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Abstract 

 
Forward foreign exchange contracts embed not only expected depreciation but also a sizable 

premium, which complicates inferences about anticipated returns. This study derives arbitrage-

free affine forward currency models (AFCMs) with closed-form expressions for both 

unobservable variables. Model calibration to forward term structures of eleven U.S.-dollar 

currency pairs from the mid-to-late 1990s through early 2014 fits the data closely and suggests 

that the premium is indeed nonzero and variable, but not to the degree implied by previous 

econometric studies.  
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1.  Introduction 

In addition to projected variance and covariance among exchange rates, information 

about expected currency returns is essential for global financial asset allocation.  Forward 

contracts embed investors’ expectations for depreciation and therefore anticipated returns on 

currency positions.  But the problem is that, as a gargantuan literature documents (e.g., Froot and 

Thaler, 1990; Froot, 1990; Engel, 1996), forward quotes also include a sizeable and perhaps 

anomalous premium.  Using observed quotes and subsequent interest rates as well as forward 

exchange rates, several studies find that in violation of uncovered and sometimes covered 

interest rate parity (UIRP and CIRP), currencies with higher interest rates tend to appreciate 

rather than to depreciate, as carry trades are persistently profitable on average.  That is, the 

standard approach is to consider regressions that broadly resemble  

  ;0, ;0,

0

ln t
d t f t

E
y y

E
  

 
    

 
  (1) 

where E is the local price of foreign exchange, ;0, ;0,d t f ty y represents the relevant yield 

differential over horizon 0 through t, and 1  as well as 0  are the null hypotheses that the 

literature resoundingly rejects—  is nearly always less than one and is frequently negative.  This 

so-called “forward discount anomaly” might reflect a fair ex ante premium for such trades or 

chronically incorrect market forecasts.  Either way, any attempt to read expectations from 

forwards should make some allowances for possible premiums.  

Rather than start from this ubiquitous econometric approach, what follows takes a 

different tact, draws from continuous time-finance in general as well as interest rate models in 

particular, and outlines arbitrage-free affine forward currency models (AFCMs) to estimate both 

unobservable quantities, notably ex ante.  As discussed below, despite the assumption that IRP 

holds in the short run, the models produce an explicit expression for the (risk-neutral) forward 

discount premium, defined as the difference between the model-implied forward rate and the 



 2 

expected depreciation rate.  A key parallel with affine term structure models (ATSMs) is that 

model-based yields comprise expected short rates and (risk-neutral) term premiums, even in the 

absence of instantaneous arbitrage opportunities along the yield curve (e.g., Vasicek, 1977; 

Langetieg, 1980).
1
  

Besides isolation of the discount premium in closed-form solutions, calibration to 

forward term structures of 11 $U.S. currency pairs from the mid- to late-1990s through early 

2014 suggests that the premium is indeed not only non-zero but also both spatially and 

temporally variable.  However, the degree of variance over time differs across pairs and in 

general is lower than some econometric studies suggest (e.g., Fama, 1984; Hodrick and 

Srivastava, 1986).  In short, these results in no way reconcile the forward premium anomaly per 

se, but AFCM-implied depreciation rates might include useful information about expected 

returns to foreign currency positions.   

To isolate the discount premium, the next section derives a single model with perhaps the 

narrowest possible assumptions regarding the stochastic dynamics of instantaneous depreciation.  

Next, the discussion describes an extension for calibration and application to latent factors, time-

varying premiums, and an underlying multi-factor Gaussian random process.  The remaining 

sections describe the parameter estimation of the Gaussian model and the general empirical 

results. 

2.  A Partial Differential Equation for Forward Currency Contracts 

Denote Q as the depreciation (or appreciation) over a non-instantaneous period t, as in 

  0 exptE E Qt  (2) 

                                                 
1
 Backus et al. (2001) examine whether ATSMs produce forward rates that are consistent with the two key findings 

in Fama (1984) that expected depreciation and the premium are negatively correlated and that the variance of the 

premium is greater than the variance of expected depreciation.  They find that ATSMs are inconsistent with the 

forward premium anomaly unless either nominal interest rates are negative or the underlying state variables have 

asymmetric effects on state prices.  In contrast, this study uses no information from term structures and models 

forward exchange rate quotes directly to extract the premium from expected depreciation, with no restrictions on the 

parameters to conform to Fama (1984). 



