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Abstract 

 
The illiquidity of long-maturity options has made it difficult to study the term structures of option 

spanning portfolios. This paper proposes a new estimation and inference framework for these 

option-implied term structures that addresses long-maturity illiquidity. By building a sieve 

estimator around the risk-neutral valuation equation, the framework theoretically justifies (fat-

tailed) extrapolations beyond truncated strikes and between observed maturities while remaining 

nonparametric. New confidence intervals quantify the term structure estimation error. The 

framework is applied to estimating the term structure of the variance risk premium and finds that 

a short-run component dominates market excess return predictability. 
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1 Introduction

A large class of economically important option portfolios have a natural term structure, obtained

by varying the maturities of the options combined. For example, the VIX and model-free variance

spanning portfolios of Carr and Wu (2009), Jiang and Tian (2005), Britten-Jones and Neuberger

(2000) and the skewness and kurtosis portfolios of Bakshi et al. (2003), Chang et al. (2013), and

Conrad et al. (2013) each have a term structure that is indexed by option maturity. With such

term structures in hand, asset pricing models that make predictions about prices and risk premia

over multiple horizons can be tested by their ability to replicate the observed term structures. This

intuition has been pursued extensively in the fixed income literature on the term structure of interest

rates and could by analogy be carried over to the option setting.

However, unlike the term structure of interest rates, option-implied term structures are not

directly observed along two dimensions (maturity and strike) and hence must often be constructed or

estimated from available option prices. Any such estimates must invariably confront the realities of

option data, which truncate strikes, display only a handful of maturities, and are often contaminated

with microstructure noise.1 These realities are exacerbated at longer maturities, where options are

well known to be less liquid.2 Thus, while intuition suggests that option portfolios computed from

liquid short-maturity option contracts should be more precise than their illiquid counterparts, there

exists, to date, no formal framework for quantifying this intuition.

This paper proposes a nonparametric estimation and inference framework for the term struc-

tures of option portfolios like the VIX and related measures. By building a sieve estimator around

the risk-neutral valuation equation, the framework theoretically justifies fat-tailed extrapolations

beyond truncated strikes while remaining nonparametric. This feature is particularly relevant for

long-maturity options, whose strikes often do not provide sufficient tail coverage to produce reli-

able estimates of long-run spanning portfolios. Furthermore, the framework makes theoretically

supported predictions for option portfolios even for sparsely traded maturities, sidestepping the

need for atheoretical maturity interpolations. Finally, it puts new confidence intervals on estimated

portfolio term structures that arise when option prices are observed with microstructure error.
1See, for example, Carr and Wu (2009, sec. 4) and Jiang and Tian (2005, sec. 1.2).
2The concern about longer maturity options in the context of forming model-free option spanning portfolios has

been pointed out, e.g. in Aït-Sahalia et al. (2014, p. 4) and Driessen et al. (2009, p. 1384)).
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The confidence intervals apply to each maturity along the portfolio term structure and facilitate

comparisons of precision across maturities.

The framework is motivated by the tension that arises when trying to estimate model-free option

spanning portfolios from less reliable long-maturity options: While the “model-free" requirement

calls for a nonparametric approach, the reduced signal from long-maturity options calls for additional

structure. Therefore, to incorporate structure in a model-free way, I build a sieve estimator around

the risk-neutral valuation equation, which itself contains valuable shape information about option

prices at all maturities (even unobserved ones).3 Thus by forming basis function expansions to

the term structure of state-price densities (SPDs) and integrating against option payoffs, I obtain

candidate option surfaces that incorporate the shape information from the valuation equation. A

sieve least squares regression then fits the candidate price surface to observed option prices by

optimizing over the coefficients of the expansion terms. Option portfolio term structures, which

are the final objects of interest, are then merely functionals of the estimated price surface, so

that a simple nonlinear least squares (NLLS) sandwich-covariance matrix leads to their confidence

intervals.

The main results of the paper are closed-form expressions for sieve option prices, the consistency

of the nonparametric price surface, its rate of convergence, and the asymptotic distribution theory

for the term structure of the option spanning portfolios. The distribution theory is the first of

its kind in the context of estimating option spanning portfolios and quantifies the intuition that

not all portfolios along the term structure are estimated with equal precision. Furthermore, the

sieve option prices themselves have an appealing interpretation as expansions around the Black and

Scholes (1973) formula, with higher order terms that account for non-Gaussian features of the risk-

neutral return distribution. However, in contrast to existing expansions involving the Black-Scholes

formula, e.g. Jarrow and Rudd (1982) or Kristensen and Mele (2011), the present sieve framework

requires the number of expansion terms to grow slowly with the sample size, allowing ever-increasing

flexibility to fitting prices from the unknown data-generating process. Asymptotically, the tails of

the sieve SPDs are of polynomial order, which gives rise to fat-tailed extrapolations beyond truncated
3This shape information goes back to Breeden and Litzenberger (1978) and Banz and Miller (1978) and has been

since been exploited elsewhere, for example, in Aït-Sahalia and Lo (1998), Aït-Sahalia and Duarte (2003), Yatchew
and Härdle (2006), Figlewski (2008), Rompolis and Tzavalis (2008), and Polkovnichenko and Zhao (2013) in the
context of estimating state-price densities.
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strikes along every point on the term structure of SPDs.

I apply the framework to estimating the term structure of the VIX and its square, the synthetic

variance swap, in both simulation and empirical settings. The simulation exercises show that the

sieve substantially outperforms existing methods in situations where a subset of maturities displays

significant strike truncation. This situation is quite common in the data and arises somewhat

surprisingly in crisis periods, when the liquidity for longer maturity options appears to dry up.

The sieve’s performance in these situations is largely due to its structure, which, in addition to

providing tail extrapolations, uses information from all option maturities simultaneously to inform

VIX estimates at illiquid maturities. This differs from existing methods, which can be viewed as

using information only local to the maturity of interest.

The simulations further show that the sieve can fit option prices well regardless of whether

the underlying data were generated by a Heston (1993) stochastic volatility (SV) model, an SV

model with jumps in prices, or an SV model with jumps in prices and jumps in volatility (Duffie

et al. (2000)). In particular, a Monte Carlo exercise demonstrates that the sieve term structures

display size control in finite samples when the expansion terms are chosen to minimize a data-driven

and computationally convenient information criterion. Finally, the simulations also show that the

number of expansion terms selected in this way increases with the complexity of the DGP.

In an empirical application, I study the term structure of the variance risk premium embedded in

S&P 500 index options from 1996 to 2013. The variance risk premium measures the compensation

that investors demand for bearing return variance risk over a given horizon.4 Using the sieve

framework proposed in this paper combined with a novel set of expectation hypothesis and return

predictability regressions, I find that the compensation for bearing variance risk is dominated by a

short-run component. That is, investors earn a significant premium for selling securities that pay

off only if realized return variance spikes in the next one to two months. In contrast, a security

that affords similar protection from realized variance over longer periods that exclude the next

two months commands no measurable premium. This result is consistent with the recent evidence

presented in Dew-Becker et al. (2014), who find a similar pattern in the unconditional Sharpe ratios

of a trading strategy involving variance swaps.
4See, for example, Bakshi and Madan (2006), Carr and Wu (2009), Bollerslev and Todorov (2011), Bollerslev et al.

(2011), Drechsler and Yaron (2011), Bollerslev et al. (2013), Bekaert and Hoerova (2014) and the references therein.
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The paper connects with several strands of the literatures in finance and econometrics. The

study of option spanning portfolios for a single maturity is well-established, and has been developed

theoretically, for example, by Britten-Jones and Neuberger (2000), Bakshi and Madan (2000), Jiang

and Tian (2005), and Carr and Wu (2009), and explored empirically by Bakshi et al. (2003),

Chang et al. (2013), Conrad et al. (2013). The framework developed in this paper is for option-

implied term structures and is distinct because estimation involves simultaneous use of options

across all maturities. This extension is related to the burgeoning empirical literature on option-

implied term structures, including exponential claims to integrated variance as in Bakshi et al.

(2011), the dividend strip term structure of van Binsbergen et al. (2012), as well as the term

structure of the variance risk premium, which has only recently been explored in Aït-Sahalia et al.

