to identify the extent to which the trade-off depends on the underlying network
structure.

3.2 Assigning a distribution to the bilateral exposures
To obtain tractable results for the cases where K > 1, we need to assume a distribution
for the bilateral exposures between dealers. This will enable us to write down expres-
sions for f and g in equations (9) and (10). We follow Duffie and Zhu (2011) and
assume that each of the bilateral exposures Xk

i j is independent and identically normally
distributed with mean 0 and variance σ2. Using the formula for the sum of independent
normal random variables, we can write the function f as:

f (θ) =
∫

∞

0

1√
2πθσ

ye−
y2

2θσ2 dy

= σ

√
θ

2π
,

(11)

and:

g(θ) =
∫

∞

0

1√
2πθσ

y2e−
y2

2θσ2 dy −σ
2 θ

2π

=
1
2

∫
∞

−∞

1√
2πθσ

y2e−
y2

2θσ2 dy−σ
2 θ

2π

= σ
2(π−1)

θ

2π
.

(12)

We substitute these into (9) and (10) to show that a CCP reduces the expectation of
net exposures if and only if:

√
K +
√

K−1 <
E[S]

E[
√

S]
, (?)

and introducing a CCP reduces the variance of net exposures if and only if:

Var[S
√

K−1+
√

S]< KVar[S]. (13)

Rewriting the first variance term in (13) in terms of expectations operators, we can
express this condition as:

2
√

K−1 <
Var[S]−Var[

√
S]

E[S
3
2 ]−E[S]E[

√
S]
, (†)

where the denominator is non-zero.2

2The denominator is zero if and only if S is a constant, which implies that the introduction of a CCP has
no effect on the variance of netted exposures.
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3.2.1 Effect of changing the number of asset classes K

Note that the left-hand sides of both expressions (?) and (†) are increasing in K. This
means that, as the number of asset classes increases, the introduction of a CCP delivers
fewer netting benefits. The intuition here is that, as K increases, the CCP clears a lower
proportion of the dealers’ activity with one another, so the benefit of netting with the
CCP is reduced. This is consistent with the findings of Duffie and Zhu.

For a given network structure, we can define K∗ as the critical value of K below
which expected net exposures decrease upon introduction of a CCP, and above which
they increase. K† is the corresponding critical value for variance. Then:

K∗ ≡ 1
4

(
E[S]

E[
√

S]
+

E[
√

S]
E[S]

)2

(14)

K† ≡ 1
4

(
Var[S]−Var[

√
S]

E[S
3
2 ]−E[S]E[

√
S]

)2

+1 (15)

In other words, expressions (?) and (†) are equivalent to, respectively, K < K∗ and
K < K†. These expressions are the focus of the analysis moving forward. They relate
the impact of introducing a CCP to the number of asset classes K on the left-hand side,
and to the degree distribution S on the right-hand side.

4 Examination of different network structures
In this section we consider how the impact on dealer agents of introducing a CCP is
affected by the underlying structure of the network. The structure of the network is
reflected on the right-hand sides of expressions for K∗ and K† via the distribution of
the random variable S.

As a network is a very general object, we restrict our analysis to the most interesting
cases. First we apply our results to Duffie and Zhu’s network and recover their results.
Then we apply our analysis to core-periphery and fat-tailed networks, in order to ex-
amine the effect on the results of the presence of large well-connected counterparties,
which are typically present in real-world financial networks.

4.1 Homogeneous network of Duffie and Zhu
Duffie and Zhu (2011) assume the network is completely connected, so every agent
has full degree. This means that S = N−1 with certainty, and so K∗ = N2

4(N−1) , which
corresponds to their equation 6.