 3 

For reference, the corresponding expression for the price of a zero-coupon bond is  

  0 exptP P yt  (3) 

where y is the continuously-compounded yield on the bond P that matures at t, and of course the 

left-hand-side is equal to par at expiry.  Returning to foreign exchange, broadly analogous to the 

pure expectations hypothesis of interest rates, which suggests that longer-dated yields represent 

the average of expected short rates, r, consider Q as the mean of instantaneous depreciation rates, 

q, over t, as in   

    
0 0

1 1
t t

y r d Q q d
t t

         (4) 

where    is the expectations operator, and both expression ignore Jensen’s inequality.  The 

instantaneous currency depreciation rate, q, is not deterministic but follows some stochastic 

process, say, for simplicity 

 dq dt dW    (5) 

where  is a drift term,  is the volatility parameter, and dW is a Brownian motion increment.
2
 

The objective is to derive a formula for a forward contract, F, a financial claim on the 

future exchange rate.  To be sure, multiple factors influence F, as indeed simple IRP suggests 

forward contracts are a function of domestic and foreign interest rates as well as the spot 

exchange rate, all of which are random variables.  However, just to start, suppose that F is a 

function of time and the stochastic depreciation rate,  ,F q t .  Given Ito’s lemma, (5), and some 

rearranging, the instantaneous return is 

                                                 
2
 Also, by analogy also, the risk-free interest rate process in the domestic and foreign currency would follow, 

respectively,  

d d d d

f f f f

dr dt dW

dr dt dW

 

 

 

 
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2

2

2

1 1

2

dF F F F F
dt dW

F F t q q F q


 

    
    

    
 (6) 

Now assume that 
dF

F
, again the initial instantaneous return on the forward contract, 

follows (covered) interest rate parity.  That is, the expected return or depreciation is equal to the 

interest rate differential between the two countries.  Under the absence of arbitrage, investors 

cannot take a short position in a futures contract, borrow one unit of a foreign currency at the 

domestic risk-free rate at the current rate of exchange, deposit that amount in a foreign-risk-free-

rate-bearing account, and deliver the foreign-dominated funds at the forward exchange rate at 

expiry for a profit.  There is substantial debate and a huge literature on whether UIRP or even 

CIRP hold, and some studies find that some data in the very short run are consistent with the 

theory (e.g., Chaboud and Wright, 2005).
3
  Nonetheless, the parity assumption requires that the 

drift term in (6) conforms to the following partial differential equation (PDE), as in (with simple 

rearranging and the parity assumption) 

  
2

2

2

1 1

2
d f

F F F
dt r r dt

F t q q
 

   
    

   
 (7) 

where d fr r  is the interest rate differential.  Multiplying through by the F and given that the 

interest rate parity assumption implies d fr r q  ,
4
 the expression becomes  

                                                 
3
 Some studies also report that UIRP holds to some degree in the long run (e.g., Chinn and Meredith, 2005). 

4
 Note that interest rate parity (from borrowing an single unit of domestic currency) implies  

  1

0exp exp 0d f ty t E y t F       

or 

 
0

exp t

d f

F
y y t

E
  
 

 

But, substituting (2) for the right hand side implies 

d fy y Q   

with the continuous-time equivalent and (4) following 

d fr r q   
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2
2

2

1

2

F F F
qF

t q q
 

  
  

  
 

To further specify the PDE, consider the market price per unit of risk with respect to the 

instantaneous depreciation, , which follows 

 

 f

dF
r r

F

dF
VAR

F





 
  

  
 
 
 

 (8) 

Given (6), the risk-neutral PDE for the current forward the must follows 

  
2

2

2

1
0

2

F F F
qF

t q q
  

  
    

  
 (9) 

There are general similarities between the derivation of this PDE and the bond pricing 

equation that underpins ATSMs.  Very briefly, the general argument in Vasicek (1977), Brennan 

and Schwartz (1977), and Langetieg (1980) is that a portfolio of bonds that has a deterministic 

return—given a unique hedge ratio—must earn the risk-free rate in the absence of arbitrage.  In 

this application to foreign exchange, the underlying factor is not the short rate but the 

instantaneous depreciation rate, which obeys interest rate parity instantaneously to preclude 

arbitrage.   