(2014) and Dew-Becker et al. (2014). Furthermore, the development of confidence intervals for the

portfolio term structure is new to this literature. Econometrically, the sieve framework I develop is

an adaptation of the theory of Shen (1997), Chen and Shen (1998), Chen (2007), and Chen et al.

(2014). The contribution to this literature is a sieve regression framework in which the regressor is

a functional of the infinite-dimensional parameter of interest, requiring additional continuity results

that are specific to option pricing. Finally, the basis functions employed for the sieve expansions

are conditional analogs to those of Gallant and Nychka (1987) and León et al. (2009).

2 Main Idea

Standing at time 0, the object of interest is the term structure of a general class of model-free option

spanning portfolios. To fix ideas consider a specific member of this class, the synthetic variance

swap (SVS) (Carr and Wu (2009)), whose square root is commonly referred to as the VIX volatility

index when the options are written on the S&P 500 index. For a given time horizon τ , the SVS is

obtained by combining European put and call options with different strikes κ and common maturity

τ into a single portfolio. Letting Z = (κ, τ, r, q), where r ≡ r(τ) and q ≡ q(τ) correspond to the

risk-free rate and underlying dividend yield at the maturity τ of interest, the SVS term structure is

the function

SV S0(τ) =
2

τ
erτ
∫ F (Z)

0

1

κ2
P0(Z)dκ+

2

τ
erτ
∫ ∞
F (Z)

1

κ2
C0(Z)dκ, (2.1)
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Table 1: Sample Averages for Monthly S&P 500 Index Options, 1996-2013.

Maturity Range Number of Option Open Bid-Ask
(Days) Options Volume Interest Spread ($)

0 - 90 196.2 188 952.6 2 403 231.7 0.96
90 - 180 59.6 20 325.3 702 530.5 1.19
180 - 270 45.4 8626.8 434 287.5 1.38
270 - 360 42.4 4770.0 260 077.3 1.61
360 - 450 16.8 2180.6 161 567.9 1.97
450 - 540 16.5 1131.8 122 241.0 2.13
540 - 630 12.6 751.0 83 417.1 2.35
630 - 720 12.3 810.5 63 685.1 2.42
720 - ∞ 18.7 1521.4 90 235.1 4.46

0 - ∞ 420.9 229 072.0 4 321 320.0 1.35

where F (Z) = S0e
(r−q)τ is the forward price, S0 is the current (fixed) stock price, P0(Z) is the put

option price with characteristics Z, and C0(Z) = P0(Z) +S0e
−qτ −κe−rτ is the call option price by

put-call parity. We therefore need to evaluate P0(Z) at arbitrary τ across an infinite continuum of

κ in order to get at the portfolio term structure SV S0(τ).

Because P0(Z) (and therefore C0(Z) by put-call parity) is unobserved, it must be estimated

from a sample of put option prices and characteristics {Pi,Zi}ni=1. Table 1 shows that a typical

cross-section of S&P 500 index options contains about n = 420 prices, with most of the observations

concentrated at short maturities. The thinning of available option quotes for increasing τ is also

associated with smaller trading volumes, less open interest, and widening bid-ask spreads.5 The

widening spreads introduce varying levels of uncertainty about P0(Z) for different τ , which I allow for

by letting Pi = P0(Zi) + εi for εi a conditionally mean-zero, heteroskedastic measurement error. In

this context, we refer to P0(Zi) as representing the true option price for an option with characteristics

Zi. Collectively, I follow the literature and refer to the thinning of prices and increased noise as

manifestations of illiquidity at longer maturities.6

To preserve the SVS’s interpretation as a model-free spanning portfolio, I estimate P0(Z) non-

parametrically. However, instead of regressing Pi on Zi directly, the approach here is to exploit

our economic knowledge of the functional form P0(Z). As shown below, the risk-neutral valuation
5Note that Table 1 reports dollar bid-ask spreads because dollar values enter the integral in (2.1). The data set

follows the CBOE data filters and is discussed further in Section 6.
6See, e.g. Aït-Sahalia et al. (2014), Driessen et al. (2009).
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equation states that there exists a conditional density f0 such that P0(Z) = P (f0,Z) for known

P (·,Z). The fact that f0 is a density imposes economically motivated shape restrictions on P0(Z)

in the (κ, τ) space. A key element of the proposed framework is that this shape information can

be used to guide our estimates of P0 for regions of (κ, τ) that are poorly observed due to liquidity

issues.

The goal, therefore, is to only consider P (f,Z) for candidates f that are valid densities.7 Denote

the collection of these candidate densities by F . One possible approach might then involve solving

f̂ = arg inf
f∈F

{
1

n

n∑
i=1

[
Pi − P (f,Zi)

]2
W (Zi)

}
,

thereby obtaining estimates P̂ (Z) ≡ P (f̂ ,Z) of P0(Z). However, in the present nonparametric

framework, the space F is infinite-dimensional. As is well known, in general optimizing over an

infinite-dimensional function space may not be feasible or could even be ill-posed. In this case, it

is typical to proceed by the method of sieves, which involves approximating F by a sequence of

finite-dimensional function spaces (the “sieve" spaces) FK ⊂ FK+1 ⊂ · · · ⊂ F that are compact and

arbitrarily dense in F for large K [see Chen (2007), Chen and Shen (1998), and Shen (1997)].

Thus, given such a sequence of approximating spaces, the feasible optimization problem to be

solved will be of the form

f̂Kn = arg min
f∈FKn

{
1

n

n∑
i=1

[
Pi − P (f,Zi)

]2
W (Zi)

}
, (2.2)

where Kn → ∞ slowly as n → ∞. Informally, as the sample size grows, the approximating spaces

FKn increasingly resemble the parent space F , so that optima on FKn should indeed converge to

f0. Proposition 2 below makes this notion precise and further shows that the option price estimates

P̂ (Z) ≡ P (f̂Kn ,Z) also converge to the true option price P (f0,Z).

Computationally, (2.2) is equivalent to non-linear least squares. This is because every sieve

density f ∈ FKn can be represented as nonlinear combinations of certain basis functions. The

coefficients of these basis functions, βn ∈ RKn then become the variables of optimization. Moreover,

Proposition 1 shows that sieve densities, when integrated against the option’s payoff, yield closed-
7If one were to instead evaluate P (g,Z) for g taking negative values on a set of non-zero Lebesgue measure, then

the prices P (g, ·) would admit an arbitrage opportunity.
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form option prices P (f,Zi) for all f ∈ FKn . Thus, (2.2) amounts to a nonlinear least-squares

problem with closed-form regressors and is therefore accessible with standard statistical software.

Estimates of the SVS term structure are then obtained by evaluating

ŜV S(τ) =
2

τ
erτ
∫ F (Z)

0

1

κ2
P̂ (Z)dκ+

2

τ
erτ
∫ ∞
F (Z)

1

κ2
Ĉ(Z)dκ, (2.3)

point-wise in τ , where Ĉ(Z) is obtained from P̂ (Z) by put-call parity. Moreover, because P̂ (Z) can

be evaluated for any Z = (κ, τ, r, q), one can obtain projections for ŜV S(τ) for unobserved τ .

Finally, it is worth emphasizing that the SVS term structure is a special case of the proposed

framework, which applies to the general class of portfolios

Γ(P̂ ) = g

(∫
Z1

a(Z1,Z2)P̂ (Z1,Z2)dZ1 +

∫
Zc1
b(Z1,Z2)Ĉ(Z1,Z2)dZ1

)
, (2.4)

where Z = (Z1,Z2)
′ and Z1 is a subset of the domain of Z1.8 This class of portfolios encompasses

many objects of interest beyond the SVS, and can include e.g. the skewness and kurtosis portfolios

of Bakshi et al. (2003), in which case Z1 = κ. Because portfolios of this form represent regular

functionals in the sense of Chen et al. (2014), derivation of an asymptotic distribution for this class,

including ŜV S(τ) or its square-root V̂ IX(τ), is an application of their theory. Proposition 4 below

shows how this theory can be used to establish results of the form
√
nV̂ −1/2(ŜV S(τ)−SV S0(τ))→d

N(0, 1).