Duffie and Zhu do not consider the effect of the CCP on variance of netting expo-
sures. For their network, both sides of (13) evaluate to zero, so introducing a CCP has
no effect on variance. This means that the benefit of the CCP can be considered just by
examining the effect on the mean. This is true in general for any network where S is a
constant.
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A slight generalization of Duffie and Zhu’s completely connected network is the
Erdős-Rényi random network, where links are formed independently with some prob-
ability p. In this network, the nodes are still homogeneous but there may be random
variations in their link patterns. As an Erdős-Rényi network grows in size, K∗ and K†

grow without limit (this is a consequence of a Proposition which we prove in section
4.3.2). However, the Erdős-Rényi homogeneous network is not the focus of our pa-
per, as it is not a good fit to real-world financial networks (as shown, for example, in
Markose (2012) and Craig and von Peter (2014)). Instead we focus on two models
which have been shown to be more realistic: scale-free and core-periphery network
structures.

4.2 Fat-tailed and scale-free networks
Many real-world financial networks have degree distributions with significant excess
kurtosis. There is likely to be a small number of highly-connected nodes (we can think
of these as the major dealers), with the majority of nodes having few connections. Fat-
tailed networks can be defined as those whose degree distribution has a tail which can
be expressed as P(S = s)∼ s−α, for some real-valued parameter α > 1. Fatter tails are
associated with lower values of α.

In this section we will focus on scale-free networks, which are a particular class
of fat-tailed networks that have been shown to arise in many real-world applications,
including financial networks.3 Focusing on this class is instructive because they arise
according to a simple and intuitive process, as explained in the following section.

4.2.1 How do scale-free networks arise?

Barabási and Albert (1999) show that scale-free networks can be formed via growth
and preferential attachment. As time goes on, new nodes join the network and tend
to form links with the nodes which are better-connected. This is a realistic model of
a derivatives trading network. Over time we would expect new dealers to enter as the
market grows. And there are several reasons why these dealers are more likely to trade
with the agents which are already better-connected: for example name recognition,
an existing relationship in another market or economies of scale may mean that the
better-connected agents can offer more attractive terms. Barabási and Albert show that
networks formed through this process have fat tails with exponent α = 3.

For our analysis, we need to settle on a specific form of Barabási-Albert network.
We use the scale-free network formation process described in Dorogovtsev, Mendes
and Samukhin (2001); henceforth we refer to this as the DMS network. The major
advantage of the DMS network is that it has an exact solution for a network of any
size. In contrast, Barabási and Albert’s general solution only applies when the number
of nodes becomes very large, and the assumption of a large network is not necessarily
realistic for our purposes. For example Duffie and Zhu consider a network of size 12,
which is the number of entities that, at the time of writing their paper, had partnered

3See, for example, Soramäki et al (2007), Inaoka et al (2004) and Garlaschelli et al (2005).
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with ICE Trust to create a CCP for clearing credit default swaps.4 The DMS network
generating process is as follows:

1. Begin at time t = 2 with 3 nodes. Each has two links connecting to one another.

2. At each time step, randomly choose an existing link (each with equal probabil-
ity). A new node is added with two links, which are connected to the two nodes
which share the randomly-chosen existing link. Repeat.

3. This process generates an undirected DMS network. We now need to determine
the value of each link. As in the analysis of homogeneous networks, we assume
that if two dealers have a link in one asset class, then they have a link in all
K asset classes. For each pair of connected nodes i and j, we generate the net
exposures Xk

i j, k = 1, ...,K, as K iid normal random variables with mean 0 and
standard deviation σ.

This produces a network of size N = t+1, which tends towards a scale-free network
with exponent α = 3 as t becomes large. The left-hand panel of Figure 1 shows the
realization of a DMS process for t = 100.

Figure 1: Left-hand panel: Scale-free network of size t = 100, generated using
the DMS process. Right-hand panel: Core-periphery network of size N = 100,
generated using a Bernouilli distribution with parameters z = 0.25, p = 0.2,c0 = 0.