3.  A Solution for Forward Currency Contracts 

Similar to single-factor, short-rate ATSMs, a proposed solution implies that the 

continuously-compounded return on the forward, Q, is a linear function of the instantaneous 

depreciation rate, q, as in   

      0 0exp ( , ) exp , ,tF E Q t T t E A t T B t T q      (10) 

Instead of the terminal condition, say, for a bond that pays par at maturity (i.e., Vasicek, 1977, 

Brennan and Schwartz, 1977), the initial conditions stem from the simple requirement that the 
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current instantaneous forward rate equals the current spot rate.  Furthermore, given that the 

equation must hold for all values of q, the conditions for the affine solution follow 

 
   

   

0 0 0 0, 0,

0 0, 0,

F E F e A T B T q

A T B T

    

 
 (11) 

Now take the relevant partial derivatives from (10) with respect to the instantaneous depreciation 

rate as well as time and substitute the derivatives into the PDE, (9), as in 

   2 21
0

2

A B
F q FB FB qF

t t
  

  
      

  
 (12) 

With some further rearranging, the PDE reduces to a system of two tractable ordinary differential 

equations (ODEs), following 

 1 0
B

t


  


 (13) 

and 

   2 21
0

2

A
B B

t
  


   


 (14) 

The solution for (13) given the initial condition defined in (11) follows 

  ,B t T t  (15) 

And, given substitution of (15) into (14), simple integration with respect to t, and again the 

relevant initial condition in (11), the solution to the second ODE is 

     2 2 31 1
,

2 6
A t T t t       (16) 

With (15) and (16), the solution to the PDE for the forward contract is 

   2 2 3

0

1 1
exp

2 6
tF F t t qt  

 
     

 
 (17) 

And, following (10), the corresponding expression for the depreciation rate over t follows 
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   2 21 1

2 6
tQ q t t       (18) 

which traces out a term structure of depreciation rates, with an initial value of q.   

4.  The Arbitrage-free-implied Currency Premium 

To extract any implied premium from the model, 
FX , and therefore expected returns, the 

relevant question is whether the instantaneous forward depreciation rate from the solution, ,f tq , 

at some future date t is an unbiased predictor of the expected future instantaneous depreciation 

rate,  tE q .  To start, the premium defined formally is 

  ,FX f t tq E q    (19) 

and forward depreciation rate for the discrete interval from t to t +  follows 

  
1

, ln t

t

F
q t t

F





 

   
 

 (20) 

The instantaneous forward depreciation rate at t then follows 

 
   

0

ln ln ln
lim

t t

f

F F F
q

t



 





 
 


 (21) 

Therefore, using the solution of the model, (17), 

   2 2

,

1

2
f tq q t t       (22) 

Now, to determine  tE q , given the stochastic process of the depreciation rate from (5), the 

expected value of the forward instantaneous depreciation follows 

  
0 0 0

t t t

tE dq E d dW E q q t   
   

       
   
    (23) 

Given that the premium is the difference between the model-implied forward depreciation, (22), 

and the expected value, (23), (19) becomes 
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 2 21
2

2
FX t t t        (24) 

which is indeed non-zero unless the following condition holds (notably if the volatility parameter 

is zero). 

 21 1

2 4
t      (25) 

In addition, again the model assumes that the instantaneous deterministic drift must follow IRP, 

but the volatility term in (5) produces a non-zero forward premium.  Therefore, consistent with 

the preponderance of econometric evidence (Engle, 1996), the broad implication is that forward 

quotes are not unbiased expectations of depreciation.   

5.  A Multi-Factor Gaussian AFCM: Derivation and Estimation 

Indeed, calibration should disentangle the premium from market expectations for returns, 

but however illustrative, the model outlined previously is too restrictive for application.  

