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Abstract 
 
Spreads of agency mortgage-backed securities (MBS) vary significantly in the cross section 
and over time, but the sources of this variation are not well understood. We document that, in the 
cross section, MBS spreads adjusted for the prepayment option show a pronounced smile 
with respect to the MBS coupon. We propose prepayment model risk as a candidate driver 
of MBS spreads and present a new pricing model that uses “stripped” MBS prices to identify 
the contribution of this risk to option-adjusted spreads. With this pricing model, we find that 
prepayment model risk explains the smile, while the variation in the time series is mostly 
accounted for by a non-prepayment-risk component, which is related to credit risk in fixed- 
income markets and MBS supply. Finally, we study the MBS market response to the Fed’s large-
scale asset purchases and show that the model is consistent with spread movements following 
the initial announcement and, in particular, the fanning out of option-adjusted spreads across 
different coupons. 
 
Key words: agency mortgage-backed securities, option-adjusted spreads, prepayment model risk, 
OAS smile 
 
 
 
 
 
 
 
 
 
_________________ 

Boyarchenko, Fuster, Lucca: Federal Reserve Bank of New York (e-mail: 
nina.boyarchenko@ny.frb.org, andreas.fuster@ny.frb.org, david.lucca@ny.frb.org). The authors 
are grateful to Hui Chen, Benson Durham, Arvind Krishnamurthy, Alex Levin, Francis Longstaff, 
Emanuel Moench, Taylor Nadauld, Richard Stanton, Stijn Van Nieuwerburgh, Annette Vissing-
Jorgensen, Jonathan Wright, and seminar audiences at the Federal Reserve Bank of San 
Francisco, Morgan Stanley, NYU Stern School of Business, and Toulouse School of Economics 
for helpful comments and discussions. Karen Shen provided outstanding research assistance. The 
views expressed in this paper are those of the authors and do not necessarily reflect the position 
of the Federal Reserve Board of Governors, the Federal Reserve Bank of New York, or the 
Federal Reserve System. 
 
 
 



1 Introduction

With about $6 trillion in principal outstanding, residential mortgage-backed securities (MBS) guar-

anteed by US government-sponsored enterprises Fannie Mae and Freddie Mac and the govern-

ment agency Ginnie Mae are among the world’s most important fixed income assets.1 Timely

repayment of principal and interest in these securities is, either explicitly or implicitly, backed by

the US government. Nevertheless, MBS spreads to Treasuries or plain-vanilla interest rate swaps,

often called the “mortgage basis,” vary significantly over time and across mortgage securities.

To some extent the mortgage basis reflects compensation for interest rate risk from the prepay-

ment option embedded in an MBS, which allows borrowers to prepay their mortgage balance

at any time. But even after accounting for interest rate variability and predicted prepayments,

the resulting option-adjusted spreads (OAS) can reach high levels. Furthermore, we document a

marked U-shaped pattern of OAS across coupons in the cross section, which we refer to as the

“OAS smile.” Beyond its asset pricing significance, variation in the mortgage basis is also of key

macroeconomic importance because of the central role played by MBS in funding US housing.

Reflecting this importance, a spike in the mortgage basis in the fall of 2008 contributed to the Fed-

eral Reserve’s decision to embark on unconventional monetary policies through large-scale MBS

purchases.

What are the key risk factors that drive variation in the mortgage basis, and how can we tell

them apart? In a simple theoretical framework, we show that MBS investors face prepayment

model risk, which is the risk of over- or underpredicting future prepayments for given interest

rates.2 The main contribution of this paper is to propose and implement a new method that uses

market prices to identify this risk, which is unaccounted for in standard MBS pricing models.

We find that prepayment model risk premia explain the OAS smile, while the variation in average

OAS over time is mostly explained by a non-prepayment risk component, which is related to credit

risk spreads and MBS supply. We use this decomposition to study the fanning out (divergence) of

OAS across coupons in response to the Fed’s November 2008 MBS purchase announcement and

discuss related policy implications.

1The outstanding amount is from SIFMA as of 2013:Q4. The term “MBS” in this paper refers only to securities
issued by Freddie Mac and Fannie Mae or guaranteed by Ginnie Mae and backed by residential properties; there
are also “private-label” residential MBS issued by private firms (and backed by subprime, Alt-A, or jumbo loans), as
well as commercial MBS. Only Ginnie Mae securities are explicitly guaranteed by the full faith and credit of the US
government, while Freddie Mac and Fannie Mae securities have an effective, or implicit, guarantee.

2Previous studies (for example, Goldman Sachs, 1995; Levin and Davidson, 2005; Gabaix, Krishnamurthy, and Vi-
gneron, 2007) have also highlighted the role of this risk.
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We characterize MBS spreads adjusted for the prepayment option (or OAS) on the universe

of outstanding securities over a period of 15 years and using (for robustness) quotes from six

different dealers. In the time series, we find OAS on a market value-weighted index to be typically

close to zero, consistent with the limited credit risk of MBS. However, OAS reach high levels

in periods of market stress, such as 1998 (around the failure of LTCM) or the fall of 2008. We

document variation in the cross section of MBS as a function of their coupon or, more precisely,

their moneyness—the difference between the note rate on the loans underlying an MBS and the

mortgage rate on newly originated loans—which is a key feature that distinguishes one MBS from

another. In this cross section, we uncover an “OAS smile,” meaning that spreads tend to be lowest

for securities for which the prepayment option is at-the-money (ATM), and increase if the option

moves out-of-the-money (OTM) or in-the-money (ITM).

The OAS smile suggests that investors in ITM and OTM securities require additional risk com-

pensation, and we discuss possible sources of this additional risk premium using a simple concep-

tual framework. One possibility is that newly issued MBS, which trade close to par, may require

a lower OAS due to better liquidity, since they are more heavily traded. The results of our pric-

ing model and decomposition are, however, inconsistent with this explanation. Instead we show

that the OAS smile can be explained by prepayment model risk. This risk arises because MBS

prepayment rates vary not only with interest rates but also with other systematic factors (γt) such

as house prices, underwriting standards, or government policies. The standard OAS is computed

accounting for rate uncertainty but holding γt fixed; thus the OAS will be contaminated by com-

pensation for these risks. To correctly account for this additional risk, we use market prices to

extract risk-neutral prepayment rates.

Prices of standard MBS (or pass-throughs) are insufficient to isolate prepayment model risk

premia in the OAS, because a single price observation only pins down the total OAS. We propose

a method that circumvents this identification issue by using prices of paired “stripped” MBS—

an interest-only (IO) and a principal-only (PO) strip—which value interest payments separately

from principal accruals on a given MBS. We show that this additional pricing information, and

the assumption that a pair of strips is priced fairly, can identify market-implied risk-neutral (“Q”)

prepayment rates as multiples of physical (“P”) ones. We then obtain the prepayment model risk

premium component in the OAS as the difference between the OAS computed using physical

(OASP) and risk-neutral prepayments (OASQ).

We find that the OAS smile is explained by higher prepayment model risk for securities that
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are OTM and, especially, ITM. There is little evidence that liquidity or other risks vary significantly

with moneyness, except perhaps for the most deeply ITM securities. In the time series, we find

that much of the OAS variation on the value-weighted index is driven by the OASQ component.

We document that average OASQ are related to spreads on other agency debt securities, which

may reflect common risk factors such as changes in the implicit government guarantee. In par-

ticular, both spreads spiked in the fall of 2008, when Fannie Mae and Freddie Mac were placed

in conservatorship by the US Treasury. However, spreads on MBS and agency debt also tend to

co-move earlier in the sample, possibly pointing to other common factors such as liquidity. OAS

are also linked to credit spreads (Baa-Aaa), suggesting common pricing factors in the two markets.

One possible such factor that has been highlighted in the literature is limited risk bearing capacity

of financial intermediaries. Consistently, we find that the supply of MBS, measured by issuance

relative to mark-to-market equity of brokers and dealers, is a significant determinant of OASQ.

The response of OAS to LSAPs provide further evidence on this channel. In particular, OASQ

narrowed across coupons as the Fed reduced the outstanding stock of MBS available to private

investors through the purchase program.

Our pricing model consists of a prepayment and an interest rate component. The interest rate

component is a three-factor Heath et al. (1992) model calibrated to the term structure of swap rates

and the interest rate volatility surface implied by the swaption matrix using a minimum distance

estimator. To capture market participants’ expectations and to be consistent with their pricing and

spreads, we extract the parameters of our physical prepayment model from a survey of dealer

models’ long-run prepayment projections from Bloomberg LP.

While much of the discussion in the paper centers on OAS, we also discuss unadjusted spreads

and the option cost, as measured by the difference between the OAS and unadjusted spreads. We

uncover a cross-sectional hump-shaped pattern in the option cost, which we explain with differen-

tial sensitivity to interest rate volatility (or Vega) across securities with different moneyness levels.

In the time series, option cost variation is explained by changes in implied rate volatility.

The rest of the paper is organized as follows. After relating our work to the existing literature,

in Section 2 we provide a brief overview of the MBS market, define the spread measures, and

then characterize their variation including the OAS smile. Section 3 presents a simple concep-

tual framework to discuss possible sources of spread variation. We propose a method to isolate

compensation for prepayment model risk from other risk premia in Section 4, and implement this

method using a new pricing model. Section 5 discusses results of this model including the spread
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response following the announcement of the first round of large-scale MBS purchases by the Fed-

eral Reserve in 2008. We draw policy implications of this analysis in the paper’s conclusion.

1.1 Related literature

This paper is connected to several strands of literature. First, we show that, consistent with the

theory of limited risk-bearing capacity of intermediaries (such as Shleifer and Vishny, 1997; Duffie,

2010; He and Krishnamurthy, 2013; Brunnermeier and Sannikov, 2014), investors in the MBS mar-

ket earn a higher risk premium when intermediaries face greater capacity constraints. In particu-

lar, when the supply of MBS securities is large relative to intermediaries’ equity, the liquidity risk

premium in this market increases. Thus, similar to the findings of Adrian et al. (2013) for equity

and bond portfolios, measures of intermediary risk bearing capacity are a priced risk factor in

the time series. In this environment, the LSAP program relaxed intermediary capacity constraints

and thus improved the overall liquidity in the MBS market. At the same time, the program had

a countervailing effect by lowering mortgage rates and increasing prepayment risk premia. This

leads the net impact of LSAPs on high coupons (which represent the majority of outstanding MBS)

to be small, thereby limiting the recapitalization effect of monetary policy described in Brunner-

meier and Sannikov (2012). The countervailing effects of LSAPs on OAS are also distinct from

the effects highlighted in previous studies (such as Gagnon et al., 2011; Greenwood and Vayanos,

2014; Krishnamurthy and Vissing-Jorgensen, 2013), as we discuss in the paper’s conclusion.

Grossman and Zhou (1996) proposed that the limited arbitrage capital of portfolio insurers

can lead out-of-the-money equity options to trade at a higher volatility than in-the-money ones. In

contrast, we find that, while the risk-bearing capacity of intermediaries does influence the average

level of the OAS, it is not the source of the OAS smile. The OAS smile is connected more generally

to the literature studying the volatility smile in equity options. Buraschi and Jackwerth (2001)

point out that additional (beyond the evolution of the underlying) priced risk factors, such as

stochastic volatility and interest rates, are needed to explain the post-1987 smile in the volatility

surface. We similarly find that the OAS smile can be explained by allowing priced variation in

the parameters of the prepayment model. Our paper also shares the option pricing view (see e.g.

Jackwerth and Rubinstein, 1996; Pan, 2002; Eraker, 2004; Broadie et al., 2007) that any potential

explanation of the smile should be confronted with data drawn from both the historical and the

risk-neutral distribution.

From a methodological perspective, this paper is also related to credit risk studies that con-
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front their models with both physical and risk-neutral (that is, pricing) data to evaluate default

risk premia. Driessen (2005), for example, uses US bond price data and historical default rates to

estimate a default event risk premium. Driessen parameterizes the risk-neutral intensity of default

as a multiple of the historical intensity; in this paper, we follow a similar approach in parametriz-

ing the risk-neutral prepayment path as a multiple of the prepayment path under the historical

measure. Almeida and Philippon (2007) use the default risk premia estimated for bonds with dif-

ferent credit rating to compute the risk-adjusted costs of financial distress for firms in the same

ratings class. Our exercise is similar in spirit in that we use the prepayment risk premia estimated

for different MBS pools to compute prepayment risk-adjusted liquidity costs faced by investors in

this market.

A number of papers have studied the interaction of interest rate risk in MBS and other markets.