Figure 1 illustrates the resulting confidence intervals for the SV S term structure, converted

to standard deviations in order to be directly comparable to the CBOE’s V IX = 100
√
SV S. The

figure illustrates that the object of interest is a curve indexed by option maturity, and that sampling

error around this curve of as much as 500bp can emerge at longer maturities. For comparison, I

plotted an alternative VIX term structure by applying the CBOE’s discrete approximation to the

same option data. The figure shows that the two curves can deviate substantially, in particular

during the two crisis periods 23-Sep-1998 (bailout of Long-Term Capital Management) and 31-Oct-

2008 (financial crisis after Lehman bankruptcy). Below, we will see in the data and in a simulation

environment that these deviations are attributed to severe strike truncation at long maturities, a
8The function g is added for convenience to allow for transformations of the option spanning portfolio of interest,

e.g. V IX = 100
√
SV S, in which case g(x) = 100

√
x. In many applications, g(x) = x.
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Figure 1: Sieve Estimated V IX = 100
√
SV S Term Structure. Using the full option cross-sections on the

indicated days, the sieve regression (2.2) is estimated to obtain an option surface P̂ (Z). The functional (2.3)
is then computed, with Ĉ(Z) computed by put-call parity. The shaded (green) region corresponds to the
95% - confidence intervals of the VIX term structure following the result in Proposition 4 in the text. Blue
triangles correspond to the CBOE’s VIX calculation on the same option data, and the red dot is the actual
published 30-day CBOE VIX.
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feature that persists at long maturities for a number of days during crises.

In sum, the framework can be described as consisting of two steps: In the first step, a shape-

conforming price surface is estimated via the sieve least squares regression (2.2). In the second

step, the portfolio term structures and confidence intervals of (2.4) are obtained using the sieve

estimates as inputs. The next section is concerned with deriving each ingredient for the regression

(2.2): it outlines the pricing functional P (f,Z), followed by the function spaces FK and F , and the

closed-form regressors P (fK ,Z) for any fK ∈ FK .

3 Estimation Framework

3.1 Constructing the Regressors from Theory

The goal is to exploit the structure afforded by the well-known risk-neutral valuation equation.9

Thus, for a vector of characteristics Z = (κ, τ, r, q), the true option price is modeled as

P0(Z) ≡ e−rτEQ
0

[[
κ− S

]
+

∣∣∣τ,V = v0

]
= e−rτ

∫ κ

0
[κ− S]fQ0 (S|τ,V = v0)dS, (3.1)

where V is a vector of state variables that generate the current information set, fQ0 ( · |τ,V = v0)

is the unobserved state-price density (SPD), r is the risk-free rate, and S is the random (future)

value of the underlying. The components of V are left unspecified and can contain any number of

variables relevant to pricing options. The Heston model, for example, specifies V = (S0, V0), where

S0 is the current underlying price and V0 represents spot volatility (see Heston (1993), Duffie et al.

(2000)).

Since the data represent an option cross-section at a single point in time, V realizes to some

fixed value V = v0. To simplify notation, I therefore define fQ0 (S|τ) ≡ fQ0 (S|τ,V = v0), since v0 is

static across the option surface. On the other hand, τ is not static on the option surface because it

indexes maturity. In this form, the risk-neutral valuation formula on a single option cross-section

becomes

P0(Z) ≡ e−rτ
∫ κ

0
[κ− S]fQ0 (S|τ) dS. (3.2)

9See, for example, Chapters 6 and 8 in Duffie (2001) for a discussion of risk-neutral pricing.
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The dependence of the option price on the SPD fQ0 and the characteristics Z can be expressed as

P0(Z) ≡ PS(fQ0 ,Z).

The no-arbitrage pricing equation (3.2) implies shape restrictions on the option prices. Differ-

entiating PS(fQ0 ,Z) repeatedly with respect to the strike price κ yields the conditions

∂PS
∂κ

= e−rτFQ
0 (κ|τ),

∂2PS
∂κ2

= e−rτfQ0 (κ|τ),

where FQ
0 is the CDF of fQ0 . These conditions immediately imply that PS(fQ0 ,Z) is monotone and

convex in κ for any τ , and additionally has slope e−rτ as κ → ∞ and slope 0 as κ → 0. Notice

that these shape constraints follow directly from the nonnegativity of fQ0 and the property that fQ0

integrates to one with respect to S for all τ .10

Since the option price’s shape constraints are implied by the fact that fQ0 is a PDF, the strategy I

employ to obtain shape-conforming option price estimates is to use approximating densities that are

valid PDFs within the context of sieve estimation. However, instead of approximating fQ0 directly,

it turns out to be more convenient to first transform S by a change of variables, and then find

approximating densities to a Jacobian transformation of fQ0 . The results of this straightforward

change-of-variables are analytically closed-form option prices that are theoretically informative and

computationally convenient.

To this end, let Y be the random variable that satisfies

log

(
S

S0

)
= µ(Z) + σ(Z)Y, (3.3)

where Y |τ has density f0(y|τ), and µ(·) and σ(·) > 0 are known functions of the characteristics Z,

and where f0(·|τ) is the unknown density to be nonparametrically estimated from the data. This

change of variables is always possible for S > 0 because for any µ(·) and σ(·), Y simply is the

variable that makes (3.3) hold.
10These shape constraints have been exploited elsewhere in the nonparametric option pricing literature for a single

τ . See, for example, Aït-Sahalia and Duarte (2003), Bondarenko (2003), Yatchew and Härdle (2006), and Figlewski
(2008).
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Under this change of variables, the valuation equation (3.2) becomes

PS(fQ0 ,Z) = e−rτ
∫ κ

0

(
κ− S

)
fQ0 (S|τ) dS = e−rτ

∫ d(Z)

0

(
κ− S0eµ(Z)+σ(Z)Y

)
f0(Y |τ) dY ≡ P (f0,Z),

(3.4)

where

d(Z) =
log(κ/S)− µ(Z)

σ(Z)
(3.5)

and

fQ0 (s|τ) = (sσ(Z))−1f0(s|τ) (3.6)

follow from a Jacobian transformation.

Since (3.4) says PS(fQ0 ,Z) = P (f0,Z), one can focus on option pricing equations of the form

P (f,Z) = e−rτ
∫ d(Z)

0

(
κ− S0eµ(Z)+σ(Z)Y

)
f(Y |τ) dY. (3.7)

This is the functional that appears as the regressor in (2.2). Furthermore, it is easy to verify that

(3.7) satisfies the same shape restrictions as (3.2) for any f with f(y|τ) ≥ 0 and
∫
f(y|τ)dy = 1.

3.2 Characterizing F and its Sieve Spaces FK

To arrive at consistency, a convergence rate, and inference results, F and its sieve spaces FK are

assumed to belong to Sobolev spaces. Restricting F and FK in this way effectively rules out the

possibility that the true option prices are generated by a very rough or oscillatory state-price density.

However, because a full description of the relevant Sobolev spaces is not needed for implementation,

I relegate the formal presentation of F and FK to Appendix A and focus instead on intuition.

For an option surface to conform to the theoretical shape restrictions of (3.7) for any τ , F must

be a function space consisting of conditional densities f(Y |τ) in the sense that f(y|τ) ≥ 0 and∫
f(y|τ)dy = 1 for all τ . I construct such functions by first defining a collection of joint densities

FY,τ with elements fY,τ (y, τ), and then defining F to consist of those functions f(y|τ) such that

f(y|τ) = fY,τ (y, τ)/
∫
fY,τ (y, τ)dy for some fY,τ ∈ FY,τ .

Gallant and Nychka (1987) show that if FY,τ is a certain Sobolev subspace (see Appendix A
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below) and {FY,τK }∞K=0 is a collection of squared and scaled Hermite functions, then {FY,τK }∞K=0 is a

valid sieve for FY,τ . To extend their results to an option pricing setting, Appendix A below shows

that the conditional approximating spaces {FK}∞K=0 consisting of those functions fK for which

fK(y|τ) = fY,τK (y, τ)/
∫
fY,τK (y, τ)dy for some fY,τK ∈ FY,τK is also a valid sieve for the conditional

parent space F , although the topologies differ.