4.2.2 Asymptotic analysis of fat-tailed and scale-free networks

We can use the definition of fat tails to approximate the moments of the degree distri-
bution as the size of the network N→ ∞:

E[Sm]∼
∫ N−1

Z
sm−αds (16)

where Z is some constant.
Thus, as N→ ∞:

E[Sm]∼

 O((N−1)m−α+1) if m > α−1
log(N−1) if m = α−1
O(1) if m < α−1

(17)

4Sizes of other real-world CCP networks can be found in Table 1 in Galbiati and Soramäki (2012) and
footnote 12 in Cox, Garvin and Kelly (2013).
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and so E[Sm] has a finite limit if and only if m < α−1.
We can apply this result to our expressions for K∗ and K†. The table below sum-

marizes the asymptotics for various values of α.

Table 1: Asymptotic behavior of K∗ and K† in a fat-tailed network.
K∗ K†

1 < α≤ 2 tends to positive infinity tends to positive infinity
2 < α≤ 3 tends to finite limit tends to positive infinity

α > 3 tends to finite limit tends to finite limit

When α > 3, the right-hand sides of both expressions tend to finite limits. This
means that there will be some critical values K∗ and K† beyond which the introduction
of a CCP will increase the expectation and variance of net exposures no matter how
large the network is. But when 1 < α≤ 2 the converse is true: for any given number of
asset classes K, there will be some critical network size beyond which the expectation
and variance of net exposures decline with the introduction of a CCP. This suggests that
a CCP is more likely to deliver benefits to dealers in networks with fatter tails. This
makes intuitive sense, because networks where the major dealers are highly important
are more likely to benefit from bilateral netting with these dealers rather than with a
CCP which clears only a single asset class.

For real-world networks α typically lies between 2 and 3. This is the intermediate
case in the table, and so there may conceivably be a trade-off between a higher expected
value of net exposures and a lower variance. In particular, if the number of asset classes
is larger than the asymptotic limit of K∗, then we will certainly see such a trade-off.
This is clearly the case for scale-free networks, which have α = 3.

A lemma for the asymptotic DMS network

Lemma: For the infinite DMS network, novating a single asset class to a CCP is never
beneficial in terms of netting efficiency, regardless of the number of asset classes K
(except in the trivial case K = 1). But is always beneficial in terms of the variance of
net exposures.
Proof: We have already shown the second part is true, because α = 3 for the DMS
network and so K† grows without bound.

Now we just need to show that the asymptotic value of K∗ — which we know
tends to a finite limit — is smaller than 2. Observe that Et(S) = 4t−2

t+1 → 4 in the DMS
network, since at each step of the network construction process four additional links
are created (each new node has an in-link and an out-link with two existing nodes).
Dorogovstev, Mendes and Samukhin (2001) show that:

lim
t→∞

Pt (s) =
12

s(s+1)(s+2)
, (18)

10



and so the term Et [S]
Et [
√

S]
is asymptotically equal to:

4/

(
12

∞

∑
s=2

1√
s(s+1)(s+2)

)
= 2.17. (19)

This gives us an asymptotic value for K∗ = 1.73 < 2. Therefore in the infinite limit
the CCP never improves expected netting efficiency, except in the trivial case where
K = 1; i.e. when the CCP clears the only asset class. �

Note, however, that while the increase in expected exposures that results from the
introduction of a CCP (φ̃N,K−φN,K) is finite, the reduction in variance (ṽN,K− vN,K) is
without bound. This means that, so long as agents’ preference functions put any weight
on volatility — i.e. there is at least some degree of risk aversion — then, for any given
K, then there must be some critical size of the network above which introducing a CCP
is beneficial for the dealer agents.

4.2.3 Finite analysis of the scale-free network

The distribution of S for a given t is as given in Dorogovtsev, Mendes and Samukhin
(see their equation 8):

Pt(s) =
t

t +1

[
s−1
2t−3

Pt−1(s−1)+
(

1− s
2t−3

)
Pt−1(s)

]
+

1
t +1

1[s=2] (20)

for t ≥ 3, with initial condition P2(s) = 1[s=2]. (Here, 1[·] denotes the identity function
which takes the value 1 if the condition in the subscript is true, and zero otherwise.)