In these models, investors’ need to hedge MBS convexity risk may explain significant variation in

interest rate volatility and excess returns on Treasuries (Duarte, 2008; Hanson, 2014; Malkhozov

et al., 2013; Perli and Sack, 2003). Our analysis is complementary to this work as we focus on

MBS specific risks as well as how they respond to changes in other fixed income markets. More

closely related to this paper, Boudoukh et al. (1997) suggest that prepayment-related risks are a

likely candidate to account for the component of TBA prices not explained by the variation in

interest rate level and slope. Carlin et al. (2014) use long-run prepayment projections to study

the role of disagreement in MBS returns and their volatility. Perhaps closest to our work, Gabaix

et al. (2007) study OAS on IO strips from a dealer model between 1993 and 1998, and document

that these OAS covary with the moneyness of the market, a fact that they show to be consistent

with a prepayment risk premium and the existence of specialized MBS investors. Gabaix et al. do

not focus on pass-through MBS and, while their model successfully explains the OAS patterns of

the IOs in their sample, it predicts a linear rather than a smile-shaped relation between a pass-

through MBS’s OAS and its moneyness, since they assume that securities have a constant loading

on a single-factor aggregate prepayment shock. We consider liquidity as an additional risk factor

in the OAS and also show that the OAS smile is in fact a result of prepayment model risk but of a

more general form than what Gabaix et al. assume. In a similar manner to this paper’s empirical

pricing model, Levin and Davidson (2005) extract a market-implied prepayment function from the

cross section of TBA securities.3 Because they assume, however, that the residual risk premia in

3Arcidiacono et al. (2013) extend their method to more complex CMOs. Cheyette (1996) and Cohler et al. (1997) are
earlier practitioner papers proposing that MBS prices can be used to obtain market-implied prepayments.
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the OAS are constant across coupons, the OAS smile is implicitly assumed to be explained only in

terms of prepayment model risk. By using additional information from stripped MBS, the method

in this paper instead relaxes this assumption.

2 Facts about mortgage spreads

In this section we first provide a brief overview of MBS and their spread measures. We then

characterize the time series and cross-sectional spread variation in terms of a few stylized facts.

2.1 The agency MBS market and spreads

In an agency securitization, a mortgage originator pools loans and then delivers the pool in ex-

change for an MBS certificate, which can subsequently be sold to investors in the secondary mar-

ket.4 Servicers, which are often affiliated with the loan originator, collect payments from home-

owners that are passed on to MBS holders after deducting a servicing fee and the agency guarantee

fee. In the simplest form of MBS, known as a pass-through, homeowners’ payments are assigned

pro-rata to all investors. However, cash flow assignment rules can be more complicated with

multiple tranches, as is the case for stripped MBS, which we will discuss in Section 4, and collat-

eralized mortgage obligations (CMOs). We focus on MBS backed by fixed-rate mortgages (FRMs)

with original maturity of 30 years on 1-4 family properties; these securities account for more than

two-thirds of all agency MBS.5

In agency MBS, the risk of default of the underlying mortgages is not borne by investors but by

the agencies that guarantee timely repayment of principal and interest. Because of this guarantee,

agency MBS are generally perceived as being free of credit risk. However, while Ginnie Mae

securities have the full faith and credit of the US federal government, assessing the credit risk of

Fannie Mae and Freddie Mac securities is more complex. Indeed, government backing for these

securities is only implicit and results from investors’ anticipation of government support under a

severe stress scenario, as was the case in the fall of 2008.

Beyond the implicit guarantee, a distinct feature of MBS is the embedded prepayment option:

borrowers can prepay their loan balance at par at any time, without paying a fee. Because borrow-

ers are more likely to do so when rates decline, MBS investors are exposed to reinvestment risk
4In addition to these “lender swap transactions,” Fannie Mae and Freddie Mac also conduct “whole loan conduit”

transactions, where they buy loans against cash from (typically smaller) originators, pool these loans themselves, and
then market the issued MBS.

5As of March 2014, the balance-weighted share is 69 percent (author calculations based on data from eMBS).

6



and have limited upside as rates decline, or more formally, they are short an American option.

The embedded prepayment option is crucial in the valuation of MBS, since it creates uncertainty

in the timing of future cash flows, Xt. As discussed in more detail in Section 4.3, prepayment rates

depend on loan characteristics as well as macroeconomic factors such as interest rates and house

prices. While uncertainty about all of these factors (and their impact on prepayments) affects the

value of the embedded option, only interest rate uncertainty is explicitly accounted for in com-

puting spreads, a fact that we highlight by denoting cash-flow dependence on interest rates by

Xt(rt).6

MBS valuations are usually assessed based on option-adjusted spreads (OAS) or zero-volatility

spreads (ZVS, also called Z-spreads). Denoting by PM the market price of an MBS, these spreads

are defined by

OAS : PM = E
T

∑
k=1

Xk(rk)

∏k
j=1
(
1 + OAS + rj

) , (2.1)

ZVS : PM =
T

∑
k=1

Xk(Erk)

∏k
j=1
(
1 + ZVS + Erj

) . (2.2)

Thus, the OAS is the constant spread to baseline rates that sets the discounted value of cash

flows equal to its market price. In practice, the expectation term in the OAS calculation is com-

puted with Monte Carlo simulations using a term structure model calibrated to interest rate op-

tions, and then obtaining cash flows via a prepayment function that depends on rates. In com-

puting the ZVS, instead, both cash flows and discounts are evaluated along a single expected

risk-neutral rate path, thus ignoring the effects of uncertainty about the timing of prepayments

on the MBS valuation. This implies that the ZVS will be larger than the OAS.7 More generally,

both the ZVS and OAS increase the larger the value of discounted cash flows (that is, the model-

implied price) relative to the market price, meaning that when spreads are positive, MBS trade

below the model price. Because ZVS abstract from rate uncertainty, following practitioners (for

6Appendix A provides a detailed description of how MBS cash flows depend on prepayments and scheduled amor-
tization.

7Market participants also sometimes consider simple yield spreads (YS). As for the ZVS, the YS computes cash flows
abstracting from uncertainty but discounts at ((1 + YS + y∗), where y∗ is the swap rate with a duration that is closest
(or equal by interpolating rates for the two rates with the closest duration) to the MBS duration. Unlike the ZVS, the
YS discounts all cash flows at a constant rate y∗, which is independent of cash flow timing, and as a result, changes in
the slope of the yield curve (or duration of the MBS) will not be reflected in the YS.
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example, Hayre, 2001) we refer to the ZVS-OAS difference as the “option cost”:8

Option cost ≡ ZVS−OAS. (2.3)

In the remainder of this section, we characterize the spread variation in the MBS universe

using a market value-weighted index (in the time series) as well as in terms of MBS moneyness

(in the cross section). We consider spreads relative to swaps, rather than Treasuries, since these

instruments are more commonly used for hedging MBS (see e.g. the discussion in Duarte, 2008)

and also because interest rate volatility measures, used to calibrate the term structure model, are

more readily available for swaps.9 We use spreads in the to-be-announced (TBA) market, where

the bulk of MBS trading happens. The TBA market is a forward market for pass-through MBS

where a seller and buyer agree on a select number of characteristics of the securities to be delivered

(issuer, maturity, coupon, par amount), a transaction price, and a settlement date either 1, 2, or 3

months in the future. The precise securities that are delivered are only announced 48 hours prior

to settlement, and delivery occurs on a “cheapest-to-deliver” basis (see Vickery and Wright, 2013,

for a detailed discussion). Because spread measures are highly model-dependent, we collected

end-of-month spread measures (ZVS and OAS, both relative to swaps) on Fannie Mae securities

from six different dealers over the period 1996 to 2010.10 As a result, the stylized facts we present

are robust to idiosyncratic modeling choices of any particular dealer and, through data-quality

filters we impose, issues arising from incorrect or stale price quotes. Further details on the sample

and data-quality filters are available in Appendix B.

2.2 Time series variation in spreads

The benchmark contract in the TBA market is the so-called current coupon, which is a synthetic

par contract for a 30-year fixed rate MBS obtained from interpolating the highest coupon below

par and the lowest coupon above par, or alternatively by extrapolating from that latter security in

8We note, however, that this is a slight misnomer, as adding volatility to discount rates (in the denominator of
equation (2.1)) increases the model value and therefore raises OAS relative to ZVS. In practice, this countervailing
effect is small, such that ZVS almost always exceed OAS.

9Feldhütter and Lando (2008) study the determinants of spreads between swaps and Treasuries and find that they
are mostly driven by the convenience yield of Treasuries, though MBS hedging activity may also play a role at times.

10Freddie Mac securities are generally priced close to Fannie Mae’s, reflecting the similar collateral and implicit
government backing. The prices and spreads of Ginnie Mae securities can differ significantly (for the same coupon)
from Fannie and Freddie MBS, reflecting the difference in prepayment characteristics (Ginnie Mae MBS are backed by
FHA/VA loans) and perhaps the explicit government guarantee. Throughout this paper, we focus on Fannie Mae MBS.
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case no coupon is trading below par (which has frequently been the case in recent years).11 The

interest in this benchmark is due to the fact that most newly originated mortgages are securitized

in coupons trading close to par, so that the current coupon rate can be thought of as the relevant

secondary market rate for borrowers seeking a new loan.

Despite its benchmark status, the current coupon is not representative of the MBS universe as

a whole, because at any point in time, only a relatively small fraction of the universe is in coupons

trading close to par. This is illustrated in Figure 1. For example, the current coupon at the end of

2010 was around 4 percent (red line, measured on the right y-axis) but securities with a coupon of

4 percent accounted for only about 20 percent of the total outstanding on a market value-weighted

basis. Another issue with the current coupon is that since it is a synthetic contract, variation in

its yield or spreads can be noisy because of inter- and extrapolations from other contracts and the

required assumptions about the characteristics of loans that would be delivered in a pool trading

at 100 (see Fuster et al., 2013, for more detail).

To characterize the time series variation in spreads, we therefore follow fixed income indices

(such as Barclays and Citi, which are main benchmarks for money managers) and construct a

market value-weighted index (the “TBA index”) using the universe of outstanding pass-through

MBS. In contrast to other indices, however, we do not rely on any particular dealer’s pricing

model; instead, we average the spread measure of interest (OAS or ZVS) for a coupon across the

dealers for which we have quotes on a given day, and then compute averages across coupons

using the market value of the remaining principal balance of each coupon in the MBS universe.

The resulting time series of spreads on the TBA index is shown in Figure 2. The mortgage

basis as measured by the ZVS (grey line) is typically around 50 to 100 basis points, but rose above

200 basis points during the period of widespread financial stress in the fall of 2008. The mortgage

basis also reached high levels around the 1998 LTCM turmoil, and in 2002 and 2003 in conjunction

with the unprecedented refinancing wave in mortgage markets. Just like the unadjusted basis,

the OAS (black line) reaches high levels in periods of market stress, but tends to be less volatile

outside these periods. The chart also shows that the OAS on the value-weighted index is generally

close to zero, consistent with the limited credit risk of MBS.

While we have not yet discussed potential drivers of MBS spreads, we now briefly study the

relationship between spreads on the TBA index and fixed income risk factors. In particular, we

11Sometimes the term “current coupon” is used for the actual coupon trading just above par; we prefer the term
“production coupon” to refer to that security.
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consider: (i) the convenience yield on Treasury securities (reflecting their liquidity and safety) as

measured by the Aaa-Treasury spread; (ii) credit spreads as measured by the Baa-Aaa spread; (iii)

the slope of the yield curve (measured by the yield difference between 10-year Treasury bonds and

3-month Treasury bills); and (iv) the swaption-implied volatility of interest rates.12 Regression

estimates are reported in Table 1, where all right-hand-side variables are standardized so that

each coefficient estimate can be interpreted as the spread impact in basis points of a unit standard

deviation increase.

The takeaways from the table are the following: First, average OAS are strongly related to

credit spreads, both over the full sample and the pre-crisis period (ending in July 2007), and are

largely unaffected by the other risk measures. This suggests that there are common pricing fac-

tors between the MBS and corporate bond markets.13 Second, implied rate volatility does not

explain the OAS variation, consistent with the prediction that OAS should not reflect interest rate

uncertainty as the OAS adjusts for it. Conversely, the average ZVS is strongly related to implied

volatility. Intuitively, as with other American options, the value of the prepayment option in-

creases in the volatility of the underlying. In Section 5, we return to the determinants of the time

series variation in spreads, focusing on the relationship with mortgage-specific risk factors.

2.3 Cross-sectional patterns and the OAS smile

While spread variation in the TBA index is informative of the MBS market as a whole, it masks

significant variation in the cross section of securities. A salient feature that distinguishes one MBS

from another in the cross section is the monetary incentive to refinance of borrowers in the loan

pool underlying a security. We refer to this incentive as a security’s “moneyness” and define it

(for security j at time t) as

Moneynessj,t = Couponj + 0.5− FRMratet.

12As in Krishnamurthy and Vissing-Jorgensen (2012) the Aaa-Treasury spread is the difference between the Moody’s
Seasoned Aaa corporate bond yield and the 20-year constant maturity Treasury (CMT) rate. The Baa rate is also from
Moody’s, and bill rates and 10-year Treasury yields are CMTs as well. All rates were obtained from the H.15 release.
Swaption quotes are basis point, or normal, volatility of 2-year into 10-year contracts, from JP Morgan.

13Brown (1999) relates the OAS to Treasuries of pass-through MBS over the period 1993–1997 to other risk premia
and finds a significant correlation of OAS with spreads of corporate bonds to Treasuries. He interprets his findings as
implying a correlation between the market prices of credit risk or liquidity risk on corporates and that of prepayment
risk on MBS, but notes that it could also be driven by time variation in the liquidity premium on Treasuries.
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We add 0.5 to the coupon rate because the mortgage note rates are typically around 50 basis points

higher than the MBS coupon.14 When moneyness > 0, a borrower can lower his monthly payment

by refinancing the loan balance—the borrower’s prepayment option is “in-the-money” (ITM)—

while moneyness < 0 means that refinancing (or selling the home and buying another home with

a new mortgage of equal size) would increase the monthly mortgage payment—the borrower’s

option is “out-of-the-money” (OTM). Aside from determining the refinancing propensity of a loan,

moneyness also measures an investor’s gains or losses (in terms of coupon payments) if a mort-

gage underlying the security prepays (at par) and he reinvests the proceeds in a “typical” newly

originated MBS (which will approximately have a coupon equal to the FRM rate at time t minus

50 basis points).