The Gallant-Nychka sieve spaces {FY,τK }∞K=0 consist of functions of the form

fY,τK (y, τ) =

Ky∑
k=0

Kτ∑
j=0

βkjHj(τ)

Hk(y)

2

e−τ
2/2e−y

2/2 =

Ky∑
k=0

αk(B, τ)Hk(y)

2

e−τ
2/2e−y

2/2,

(3.8)

where Hk are Hermite polynomials of degree k, and where B is a matrix of coefficients with kj-entry

βkj and K = (Ky + 1)(Kτ + 1).11 This function is clearly non-negative. Then, using orthogonality

properties of Hermite polynomials, it can be shown that in order for
∫∫

fY,τK (y, τ)dydτ = 1 for any

K, it suffices to impose
∑Ky

k=0

∑Kτ
j=0 β

2
kj = 1.12

The conditional sieve spaces FK will then consist of functions of the form

fK(y|τ) = fY,τK (y, τ)

/∫
fY,τK (y, τ)dy (3.9)

for all joint densities fY,τK ∈ FY,τK . Notice that because the sieve joint densities fY,τK (y, τ) are com-

pletely determined by the parameter matrix of coefficients B, then so are the conditional densities

in FK . Therefore, for β ≡ vec(B), we arrive at the least squares problem

β̂n = arg min
β∈RKn

{
1

n

n∑
i=1

[
Pi − P (β,Zi)

]2
W (Zi)

}
s.t.

Ky(n)∑
k=0

Kτ (n)∑
j=0

β2kj = 1, (3.10)

11The Hermite polynomials are orthogonalized polynomials. They are defined, for scalars x, by

HK(x) =
xHK−1(x)−

√
K − 1HK−2(x)√
K

, K ≥ 2

where H0(x) = 1, and H1(x) = x [see, for example, León et al. (2009)]. Note that HK(x) is a polynomial in x of
degree K.

12Strictly speaking, the joint densities of interest are of the form fY,τ = [PKφ
1/2]2 + εh0 given in Appendix A,

where PK =
∑Ky
k=0(

∑Kτ
j=0 βkjHj(τ))Hk(y) and φ is the standard normal density. The term εh0, where h0 can also

be Gaussian, was introduced in Gallant and Nychka (1987) for technical reasons and is also helpful in numerical
implementation to prevent division by zero when forming conditional densities. See Appendix A.
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which is numerically equivalent to nonlinear least squares estimation for fixed Kn. As written,

P (β,Zi) is identical to P (fK ,Zi) from (3.7), which still requires an integration to obtain a candidate

option price. Section 3.3 shows that in fact, P (fK ,Zi) is available in closed-form for any fK ∈ FK ,

which considerably facilitates implementation.

Remark 3.1. As written, the objective function in (3.10) is in dollar levels, which weights at-the-

money options highest. To see this, let I(Zi) = erτ max[κi − S0, 0] denote the intrinsic value of

option i. Then [Pi − P (β,Zi)]
2 = [{Pi − I(Zi)} − {P (β,Zi) − I(Zi)}]2. Because {Pi − I(Zi)}

and {P (β,Zi) − I(Zi)} assume their largest values at-the-money, the objective function in (3.10)

is most sensitive to deviations at-the-money. If a different weighting is desired, the function W (Zi)

can be used instead. For example, by setting W (Zi) to the inverse of option i’s squared vega, one

can approximate implied volatility errors (e.g., Christoffersen et al. (2013)). However, for inference

problems related to option-implied term structures, the Monte Carlo simulations below suggest that

simply setting W (Zi) = 1 yields superior coverage properties. Additionally, closed-form expressions

for the gradients and Hessians of (3.10) are provided in the Online Appendix to this paper.

Finally, note that the sieve densities preserve the required economic shape restrictions. To see

this, one differentiates with respect to κ to obtain

erτ
∂P (fK ,Z)

∂κ
=

∫ d(Z)

0
fK(Y |τ)dY τ = FK

(
log(κ/S0)− µ(Z)

σ(Z)

∣∣∣∣∣τ
)

(3.11)

where FK(·|τ) is the cumulative distribution function of fK . Hence, because fK ≥ 0 and integrates

to one, one observes that (a) P (fK ,Z) is increasing in the κ dimension (since FK ≥ 0 as a CDF),

(b) P (fK ,Z) is convex (since ∂FK/∂κ is fK/(κσ(Z)) and fK ≥ 0), and (c)

lim
κ↗+∞

erτ
∂P (fK ,Z)

∂κ
= 1, lim

κ↘0
erτ

∂P (fK ,Z)

∂κ
= 0. (3.12)

This shows that the sieve option prices satisfy the shape constraints implied by economic theory,

for any τ .

I now provide closed-form expressions for the sieve option prices P (fK ,Z) to be used in the

regression (2.2) and show that µ(Z) and σ(Z) can be chosen so that the sieve option prices have a

natural interpretation as expansions around the Black-Scholes model.
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3.3 The Option Price Regressors in Closed-Form

3.3.1 A Building Block: Closed-Form Sieve Densities

To obtain closed-form option prices, it is convenient to first establish a linear representation for the

conditional sieve densities fK of (3.9). This is done by expanding the squared polynomial term in

the joint densities of (3.8) using results from León et al. (2009).

Lemma 3.2. Any fK ∈ FK can be expressed in the form

fK(y|τ) =

2Ky∑
k=0

γk(B, τ)Hk(y)φ(y), (3.13)

where γk(B, τ) = α(B,τ)′Akα(B,τ)
α(B,τ)′α(B,τ) , Ak is a known matrix of constants, and α(B, τ) is a (Ky + 1)× 1

column vector obtained by stacking the αk(B, τ) in (3.8).

Proof. Appendix A.

The use of densities fK(y|τ) that are linear combinations of functions in y helps with the

derivation of closed-form option prices.

3.3.2 Closed-Form Sieve Option Prices

The following result is an extension of Proposition 9 in León et al. (2009) to the case allowing for

conditioning on τ .

Proposition 1. For a candidate SPD fK(y|τ) ∈ FK of the form given in equation (3.13), the put

option price P (fK ,Z) from equation (3.7) is given by

P (fK ,Z) = κe−rτ

Φ(d(Z))−
2Ky∑
k=1

γk(B, τ)√
k

Hk−1(d(Z))φ(d(Z))


− S0e−rτ+µ(Z)

eσ(Z)2/2Φ(d(Z)− σ(Z)) +

2Ky∑
k=1

γk(B, τ)I∗k(d(Z))

 (3.14)
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where Φ(·) is the standard normal CDF, K = (Ky + 1)(Kτ + 1), and where

I∗k(d(Z)) =
σ(Z)√
k
I∗k−1(d(Z))− 1√

k
eσ(Z)d(Z)Hk−1(d(Z))φ(d(Z)), for k ≥ 1,

I∗0 (d(Z)) = eσ(Z)
2/2Φ(d(Z)− σ(Z)),

and γk(B, τ) is the coefficient function given in equation (3.13).

The price of a call option is given by

C(fK ,Z) = S0e
−rτ+µ(Z)

eσ(Z)2/2[1− Φ(d(Z)− σ(Z))]−
2Ky∑
k=1

γk(B, τ)I∗k(d(Z))


− κe−rτ

[1− Φ(d(Z))]−
2Ky∑
k=1

γk(B, τ)√
k

Hk−1(d(Z))φ(d(Z))

 . (3.15)

Proof. Appendix B.

Remark 3.3. A consequence of this result is that it makes the sieve regressor function of (3.10)

available in closed-form. Indeed, in sharp contrast to the large class of parametric option pricing

models of Heston (1993) and Duffie et al. (2000), no numerical integrations are required to compute

an option price, which significantly facilitates the optimization problem (3.10). Moreover, the

Online Appendix to this paper also provides closed-form gradients and second derivatives of the

prices P (fK ,Z). And finally, having closed-form price estimates drastically simplifies the ultimate

objective of computing integrated portfolios of P (fK ,Z).