Consider instead a latent factor approach with time-varying forward premiums as well as an 

mean-reverting alternative to the stochastic process in (5), following 

  
1 11

t t t
n n n n

n nn

dX X dt dW 
 

 

     (26) 

where tX  is an 1n  vector of underlying factors,  is 1n ,  is an n n  lower-triangular 

matrix,   is a diagonal n n matrix,
5
 and dW is an 1n  vector of Gaussian disturbances.  The 

instantaneous depreciate rate, q, is a linear function of the factors, as in 

 0 1

T

t tq X    (27) 

where 0 is a scalar, and 1 is 1n .  Also, the vector of market prices of risk is a linear function 

of the factors, following 

                                                 
5
 Different normalizations are of course possible, such as a diagonal  and a lower-triangular .  See Dai and 

Singleton (2000).  Not also that in the estimation the n elements of 
1 ( ) are equal to 1 (0). 
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0 1

T

t tX     (28) 

where 
o  is a scalar, and 

1  is 1n .  Similar to the single-factor case, arbitrage implies a matrix 

PDE for the futures contract that follows 

      
2

0 1 0 1

1
0

2

T

T T T

t t tT

F F F
X X X F

t X X X
     

  
         
    

 (29) 

The affine form of the proposed solution to the PDE follows 

        0 0, exp , exp , ,
T

tF X t E Q t T t E A t T B t T X       
 (30) 

And, following the steps and notation outlined in the Appendix A, the relevant solutions follow  

      
1

* *

1, expT TB t T I t  


      (31) 

and  

       * * * 1 * 1 * 1

0 1, 1 1 1, 1, 2, 1,
1

2

T
T T T T T T T

t t t tA t T t M It M M Mt                   (32) 

Note that returning to (30), the expression for the depreciation rate over t follows 

      
1

, , ,
T

tQ t T A t T B t T X
t
  
 

 (33) 

Turning to estimation in brief, a common recursive Kalman-filter-based maximum likelihood 

method produces the parameters (e.g., Kim and Wright, 2005).  Very briefly, in state-space form, 

the measurement equation follows 

 
1

1 1 1

T

t t t
q q n

q n q

Y X 
 

  

    (34) 

where Y is a 1q vector of observed data, namely log differences between forward quotes and 

spot foreign exchange rates (at q selected forward horizons);   is a 1q  vector;   is a 

n q matrix; again the vector tX  represents the unobservable state variables; and   is a vector 
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of Gaussian measurement errors.  Given the assumed stochastic Ornstein-Uhlenbeck process in 

(26), the transition equation (from one discrete observation to the next) is 

  1t t tX e X I e    

     (35) 

where   is a zero-mean Gaussian error vector.   

6.  Empirical Results: Selected Time-Series and Cross-Sections 

The sample includes 11 $U.S. currency pairs, and as Exhibit 1 indicates, coverage ranges 

from the mid- to late-1990s through early 2014.  True, the sample period is somewhat short, yet 

the length is comparable to, if not longer than, common applications to ATSMs (e.g., Dai and 

Singleton, 2000; Kim and Wright 2005; Kim and Orphanides, 2005), and the tradeoff between 

parameter stability and robustness of course arises with longer time series.  Also, the frequency 

of Y for the Kalman filter is weekly (Wednesday), with 1-, 3-, 6-, 9-, 12-, 24-, and in cases where 

available 36-month forward horizons (i.e., the length of q).  Even the longest horizon is perhaps 

short compared to ATSM calibrations, which commonly use maturities to 10 years, but besides 

data unavailability, the limited span is perhaps not disadvantageous given the presumed 

stochastic process.  That is, as long as tX  is stationary following (26), anticipated depreciation 

must converge to 0  as the horizon lengthens, and calibrated distant-horizon forward quotes owe 

largely to the premium by construction.  However, the precise juncture when expected 

depreciation asymptotes to 0 is likely beyond the 3-year horizon, and besides, the implied 

depreciation paths should speak to this issue.   

Turning to the results, again the closed-form solution to the model(s) imply non-zero 

premiums under all but the most restrictive parameters, and the estimate of the discount anomaly 

at a given horizon is simply the difference between the AFCM implied forward (i.e., log-

difference in the forward and spot exchange rates) less the corresponding AFCM-implied 

depreciation rate.  In Exhibit 2, the dashed black lines, the solid black lines, the blue lines, and 
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the red lines for each pair represent the observe forward quotes (in terms of log differences with 

the spot rate), the AFCM-implied forward, the AFCM-implied expected depreciation rate, and 

the AFCM-implied discount premium, respectively.  The results alternatively refer to 3- and 4-

factor models (i.e., alternative assumptions about n), depending on data fit. 