Figure 3 shows the (pooled) variation of spreads and prices as a function of security money-

ness. First, and most importantly for this paper, OAS display a smile-shaped pattern (panel a):

adjusted spreads are lowest for at-the-money (ATM) securities and increase moving away in ei-

ther direction, especially ITM. OAS on deeply ITM securities on average exceed those on ATM

securities by 50 basis points or more. Explaining the smile-shaped pattern in OAS is the focus of

the next section, where we turn to a model that features prepayment model risk and liquidity risk

as two potential drivers.

Next, panel (b) shows that ZVS are generally increasing in a contract’s moneyness, though the

relation flattens out for ITM securities. Panel (c) shows that the option cost (the difference between

ZVS and OAS) is hump-shaped, with securities that are closest to par having the largest option

cost. The hump shape of the option cost can be understood by analogy to the Vega (sensitivity

to changes in the volatility of the underlying) of vanilla call options, which is small for options

that are deeply ITM or OTM but large for options near the money. Option execution in MBS are

driven by an S-shaped prepayment function (rather than an exercise boundary) as discussed in

more detail in Section 4.3 but the patterns are analogous.15 As shown more formally in the next

section, this pattern is directly related to the well-known “negative convexity” (i.e., concavity)

of MBS prices with respect to rates, shown in panel (d): as rates drop (the security’s moneyness

increases), prices increase less than linearly, especially for near-the-money securities.

14The difference gets allocated to the agency guarantee fee as well as servicing fees (see Fuster et al., 2013, for details).
We could alternatively use a security’s “weighted average coupon” (WAC) directly, but the WAC is not known exactly
for the TBA securities studied in this section.

15Intuitively, prepayments are not sensitive to small changes in interest rates when the prepayment option is deeply
ITM or OTM, so that adding volatility to future interest rates matters little for the expected value of the security; the
same is not true for ATM securities.
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Table 2 shows that the pattern shown in panel (a) of Figure 3 is qualitatively robust to control-

ling for month fixed effects (meaning that only cross-sectional variation is exploited) and to ending

the sample before the onset of the financial crisis. Instead of imposing parametric restrictions, we

simply regress OAS on 50-basis-point moneyness bins, with [−0.25, 0.25) as the omitted category.

Comparing columns (1) to (2) and (3) to (4), we see that the addition of month fixed effects matters

little for the relative OAS in the cross section. The relative spreads of OTM coupons are robust

to removing the financial crisis period from the sample, while for ITM coupons, the difference to

ATM securities was somewhat smaller pre-crisis, but still statistically significant.

3 Conceptual framework

As discussed above, the OAS is the spread to the risk-neutral discount rate curve after accounting

for rate uncertainty, which conceptually corresponds to the expected excess return on an MBS

when interest rate risk is hedged.16 Consider a mortgage pool j with coupon rate cj and remaining

principal balance θjt at time t. The pool prepays with intensity sjt, so that the principal balance

evolves (in continuous time) as

dθjt = −sjtθjtdt.

We assume that the prepayment rate sjt is a function of the interest rate incentive cj− r and a vector

of parameters γt = (γ1t, γ2t, . . . , γNt)
′, which are uncertain and give rise to prepayment model

risk. For simplicity, and because we focus on the OAS, which is already adjusted for interest rate

uncertainty, we assume here that interest rates r are constant, though we briefly discuss the model

with uncertain rates at the end of this section. The prepayment rate is then given by

sjt = f
(
γt, cj − r

)
.

The parameters γt are time-varying, with normal innovations, so that

dγt = µγdt + σγdZγt,

16Consistent with this interpretation, Breeden (1994) provides evidence that OAS do predict subsequent hedged
returns. An alternative view, taken for instance by Kupiec and Kah (1999), is that OAS are caused by misspecification
of the prepayment model relative to what the marginal investor believes. In that view, OAS are simply “noise” and
have no asset pricing significance. While it is certainly true that spreads are heavily model dependent, the view that
they are just noise is difficult to reconcile with some of the facts documented in the previous section.
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where Zγt is a standard Brownian motion vector. The other source of uncertainty in the model is

the liquidity of the securities. We assume that, with intensity µt, the whole market experiences a

liquidity event in which a pool j loses a fraction αjt of its market value. Thus αjt should be thought

of as how well the security performs in a “bad” market, similar to Acharya and Pedersen (2005).

Alternatively, αjt could be interpreted as the price impact of a decline in the strength of the agency

guarantee. Under no-arbitrage there exists a pricing kernel Mt such that the time t price of a future

stream of cash flows Xt+s is

Pt = Et

[∫ +∞

0

Mt+s

Mt
Xt+sds

]
. (3.1)

Equation (3.1) is the continuous-time analog of (2.1), where instead of discounting by the risk-free

rate, we discount using the pricing kernel. Let Rt be the return to holding a claim to the stream of

cash flows Xt, which evolves as

dRt ≡
dPt

Pt
+

Xt

Pt
dt.

The no-arbitrage restriction (3.1) implies that the expected return can be represented as

Et [dRt] = r dt−Et

[
dMt

Mt

dPt

Pt

]
,

where r is the risk-free rate. Comparing the above expression to the definition of the OAS in (2.1),

to a first-order approximation, the OAS is the risk premium paid to an investor for holding the

claim to X:

OASt ≈ rpt ≡ −Et

[
dMt

Mt

dPt

Pt

]
.

To solve for the OAS, denote by πγt the vector of prices of risks associated with innovations to the

prepayment model parameters, and πlt the price of risk associated with the liquidity shock. In

terms of the pricing kernel, these risk prices are given by the co-variation between the innovations

to the pricing kernel and the shocks:

πγt =

〈
dZγt,

dMt

Mt

〉
; πlt =

〈
dJt,

dMt

Mt

〉
,
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where Jt is the Poisson process governing the liquidity shocks to the pool. For an investor holding

a portfolio of MBS securities, this liquidity risk is undiversifiable, which implies (see e.g. Driessen,

2005) that πlt > 1. We show in Appendix C that the OAS is given by

OASjt = αjtµt (πlt − 1)− π′γtσγ
1

Pjt

∂Pjt

∂γt

= αjtµt (πlt − 1) + π′γtσγ
cj − r(

sjt + cj
) (

sjt + r
) ∂sjt

∂γt
, (3.2)

where the second line follows from the price of the pass-through in the no-uncertainty case:

Pjt = 1 +
cj − r
r + sjt

. (3.3)

Expression (3.3) implies that security j trades at a premium (Pjt > 1) if cj − r > 0 and at a dis-

count (Pjt < 1) if cj − r < 0. It also shows that premium securities suffer from an increase in the

prepayment speed sjt, while discount securities benefit from faster prepayments.

Based on (3.2), differences in OAS across securities could be the result of (i) differential ex-

posure αj to the liquidity shock, or (ii) differential price sensitivity to the prepayment parameters,

that is, differential exposure to prepayment model risk. To understand the conditions under which

prepayment model risk generates an OAS smile, we now study three stylized prepayment func-

tions. In each case, s̄j corresponds to the expected prepayment speed on security j.

Case 1: sjt = s̄j + γ1tβ j. This is essentially the framework studied by Gabaix et al. (2007). Each

pool has a constant exposure β j to a single market-wide prepayment shock γ1. This leads OASjt

in (3.2) to be linear in moneyness cj− r (regardless of the sign of the risk price πγ1t ), and is therefore

inconsistent with the OAS smile.

Case 2: sjt = s̄j + γ1t(cj − r). Like the previous case, this specification features a single-factor

prepayment shock structure, but a security’s exposure now depends on its moneyness: when ITM

securities prepay faster than expected (γ1 > 0), OTM securities prepay slower than expected. Such

a pattern could arise for instance as a result of mortgage originators’ capacity constraints during

(larger than expected) refinancing waves.17 It is easy to see from (3.2) that this case would lead the

17When capacity is tight, mortgage originators may be less willing to originate purchase loans (which are more labor
intensive), and they may reduce marketing effort targeted at OTM borrowers (for instance, to induce them to cash out
home equity by refinancing their loan). Fuster et al. (2013) show that originators’ profit margins are strongly correlated
with mortgage application volume, consistent with the presence of capacity constraints.
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OAS to be quadratic in cj − r (the risk price πγ1t is positive in this case, since every security has a

positive exposure to γ1), and therefore could rationalize the OAS smile.

Case 3: sjt = s̄j + γ1t1cj<r + γ2t1cj≥r. In this multi-factor formulation, OTM and ITM prepay-

ments are driven by different shocks (which for simplicity we assume to be orthogonal). For

instance, γ1t might represent the pace of housing turnover while γ2t might be the effective cost of

mortgage refinancing (which varies with underwriting standards and market competitiveness). In

equilibrium, the signs of the prices of risk are determined by the average exposure of the represen-

tative investor. Holding a portfolio of ITM and OTM securities, this investor will have a negative

exposure to γ1t risk (since OTM securities benefit from fast prepayment) and a positive exposure

to γ2t risk (since ITM securities suffer from fast prepayment). Thus πγ1,t < 0 and πγ2,t > 0, result-

ing in a positive OAS for both ITM and OTM securities and a (v-shaped) OAS smile.

In sum, both a single-factor (case 2) or a multi-factor prepayment function (case 3) could lead

to an OAS smile. Beyond the stylized prepayment functions studied here, prepayment model risk

premia can explain the OAS smile whenever OTM securities are not a hedge for ITM pools (as they

would be in case 1).18 However, as shown by the first term in equation (3.2), the OAS smile could

also result from differential exposure α to liquidity risk. For instance, newly issued MBS (which

are ATM) trade more often than older ones, potentially leading to a lower α and an OAS smile

pattern. To separate liquidity and prepayment model risk premia, in the next section we provide

a method to identify a “prepayment-model-risk-neutral OAS,” denoted OASQ, as the spread that

only reflects liquidity risk:

OASQ
jt = αjtµt (πlt − 1) .

The prepayment model risk premium paid to the investor is then just the difference between the

OAS and OASQ and will only reflect prepayment model risk.

We conclude this section by briefly discussing a more general version of the model that features

interest rate uncertainty to discuss the cross-sectional variation in the option cost. As discussed in

Section 2, the option cost is reflected in the difference between the ZVS and the OAS, which with

18This is also pointed out by Levin and Davidson (2005), who note that “[a] single-dimensional risk analysis would
allow for hedging prepayment risk by combining premium MBS and discount MBS, a strategy any experienced trader
knows would fail.”
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interest rate uncertainty can be shown to equal

ZVSt −OASt = −
1
Pt

∂2Pt

∂r2
t

σ2
r

2
,

where σr is the volatility in the innovation in the interest rate diffusion. According to this ex-

pression, the option cost is positive for negatively convex securities and is proportional to the

Gamma of the security (∂2Pt/∂r2
t ). Based on standard results in option pricing, Gamma is gener-

ally greatest for at-the-money options and diminishes when moving either in or out of the money;

furthermore, the option Vega, that is, its sensitivity to volatility, is directly related to its Gamma.

This is consistent with the patterns shown in panels (c) and (d) of Figure 3: option costs are largest

for ATM securities and prices are a concave function of moneyness (and therefore r).

4 Pricing model: Decomposing the OAS

In this section, we propose a method to decompose the “standard” OAS (or OASP) into a pre-

payment model risk component and a remaining risk premium (OASQ). We then implement this

method using our own pricing model, consisting of an interest rate and a prepayment compo-

nent. In contrast to standard approaches, such as Stanton (1995) or practitioner models, we will

use information from stripped MBS to identify a market-implied prepayment function and the

contribution of prepayment model risk to the OAS.

4.1 Identification of OASQ

As discussed in the previous section, the OAS only accounts for interest rate uncertainty (and

only interest rates are simulated in empirical pricing models) but other sources of prepayment

uncertainty are assumed constant in the OAS calculation. As a result, risk premia attached to

these factors’ innovations contaminate the OAS. In this section we propose a method to identify

a risk-neutral prepayment function, where the parameters are obtained from market prices, then

compute an OAS using this function (OASQ) and finally obtain the contribution of prepayment

model risk to the OAS.

Following the credit risk literature (e.g. Driessen, 2005), we assume that the market-implied

risk-neutral (“Q”) prepayment function is a multiple Λ of the physical (“P”) one. We allow the

multiplier Λ to be pool-specific to account for differences in pools’ sensitivities to non-interest rate

sources of prepayment uncertainty. Pricing information on a standard pass-through MBS alone is
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insufficient to identify Λ, because a single observable (the price) can only determine one unknown

(the spread) in the pricing model, leaving Λ unidentified.