3.3.3 Theoretical Interpretation of Option Pricing Formulas

The sieve put option price in (3.14) has an intuitive interpretation. Rearranging equation (3.14),

one obtains

P (fK ,Z) = κe−rτΦ(d(Z))− S0e−rτ+µ(Z)eσ(Z)
2/2Φ(d(Z)− σ(Z))

−
Ky∑
k=1

γk(B, τ)

[
1√
k
Hk−1(d(Z))φ(d(Z)) + S0e

−rτ+µ(Z)I∗k(d(Z))

]
. (3.16)
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Inspection of equation (3.16) shows that choosing

σ(Z) ≡ σ
√
τ , µ(Z) ≡ (r − q − σ2/2)τ (3.17)

will cause the leading term in equation (3.16) to become

PBS(σ,Z) ≡ κe−rτΦ(d(Z))− S0e−qτΦ(d(Z)− σ
√
τ),

where q is the dividend yield, and where the function d(Z) from equation (3.5) is now d(Z) =

(log(κ/S0)− (r− q− σ2/2)τ)/(σ
√
τ). The value σ is a constant in the sieve framework and can be

chosen to equal the implied volatility of an at-the-money option.

This is the familiar option pricing formula of Black and Scholes (1973). Therefore, the choice of

µ(Z) and σ(Z) above result in a sieve approximation with leading term given by the Black-Scholes

formula, that is,

P (fK ,Z) = PBS(σ,Z)−
2Ky∑
k=1

γk(B, τ)

[
κe−rτ√

k
Hk−1(d(Z))φ(d(Z)) + Se−qτ−σ

2τ/2I∗k(d(Z))

]
.

This formula can be interpreted as “centering" the sieve at Black-Scholes, and then supplementing

it with higher-order “correction" terms.13 As the sample size n increases, the number of correction

terms, Ky and Kτ , also increase, albeit at a slower rate than n.14 Thus, the more data one has, the

more complex the sieve option pricer is permitted to be relative to Black-Scholes.

If the γk(B, τ) terms for k ≥ 1 above are significantly different from zero in the data, then we can

regard this as evidence against the Black-Scholes model. In particular, it has been well-documented

that conditional distributions of asset prices contain substantial volatility, skewness, and kurtosis

that the Black-Scholes model is unable to capture. Modeling techniques to introduce such features

into the return distribution includes the addition of stochastic volatility (Heston (1993)), as well

as jumps (Bates (1996), Bates (2000), Bakshi et al. (1997), Duffie et al. (2000)). The simulation

study in Section 5 explores how these continuous time parametric features feed into the coefficients

of the Hermite expansion and shows that an empirically tractable number of expansion terms is
13Recently, Kristensen and Mele (2011), Xiu (2011), and León et al. (2009) have employed Hermite polynomials in

a parametric option pricing setting.
14Recall that the γk(B, τ) terms also contain expansions in the maturity dimension.
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quite capable of fitting the conditional distributions implied by complicated stochastic volatility

and jump specifications.

4 Asymptotic Results

The critical feature of P (f,Z) in (3.7) is that it generates shape-conforming option prices for any τ .

It does so by indexing state-price densities with maturity τ , which appears as a conditioning variable.

A straightforward extension of (3.7) is allowing a state-price density with arbitrary conditioning

information, f(Y |X), where X ⊆ Z and contains τ . For example, one could have X = (τ, r) to

accommodate a risk-free rate term structure that does not match the maturities of observed option

prices. Allowing for general X is instructive in order to see how the rate of convergence is slowed

by the dimension of the conditioning variable X. Therefore, this section establishes the asymptotic

theory for the extension that allows for arbitrary conditioning information in the SPD. The results

below also refer to

P ≡ {P : P (Z) = P (f,Z) for some f ∈ F},

the set of option prices obtained by integrating option payoffs agains SPDs in F .

Proposition 2 now shows that under sufficient conditions given in Appendix B, sieve-estimated

option prices obtained by setting P̂n ≡ P (f̂n,Z), where f̂n solves the least squares problem (2.2),

are consistent for the true option prices P0 = P (f0,Z). The consistency norm is the L2(Rdz ,WdP)

norm given by

‖P1 − P2‖22 = E{[P1(Z)− P2(Z)]2W (Z)} =

∫
[P1(Z)− P2(Z)]2W (Z)P(dZ) (4.1)

on the space of option prices P.

Proposition 2. (Consistency) Assumptions A.1 and B.1 imply
∥∥∥P̂n − P0

∥∥∥
2

p→ 0.

Proof. Appendix B.

The proof of Proposition 2 establishes a link between option prices P and the state-price density

space F from which they are generated. Next, Proposition 3 establishes the rate at which P̂n

converges to P0. Informally, the rate depends on the size and complexity of the space of admissible
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option prices P, which is indexed by the space of conditional densities F , which in turn is indexed

by the space of joint densities FY,X . Thus, the size and complexity of P is determined by the size

and complexity of the joint densities, which reside in a Sobolev space whose members have bounded

derivatives up to order m0 +m (Appendix A).

Proposition 3. Under Assumptions A.1 and B.1–B.4,

∥∥∥P̂n − P0

∥∥∥
2

= OP (εn),

εn = max{n−(m0+m)/(2(m0+m)+du), n−αdu/(2(m0+m)+du)}.

and Kn � ndu/(2(m0+m)+du).

Proof. Appendix B.

Intuitively, the rate result says that option prices converge at a faster rate when (a) the state-

price densities considered are smoother (larger m0 +m), (b) the sieve spaces {FK} fill in the parent

space F at a faster rate (larger α), and (c) the dimension of the conditioning variable is smaller

(smaller du = 1 + dx). Expressions of α in terms of the more primitive m0,m, and du are, as yet,

unavailable for the particular weighted Sobolev spaces that underlie this framework.

The rate result is used to establish the asymptotic distribution of a variety of option portfolios,

including the synthetic variance swap of Carr and Wu (2009), the skewness and kurtosis portfolios

of Bakshi et al. (2003), and the exponential claims to integrated variance given in Bakshi et al.

(2011). The key observation is that these option portfolios are functionals of the estimated price

P̂n, which was introduced as Γ(P̂n) in (2.4) above. Given this functional relationship, intuition then

suggests that inference on the portfolio functional Γ(·) should follow from a functional delta method

on Γ(P̂n).

Fortunately, Proposition 4 now shows that things are much simpler in practice because the

standard parametric sandwich covariance matrix is applicable once Kn is chosen appropriately.

This feature is due to an insight of Chen et al. (2014), who show an equivalence between the

parametric covariance matrix and the Riesz representer of the derivative of functionals like Γ(·).

Specifically, let Ξi ≡ (Pi,Zi) denote observations on option prices and characteristics, and define

`(β,Ξi) ≡ −1
2 [Pi − P (β,Zi)]

2W (Zi).
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Proposition 4. Under Assumptions A.1 and B.1–B.5,

√
nV̂ −1/2n [Γ(P̂n)− Γ(P0)]

d−→ N(0, 1) (4.2)

where

V̂n = Ĝ′KnR̂
−1
Kn

Σ̂KnR̂
−1
Kn
ĜKn (4.3)

and where

ĜKn =
∂Γ(P (β̂n,Z))

∂β
, R̂Kn = − 1

n

n∑
i=1

∂2`(β̂n,Ξi)

∂β∂β′
, Σ̂Kn =

1

n

n∑
i=1

∂`(β̂n,Ξi)

∂β

∂`(β̂n,Ξi)

∂β

′

.

Proof. Appendix B.

The objects in (B.8) are the usual quantities involved in the estimation of the variance matrix in

nonlinear least squares problems. For example, if Γ represents the 1-month V IX(1), i.e. V IX(1) =

100
√
SV S(1) for the synthetic variance swap of (2.1), then Proposition 4 says that the V IX(1)

is asymptotically normally distributed with estimated variance V̂n computed above. Moreover,

this calculation can be done to obtain V IX(τ) for arbitrary τ , which enables the construction of

V IX term structures that quantify the estimation error involved with the construction of long-term

V IX’s.