Figure 2 shows the effect of introducing a CCP for a range of values of (K, t). The
frontier of the black area is equal to K∗, while the frontier of the gray area is equal to
K†. The distribution of S is determined by equation (20) for that value of t. This has
been calculated for DMS networks with up to 500 members.

K∗ tends monotonically upward to the value 1.73, which accords with the asymp-
totic limit identified in the subsection above. This confirms that the introduction of
a CCP will increase net exposures for any non-trivial DMS network (i.e. one where
K ≥ 2). In contrast, K† (shown by the frontier of the gray area) increases without limit
as ∼ O(log(N− 1)2), as predicted by the asymptotic analysis. For sufficiently large
networks the introduction of a CCP will cause a reduction in the variance of exposures.

4.3 Core-periphery networks
Core-periphery networks have been presented in the recent literature as an alternative
to scale-free networks as a model of real-world financial linkages. These networks are
characterized by a partition of the nodes into two sets: a heavily-connected set of ‘core’
nodes, along with a sparsely connected set of ‘peripheral’ nodes. In most models this
partition is determined exogenously.

Borgatti and Everett (1999) present a general model to allow for the detection of
core-periphery networks: they assume that in such networks all core nodes are linked

11



Figure 2: The effect of the introduction of a CCP in a DMS scale-free network, for
a range of values of (K, t). The chart is calculated up to t = 499 — that is, N = 500.
Values of K∗ are represented by the frontier between the black and gray areas.
Values of K† are represented by the frontier between the gray and white areas.

to one another, while there are no links between peripheral nodes. They then present a
statistic to test for correlations between such an idealized core-periphery network and
the actual data. Their model is agnostic about the distribution of links between core and
periphery nodes; this is because their specification is aimed at empirical verification of
the structure, rather than a general model of a core-periphery network.

Langfield, Liu and Ota (2014) and Craig and von Peter (2014) use the Borgatti-
Everett approach to identify core-periphery structures in the UK and German inter-
bank markets respectively. Wetherilt, Zimmerman and Soramäki (2010) are able to
describe changes in the UK overnight money market using a more generalized maxi-
mum likelihood approach, which is possible because of the small size of their network.
And Markose (2012) characterizes the global network of OTC derivatives as a core-
periphery network, but does not test this against other possible structures.

4.3.1 How do core-periphery networks arise?

Van der Leij, in’t Veld and Hommes (2014) show that core-periphery structures can
arise as the stable outcome of a process of strategic network formation between hetero-
geneous agents. In their model, there are ‘big’ banks and ‘small’ banks, and the payoff
from forming a link with a big bank is greater than a link with a small bank.

Abstracting away from consideration of individual nodes’ optimal strategies, we
can characterize the formation of a core-periphery network using the following simple
process:
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1. Begin with c0 core nodes, which are connected to each other.

2. At each step a new node is added. With probability z this new node is labeled
‘core’. Otherwise, the node is labeled ‘peripheral’.

3. A new core node forms links with all of the existing core nodes with certainty,
and also forms links with each of the existing peripheral nodes according to some
given distribution h, which may depend on the link structure of the network
at that point in time. A new peripheral node never forms links with existing
peripheral nodes, but will form links with existing core nodes according to the
given distribution h.

This process, repeated N−c0 times, will produce a network of size N which meets
the Borgatti-Everett definition of a core-periphery network. The parameters of the
model are c0,z and the distribution h. Borgatti and Everett allow any feasible distribu-
tion to determine core-periphery links; for example h could depend on existing links
in the network. But the most natural and simple way to model links between the core
and periphery is to assume that each link occurs independently with some fixed proba-
bility p ∈ (0,1) — that is, the link formation process follows a Bernouilli distribution.
Under this assumption, the number of links for any randomly chosen node can be ex-
pressed as a mix of binomial distributions plus a constant.5 The right-hand panel of
Figure 1 shows a realization of such a network-generating process. We will focus on
the Bernouilli core-periphery network later in this section.