To resolve this identification problem, we use additional pricing information from “stripped”

MBS, which separate cash flows from pass-through securities into an interest component (“interest

only” or IO strip) and a principal component (“principal only” or PO strip). Cash flows of these

strips depend on the same underlying prepayment path and therefore face the same prepayment

uncertainty, but are exposed to it in opposite ways, as illustrated in Figure 4. As prepayment rates

increase (top to bottom panel), total interest payments shrink (since interest payments accrue only

as long as the principal is outstanding) and thus the value of the IO strip declines. Conversely,

principal cash flows experience early accrual (sum of grey areas) and therefore the value of the PO

strip increases.

We exploit the differential exposure of the two strips to prepayments to identify OASQ and Λ,

as illustrated graphically in the example of Figure 5. At Λ = 1, the physical prepayment speed,

the OAS on the IO strip (shown in black) is about 200 basis points and the OAS on the PO (shown

in grey) is about zero. As Λ increases, the OAS on the IO declines while the spread on the PO

increases because of their opposite sensitivities to prepayments. The sensitivity of the OAS on the

pass-through (red line) is also negative because, in this example, it is assumed to be a premium

security, which suffers from prepayments as discussed in the previous section.

Graphically, for each IO/PO pair, we identify Λ as the crossing of the OAS IO and PO sched-

ules at the point where the residual risk premium (OASQ) on the two strips is equalized.19 By the

law of one price, the residual risk premia on the pass-through will also be equalized at this point;

thus, the OAS schedule on the pass-through intersects the other two schedules at the same point.

The difference between the OAS on the pass-through at the physical prepayment speed (OASP)

and at the market-implied one (OASQ) is then equal to the prepayment model risk premium paid

on the pass-through. More formally:

Proposition 4.1. If the IO strip and the PO strip on a pool j have equal exposures to non-prepayment

sources of risk, then, by no arbitrage, the remaining risk premia are equalized on the strips and recombined

passthrough when expectations are calculated using the market-implied prepayment speed, so that

OASQ
IO,j = OASQ

PO,j = OASQ
PT,j.

19MBS market participants sometimes calculate “break-even multiples” similar to our Λ but, to our knowledge, do
not seem to track them systematically as measures of risk prices.
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In the Appendix we show how this proposition applies to the theoretical setting of Section 3.

We then define the prepayment model risk premium component in the OAS as:

Definition 4.1. The prepayment model risk premium on a pass-through security (consisting of the combi-

nation of an IO and PO strip on the same underlying pool) is equal to OASP −OASQ.

We apply this method to each IO/PO pair in our sample, thereby identifying pool- and date-

specific Λ and OASQ. This allows us study time series and cross-sectional variation in the OASQ

without imposing parametric assumptions and we can thus remain agnostic whether prepayment

model or other risks could be the source of the OAS smile.20 The key to this identification is

the assumption that OASQ are equal across IO and PO strip on the same pool. One could relax

this assumption by imposing a parametric form linking OASQ (or Λ) across pools. Alternatively

one could use TBA prices (as a proxy for the value of the recombined pass-through) and make

assumptions on the differential liquidity of the stripped and recombined securities to identify

Λ. That said, the impact on the prepayment risk premium and OASQ on the pass-through will

be limited for reasonable liquidity differences between IOs and POs. For example, we find that

assuming OASQ
PO to be 50 basis point higher than OASQ

IO never changes OASQ
PT by more than 5

basis points relative to the baseline specification with OASQ
IO = OASQ

PO. Intuitively, as shown

in Figure 5, the slope of the OASPT schedule in Λ is less steep than the slopes of the IO and PO

schedules, and thus OASQ
IO − OASQ

PO differences will have a limited effect on the recombined

passthrough.

4.2 Stripped MBS data

We start with an unbalanced panel of end-of-day price quotes on all IO/PO pairs (“trusts”) issued

by Fannie Mae, obtained from a large dealer, for the period January 1995 to December 2010.21 We

merge these with characteristics of the underlying pools, using monthly factor tape data describ-

ing pool-level information obtained from the data provider eMBS. We use end-of-month prices,

which we also subject to a variety of screens, as described in Appendix B. Following these data-

quality filters, our data include 3713 trust-month observations, or about 19 per month on average,
20One alternative approach to identify Λ would be to assume that the OAS reflects only prepayment model risk. With

this approach, Levin and Davidson (2005) obtain a Q prepayment function by equalizing the OAS (relative to agency
debt) on all pass-through coupons to zero. By construction, both the time series and cross-sectional variation in the
OAS will then be the result of variation in prepayment model risk.

21We end our sample on that date because, according to market participants, IO/PO strips became less liquid after
2010, as trading started focusing on Markit’s synthetic total return swap agency indices IOS, POS and MBX instead.
These indices mimic the cash flows of strips on a certain coupon-vintage (e.g. Fannie Mae 30-years with coupon 4.5
percent originated in 2009). The methods in this paper could easily be extended to those indices.
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from 95 trusts total. The year with the lowest number of observations is 1999, where we have an

average of 10 trusts per month, while after 2005 we have at least 20 trusts in all but one month.

The original face value of securities in our sample ranges from $200 million to about $4.5 billion,

with a median of $2 billion. The median remaining principal balance (RPB) of trusts in months

in our dataset is $1.13 billion. In the cross-sectional analysis, we average spread measures to the

coupon level (weighting by market value of the trusts), resulting in 1005 coupon-month pairs that

cover most of the outstanding coupons in the Fannie Mae fixed-rate MBS universe (on average,

91 percent of remaining face value).22 A potential concern is that the IO/PO strips we have are

not necessarily representative of securities traded in the TBA market, to which we are comparing

our model output. As we will see, however, we obtain similar spread patterns based on IO/PO

prices, both in the time series and cross section. One advantage of the stripped MBS data that we

are using relative to TBAs, which trade on a forward “cheapest-to-deliver” (CTD) basis, is that we

do not need to make assumptions about the characteristics of the security.

4.3 Interest rate and prepayment model

A standard MBS pricing model has two main components: an interest rate and a prepayment

model. The two are combined to simulate interest rate paths and corresponding prepayment flows

to obtain model prices and spreads. We use a three-factor Heath et al. (1992) interest rate model,

calibrated at month-end to the term structure of swap rates and the interest rate volatility surface

implied by the swaption matrix, by minimizing the squared distance between the model-implied

and the observed volatility surface. We obtain swap zero rates from an estimated Nelson-Siegel-

Svensson curve. Details on the interest and yield curve model are provided in Appendix D.

The academic literature has considered either structural/rational prepayment models (e.g.,

Dunn and McConnell, 1981a,b; Stanton, 1995) or reduced-form statistical prepayment models es-

timated on historical data (e.g., Richard and Roll, 1989; Schwartz and Torous, 1989). While struc-

tural models are more appealing, MBS investors favor reduced-form models (see, e.g., Section 4 of

Fabozzi, 2006), for example, because in tranched CMOs, cash flows depend on prior prepayments,

whereas structural models are solved by backward induction (McConnell and Buser, 2011). We

follow standard industry practice and use a reduced-form prepayment model.

22As in Figure 1, this means that the range of trust coupons in which the remaining face value is concentrated shifts
downward over time. For instance, in January 1995, about 90 percent of the face value of securities for which we have
quotes is in 7, 7.5, or 8 percent coupon securities. In January 2003, over 90 percent are in 5.5, 6, 6.5, or 7 percent securities.
Finally, in December 2010, the last month in our data, the most prominent coupons are 4, 4.5, 5, and 5.5, which together
account for 88 percent of face value.
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Practitioner models vary in the choice of controls and weighting rules for historical data (though

the exact details of these models are not publicly available). Additionally, practitioners often make

ad-hoc adjustments to incorporate likely effects of expected or announced policy changes affecting

prepayments (for instance, the Home Affordable Refinance Program in 2009 or the introduction of

additional agency fees on new mortgages since 2007). Therefore, in order to better capture market

participants’ expectations and be consistent with their pricing and spreads, we do not estimate

our model on historical data, but instead extract prepayment model parameters from a survey

of dealer models from Bloomberg LP. In these surveys, major MBS dealers provide their model

forecasts of long-term prepayment speeds under different constant interest rate scenarios (with a

range of +/- 300 basis points relative to current rates).23 Carlin et al. (2014) use these data to study

the pricing effects of investors’ disagreement measured from “raw” long-run prepayment projec-

tions. We, instead, extract model parameters of a monthly prepayment function that are necessary

to compute the OAS, by explicitly accounting for loan amortization, the path of interest rates, and

changes in a pool’s borrower composition.

Prepayment sensitivities to interest rates and other factors differ over time and across secu-

rities, and we thus estimate model parameters from average survey responses for each security

and date. We model the date τ single-month mortality rate (SMM), which is the fraction of a pool

that prepays, of security j to match the average projected long-run survey speed for the different

interest rate scenarios. These scenarios provide information on a pool’s prepayment sensitivity to

the incentive to refinance (INCj
τ). The functional form of our prepayment model is:

sj
τ = χ

j
τsj

1,τ +
(

1− χ
j
τ

)
sj

2,τ for t < τ ≤ t + Tj (4.1)

where

sj
i,τ = bj

1 min
(

WALAj
τ/30, 1

)
+ κi ·

exp
(

bj
2 + bj

3 · INCj
τ

)
1 + exp

(
bj

2 + bj
3 · INCj

τ

) for i = 1, 2. (4.2)

A key feature of the time evolution of MBS prepayments is the so-called burnout effect, which is

the result of within-pool heterogeneity in the borrowers’ sensitivity to the refinancing incentive.

Because more sensitive borrowers are the first to exit the pool when rates decline, the pool’s over-

all sensitivity to interest rates drops over time even if interest rates are unchanged.24 To capture

23Until May 2003, dealers provided a single set of forecasts for each coupon (separately for Fannie Mae, Freddie Mac,
and Ginnie Mae pass-through securities); since then, they provide separate forecasts for different vintages (for instance,
a 5.5 percent coupon with average loan origination date in 2002 versus a 5.5 percent coupon with origination in 2005).

24In the extreme, some borrowers never refinance even when their option is substantially in the money. Possible
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this effect, we assume the pool is composed of two types of borrowers: fast refinancers (group 1)

and slow refinancers (group 2), with respective shares χτ and 1− χτ. As shown in equation (4.1),

total pool prepayments are share-weighted averages of each group’s prepayment speed. Each

group’s prepayment depends on two components. The first, which is identical to both groups,

is governed by b1 and accounts for non-rate-driven prepayments, such as housing turnover. Be-

cause relocations are less likely to occur for new loans, we assume a seasoning of this effect using

the industry-standard “PSA” assumption, which posits that prepayments increase for the first 30

months in the life of a security (WALA, or weighted average loan age) and are constant thereafter.

The second component captures the rate-driven prepayments due to refinancing. This is modeled

as a logistic function of the rate incentive (INC), with a sensitivity κi that differs across the two

groups: κ1 > κ2. Since group 1 prepays faster, χτ declines over time in the pool. This chang-

ing composition, which we track in the estimation, captures the burnout effect. We provide more

detail on the prepayment model and parameter estimation in Appendix D.25

Figure 6 shows estimated prepayment functions for different loan pool compositions and using

average parameters b1, b2, b3 across all securities in our sample. Prepayments (at an annual rate,

or CPR) display the standard S-shaped prepayment pattern of practitioner models. They are not

very sensitive to changes in interest rates (and thus INC) for securities that are deeply ITM or

OTM, but highly sensitive at intermediate moneyness ranges. The black (top) line shows that a

pool with χ = 1 reaches a maximum predicted CPR of about 75 percent when it is deeply ITM,

in contrast to only 35 percent when the share of fast refinancers is only 0.25 (red line). Thus, the

changing borrower composition, even with a constant INC, implies a decline in prepayments over

time because of the pool’s burnout (decreasing χ).

5 Model results

Our pricing model produces standard MBS spread measures as well as the OASQ, which is ad-

justed for (or risk-neutral with respect to) not only interest rate risk but also prepayment model

risk. In this section we present the output of the model in terms of spreads in the cross section and

reasons for this non-exercise of the prepayment option are unemployment or other credit problems (Longstaff, 2005) or
a lack of financial sophistication (sometimes called “woodhead” behavior; Deng and Quigley, 2012).

25A notable detail is that in our model, we define INC as the end-of-month 10-year swap rate minus the pool’s WAC.
This is different from the “true” interest rate incentive faced by a borrower, which would be the mortgage rate minus
WAC. However, our formulation has the major advantage that it does not require us to specify a model for the gap
between mortgage rate and swap rate. The average gap between 30-year FRM rate and the 10-year swap rate over our
sample period is about 1.2%.
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time series. We then relate average OASQ and prepayment model risk premia to fixed-income

and MBS-specific risk measures in order to help interpret model results and variation in MBS

spreads. We finally discuss the response of MBS spreads to the Fed’s first LSAP announcement in

November 2008.