5 Simulations

Despite its parametric appearance, the sieve is still model-free in the sense that it can fit option prices

from a variety of unknown data generating processes (DGPs). To illustrate, I simulate empirically

realistic option price data from DGPs of varying complexity. Within the simulations, while I observe

the DGP, the sieve does not. Instead, the sieve is only permitted to vary the number of expansion

terms Kn in a data-dependent manner, making the choice of Kn as important as the choice of a

bandwidth in a kernel regression. In this section, I propose a data-driven method for choosing Kn

that performs well across several tests.

The simulations in the this section refer to various subcases of the following general data gener-
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ating process.

dXt =

(
r − q − λµ− 1

2
Vt

)
dt+ ρ

√
VtdWt + JtdNt

dVt = κv(V − Vt)dt+ ρv
√
VtdWt +

(
1− ρ2

)1/2
v
√
VtdW

′
t + ZtdNt

(5.1)

where Vt is a stochastic volatility process, Wt and W ′t are standard Brownian motions, and κv, V ,

ρ, v parametrize the volatility process’ mean reversion, long-run mean, the leverage effect, and the

volatility of volatility, respectively. Nt is a Poisson process with arrival intensity λ and compensator

λµ, where µ = exp(µJ + 0.5σ2J)/(1 − µv − ρJµv) − 1. The variable Jt|Zt ∼ N(µJ + ρJZt, σ
2
J)

is the price jump component and Zt ∼ exp(µv) is the volatility jump component. This is the

well-known stochastic volatility double-jump process (SVJJ), which is a special case of the general

affine-jump diffusion processes treated in Duffie et al. (2000) that is nonetheless general enough

to nest the seminal models of Black and Scholes (1973), Heston (1993), and other jump-diffusions

commonly used in the option pricing literature. The values of these parameters are set to those

used in Andersen et al. (2012) and are given in the Online Appendix to this paper.

5.1 Goodness of Fit: VIX Term Structures

Recall from Figure 1 that the sieve-estimated VIX term structure and the corresponding term

structure obtained using the CBOE’s method can deviate substantially in the data on S&P 500

index options. I now show that it takes only one illiquid or poorly observed maturity to generate

this deviation. To this end, I simulate a dataset that mimics the one observed on September 23,

1998, which corresponds to the top left panel of Figure 1 and coincides with the failure of Long-Term

Capital Management (LTCM). This date is illustrative because it displays severe strike truncation

for options at the one-year horizon, but is otherwise richly observed. The bottom left panel of

Figure 1 shows that a similar pattern repeats during the more recent financial crisis.

In direct correspondence with the option cross-section observed on this date, I simulate options

with 1, 2, 3, 6, 9, 12, 15, 21 months-to-maturity and with respective number of observations 32,

20, 44, 31, 30, 9, 23, 27. Notice the particularly deficient 9 observations with 12-month maturity.

The range of strikes simulated at each maturity corresponds to the same moneyness of options

observed in the data. Finally, each drawn option price is perturbed with uniformly distributed
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noise corresponding to the width of the bid-ask spread observed in the actual data. In this way, I

simulate 1000 option datasets from the SVJJ process in (5.1), and for each dataset, I compute the

true VIX term structure (free of noise, discretization, and truncation error), the sieve’s estimate of

the VIX term structure, and several workhorse benchmarks frequently used in applied work.15

Table 2 shows a root-mean squared error (RMSE) comparison of the sieve and the benchmarks

relative to the true VIX term structure, where the units are in VIX index points. The sieve

outperforms the benchmarks in most instances, with significant improvements occurring at the 12-

month maturity, where strike truncation is the most severe: options maturing in 12-months only

span a moneyness range (κ/S0) of 0.86 to 1.11. To make this range comparable to other maturities,

Table 2 also converts moneyness values to quantiles of the implied risk-neutral CDF of the underlying

SVJJ process, which shows that the 12-month truncation cuts off option price information below

the 23% quantile and above the 68% quantile. Compared with the other maturities, this means that

the 12-month maturity is significantly less informative about the tails of the implied risk-neutral

distribution.

In contrast to the sieve, the benchmarks in Table 2 re-estimate at each maturity. Thus, the

CBOE’s discrete approximation to the integral (2.1), which makes no tail predictions and uses no

information from neighboring maturities, performs poorly at the 12-month horizon but works well

at the liquid 1-month horizon, where strikes cover almost the entire risk-neutral distribution.16 The

lognormal extrapolation (which is equivalent to setting extrapolated option prices to have the same

implied volatility as the most extreme observed options) used in Carr and Wu (2009) and Jiang

and Tian (2005) does much better at the 12-month horizon, but then deteriorates at the 1-month

horizon. This is essentially due to the fact that their procedure implicitly assumes that option data

are observed without error and that prices can therefore be interpolated. Finally, Table 2 shows

that Black-Scholes implied volatility measures suffer most, which suggests that tail information (not

captured by at-the-money Black-Scholes implied volatility and incorrectly weighted by averaging

Black-Scholes volatilities) is critically important.

The sieve’s strong performance at the truncated 12-month maturity comes from two structural

improvements relative to the benchmarks: first, by using the shape information from the risk-
15See Dew-Becker et al. (2014), Bollerslev et al. (2011), Carr and Wu (2009), and Jiang and Tian (2005) for

applications using these benchmarks.
16See CBOE (2003) for details about its VIX construction.
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Table 2: RMSE Comparison of VIX Term Structures.

Maturity (months)
VIX estimator 1 2 3 6 9 12 15 21

Sieve 1.10 0.44 0.45 0.50 0.41 0.43 0.45 0.48
CBOE 1.16 0.73 0.58 0.52 0.89 5.73 1.28 0.81
Lognormal Extrapolation 4.50 0.53 1.04 0.49 0.53 1.46 0.56 0.45
ATM Black-Scholes 3.96 3.38 3.65 3.41 3.58 3.01 3.26 2.84
Average Black-Scholes 16.25 1.97 7.61 1.37 0.58 1.69 0.72 0.68

Moneyness Range 0.65 0.75 0.49 0.55 0.62 0.86 0.63 0.44
1.12 1.21 1.30 1.38 1.37 1.11 1.30 1.32

RN CDF Quantile Range 0.01 0.01 0.01 0.01 0.03 0.23 0.07 0.02
1.00 1.00 1.00 1.00 0.99 0.68 0.91 0.88

Number of Obs. 32 20 44 31 30 9 23 27

Notes: A dense surface of true option prices was simulated under an SVJJ specification for each of the maturities
shown, from which a true VIX was computed without moneyness truncation error. Then, 1000 random subsamples
were drawn under the various shown moneyness truncation ranges. These sample prices were perturbed with a
uniformly distributed error corresponding to the width of observed bid-ask spreads on S&P 500 index options. VIX
estimates using each of the displayed methods were computed to arrive at their RMSE relative to the true VIX and
are in percent annualized standard deviation units (e.g. RMSE of 0.50 means half a VIX point). RN CDF Quantile
refers to the quantiles of the implied risk-neutral CDF corresponding to the most extreme observed strikes at the
given maturity.

neutral valuation equation, it performs a theoretically supported projection of option prices beyond

the 23% and 68% implied quantiles. Second, and importantly, the sieve regression (2.2) is using

information from all maturities in a single pass. Combined with the shape restrictions, this implies

that information across all maturities is informing the sieve projection at the 12-month maturity.

The situation is illustrated in Figure 2, where simulated true SVJJ prices are plotted alongside

sieve estimates. The left panel shows that the sieve’s 12-month out-of-sample price projections

(extrapolations) clearly benefit from information at other maturities. The right panel shows the

severity of the 12-month truncation in terms of implied risk-neutral quantiles.17 It also provides

practical guidance as to when the extrapolation can stop for the purpose of computing the option

spanning integral (2.1): one should ideally continue until sufficient tail information is incorporated.