Three simple empirical questions for application are, first, whether the model fits the 

data, second, whether it indeed produces a non-zero discount premium, and third, whether the 

estimated premium varies over time.  To address the first question, judging from the largely 

minuscule visual distinction between the dashed and solid black lines as well as the simple ratio 

of the residual to explained sum of squares (reported in Column 6 in Exhibit 1), the models seem 

to fit very closely.  Even those pairs for which 4-factor models fit the data better, corresponding 

3-factor models also produce modest errors.  Regarding the second question, the red lines in 

Exhibit 2 indeed diverge from zero to varying degrees across pairs.  Therefore, again although 

the model assumes instantaneous IRP, the results produce a (risk-neutral) estimate of the 

discount anomaly.   

With respect to the third question, the AFCM-implied discount premiums indeed change 

over time.  The degree of variability—at least for the 2- and 3-year forward horizons differs 

somewhat across pairs, and there is some cross-sectional variation across the forward term 

structure.  For example, the red lines in Exhibit 3—which show the schedule of depreciation by 

horizon for the most recent sample date—indicate meaningful and in some cases non-linear 

slopes.  In other words, the AFCMs produce cross-sectional as well as time-series variation in 

the discount premiums, which might help inform more precise assessments of forward-implied 

deprecation rates over a given investment horizon.  

7.  Empirical Results: Previous Literature on the Premium Anomaly 
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To digress briefly, these results may also be noteworthy for the broader (academic) 

literature on the forward premium anomaly.  Using regressions that include contemporaneous 

and realized quotes of spot and forward rates, Fama (1984) as well as Hodrick and Srivastava 

(1986) (FHS) and others find that the premium is more volatile than expected depreciation and 

that the two quantities are negatively correlated.  On the other hand, although the derived 

premium is non-zero and variable, survey-based measures in general suggest that it is less 

volatile than expected depreciation, and that the correlation is generally non-negative (e.g., Froot 

and Frankel, 1989; Chinn and Frankel, 1994; Chinn and Frankel, 2002). 

In short, Exhibit 4 suggests that the AFCM-implied premium and expected depreciation 

rate series are, on balance, more consistent with the survey-based results, albeit of course based 

in distinct underlying methods and samples.  The top panel shows the simple correlation 

coefficients between the two series for the full daily samples at the 1-, 3-, 6-, 12-, and 24-month 

horizons.  Although for eight of 11 cases the correlation is less than zero at the longest horizon, 

the figures are only consistently negative across these horizons for the NOK and SEK.  Also, the 

lower panel shows the ratio of the variance of the premium and expected depreciation rates, 

which is less than one for every pair and horizon, in most cases markedly so.  Therefore, the 

results are broadly inconsistent with FHS, as well as Bilson (1981), who argues that expected 

depreciation is always zero and that changes in forward rates owe exclusively to the premium.  

8.  Caveats, Uses, and Extensions of AFCMs  

No more than ATSMs validate the pure expectations theory of interest rates, the 

preceding closed-form and empirical analyses do not endeavor to reconcile fully the discount 

premium anomaly with any version of the efficient markets or rationale expectations 
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hypotheses.
6
  Rather, the more limited aim is to derive models—albeit with more limited 

arbitrage-free assumptions—that nonetheless isolate the (risk-neutral) premium and therefore 

anticipated depreciation rates.  Returning to Exhibit 3, the estimated expected depreciation term 

structures—the gaps between the black and blue lines—suggest that forward quotes are indeed 

not unbiased estimates of expected returns.  True, at least for the most recent sample date, there 

is no pair for which AFCM-implied expected depreciation differs directionally given log 

differences between either quoted or fitted forward and spot rates.  But, expected deprecation 

meaningfully diverges from raw forward quotes in some cases—for example, around 50 basis 

points over a 2-year horizon for the EUR. 

Turning to extensions, AFCMs might indeed inform market-based returns in an amended 

Black-Litterman (1992) framework that relaxes the “reverse-optimization” assumption, which in 

effect assumes index efficiency (e.g., Sharpe, 1976).  But even so, obviously active management 

requires views that diverge from consensus, and of course the preceding only addresses 

investors’ expectations.  Differences between fitted and actual forward rates implied by AFCMs 

could be interpreted as valuation gaps, but the key objective of these analyses is to disentangle 

premiums from expected depreciation.  Also, there are alternatives to a pure Gaussian process for 

the underlying factors, including, say, jump-diffusion, which might better capture exchange rate 

movements.  Nevertheless, the Ornstein-Uhlenbeck process in (26), which in the context of 

models such as Vasicek (1977) problematically allows negative nominal interest rates, is 

arguably better suited for currencies, which can of course depreciation or appreciate. 