5.1 OAS smile

The cross-sectional results are summarized in Figure 7. Similar to our findings for the TBA spreads

(Figure 3), the OAS exhibit a smile in the security’s moneyness (panel a): they are lowest for securi-

ties that trade close to par and increase as an MBS goes either OTM, or especially, ITM. As shown

in panel (b), the OASQ, which strips prepayment model risk from the OAS, does not appear to

vary significantly with moneyness, suggesting that differences in liquidity do not contribute to

the OAS smile. Instead, as shown in panel (c), the difference between the OAS and OASQ closely

matches the smile pattern in the OAS; in other words, the differential exposure to prepayment

model risk explains the cross-sectional pattern in the OAS. Additionally, panel (d) displays the

difference in implied long-run prepayment speeds between the risk-neutral (Q) and physical (P)

prepayment models. OTM securities tend to have slower risk-neutral speeds, while ITM securi-

ties tend to have faster risk-neutral speeds. Thus, in both cases the risk-neutral model tilts the

prepayment speeds in the undesirable direction from the point of view of the investor. That is,

market prices imply that prepayments are faster (slower) for securities that suffer (benefit) from

faster prepayments, which is exactly what one would expect as market-implied prepayments in-

clude compensation for risk. Finally, just as in the TBA market, the option cost is hump-shaped

(panel f), which as discussed before can be explained analogously to the hump-shaped pattern of

an option’s Vega (sensitivity to changes in the volatility for the underlying).

In Tables 3 and 4, we use regressions to study if the cross-sectional patterns in the two com-

ponents of OAS are robust to including month fixed effects (in order to focus on purely cross-

sectional variation) and to ending the sample before the financial crisis period. As in the earlier

Table 2, we sort the different coupons in bins by moneyness, with ATM securities (moneyness

between -0.25 and +0.25) as the omitted category.26 Table 3 shows that there is little systematic

pattern in OASQ across bins; results in columns (2) and (4) suggest in fact that ATM coupons may

have slightly higher OASQ than the surrounding coupons, but the differences are small. There

26We use fewer bins because our IO/PO strips have less coverage of very deeply OTM (moneyness< −1.75) or ITM
(moneyness> 2.75) coupons.
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is some evidence that the most deeply ITM coupons (moneyness> 2.25) may command a posi-

tive premium, which could be driven by the reduced liquidity of these (generally very seasoned)

coupons. Turning to the prepayment model risk premium, Table 4 shows that the (slightly tilted)

smile pattern shown in panel (d) of Figure 7 is robust to the addition of month fixed effects and

excluding the financial crisis period. The coefficients suggest that the magnitude of the prepay-

ment model risk premium is economically meaningful: securities that are 1.25 percentage points

or more ITM command a premium of 20 basis points or more relative to ATM securities.

In sum, while the prepayment model risk premium in the cross section is strongly linked to

the moneyness of the securities, we find little evidence that this is also the case for the remaining

risk premium (OASQ), suggesting that differential liquidity across coupons is likely not a major

driver of cross-sectional variation in spreads (except perhaps for the most deeply ITM securities).

5.2 Time series variation

We now turn to the variation in the average OAS. As in Section 2, we construct a market value-

weighted index.27 Comparing the OAS (black line) and ZVS (grey line) in Figure 8 to the corre-

sponding measures in Figure 2 confirms that our model output is close to the dealer counterparts.

As in their models, the level of the average OAS is close to zero, but increases in periods of stress.

Further, the difference between OAS and OASQ is small and the two series tightly co-move, mean-

ing that much of the OAS variation results from changes in OASQ (red line). Thus, although it is

an important determinant of the cross-sectional variation in spreads, prepayment model risk does

not appear to be the dominant driver of the OAS time series variation. Indeed as shown in Fig-

ure 1, the value-weighted share of deeply OTM or ITM securities is limited, and these securities

earn most compensation for prepayment risk. This arises because most securities are issued at,

or close to, par. However, prepayment model risk in the MBS universe can be significant when

mortgage rates move sharply, as in early 1998, the summer of 2003, and in 2009 and 2010 when

mortgage rates reached historic lows and the gap between OAS and OASQ widened.

We now turn to the determinants of the time series variation in OAS, and in particular its

two components OASQ and the prepayment model risk premium. Panel (a) of Table 5 replicates

the TBA analysis in Table 1, showing that average OAS are strongly related to credit spreads

(while ZVS variation is explained by changes in swaption volatility). In panel (b) we regress the

27We do this by first averaging spreads within coupons (weighting by IO/PO values) and then across coupons
(weighting by market values based on TBA prices).
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OAS, and its components, on mortgage-specific risk factors, such as spreads on agency debt (or

debentures) relative to swaps, agency MBS issuance (normalized by broker-dealer book equity,

and subtracting Fed MBS purchases in 2009 and 2010), as well as the average squared moneyness

of the MBS universe.

We find that average OASQ are related to spreads on (unsecured) agency debentures. As noted

earlier, agency MBS are typically perceived as being free of credit risk, but since the government

guarantee on securities issued by Fannie Mae is only implicit, investors’ perceptions of this guar-

antee (along with the perceived credit risk of agencies) may change over time and thus affect both

spreads on agency debt and MBS. In particular, both OASQ and agency debt spreads increased

in the fall of 2008, when Fannie Mae and Freddie Mac were placed in conservatorship by the US

Treasury. The spreads on MBS and agency debt do, however, also co-move earlier in the sample,

pointing to other common factors such as liquidity and funding costs of these securities.28

Credit spreads (Baa-Aaa) continue to be significantly related to OAS, mostly through OASQ

rather than the prepayment risk component. The sensitivity of OASQ to credit spreads suggests

common pricing factors in the MBS and credit markets, such as limited risk bearing capacity of

financial intermediaries (see, for example, Shleifer and Vishny, 1997; Duffie, 2010; Gabaix et al.,

2007; He and Krishnamurthy, 2013). In these models, financial intermediaries are marginal in-

vestors in risky assets; when their financial constraints bind, their effective risk aversion increases,

raising risk premia in all markets. Thus, when the supply of risky assets relative to intermediaries’

capital decreases, financial constraints are relaxed lowering required risk compensation. In line

with these predictions, we find that the supply of MBS, measured by issuance relative to mark-

to-market equity of brokers and dealers, explains OASQ time series variation. We explore this

channel further in the next section, where we study the effects of Fed MBS purchases, which ab-

sorb supply in the hands of investors, on the OAS and its components.

Finally, as previously discussed, the OAS smile implies that spreads, and in particular their

prepayment risk component, are largest for deeply OTM and ITM securities. This suggests that

when the market-value weighted moneyness is either very positive or very negative, the average

OAS and prepayment model risk premium (OASP − OASQ) should be large. We test for this

28The spread between Fannie Mae debentures and Treasury bonds of equal maturity fell following the conservator-
ship announcement, but then substantially increased through the end of 2008. Since there should have been essentially
no difference in the strength of the debt guarantee between debentures and Treasuries at that point, and since the spread
widening was stronger for shorter maturity bonds, Krishnamurthy (2010) argues that this reflects a flight to liquidity.
In line with this interpretation, our OASQ also reaches substantially higher levels in October compared to August 2008,
despite the reduction in credit risk to investors.
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channel by regressing on average squared moneyness, and find it to positively affect the average

prepayment model risk premium.

5.3 Interpreting the OAS response to the Fed’s LSAPs

As discussed above, MBS spreads are positively related to MBS supply, a finding that is consis-

tent with intermediary asset pricing models with limited risk-bearing capacity. In this section we

provide additional evidence on this channel by focusing on the Fed’s large-scale asset purchase

(LSAP) program. The program has entailed an unprecedented shift in the composition of the MBS

investor base as the Fed now holds more than a quarter of the total agency MBS universe—up

from nothing prior to the financial crisis. We decompose spreads using our pricing model and

show how it explains the fanning out in OAS across different coupons following the initial an-

nouncement of the program.

We focus on spread movements after November 25, 2008, when the Fed announced its first

round of purchases of up to $500 billion in agency MBS.29 Based on the current coupon MBS, which

is the focus of much of the research on this topic—with the important exception of Krishnamurthy

and Vissing-Jorgensen (2013) which we discuss in the paper’s conclusion—the announcement had

a substantial effect on the MBS market (see, e.g., Gagnon et al. 2011 or Hancock and Passmore 2011;

Stroebel and Taylor 2012 are more skeptical). According to different dealer models, the current

coupon OAS, which had been at record levels of 75–100 basis points over October and November

2008, fell 30-40 basis points on the day of the announcement, and stayed around the lower level

afterwards. Consistent with the decline in secondary MBS spreads and yields, headline 30-year

fixed-rate mortgage rates dropped nearly a full percentage point between mid-November and

year-end 2008.

Spread movements on the current coupon MBS alone hide significant heterogeneity across the

coupon stack, as evidenced by the series in Figure 9, which are median spreads across dealer mod-

els (the same used in Section 2) for the four main coupons traded at that time. Adjusted spreads

(top panel) that were all at similarly elevated levels in the fall of 2008 fanned out (diverged) fol-

lowing the announcement. Between October and November 2008, OAS on low coupons (4.5 and

5) fell, while, over the same period, those on higher coupons were little changed and then even

widened through the end of December. As discussed in prior sections, understanding the OAS

29The Fed also announced that it would purchase up to $100 billion in agency debt. The purchases began in early
January 2009. The program was then extended in March 2009, when it was announced that an additional $750bn in
agency MBS, $100bn in agency debt, and $300bn in long-term Treasuries would be purchased over the following year.
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component is crucial to explaining the basis, which in addition reflects changes in implied interest

rate volatility that are easier to understand. Indeed, as implied volatility rose over the month of

November, the MBS option cost widened and so did the ZVS (bottom panel of Figure 9).30

The earlier findings from our model suggest two potentially countervailing effects of Fed MBS

purchases on OAS. On the one hand, Fed purchases reduce MBS supply to be absorbed by risk-

sensitive investors, thereby reducing the required risk premium on all MBS (through OASQ). On

the other hand, movements in mortgage rates associated with such purchases alter securities’

moneynesses, shifting the OAS along the smile by changing the prepayment model risk premium.

The results from our model are shown in the bottom panel of Figure 10. First, OAS movements

(in black) for IO/PO pass-throughs are similar to the TBA ones. In terms of the MBS supply

effect, we discussed above how the OASQ component is flat across coupons and declines with a

reduction in MBS supply. Consistent with this, we find that the OASQ evolves similarly for the

4.5, 5, and 5.5 coupons. For the 6 coupon, OASQ increases in November and December, before

dropping toward the level of the other coupons in January as actual LSAP purchases begin. The

OASQ effect thus suggests that the LSAP program lowered non-prepayment risk premia across

the coupon stack.31

The cross-coupon “homogeneous” OASQ impact of the Fed’s policy is, however, masked by

changes in the prepayment model risk premia that vary with MBS moneyness, shown in the top

panel of Figure 10. The 4.5 starts out OTM and moves ATM as mortgage rates drop, while the

5.5 and 6, which are around ATM in October, move quite deeply ITM. Based on the OAS smile,

the 4.5 should command a prepayment model risk premium prior to November and the 5.5 and 6

coupons afterward. The bottom panel shows that this is indeed the case: the narrowing in the gap

between the black and grey lines means that the decrease in the OAS of the 4.5 coupon is in part

due to the decrease in its prepayment model risk exposure following the drop in rates. In contrast,

the prepayment model risk premia on the 5.5 and 6 coupons are high from December onward as

they move deeply ITM and are more sensitive to prepayment model risk.32

In sum, increases in the moneyness of high coupons following the November 2008 LSAP an-

30For instance, the 2-year-into-10-year swaption implied volatility increased by more than half, from 25 basis points at
the end of October to above 40 at the end of November. Most of this increase occurred prior to the LSAP announcement
on November 25.

31In addition to the supply effect, the Fed announcement may also have strengthened the perceived government
backing of Fannie Mae and Freddie Mac and improved the liquidity of agency securities (Hancock and Passmore, 2011;
Stroebel and Taylor, 2012).

32The strips we have available do not necessarily have the same characteristics as what the dealers assume to be
cheapest-to-deliver in TBA trades; therefore, our OAS levels do not exactly line up with theirs for all coupons in all
months. Nevertheless, patterns are very similar, especially in changes.
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nouncement led to an increase in their prepayment model risk premium, which explains why their

OAS did not fall, even though OASQ declines across the coupon stack as the Fed started absorbing

MBS supply. We discuss the policy implications of these results below.

6 Conclusions

We have analyzed determinants of the mortgage basis and, especially, of option-adjusted spreads,

which are a measure of risk premia in MBS after accounting for interest rate uncertainty. In the

MBS cross section we uncover the OAS smile, meaning that OAS tend to be lower for ATM

coupons than for others. Our pricing model, which relies on information from stripped MBS

prices, attributes the OAS smile to prepayment model risk, which is the risk of over- or under-

predicting future prepayments for given interest rates. In the time series, we find that variation

in average OAS is primarily driven by non-prepayment risk factors, which are linked to credit

spreads, MBS supply, and spreads on other agency debt. These results suggest that risk-bearing

capacity of MBS investors, as well as the liquidity and default risk of agency securities, is time-

varying and affects the valuation of MBS relative to benchmark interest rates.

Our model sheds light on the effects of the Fed’s MBS purchases—a key component of uncon-

ventional monetary policy in recent years—and on the monetary transmission channel more gen-

erally. The effect of central bank balance sheet expansion on asset prices has been highly debated.

One view is that the central bank’s asset composition is irrelevant and Fed purchases of long-term

securities such as Treasuries and MBS matter only to the extent that they boost high-powered

money through the Fed’s liabilities (the quantitative easing channel of Friedman, 2000), or signal

commitment to future short-term interest rate policies (signaling channel as in Woodford, 2012).