Underlying this network generation process is the assumption that links to core
nodes are desirable, while links to peripheral nodes are not. There are plausible reasons
why this may be the case for real-world financial networks. Agents may prefer to deal
with larger players who they are more likely to have existing relationships with in other
markets. Exposures to larger players may be easier to monitor. And economies of scale
may mean that these larger players offer more attractive trading terms.

4.3.2 Asymptotic analysis of core-periphery networks

In order to make asymptotic inferences about the Bernouilli core-periphery network,
we will state and prove a more general Proposition.

A proposition on the asymptotic limit of networks with ‘thin tails’

Proposition: Suppose the degree distribution S of the network has the following prop-
erties:

• E[S]→ ∞ as N→ ∞;

• Var[S]/E[S]2 tends to a finite limit as N→ ∞;

• Higher moments tend to zero as N→ ∞.

5Let C be the number of core nodes. Then C ∼ c0 +Bin(N− c0,z), and the conditional distribution of S
is S|C ∼ z(C− 1)+ z ·Bin(N−C, p)+ (1− z) ·Bin(C, p). Note that the cases p = 0 or z = 1 correspond to
the Duffie and Zhu network with size equal to the core.
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Then K∗ and K† are both ∼ O(E[S]) as N→ ∞.

Proof: Let us use µ and V to denote E[S] and Var[S] respectively, for a given N. Then,
as N→ ∞, we can make use of the following approximations:

E[
√

S] = µ0.5E
[

1+
(

S
µ
−1
)]0.5

≈ µ0.5
[

1− V
8µ2

]
, (21)

and

E[S
3
2 ] = µ1.5E

[
1+
(

S
µ
−1
)]1.5

≈ µ1.5
[

1+
3V
8µ2

]
. (22)

In both cases we have expanded the binomial series around 1 and neglected cubic and
higher order terms. Substituting these into our expressions for K∗ and K† and using the
properties of S, we find that both K∗ and K† ∼ O(µ). �

For a network which meets the conditions in the Proposition, K∗ and K† will in-
crease without bound as the network becomes large. This suggests that, for any given
number of asset classes K, there is a minimum size of the network above which the in-
troduction of a CCP would reduce both mean and variance. This is consistent with the
findings of Duffie and Zhu, where a larger network tends to make a CCP more likely
to be beneficial.

Examples of networks which meet these ‘thin-tailed’ conditions are the Erdős-
Rényi described in section 4.1, and the Bernouilli core-periphery network described
above.6 In both cases, E[S]∼ N−1.

This proposition does not apply to a network with a link formation process h which
generates fat tails. For example, the case where core and peripheral nodes form links
according to a Barabási-Albert preferential attachment process would be likely to gen-
erate asymptotic results similar to those derived in section 4.2.2. In particular, Markose
(2012) shows that the network of global OTC derivatives exposures can be modeled by
a core-periphery network with fat tails in the degree distribution. In this case, the fat-
tailed network analytics would be more appropriate when considering central clearing.

4.3.3 Finite analysis of the Bernouilli core-periphery network

While the only parameter in the DMS network is its size N = t + 1, the Bernouilli
core-periphery network has three additional parameters z, p and c0. In order to carry
out numerical solutions, we need to choose feasible parameter values, so we turn to
the empirical literature. The table below summarizes parameter estimates from three
selected papers: the global OTC derivatives network from Markose (2012), the Dutch
interbank market from Van der Leij et al (2014), and the German interbank market
from Craig and von Peter (2014).7 The value of c0 is impossible to observe and is
likely to make little difference to larger networks, so we assume c0 = 0.

6As the number of trials of a binomial distribution tends to infinity, its excess kurtosis and skewness both
tend to zero.