 

                                                 
6
 For example, under the condition of pro-cyclical risk-free rates, Verdelhan (2010) outlines a two-country model 

with external habit preferences that replicates the forward premium puzzle. 
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Exhibit 1: Expected $U.S. Depreciation Rates  

 

 

Expected $U.S. Depreciation Rates           

1/30/2014           

  -1-  -2-  -3-  -4-  -5-  -6-  -7-  -8-  -9-

          

 Horizon:  1-Month  3-Month  6-Month  12-Month  24-Month  1-ESS/RSS  Factors  Sample Start  Sample End

Japanese Yen  JPY 0.21% 0.18% 0.19% 0.28% 0.55% 0.9966 3  11/04/96  01/30/14

European Union Euro  EUR 0.00% 0.05% 0.00% -0.10% -0.13% 0.99781 4  10/07/99  01/30/14

U.K. Pound Sterling  GBP -0.30% -0.31% -0.33% -0.41% -0.57% 0.99583 4  11/28/96  01/30/14

Canadian Dollar  CAD 0.83% 0.82% 0.80% 0.78% 0.74% 0.98865 3  04/30/98  01/30/14

Australian Dollar  AUD -2.41% -2.31% -2.21% -2.05% -1.83% 0.98992 3  01/06/98  01/30/14

Swiss Franc  CHF 0.35% 0.37% 0.40% 0.47% 0.62% 0.99455 3  10/07/99  01/30/14

Swedish Krona  SEK -0.68% -0.64% -0.59% -0.52% -0.44% 0.99791 4  02/28/96  01/30/14

Norwegian Krone  NOK -1.32% -1.28% -1.21% -1.05% -0.70% 0.99852 4  12/08/97  01/30/14

New Zealand Dollar  NZD -2.60% -2.77% -2.83% -2.84% -2.78% 0.99379 3  11/15/96  01/30/14

Danish Krone  DKK 0.40% 0.37% 0.35% 0.34% 0.36% 0.99687 4  07/15/99  01/30/14

Singapore Dollar  SGD 0.14% 0.00% -0.06% -0.06% 0.01% 0.99768 4  08/11/99  08/06/13

Mexican Peso  MXN -2.87% -2.97% -3.14% -3.43% -3.78% 0.99662 3  01/19/00  01/30/14
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Exhibit 2: Time Series Results  



 16 



 17 

 



 18 

Exhibit 3: Term Structures of Expected Depreciation  
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Exhibit 4: 
 

 

Fama (1984) Conditions         

Correlation Coefficients:         

ACFM Expected Depreciation & Premium   -1-  -2-  -3-  -4-  -5-  -6-  -7-

        

 Horizon:  1-Month  3-Month  6-Month  12-Month  24-Month  Sample Start  Sample End

Japanese Yen  JPY 0.13891 0.11095 0.088188 0.021215 -0.11099  11/04/96  01/30/14

European Union Euro  EUR 0.12581 0.18122 0.17423 -0.086516 -0.24784  10/07/99  01/30/14

U.K. Pound Sterling  GBP 0.32168 0.65775 0.81378 0.81581 0.7888  11/28/96  01/30/14

Canadian Dollar  CAD 0.52229 0.58615 0.81455 0.977 0.98385  04/30/98  01/30/14

Australian Dollar  AUD 0.69688 0.72752 0.76623 0.67813 -0.54887  01/06/98  01/30/14

Swiss Franc  CHF 0.18596 0.052013 -0.17798 -0.51967 -0.47726  10/07/99  01/30/14

Swedish Krona  SEK -0.4111 -0.50667 -0.41516 -0.3664 -0.4237  02/28/96  01/30/14

Norwegian Krone  NOK -0.15892 -0.11299 -0.24551 -0.58437 -0.89883  12/08/97  01/30/14

New Zealand Dollar  NZD 0.020629 -0.19699 -0.30621 -0.099091 -0.13761  11/15/96  01/30/14