Under an alternative view the Fed’s asset composition directly affects asset prices (credit easing

channel; Bernanke, 2009). Gagnon et al. (2011), building on Greenwood and Vayanos (2014) and

others, argue that Fed purchases of any long-term asset (that is, either MBS or Treasuries) affect

term premia on fixed income assets by reducing the market price of duration risk. Krishnamurthy

and Vissing-Jorgensen (2011) instead argue that Fed purchases have more subtle pricing implica-

tions and mainly affect the price of the securities being purchased, rather than having cross-asset

effects such as lowering fixed income duration risk.

As we discussed in the previous section, following the announcement of the first LSAP pro-

gram in November 2008, OAS decreased substantially, which is consistent with Fed purchases
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having a disproportionate effect on the targeted assets. We also showed that OAS on low coupons

fell substantially more than those on high coupons, which our model explains as: (i) the OASQ

falling (roughly) equally across coupons as the Fed absorbs supply and lowers the risk premia re-

quired by specialized investors; and (ii) high coupons moving substantially ITM, which increases

the prepayment model risk premium on those coupons and prevents their total OAS from falling.

These heterogeneous responses across MBS are not specific to monetary policy changes in

2008/9, a period in which severe market disruptions may have affected the response to Fed inter-

ventions. For example, Krishnamurthy and Vissing-Jorgensen (2013) discuss the “taper tantrum”

episode around the June 19, 2013 FOMC meeting, when rates backed up on investors’ fears that

the Fed would start reducing its purchases earlier than previously thought. Around this event,

OAS increased substantially for low coupons, while OAS on higher coupons stayed almost un-

changed. Krishnamurthy and Vissing-Jorgensen interpret this latter fact as evidence that capital

constraints (or limited risk-bearing capacity) are unimportant at that time.33 Instead, they argue

that the increase in lower-coupon OAS comes about because the “scarcity effect” for low coupons

weakens as the anticipated Fed demand for those coupons decreases.34 Based on this interpreta-

tion, they argue that the Fed could sell the higher coupons from its MBS portfolio without causing

an increase in production-coupon OAS.

Our model, which does not rely on cross-coupon segmentation, suggests a different explana-

tion for the reaction to the June 2013 events: the increase in the quantity of securities that non-Fed

investors have to hold because the anticipated taper increases the required risk premium (through

OASQ) on all MBS; however, because rates increase at that point, the prepayment model risk pre-

mium on high coupons (that were previously deeply ITM) falls, so that their overall OAS remains

roughly constant.35 Because of the differential prepayment model risk exposure across MBS, the

stability in high-coupon OAS around this event is thus not evidence of a lack of capital constraints

for MBS investors, implying that potential sales of high coupons might still increase OAS on lower

33They argue that the “capital constraints” channel was the main channel responsible for the decrease in OAS follow-
ing the November 2008 announcement, in line with our discussion in the previous section.

34Krishnamurthy and Vissing-Jorgensen’s MBS scarcity channel, which is specific to the TBA market, implies larger
spread responses for coupons directly targeted by Fed purchases. According to this channel, as demand for a specific
coupon increases, the quality of pools delivered in the TBA contract (as measured by their prepayment characteristics)
improves, so that the equilibrium price increases to elicit pool delivery. Because this scarcity channel works at the level
of each coupon, it predicts that Fed purchases do not affect risk premia on non-targeted MBS, such as higher coupon
TBAs or MBS not deliverable in the TBA market (e.g. those backed by loans originated under the Home Affordable
Refinancing Program with loan-to-value ratios exceeding 105%).

35The 10-year Treasury yield increased by 40 basis points from June 18 to June 25; the Freddie Mac headline FRM rate
even increased by more than 50 basis points.
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coupons and therefore increase mortgage rates.

From a broader perspective, this paper provides evidence for intermediary asset pricing in

fixed income markets. Recent literature (such as He and Krishnamurthy, 2013; Brunnermeier and

Sannikov, 2014) has proposed that intermediaries’ risk bearing capacity impacts risk premia dur-

ing periods of market stress. While we do find that OASQ narrowed across coupons as the Fed

reduced the outstanding stock of MBS available to private investors through its LSAP program,

the OASQ reacts to changes in the outstanding supply of MBS even during normal market condi-

tions. The latter finding is consistent with theories (e.g. Gromb and Vayanos, 2002; Brunnermeier

and Pedersen, 2009; Adrian and Boyarchenko, 2012) that link risk premia to intermediary balance

sheet constraints even in periods when intermediaries are well capitalized.
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Figure 1. Share of total MBS value by coupon Each shaded grey area represents the share (left
axis) of total balance in the 30-year fixed rate mortgage universe accounted for by MBS with a
given coupon (heat map in the right panel). The red line is the current coupon TBA (right axis).
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Figure 2. Time series evolution of spreads on the TBA index This figure shows time series
variation in option-adjusted (OAS) and zero-volatility (ZVS) spreads on a value-weighted index
based on TBA quotes from six dealers. Additional detail is available in Section 2.
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Figure 3. Cross-sectional variation in spreads and prices of MBS in TBA market The panels
show scatterplots and local smoothers of the cross-sectional variation in OAS, ZVS, option cost
(ZVS-OAS) and price for MBS coupons with remaining principal balance (in 2009 dollars) of $100
million or more.
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Figure 4. MBS cash flows for different prepayment speeds The colored areas represent cash
flows for a hypothetical MBS with original principal of $100, note rate of 4% and coupon of 4.5%
in a slow (top panel) and a fast (bottom panel) prepayment scenario.
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Figure 5. Graphical explanation of the model identification The figure shows OAS on the IO,
PO and pass-through as a function of the multiple (Λ) on the historical prepayment speed. The
OAS on the IO (PO) declines (increases) in Λ. The OAS on the pass-through in this example also
declines in Λ because the pass-through is a premium security (PIO + PPO > $100). The three OAS
differ at the historical speed (Λ) but are equalized and equal to OASQ at the risk-neutral speed.
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Figure 6. S curve for different pool compositions The figure shows the prepayment function in
equation (4.1) with parameters b1, b2 and b3 equal to their averages across securities in our sample
for different levels of the fraction χ of borrowers with high interest rate sensitivity. The vertical
axis is the annualized “conditional prepayment rate” (CPR) and the horizontal axis is the incentive
to prepay.
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Figure 7. Cross-sectional variation in spreads on pass-throughs The panels show scatterplots
and local smoothers of the cross-sectional variation in OAS, ZVS, OASQ, option cost (ZVS-OAS)
and the difference between the historical and market-implied prepayment speed using IO/PO
prices and our pricing model. Additional detail is available in Section 5.
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Figure 8. Time series evolution of spreads on the pass-through index This figure shows time
series variation in option-adjusted spreads (OAS), OASQ and zero-volatility spreads (ZVS) on a
value-weighted index based on IO/PO prices and our pricing model. Additional detail is available
in Section 5.
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Figure 9. Spreads around LSAP1 announcement The panels show movements in ZVS and OAS
for the four main coupons from August 2008 to May 2009, based on median TBA quotes from
dealers.
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Figure 10. OAS decomposition around LSAP1 announcement This figure shows the MBS mon-
eyness by coupon (upper panels) and movements in OAS and OASQ (bottom panels) based on
IO/PO quotes and our prepayment model.
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Table 1: Time series regressions on TBA index. Coefficient estimates from OLS regression of
spreads reported in the top row on the Aaa-Treasury spread, the Baa-Aaa spread, the 10-year to
3-month slope of the Treasury curve and the 2-year into 10-year swaption implied volatility. All
regressors are standardized to have zero mean and unit standard deviation. Newey-West standard
errors (6 lags) in brackets. Significance: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

(1) (2) (3) (4)
OAS ZVS OAS ZVS

Aaa - Treas 3.2∗∗ [1.5] 6.5∗∗∗ [2.3] 2.3∗ [1.2] 6.5∗∗∗ [2.0]
Baa - Aaa 19.6∗∗∗ [3.4] 15.5∗∗∗ [2.2] 9.7∗∗ [3.8] 12.1∗∗∗ [2.7]
Treas Slope -0.5 [2.4] -0.2 [1.3] 2.0 [1.3] -0.8 [1.5]
Swaption Vol. 2.7 [4.2] 15.5∗∗∗ [2.5] -0.8 [2.4] 22.7∗∗∗ [3.2]
Const 8.8∗∗∗ [1.8] 70.9∗∗∗ [1.8] 3.6∗∗∗ [1.3] 71.8∗∗∗ [1.5]

Adj. R2 0.76 0.88 0.31 0.77
Obs. 180 156 139 115
Dates 199601.201012 199801.201012 199601.200707 199801.200707

Table 2: Cross section of OAS on TBA coupons. Coefficient estimates from OLS regression of the
OAS on different moneyness level bins either including or excluding time fixed effects. Newey-
West standard errors (6 lags) in brackets. Significance: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

(1) (2) (3) (4)

< −1.75 18.7∗∗∗ [4.5] 18.0∗∗∗ [2.5] 14.9∗∗∗ [2.0] 14.1∗∗∗ [2.5]
[−1.75,−1.25) 8.9∗∗∗ [1.9] 10.4∗∗∗ [1.7] 7.7∗∗∗ [1.2] 8.3∗∗∗ [1.5]
[−1.25,−.75) 4.0∗∗∗ [1.0] 5.3∗∗∗ [1.2] 4.3∗∗∗ [0.9] 4.8∗∗∗ [0.9]
[−.75,−.25) -0.0 [0.4] -0.1 [0.4] 0.8∗ [0.4] 0.8∗ [0.4]
[.25, .75) 1.5∗∗∗ [0.5] 1.5∗∗∗ [0.6] -0.1 [0.4] -0.1 [0.4]
[.75, 1.25) 6.4∗∗∗ [1.2] 6.4∗∗∗ [1.3] 2.6∗∗∗ [0.9] 2.5∗∗∗ [1.0]
[1.25, 1.75) 15.6∗∗∗ [2.2] 15.0∗∗∗ [2.2] 7.2∗∗∗ [1.8] 7.2∗∗∗ [1.9]
[1.75, 2.25) 27.2∗∗∗ [3.7] 24.6∗∗∗ [3.6] 11.9∗∗∗ [3.0] 11.4∗∗∗ [3.2]
[2.25, 2.75) 41.3∗∗∗ [6.4] 33.9∗∗∗ [5.8] 26.0∗∗∗ [5.3] 23.2∗∗∗ [5.5]
≥ 2.75 93.4∗∗∗ [13.3] 85.4∗∗∗ [11.6] 50.5∗∗∗ [7.2] 47.1∗∗∗ [7.6]
Const 7.5∗∗∗ [1.5] 8.6∗∗∗ [1.5] 0.5 [0.8] 0.8 [0.8]

Month FEs? No Yes No Yes
Adj. R2 0.22 0.61 0.24 0.38
Obs. 1532 1532 1151 1151
Dates 199601.201012 199601.201012 199601.200707 199601.200707
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Table 3: Cross section of OASQ on pass-throughs. Coefficient estimates from OLS regression of
the OASQ from our model on different moneyness level bins either including or excluding time
fixed effects. Newey-West standard errors (6 lags) in brackets. Significance: ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01.

(1) (2) (3) (4)

< −1.25 1.5 [3.8] -1.3 [1.5] -1.8 [1.5] -1.5 [1.7]
[−1.25,−.75) -0.2 [2.1] -2.7∗∗ [1.2] -2.9∗∗ [1.3] -3.3∗∗ [1.3]
[−.75,−.25) -1.4 [1.3] -2.3∗∗ [0.9] -1.2 [1.0] -2.5∗∗∗ [0.9]
[.25, .75) -2.3∗∗∗ [0.7] -2.5∗∗∗ [0.8] -1.0 [0.8] -1.5∗∗ [0.8]
[.75, 1.25) -5.2∗∗∗ [1.6] -4.0∗∗∗ [1.5] -3.6∗∗ [1.4] -4.1∗∗∗ [1.5]
[1.25, 1.75) -3.3 [2.5] -1.4 [2.4] -4.6∗ [2.3] -4.9∗ [2.6]
[1.75, 2.25) -3.1 [4.6] 2.0 [3.8] -9.7∗∗ [4.4] -4.4 [4.1]
≥ 2.25 6.1 [6.9] 16.5∗∗∗ [6.3] 9.1 [8.6] 15.5∗ [8.1]
Const 13.8∗∗∗ [1.6] 13.1∗∗∗ [0.9] 7.9∗∗∗ [1.1] 7.9∗∗∗ [0.8]

Month FEs? No Yes No Yes
Adj. -0.00 0.73 0.02 0.52
Obs. 1005 1005 796 796
Dates 199501.201012 199501.201012 199501.200707 199501.200707

Table 4: Cross section of OASP - OASQ on pass-throughs. Coefficient estimates from OLS re-
gression of the prepayment-risk component in the OAS from our model on different moneyness
level bins either including or excluding time fixed effects. Newey-West standard errors (6 lags) in
brackets. Significance: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

(1) (2) (3) (4)