For the implementations in this paper, I set the strike integration range for spanning portfolios to
17It can be shown from Lemma 3.2 that the sieve-implied risk-neutral CDF is given in closed-form by

QK(ST ≤ κ|τ) ≡
∫ d(Z)

−∞
fK(y|τ)dy = Φ(d(Z))−

2Ky∑
k=1

γk(B, τ)√
k

Hk−1(d(Z))φ(d(Z)).
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Figure 2: Simulated Out-of-Sample Sieve Price Projections and Implied Risk-Neutral CDF. An option surface with
1, 2, 3, 6, 9, 12, 15, 21 months-to-maturity and with respective number of observations 32, 20, 44, 31, 30, 9, 23,
27 is simulated. The sieve regression (3.10) is estimated, with expansion terms (Ky,Kτ ) = (8, 2) selected via the
procedure in Remark 5.1. Strikes at the 12-month maturity were truncated according to the cutoffs in Table 2.
The left panel shows true and sieve projected prices at the 9-month, 12-month, and 15-month maturities, and the
right panel shows the risk-neutral CDF implied by the projected 12-month prices. Red circles denote extrapolations
beyond the observed strike range.

consistently cover 0.5% to 99.5% of the risk-neutral distribution.

Remark 5.1. (Selection of Expansion Terms). The number of sieve expansion terms Kn are chosen

with both theoretical and computational considerations in mind. While Coppejans and Gallant

(2002) have shown that leave-one-out and hold-out cross-validations perform well for univariate

Hermite series in the context of density estimations, these cross-validations typically involve heavy

computation. The curse of dimensionality compounds the problem for the two-dimensional Hermite

polynomials studied here. For example, for a sample of size n, leave-one-out cross validation requires

computation of the nonlinear regression (3.10) (n − 1) times for many configurations of Kn =

(Ky(n)+1)(Kτ (n)+1). Among computationally feasible selection criteria, minimizing the Bayesian

Information Criterion (BIC) or the well-known Mallows (1973) criterion, which is asymptotically

equivalent to leave-one-out cross-validation in certain settings, are natural candidates.18 Since

Coppejans and Gallant (2002) also show that minimizing the BIC tends to under-select the optimal

expansion terms, I use the BIC to set a lower bound onKy(n) andKτ (n), and subsequently minimize
18Mallows (1973) criterion involves solving

Kn = arg min
K

1

n

n∑
i=1

[
Pi − P (βK ,Zi)

]2
W (Zi) + 2σ̂2(K/n).

See also Li and Racine (2007, p. 451).
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Table 3: Monte Carlo Rejection Frequencies.

Maturity (months) Expansions
DGP 1 2 3 6 9 12 15 21 (Ky,Kτ )

SVJJ 0.051 0.020 0.030 0.020 0.030 0.030 0.020 0.010 (7,2)
SVJ 0.003 0.027 0.038 0.034 0.044 0.022 0.041 0.050 (6,2)
Heston 0.034 0.018 0.018 0.020 0.030 0.049 0.087 0.078 (4,2)
Black-Scholes 0.035 0.036 0.026 0.018 0.031 0.043 0.052 0.046 (0,0)

Notes: A dense surface of true option prices was simulated under an SVJJ specification for each of the maturities
shown, from which a true VIX was computed without moneyness truncation error. Then, 1000 random subsamples
were drawn under the moneyness truncation ranges of Table 2. These sample prices were perturbed with a uniformly
distributed error corresponding to the width of observed bid-ask spreads on S&P 500 index options. V̂ IX(τ) esti-
mates were computed and studentized according to Proposition 4, and corresponding 95% confidence intervals were
constructed by inverting nominal level 5% tests. Rejection frequencies report the proportion of simulated draws for
which the true V IX(τ) was outside the 95% confidence intervals.

the Mallows (1973) criterion on a grid of (Ky(n),Kτ (n)) that is bounded below by the BIC choice.

5.2 Monte Carlo: Coverage

In addition to RMSE fit, I examine the finite-sample performance of the inference procedure in

Proposition 4 in a Monte Carlo experiment. Using the same maturity, strike range, observation,

and bid-ask error configuration just described, I simulate 1000 datasets each from the SVJJ, SVJ,

Heston, and Black-Scholes processes nested in (5.1). For each dataset, I estimate the sieve least

squares regression (3.10), form estimated option prices P̂ (Z) ≡ P (β̂,Z) as in Proposition 1 with

arbitrarily dense strikes, and compute the integral in (2.1) at each observed maturity. I also compute

the corresponding true VIX term structure, which is observed within the simulation study. The

integration range is set to ensure that prices representing the 0.5% to 99.5% quantiles of the implied

risk-neutral distribution are included. Finally, following Proposition 4, the studentized V IX(τ)

curve is computed for each simulated dataset, and the corresponding 95% confidence intervals are

formed using standard normal critical values.

Table 3 shows the rejection frequencies of the inference procedure, i.e. the proportion of datasets

for which the the 95% confidence intervals do not cover the true VIX at each maturity along the term

structure. The results show that for the nominal level 5% test considered, the confidence intervals

display good, though often slightly conservative, size control. The right-most column, which shows

the modal number of expansion terms that were selected by the data-driven procedure in Remark

5.1, suggests a clear relationship between the complexity of the underlying DGP and the number
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of expansions K = (Ky + 1)(Kτ + 1) selected. Importantly, when the underlying DGP is in fact

Black-Scholes, the modal number of expansions chosen was the correct (0, 0).

6 Application: The Term Structure of Variance Risk Premia

I combine the sieve framework with a novel set of expectation hypothesis and return predictability

regressions to study the term structure of the variance risk premium, defined as follows. Let realized

variance from month t to T = t+ τ be given by the annualized sum of squared daily returns

RVt,T ≡
252

n

n∑
i=1

(
sp500(t+ i∆n)− sp500(t+ (i− 1)∆n)

sp500(t+ (i− 1)∆n)

)2

, (6.1)

where n = τ/∆n is the number of trading days between t and T , ∆n is the daily increment, and

sp500(t) represents the level of the S&P 500 index at time t. The variance risk premium is the

difference between objective (P-measure) and risk-neutral (Q-measure) conditional expectations of

RVt,T

V RPt(t, T ) ≡ EP
t [RVt,T ]− EQ

t [RVt,T ]. (6.2)

Note that for a pricing kernel Mt,T and mt,T ≡Mt,T /EP
t [Mt,T ],

EQ
t [RVt,T ] = EP

t [mt,TRVt,T ] = EP
t [RVt,T ] + CovPt [mt,T , RVt,T ],

so that the difference in (6.2) measures covariation of realized variance with the pricing kernel, or in

other words, a risk premium. Following Carr and Wu (2009), the quantity EQ
t [RVt,T ] is well repli-

cated by the synthetic variance swap, i.e. the integrated option portfolio (2.1): SV St(τ) = EQ
t [RVt,T ]

up to a third-order approximation error.

Expectation Hypothesis Under a null hypothesis H0 : CovPt [mt,T , RVt,T ] = 0 of no vari-

ance risk premium, one has EQ
t [RVt,T ] = EP

t [RVt,T ], so that for εt+τ with EP
t [εt+τ ] = 0, RVt,T =

EQ
t [RVt,T ] + εt+τ . Therefore, H0 is equivalent to the joint null hypothesis a = 0 and b = 1 in the

regressions

RVt,T = a(τ) + b(τ)EQ
t [RVt,T ] + εt+τ . (6.3)
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The idea is to test several hypotheses of this form and to relate them to well-established findings

for the 1-month VRP. I therefore augment (6.3) with the concept of a forward variance, which takes

advantage of the additive properties of RVt,T : Note that from (6.1), one has for horizons τ > 1,

RVt,T = RVt,t+1 +RVt+1,T , giving rise to a decomposition

V RPt(t, T ) = EP
t [RVt,t+1 +RVt+1,T ]− EQ

t [RVt,t+1 +RVt+1,T ]

= EP
t [RVt,t+1]− EQ

t [RVt,t+1] + EP
t [RVt+1,T ]− EQ

t [RVt+1,T ]

≡ V RPt(t, t+ 1) + V RPt(t+ 1, T ).

(6.4)

Notice that the first component on the right-hand side is the familiar one-month variance risk

premium that has been extensively studied in the literature using published (one-month) VIX

data.19 Therefore, in order to relate findings on V RPt(t, T ) to our existing understanding of the

1-month variance risk premium, I also test hypotheses regarding the forward variance risk premium

RVt+1,T = a(τ) + b(τ)EQ
t [RVt+1,T ] + εt+τ , (6.5)

where EQ
t [RVt+1,T ] = [SV St(τ) − SV St(1)] captures the steepness of the synthetic variance swap

curve in maturity. A test of H0 : a = 0 ∩ b = 1 is a test of the forward variance risk premium

V RPt(t+ 1, T ).