Danish Krone  DKK 0.38809 0.50268 0.68267 0.84325 0.82599  07/15/99  01/30/14

Singapore Dollar  SGD 0.12287 -0.13154 -0.28866 -0.31822 0.016198  08/11/99  08/06/13

Mexican Peso  MXN 0.10233 -0.0041387 -0.17896 -0.82486 -0.96398  01/19/00  01/30/14

        

Variance Ratios:         

ACFM Expected Depreciation & Premium         

        

Japanese Yen  JPY 0.00032633 0.0016439 0.0037251 0.014487 0.082143  11/04/96  01/30/14

European Union Euro  EUR 0.00095836 0.0010709 0.0013183 0.014498 0.077782  10/07/99  01/30/14

U.K. Pound Sterling  GBP 0.0082836 0.012438 0.032668 0.14186 0.57248  11/28/96  01/30/14

Canadian Dollar  CAD 0.037121 0.054022 0.045543 0.056385 0.094338  04/30/98  01/30/14

Australian Dollar  AUD 0.019872 0.037123 0.032524 0.018439 0.0011521  01/06/98  01/30/14

Swiss Franc  CHF 0.00072248 0.0023509 0.0019954 0.0037684 0.039424  10/07/99  01/30/14

Swedish Krona  SEK 0.00027093 0.00080124 0.0026716 0.01346 0.073669  02/28/96  01/30/14

Norwegian Krone  NOK 0.00090403 0.01203 0.064059 0.26835 0.70658  12/08/97  01/30/14

New Zealand Dollar  NZD 0.011105 0.0062099 0.003021 0.027227 0.1188  11/15/96  01/30/14

Danish Krone  DKK 0.0050289 0.023304 0.051419 0.11879 0.33344  07/15/99  01/30/14

Singapore Dollar  SGD 0.0012276 0.006005 0.012513 0.016058 0.021256  08/11/99  08/06/13

Mexican Peso  MXN 0.051975 0.044164 0.018651 0.010996 0.052025  01/19/00  01/30/14  
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Appendix A: Solution to a multi-factor Gaussian AFCM  

To solve the PDE, (29), for the multi-factor model, note that the relevant partial 

derivatives of the proposed affine solution, (30), follow  
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 (A.36) 

With substitution and the fact that F is a scalar, the PDE reduces to the following two ODEs, 
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(A.37) 

Analogous to the single-factor model, the right-hand-side, with *

1    , must follow (after 

taking the transpose) 
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 (A.38) 

To solve (A.38), use the integrating factor, take the definite integral, and use the initial condition 

following 
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Given (A.39); with  * 1 *
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Taking one of the transposes in the third term on the right-hand-side and subsequent matrix 

multiplication follows 
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 (A.41) 

Definite integrals produce the solution to (A.41).  Given the initial condition, the left-hand-side 

becomes 
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For the second term on the right-hand-side of (A.41), let    
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For the third term on the right-hand-side, we need to calculate three (matrix) integrals, including 
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Similarly, the second follows 
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For the third integral, first use the product rule and take the integrals, as in  

   

 

* * * * * * * *

* * * * * * * *

0 0 0

*

exp exp exp exp exp exp

exp exp exp exp exp exp

exp

T T T T T T T

t t t

T T T T T T T

d
s s s s s s

ds

d s s s s ds s s ds

t

       

       



                               

                              

 

  

    

* * * * * * *

0 0

* *

exp exp exp exp
T

t t

T t T T T T T T

T

t t

e s s ds s s ds      

 


   

                         
   

   

    

 (A.46) 



 27 

with * *T

0

exp exp

t

T

t s s ds           .  Vectorize both sides of the equation
7
 and solve 

following 

   

   

       

   

    

 

* *T * *

* *

* *

* *

1
* *T * *

1 * *T *

exp exp

exp exp

exp exp

T T T

t t

T

t t

t t

t

T T

t

T T

t

vec t t vec

vec I vec I

I vec I vec

I I vec

vec vec t t I I

vec vec t t I

   

 

 

 

   

  





            

   

     

    

              

             

 

 

   
1

*

* *T

2,

0

exp exp

t

T

t

I

s t ds M



 

 
  

        

 (A.47) 

Therefore, the solution to the second ODE follows (32). 

                                                 
7
 Note that      Tvec ABC C A vec B  . 