< −1.25 5.4∗∗∗ [1.9] 6.8∗∗∗ [2.2] 2.3 [1.7] 3.3∗ [2.0]
[−1.25,−.75) 2.9∗∗∗ [0.9] 5.2∗∗∗ [1.2] 0.9 [0.8] 3.2∗∗∗ [1.1]
[−.75,−.25) -1.0∗∗∗ [0.4] 0.7 [0.7] -1.8∗∗∗ [0.3] -0.0 [0.7]
[.25, .75) 4.9∗∗∗ [0.4] 4.1∗∗∗ [0.5] 5.1∗∗∗ [0.4] 4.5∗∗∗ [0.5]
[.75, 1.25) 13.3∗∗∗ [1.0] 12.4∗∗∗ [1.1] 13.5∗∗∗ [1.1] 12.8∗∗∗ [1.3]
[1.25, 1.75) 22.1∗∗∗ [1.5] 20.7∗∗∗ [1.7] 22.3∗∗∗ [1.7] 21.2∗∗∗ [1.9]
[1.75, 2.25) 26.6∗∗∗ [2.7] 23.1∗∗∗ [2.7] 26.5∗∗∗ [3.5] 23.3∗∗∗ [3.5]
≥ 2.25 34.2∗∗∗ [5.0] 27.5∗∗∗ [4.3] 30.2∗∗∗ [6.1] 25.6∗∗∗ [5.1]
Const -1.4∗∗∗ [0.2] -1.0 [0.7] -1.5∗∗∗ [0.3] -1.2∗ [0.7]

Month FEs? No Yes No Yes
Adj. R2 0.42 0.59 0.42 0.58
Obs. 1005 1005 796 796
Dates 199501.201012 199501.201012 199501.200707 199501.200707
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Appendix

A MBS Cash Flows

This Appendix provides detail on the calculation of cash flows for an MBS, which are used to
compute mortgage spreads as described in Section 2. Consider a fixed-rate MBS with an original
balance of $1, and let θt be the “factor,” or remaining balance relative to origination, at date t.
In level-payment fixed-rate mortgages, the principal is repaid gradually rather than with a bullet
payment at maturity and the borrower makes fixed payments inclusive of interest and principal
every month. Denote the loan maturity measured in months by T (at the pool level, this is referred
to as weighted average maturity, or WAM). Let k be the monthly installment from the borrower to
the servicer, w the interest rate on the loan (or weighted average coupon, WAC, at the pool level),
and c the coupon paid to investors. The difference between the loan and coupon rates is earned
by servicers, s, or by the guaranteeing agency, g: s + g = c− w. To compute the fixed payment k
note that, net of this payment, the loan balance absent any prepayment, denoted θ̃t grows at rate
(1 + w), or:

θ̃t = (1 + w) θ̃t−1 − k. (A.1)

Solving for θ̃T = 0, it then follows that k =
(

w(1+w)T

(1+w)T−1

)
. The evolution of the loan balance θt

including early prepayment generalizes equation (A.1) to take into account prepayments. After
accounting for loan amortization and unscheduled principal payments, the factor evolves accord-
ing to:

θt = (1− SMMt−1)(1 + w)θt−1 − k θ̂t, (A.2)

where w is the interest rate on the loan (or weighted average coupon, WAC) and k is the con-
stant monthly payment composed of the scheduled principal and interest payments. SMMt is the
“single month mortality,” or the fraction of the remaining balance that was prepaid in month t
due to unscheduled principal payments, and θ̂t is the cumulated fraction of unit principal that
has not prepaid since the inception of the mortgage, θ̂t = ∏t−1

s=0(1 − SMMs). The prepayment
speed is often reported in annualized terms, known as the “conditional prepayment rate” or
CPRt = 1− (1− SMMt)12. Given prepayment rates, cash flows passed through to investors per
unit of principal are:

Xt = (θt−1 − θt) + c θt−1, (A.3)

where the principal payment is equal to the decline in principal (θt−1 − θt) and the coupon pay-
ment from the borrower to the investor net of the servicing and agency guarantee fees is c θt−1.

MBS cash flows shown in equation (A.3) are obtained from the path of θt by noting that the
scheduled payment (θt−1 − θt) is equal to the total of the scheduled component (kθ̂t − wθt−1) and
the unscheduled one (SMMt−1 (1 + w) θt−1). Finally, borrowers pay wθt−1 interest to servicers,
which pass through the payments to investors after keeping a servicing stream equal to (c−w)θt−1

net of a fraction that is used to pay the guarantee fee to the agency.

1



B Data

B.1 TBA sample and data-quality filters

The sample spans 1996 to 2010, reflecting limited data availability on TBAs, which we use to
characterize the facts in this section, prior to 1996, and a limited liquidity in IO/PO strips, which
we use later in the paper to decompose the OAS, post 2010. For all but one dealer, we have both
ZVS and OAS (for the remaining one just OAS), but not necessarily for all the same coupons on
each day. In addition, some of the dealers enter our data only after 1996, and we do not have any
ZVS before 1998. We clean each dealer’s data to prevent spreads from being influenced by stale
prices. To do so, we check whether a price for a coupon is unchanged relative to the previous day.
If it is, and if the 10-year Treasury yield changed by 3 basis points or more on the same day (so we
expect MBS prices to change), we drop the price and the corresponding OAS and ZVS. If the price
is not constant, but had been constant more than twice in the same calendar month on days when
the Treasury yield moves, we similarly drop it.

B.2 Stripped MBS data-quality filters

We start with daily price quotes from a large dealer for the period 1995 to 2010, and then clean
these data using the following steps:

1. Remove/correct obvious outliers (such as prices of 0 or a few instances where IO and PO
prices were inverted).

2. Remove prices that are stale (defined as a price that does not change from previous day
despite a change in the 10-year yield of more than 3 basis points). In case of smaller yield
changes, we check the previous 10 days and remove a price if there were more than two
instances of stale prices on that security over that period.

3. For a subsample of trusts and months (starting in June 1999), we also have price quotes from
two additional dealers. When available, we compare these prices (their average if both are
available) to the price quoted by our dealer. When they are more than 5% apart, or if the
overall range of price quotes is larger than 0.1 times the average price, we do not use our
price quote in the analysis. This applies to about 10% of our price quotes.

4. Only retain trusts for which we have both the IO and PO strips, and which we can link to
data on the underlying pool of mortgages (from eMBS). This restriction eliminates IO strips
backed by excess servicing rights, for instance.

5. Only retain trusts for which the price on the recombined pass-through (= PPO + PIO) is
within $2 of the TBA price of the corresponding coupon. (We also drop trusts if on that day
we do not have a clean TBA price for the corresponding coupon.)
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6. Only retain trusts with a factor (= current face value divided by issuance amount) of more
than 5%.

7. Only retain trusts that we can match to a Bloomberg prepayment survey with the same
coupon and absolute differences in WAC and WAM smaller than 0.3 percentage points and
60 months, respectively. (This affects almost exclusively observations before 2003, as we
don’t have individual vintages in the survey in the early years.)

Following these steps, the sample includes 3713 trust-month observations, or about 19 per month.
The year with the lowest number of observations is 1999, where we have an average of 10 trusts
per month, while after 2005 we have at least 20 trusts in all but one month.

C Additional Details on Model

In this Appendix, we derive the formulas for OAS and ZVS on the pass-through security used in
Section 3, as well as on the IO and PO strips. Recall that, in each instant of time dt, the investor
in the pass-through security on pool j receives cj − dθjt per dollar of face value. Thus, the price of
one unit of the pass-through satisfies

Pj
PT,t = Et

[∫ +∞

0

Mt+s

Mt

(
cj + sjs

)
ds
]
= E

Q
t

[∫ +∞

0
e−
∫ s

0 (ru+sju)du (cj + sjs
)

ds
]

,

where Q is the risk-neutral measure associated with the pricing kernel M. Assume that the short
rate rt evolves according to

drt = µrtdt + σrdZrt,

where Zrt is a standard Brownian motion, independent of the shocks to the prepayment function
parameters, Zγt. Then, applying the Feyman-Kac theorem, we can represent the price of the pass-
through security as the solution to

rtP
j
PT,t =

(
cj + sjt

)
− sjtP

j
PT,t − µtπltαjP

j
PT,t +

∂Pj
PT,t

∂rt
(µrt + σrπrt) +

1
2

∂2Pj
PT,t

∂r2
t

σ2
r

+
∂Pj

PT,t

∂γ′t
(µγ + σγπγt) +

1
2

tr

(
∂2Pj

PT,t

∂γt∂γ′t
σγσ′γ

)
, (C.1)

where πrt is the price of risk associated with innovations to the short rate Zrt.
The zero-volatility spread (ZVS) is computed using the risk-neutral mean path of the interest

rates, but ignoring variation around that path and non-interest rate sources of risk. More formally,
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the ZVS on the pass-through solves

(
rt + ZVSjt

)
Pj

PT,t =
(
cj + sjt

)
− sjtP

j
PT,t − µtαjP

j
PT,t +

∂Pj
PT,t

∂rt
(µrt + σrπrt) +

∂Pj
PT,t

∂γ′t
µγ. (C.2)

Comparing (C.1) and (C.2), we see that the ZVS on the pass-through is given by

ZVSjt = −
1

Pj
PT,t

∂2Pj
PT,t

∂r2
t

σ2
r

2
− 1

2
1

Pj
PT,t

tr

(
∂2Pj

PT,t

∂γt∂γ′t
σγσ′γ

)
− π′γtσγ

1

Pj
PT,t

∂Pj
PT,t

∂γt
+ αjµt (πlt − 1) .

The option-adjusted spread (OAS), on the other hand, recognizes that interest rates can deviate
from the mean paths and thus solves

(
rt + OASjt

)
Pj

PT,t =
(
cj + sjt

)
− sjtP

j
PT,t − µtαjP

j
PT,t +

∂Pj
PT,t

∂rt
(µrt + σrπrt) +

∂2Pj
PT,t

∂r2
t

σ2
r

2

+
∂Pj

PT,t

∂γ′t
µγ +

1
2

tr

(
∂2Pj

PT,t

∂γt∂γ′t
σγσ′γ

)
. (C.3)

Comparing (C.1) and (C.3), we see that the OAS on the pass-through is given by

OASjt = −π′γtσγ
1

Pj
PT,t

∂Pj
PT,t

∂γt
+ αjµt (πlt − 1) .

Thus, the OAS is the risk premium paid to the MBS investors for holding non-interest rate risk.
Comparing the ZVS and the OAS on the pass-through, we see that the option cost is given by

ZVSjt −OASjt = −
1

Pj
PT,t

∂2Pj
PT,t

∂r2
t

σ2
r

2
− 1

2
1

Pj
PT,t

tr

(
∂2Pj

PT,t

∂γt∂γ′t
σγσ′γ

)
≈ − 1

Pj
PT,t

∂2Pj
PT,t

∂r2
t

σ2
r

2

for small variance of the innovations to prepayment function parameters.
Finally, we compute OASQ taking into account compensation for prepayment model risk, so

that the OASQ solves

(
rt + OASQ

jt

)
Pj

PT,t =
(
cj + sjt

)
− sjtP

j
PT,t − µtαjP

j
PT,t +

∂Pj
PT,t

∂rt
(µrt + σrπrt) +

∂2Pj
PT,t

∂r2
t

σ2
r

2

+
∂Pj

PT,t

∂γ′t
(µγ + σγπγt) +

1
2

tr

(
∂2Pj

PT,t

∂γt∂γ′t
σγσ′γ

)
. (C.4)

Comparing (C.1) and (C.4), we see that the OASQ on the pass-through is given by

OASQ
jt = αjµt (πlt − 1) .
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We can compute the OAS, OASQ and ZVS on stripped securities in a similar fashion. In each
instant of time dt, an investor holding the IO strip on pool j receives the coupon payments cj while
an investor holding the PO strip receives the principal payments −dθjt. Then, similarly to (C.1),
the price Pj

IO,t of the IO strip is the solution to

rtP
j
IO,t = cj − sjtP

j
IO,t − µtπltαjP

j
IO,t +

∂Pj
IO,t

∂rt
(µrt + σrπrt) +

1
2

∂2Pj
IO,t

∂r2
t

σ2
r

+
∂Pj

IO,t

∂γ′t
(µγ + σγπγt) +

1
2

tr

(
∂2Pj

IO,t

∂γt∂γ′t
σγσ′γ

)
, (C.5)

and the price Pj
PO,t of the PO strip is the solution to

rtP
j
PO,t = sjt − sjtP

j
PO,t − µtπltαjP

j
PO,t +

∂Pj
PO,t

∂rt
(µrt + σrπrt) +

1
2

∂2Pj
PO,t

∂r2
t

σ2
r

+
∂Pj

PO,t

∂γ′t
(µγ + σγπγt) +

1
2

tr

(
∂2Pj

PO,t

∂γt∂γ′t
σγσ′γ

)
. (C.6)

The ZVS, OAS and OASQ on the stripped securities are defined analogously to (C.2)-(C.4). Thus,
the ZVS, OAS and OASQ on the IO strip are given, respectively, by

ZVSjt,IO = − 1

Pj
IO,t

∂2Pj
IO,t

∂r2
t

σ2
r

2
− 1

2
1

Pj
IO,t

tr

(
∂2Pj

IO,t

∂γt∂γ′t
σγσ′γ

)
− π′γtσγ

1

Pj
IO,t

∂Pj
IO,t

∂γt
+ αjµt (πlt − 1)

OASjt,IO = −π′γtσγ
1

Pj
IO,t

∂Pj
IO,t

∂γt
+ αjµt (πlt − 1)

OASQ
jt,IO = αjµt (πlt − 1) .