7For the global OTC network we use the ‘inner core’ as defined by Markose. Each paper provides the
number of nodes N, the size of the core C and the total number of directed links L. We assume that c0 = 0.
We can then estimate z = C

N and p = L−C(C−1)
2C(N−C) .
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Table 2: Parameter estimates for core-periphery networks in the literature.
Global OTC Dutch interbank German interbank

Period 2009 Q4 2008 Q4 2003 Q2
N 204 100 1802
Estimated z 0.10 0.15 0.02
Estimated p 0.01 0.31 0.11

These three networks have z and p fairly small, as might be expected. We will
use z = 0.10, p = 0.10 for our numerical solutions — these parameter values are fairly
representative of Table 2.8

Figure 3 shows the effect of introducing a CCP for various values of N up to 500,
for the parameters z = 0.10, p = 0.10,c0 = 0. As predicted, K∗ and K† increase ap-
proximately linearly with N. As with scale-free networks, there is a gray intermediate
area where K∗ < K < K† — in such cases, introducing a CCP will increase expected
net exposures in the network, but reduce the variance. Further numerical simulations
of these networks with other parameter values indicate that K† is larger than K∗ and
increases more rapidly with N, suggesting that the gray intermediate areas always exist.

Figure 3: The effect of the introduction of a CCP in a core-periphery network with
z = 0.10, p = 0.10,c0 = 0, for a range of values of (K,N) up to N = 500. Values of
K∗ are represented by the frontier between the black and gray areas. Values of K†

are represented by the frontier between the gray and white areas.

8The Markose parameter values may be thought to be the best proxy, given that we are interested in
central clearing of OTC derivatives and not other forms of interbank lending. However, it should be noted
that the Markose network exhibits fat tails and so does not conform very well to a Bernouilli core-periphery
structure.
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As Figure 3 shows, there are network sizes N where a CCP is unambiguously bad
for netting efficiency. For N ≤ 93, K∗ < 2 and so a CCP will never reduce average net
exposures for networks of this size. And for N ≤ 29, K† < 2 and so introducing a CCP
for networks of this size increases both the mean and variance of net exposures.

Testing other parameter values, we also find that K∗ and K† always increase with
N and decrease with both z and p. And, comparing Figure 3 with Figure 2, we can
see that for a given number of dealer agents, the introduction of a CCP is more likely
to deliver benefits in a core-periphery network than in a scale-free network. Both of
these results arise because, when the network relies on links with a small number of
key nodes, bilateral netting substantively reduces net exposures, and central clearing
disrupts this. But when links are more spread amongst a larger number of key nodes,
central clearing may bring greater netting benefits.9

This strongly suggests that knowledge of network structure — as well as the size
and the number of asset classes — is important in assessing the possible benefits of
central clearing on netting efficiency. Particularly important is the degree structure of
the largest nodes in the network.

5 Concluding remarks
We extend the analysis of Duffie and Zhu (2011) to a wider variety of networks and
show that the novation of a single asset class to a CCP will materially affect both the
mean and variance of net exposures. Both mean and variance will tend to decrease
if the network is larger or if there are a smaller number of asset classes traded in the
network. But central clearing brings fewer netting benefits if the network relies on a
small number of key nodes for most of its links.

In the case that the structure of the trading network is scale-free or in the growth
process of a scale-free network, introducing a CCP will always increase expected net
counterparty exposures, unless the CCP clears all asset classes. This is also true for
smaller core-periphery networks. But this increase in expected net exposures may be
accompanied by a reduction in the volatility of these exposures. This is more likely for
larger networks and those which trade and net a smaller number of asset classes.

This has welfare implications, because net exposures relate to aggregate counter-
party risk in the network, and to margin needs. If central clearing reduces both the ex-
pectation and variance of exposures, it would appear to be beneficial. If central clearing
increase both the expectation and variance, then it would appear to reduce welfare. But
in many cases the expectation increases while the variance falls (shown by the gray
areas on our charts). In such cases, whether central clearing improves welfare or not
here will depend on the risk appetite of the dealers in the network, policymakers and
any other relevant agents. In general, if decision-makers are more risk averse, then they
are likely to place more value on the effect on variance than the effect on mean, and so
are more likely to favor the introduction of a CCP.

9This is supported by Table 1 which shows that, as α increases in a fat-tailed network, central clearing
tends to bring netting benefits. That is because fatter tails means a greater number of nodes with a substantial
number of links.
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In our model, it appears that the benefit of central clearing accrues to the dealer
agents. The question may then arise, what is the justification for regulatory interven-
tion? In other words, what market failure does a regulator address by mandating central
clearing, given that the dealer agents have chosen not to set up a CCP themselves?

One likely answer is that the dealers are less risk-averse than is socially optimal.
This may be the case, for example, if high or volatile margin requirements impose
externalities on markets for the collateral assets (Murphy, Vasios and Vause (2014)), or
if agency problems mean that dealers take excessive risks. In such cases, a systemic
risk regulator should have a higher degree of risk aversion than the dealer agents, and
so may determine that the optimal policy measure is to mandate central clearing.

Another plausible explanation is that, while a CCP may improve netting efficiency
in aggregate, it does not provide an improvement for every party in the network.10 In
other words, it is socially efficient but not Pareto-efficient. This may make it difficult
for the agents in the network to agree to set up a CCP themselves. Even if they are able
to do so, the agents who do not benefit from central clearing would find it optimal to
continue to trade bilaterally, which would disrupt netting sets for those who do use the
CCP and make it less effective. This provides a reason for a regulator to intervene and
mandate central clearing, in order to make the market as a whole more efficient.

As in Duffie and Zhu we do not account for the fact that exposures to the CCP are
likely to carry much less risk than those to commercial trading counterparties. One
key purpose of a CCP is to reduce counterparty risk. Once risk-weights are taken
into account, total expected risk in the network may be reduced, further increasing the
benefits of the CCP.11 Furthermore, once a CCP is introduced the participants in the
network may find it optimal to adjust their exposures to one another. As in Duffie and
Zhu, we do not attempt to model this endogeneity.

We also do not assume any correlation between magnitudes of exposures in differ-
ent asset classes. In the event that two asset classes tend to have positively correlated
exposures, bilateral netting between these assets will have limited benefits and so a
CCP which clears exactly one of these assets may improve netting efficiency. Simi-
larly, we assume that a link between two agents in one asset class implies a link in all
asset classes. Although we argue this may be a realistic assumption, in a network with
greater specialization there will be fewer opportunities for bilateral netting between
counterparties, so a CCP would be likely to deliver greater benefits.

In this paper we have adopted a theoretical approach to the problem, as we have
assumed that only the distribution of the network and exposures are known, and not the
exact network structure. If the empirical structure is known, then the empirical distri-
bution S can be plugged into our equations. As part of the regulatory reforms following
the financial crisis, regulators have increasingly better access to OTC derivatives data.
However, in general these data will not be back-dated — in particular, regulators may
not have data on network structures leading into the last crisis — so it may not be possi-
ble to observe the empirical network structure at precisely the point when risk-aversion
is at its peak. It may also be difficult for regulators to piece together exposure data

10Heath, Kelly and Manning (2013) find that the netting benefits of central clearing accrue disproportion-
ately to core nodes.

11Anderson, Dion and Pérez Saiz (2013) adopt this risk-weighting approach.
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about different asset classes and identify different corporate entities as part of the same
dealer agent. Our approach allows a regulator not to be concerned about the identity of
each node, but to use the structure of the network as a whole.

Moreover, networks develop and grow over time and so historical data may not be
useful for understanding an innovative or growing market. As the network structure
rapidly changes in real time, regulators may find it more useful to model the growth
dynamics rather than rely on observed data which rapidly becomes stale. Our model
allows for this.

This paper focuses on central clearing, but our model can be applied to any network
where the issue of bilateral vs centralized netting is under consideration. For example,
it could be used to consider the effect multilateral netting in the interbank market, the
benefits of bilateral vs triparty repo, or the effect on payment system exposures of
introducing a liquidity-saving mechanism.
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