Similarly, the ZVS, OAS and OASQ on the PO strip are given, respectively, by

ZVSjt,PO = − 1

Pj
PO,t

∂2Pj
PO,t

∂r2
t

σ2
r

2
− 1

2
1

Pj
PO,t

tr

(
∂2Pj

PO,t

∂γt∂γ′t
σγσ′γ

)
− π′γtσγ

1

Pj
PO,t

∂Pj
PO,t

∂γt
+ αjµt (πlt − 1)

OASjt,PO = −π′γtσγ
1

Pj
PO,t

∂Pj
PO,t

∂γt
+ αjµt (πlt − 1)

OASQ
jt,PO = αjµt (πlt − 1) .

Thus, when the stripped MBS have equal exposure to liquidity risk, the prepayment risk-neutral
OAS, OASQ, is equal for an IO and PO pair, as well as the corresponding pass-through.
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D Pricing Model Details

D.1 Interest Rate Model

We assume that swap rates follow a three-factor Heath, Jarrow, and Morton (1992) (HJM) model.
Let f (t, T) denote the time t instantaneous forward interest rate for risk-free borrowing and lend-
ing at time T. We model the forward rate dynamics under the (interest rate) risk-neutral measure
as

d f (t, T) = µ f (t, T) dt +
3

∑
i=1

σf ,i (t, T) dWQ
i,t ,

where WQ
it are independent standard Weiner processes under the risk-neutral measure Q, and,

under no arbitrage, the expected change in the forward rate is given by

µ f (t, T) =
3

∑
i=1

σf ,i (t, T)
∫ T

t
σf ,i (t, u) du.

Thus, the risk-neutral dynamics of the instantaneous forward rate are completely determined by
the initial forward rate curve and the forward rate volatility functions, σf ,i (t, T). Similarly to Trolle
and Schwartz (2009), we assume that the volatility function of each factor σf ,i (t, T) is

σf ,i (t, T) = (α0,i + α1,i (T − t)) e−γi(T−t). (D.1)

This specification has the advantage of allowing for a wide range of shocks to the forward rate
curve while ensuring that the forward rate model above is Markovian.

Trolle and Schwartz (2009) show that, setting the volatility of the forward rates to be as in (D.1),
the time t price of a zero-coupon bond maturing at time T, P (t, T), is given by

P (t, T) ≡ exp
{
−
∫ T

t
f (t, u) du

}
=

P (0, T)
P (0, t)

exp

{
3

∑
i=1

Bxi (T − t) xit +
3

∑
i=1

6

∑
j=1

Bφji (T − t) φji,t

}
,

where the state variables
{

xit, φji,t
}

follow

dxit = −γixitdt + dWQ
it

dφ1i,t = (xit − γiφ1i,t) dt

dφ2i,t = (1− γiφ2i,t) dt

dφ3i,t = (1− 2γiφ3i,t) dt

dφ4i,t = (φ2i,t − γiφ4i,t) dt

dφ5i,t = (φ3i,t − 2γiφ5i,t) dt

dφ6i,t = (2φ5i,t − 2γiφ6i,t) dt.
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The coefficients
{

Bxi , Bφji

}
are functions of the parameters of the volatility function and the time

to maturity τ = T − t, and are given by

Bxi (τ) =
α1i

γi

((
1
γi

+
α0i

α1i

) (
e−γiτ − 1

)
+ τe−γiτ

)
Bφ1i (τ) =

α1i

γi

(
e−γiτ − 1

)
Bφ2i (τ) =

(
α1i

γi

)2 ( 1
γi

+
α0i

α1i

)((
1
γi

+
α0i

α1i

) (
e−γiτ − 1

)
+ τe−γiτ

)
Bφ3i (τ) = −

α1i

γ2
i

((
α1i

2γ2
i
+

α0i

γi
+

α2
0i

2α1i

) (
e−2γiτ − 1

)
+

(
α1i

γi
+ α0i

)
τe−2γiτ +

α1i

2
τ2e−2γiτ

)

Bφ4i (τ) =

(
α1i

γi

)2 ( 1
γi

+
α0i

α1i

) (
e−γiτ − 1

)
Bφ5i (τ) = −

α1i

γ2
i

((
α1i

γi
+ α0i

) (
e−2γiτ − 1

)
+ α1iτe−2γiτ

)
Bφ6i (τ) = −

1
2

(
α1i

γi

)2 (
e−2γiτ − 1

)
.

Consider now a period of length ν and a set of dates Tj = t + νj, j = 1, . . . n. The time t swap
rate for the period t to Tn, with fixed-leg payments at dates T1, . . . , Tn is given by

S (t, Tn) =
1− P (t, Tn)

ν ∑n
j=1 P

(
t, Tj

) ,

and the time t forward swap rate for the period Tm to Tn, and fixed-leg payments at dates Tm+1, . . . , Tn

by

S (t, Tn) =
P (t, Tm)− P (t, Tn)

ν ∑n
j=m+1 P

(
t, Tj

) .

Applying Ito’s lemma to the time u forward swap rate between Tm and Tn, and switching to the
forward measure QTm,Tn under which forward swap rates are martingales (see e.g. Jamshidian,
1997), we obtain

dS (u, Tm, Tn) =
3

∑
i=1

n

∑
j=m

ζ j (u) Bxi

(
Tj − u

)
dWQTm ,Tn

iu ,
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where

ζ j (u) =



P(u,Tm)

ν ∑n
j=m+1 P(u,Tj)

if j = m;

−νS (u, Tm, Tn)
P(u,Tj)

ν ∑n
j=m+1 P(u,Tj)

if j = m + 1, . . . n− 1

− (1 + νS (u, Tm, Tn))
P(u,Tn)

ν ∑n
j=m+1 P(u,Tj)

if j = n.

Notice that, since the ζ j (u) terms are stochastic, the forward swap rates are not normally dis-
tributed. We can, however, approximate ζ j (u) by their time t expected values, which are their time
t values since these terms are martingales under the forward-swap measure. Thus, given date t
information, the swap rate between dates Tm and Tn is (approximately) normally distributed

S (Tm, Tn) ∼ N
(

S (t, Tm, Tn) , σN (t, Tm, Tn)
√

Tm − t
)

,

where the volatility σN is given by

σN (t, Tm, Tn) =

 1
Tm − t

∫ Tm

t

N

∑
i=1

(
n

∑
j=m

ζ j (t) Bxi

(
Tj − u

))2

du

 1
2

.

D.2 Yield Curve Model

We closely follow the estimation of Gürkaynak et al. (2007) on Treasury yields using quotes on par
swap yields with maturities between 1 and 40 years. We assume that instantaneous forward rates
n-years hence are a function of six parameters:

ft (n, 0) = β0 + β1 exp (−n/τ1) + β2 (n/τ1) exp (−n/τ1) + β3 (n/τ2) exp (−n/τ2) . (D.2)

We fit these parameters at month end by minimizing the sum of squared deviations between actual
and predicted swap prices weighted by their inverse duration, which is approximately equal to
minimizing the sum of squared yield deviations.

D.3 Prepayment Model Detail

As described in the main text, we begin by constructing a panel of monthly dealer prepayment
forecasts by coupon-vintage using data from eMBS and Bloomberg LP. Specifically, we match pool
characteristics from eMBS (WAC, WALA, WAM) to corresponding prepayment forecasts from
Bloomberg. For each coupon until May 2003, and for each coupon-vintage from May 2003 onward,
dealers report a prepayment forecast for each of the nine interest rate scenarios, as well as a WAC
and WAM. To obtain additional pool characteristics, for the later sample, each survey is matched
to its corresponding pool in eMBS. For the earlier sample, we match the survey to the vintage of
the same coupon in eMBS with the minimum Mahalanobis distance based on WAC and WAM
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from the dealer’s response. We only use securities that have a remaining principal balance in
eMBS of more than $1 million.

Dealers update their forecasts on different dates, so we use the most recent response as of the
end of the month for each dealer (excluding dealers who did not update their response during
that month), keeping only those securities in a month for which at least two dealers responded.
Because we are interested in extracting prepayment model parameters that capture, for instance,
the expectations of the rate-sensitivity of a security, we match each dealer’s response to the swap
rate of the day before that dealer’s survey response was updated.

The prepayment forecasts in Bloomberg are reported in “PSA” terms, which can be translated
into monthly CPRs using the following formula:

CPRτ = PSA/100 ∗min(.2 ∗WALAτ, 6) for t ≤ τ ≤WAM (D.3)

Thus, two securities with the same PSA forecast but of different ages (WALAs) will have different
“average” CPRs if at least one of the securities is unseasoned. Because we would like to capture
the prepayment speed forecast of the dealers with a single number for ease of estimation, we
use the PSA forecast and the WALA1 to compute the WAL (weighted average life), and thus the
WAL-implied long-run CPR, defined as the constant monthly CPR that generates the WAL.

Specifically, we convert the monthly CPRs generated using equation D.3 to SMMs and com-
pute the implied cash flows as in Section 2. The WAL is then defined as:

WALt =
∑WAM

j=t j CFj

∑WAM
j=t CFj

. (D.4)

This gives us one long-run CPR forecast for each scenario per vintage per dealer. The nine dif-
ferent scenarios give us information about the expected rate sensitivity of the security. A common
way to model this rate-sensitivity is through the use of an “S curve” as mentioned in the main
text. Such a curve captures the observed behavior that prepayments are low for securities that
are “out-of-the-money,” i.e., the incentive to refinance is negative, and are mostly due to turnover
and, to a lesser extent, cash-out refinancing or defaults. As a pool moves in-the-money (the refi-
nancing incentive becomes positive) the refinancing component becomes a more important driver
of prepayments, but at a declining rate: there is an incentive region in which prepayments are
highly sensitive to changes in the interest rate (typically somewhere in the incentive region of 50-
150 basis points) while beyond that, there is little sensitivity to further decreases in the available
rate.

We convert our nine long-run CPRs into SMMs and fit the following S curve for each dealer

1Since dealers don’t actually report WALAs, we infer the WALA for a particular dealer’s response by subtracting
that dealer’s surveyed WAM from the average sum of the WAM and WALA in eMBS.
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for a vintage using nonlinear least squares:

SMMLR
i = b1 + b4

exp (b2 + b3 ∗ INCi)

1 + exp (b2 + b3INCi)
for i = 1, 2, . . . , 9 (D.5)

where b1, b4 ∈ [0, 1] and b1 + b4 ≤ 1 (these constraints ensure that the function is bounded by 0
and 1). Here, INCi is defined as the difference between the dealer’s observed swap rate and WAC
in scenario i.

Estimating an S curve for each dealer allows us to “average” these dealer responses despite
the fact that often the surveys were updated on different days and thus refer to slightly different
interest rate scenarios. We take this average by averaging fitted dealer SMMs at 50 basis point
intervals between -300 and 300 basis points, with the 0-scenario corresponding to the average
0-scenario across dealers.

Finally, because cash flows, and thus the OAS, depend on not just the average long-run pre-
payment rate, but also the time pattern of prepayments, we fit a series of monthly SMMs in the
form of equations 4.1 and 4.2 to the dealer-averaged long-run CPR forecasts. As discussed in the
main text, this functional form creates the “burnout effect” of prepayments. However, because
the Bloomberg data provide no additional information as to the time pattern of prepayments, it
is impossible to jointly identify χt, κ1, κ2 for each security. We therefore assume that κ1 and κ2 are
universal parameters and let χt vary across securities and time. To calibrate κ1 and κ2, we exploit
the fact that as INC → ∞, SMM → b1 + χκ1 + (1− χ) κ2 (for WALA> 30). Thus, b1 + κ1 and
b1 + κ2 represent the speeds that a seasoned pool would prepay at if it were deeply in the money
and composed of only fast or only slow borrowers, respectively. We therefore estimate κ̂1 = κ1

and κ̂2 = κ2 by taking the 99th and 1st percentiles of survey SMMs (less an average b1, which
is negligible) for the -300 basis point interest rate scenario among seasoned ITM securities in our
sample. This yields κ̂1 = 0.11 and κ̂2 = 0.014. 2

Given κ1 and κ2, there are then four coefficients to be estimated for each security on each
date: χt, b1, b2, and b3. We fit these four coefficients using nonlinear least squares with the thirteen
dealer-averaged long-run fitted CPRs. Because of its flexibility, this model is able to fit the long-
run CPRs quite well; the MAE across securities is less than 0.2.

D.4 Monte Carlo Simulations

As discussed in Section 2, computing the OAS requires Monte Carlo simulations of swaps and
discount rates. Along each simulation, we use the prepayment model to compute MBS cash flows.
We take the OAS to be the constant spread to swaps that sets the average discounted value of cash
flows along these paths equal to the market price. To construct these paths, we first simulate 1,000
paths of the three factors of the interest rate model using draws of the state variables described
in Appendix D.1. We use antithetic variables as a variance reduction technique, giving us 2,000
paths in total.

2We have experimented with alternative calibrations, and obtained qualitatively similar results.
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