Return Predictability Bollerslev et al. (2009) and Bekaert and Hoerova (2014), among others,

provide evidence that V RPt(t, t+1) predicts excess stock market returns. Using the sieve-estimated

term structure of SV St(τ), I can test whether their predictability result extends to long-run variance

risk premia as well as forward variance risk premia, i.e. V RPt(t, T ) and V RPt(t+ 1, T ). I therefore

estimate both

Ret+h = αh,τ + βh,τV RPt(t, T ) + εt+h and

Ret+h = αh,τ + βh,τV RPt(t, t+ 1) + γh,τV RPt(t+ 1, T ) + εt+h

(6.6)

for various forecasting horizons h and term structure maturities τ , where Ret+h denotes the h-month
19See, for example, Carr and Wu (2009), Bollerslev and Todorov (2011), Bollerslev et al. (2011), Drechsler and

Yaron (2011), Bollerslev et al. (2013), Bekaert and Hoerova (2014).
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ahead CRSP value-weighted return (including dividends) in excess of the risk-free rate. To ensure

that V RPt(t, T ) = EP
t [RVt,T ] − EQ

t [RVt,T ] lies in the time t information set, I need a P-measure

forecast of realized variance, EP
t [RVt,T ], which I obtain from the standard heterogeneous AR model

of Corsi (2009),

RVt,t+1 = b0 + b1RVt + b2

(
1

6

5∑
i=0

RVt−i

)
+ b3

(
1

24

23∑
i=0

RVt−i

)
+ εt+1, (6.7)

which effectively captures the long-memory dynamics of the RVt process. To avoid look-ahead bias,

(6.7) is estimated for each month t in my option sample 1996-2013, using monthly S&P 500 index

RV (6.1) from 1950 to t. The results and conclusions below do not materially depend on the exact

lag structure of this RV forecasting regression, since they are upheld under various specifications.

Long-run forecasts of RVt,T can be obtained by iterating (6.7) forward.

6.1 S&P 500 Index Option Data

To run the regressions in (6.3), (6.5), and (6.6), I use the proposed sieve framework to estimate a

balanced monthly time series of SV St(τ) = EQ
t [RVt,T ] term structures from data on S&P 500 index

options (SPX) spanning January, 1996 to August, 2013. Following the data filtering procedure of

Andersen et al. (2012), I use the average of closing bid and ask quotes, discard all in-the-money

options, and options with maturities of less than 7 days. Call option information is incorporated

by converting out-of-the-money calls to in-the-money puts by put-call parity. Furthermore, I follow

the CBOE (2003) VIX White Paper procedure of excluding options with strikes beyond the first

pair of zero-bid option prices. Table 1 presents summary statistics of the resulting dataset, which

includes option surfaces observed at the end of the month, for a total of 212 months.

To be specific, for each month t of these 212 option cross-sections, I solve the sieve least squares

problem (3.10) and compute the portfolio integration in (2.1) for τ = 1, 2, . . . , 24 months-to-

maturity. At each of these maturities, the integration limits in (2.1) were set to cover the 0.5%

to 99.5% quantiles of the implied risk-neutral CDF, yielding a balanced monthly term structure

ŜV St(τ). To check that the resulting ŜV St(τ) produces coherent estimates of implied volatil-

ity at the one-month horizon, I plot 100 · ŜV St(1)1/2 = V̂ IXt(1) against the CBOE’s published

VIX in the top panel of Figure 5. The unconditional correlation between the two series is 0.9976,
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and the number of expansion terms selected via the data-driven criterion (Remark 5.1) was about

(Ky,Kτ ) = (8, 3) on average.

Finally, note that inference on regressions of the form (6.3) and (6.5) can be affected by measure-

ment error and persistence in the regressors. Measurement error in the regressors is known to cause

attenuation bias in the slope coefficient, which is especially problematic when testing hypotheses of

the form b = 1. As a diagnostic, the bottom panel of Figure 5 plots the ratio of average ŜV St(τ)

standard errors (Proposition 4) relative to their sample standard deviations, as well as ŜV St(τ)

autocorrelations for τ = 1, . . . , 24 months to maturity. The plots suggest that measurement error

and serial correlation in the regressors are muted for maturities τ = 1, . . . , 12, which motivates a

focus on the first 12 months to maturity.

6.2 Results

Expectation Hypothesis The results of the regressions (6.3) and (6.5) are surprising. p-

values in the first row of Table 4 show strong evidence against the null hypothesis H0 : a = 0∩b = 1

of no variance risk premium V RPt(t, T ) across all maturities τ = 1, . . . , 12. In contrast, the forward

variance tests reported in the bottom panel are unable to reject the null hypothesis of no forward

variance risk premium V RPt(t+ 1, T ). A notable exception is at the τ = 2 horizon, whose p-value

in the forward regression is smaller than in the full regression, suggesting that investors earn a

premium for being exposed to variance risk between t + 1 and t + 2 as well. In sum, the strong

rejections in the first row and the lack of rejection in the second row suggest that compensation for

variance risk is concentrated on the first one or two maturities.20

Return Predictability The results of the expectation hypothesis tests are further corrobo-

rated in the return predictability regressions. Table 5 reports t-statistics on the slope coefficient of

the first regression in (6.6) using Hodrick (1992) standard errors.21 The left-most column shows the

same pattern of excess return predictability on horizons h = 2, . . . , 7 found in Bollerslev et al. (2009)

for one-month V RPt(t, t+1). The pattern is noteworthy given that Bollerslev et al. (2009) use S&P

500 index excess returns, whereas I use CRSP value-weighted excess returns over a different sample
20For reference, the full regression output is provided in the Online Appendix.
21See the discussion in Ang and Bekaert (2007) in favor of using Hodrick (1992) standard errors in overlapping

return predictability regressions.
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Figure 5: Pre-regression Diagnostics. The top panel plots a comparison of the sieve-estimated 30-day
VIX and the CBOE published 30-day VIX. The bottom left panel plots the ratio of average sieve standard
errors of ŜV St(τ) to the time series standard deviation of ŜV St(τ), and the bottom right panel plots the
sample first-order autocorrelation of ŜV St(τ) for maturities τ = 1, . . . , 24. Sieve standard errors for ŜV St(τ)
are computed for 212 months from January, 1996, to August, 2013, using S&P 500 index options and the
inference procedure in Proposition 4.
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Table 4: p-Values for Expectation Hypothesis Regressions.

τ

1 2 3 4 5 6 7 8 9 10 11 12

SVS 0.000 0.056 0.036 0.005 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Forward - 0.035 0.066 0.107 0.133 0.186 0.236 0.296 0.359 0.408 0.440 0.459

Notes: The OLS regressions from (6.3) and (6.5) of realized variance on sieve synthetic variance swaps
SV St(τ) and forward variance swaps SV St(τ)−SV St(1), respectively, are estimated for each of the monthly
horizons τ = 1, . . . , 12. p-values in the first row report the outcome of the joint tests a(τ) = 0 ∩ b(τ) = 1
for the regression on the full variance swap regression (6.3), and the second row shows the corresponding
outcome for the forward variance swap (6.5). Newey and West (1987) standard errors for lag length 12 are
used.

period as the left-hand side variable. Further out into the term structure, the remaining columns

of Table 5 show that the strong predictive pattern is mirrored for V RPt(t, T ) for τ = 2, . . . , 12.

Note that the negative sign on the t-statistics indicates that declines in the variance risk premium

(e.g. P-measure forecasts of volatility exceed Q-measure implied volatility) tend to predict positive

excess returns. Heuristically, the sign is consistent with the intuition that long positions in variance

swaps are often used as hedges against high-marginal utility states, since they pay out when realized

variance exceeds implied variance.

The implication of excess return predictability is that it provides a measure for the time-variation

of the equity risk premium, Êt[Ret+h] = α̂h,τ + β̂h,τV RPt(t, T ). Figure 6 illustrates an example for

the 6-month ahead equity risk premium using the slow-moving 12-month variance risk premium.

The figure shows that the equity premium is significantly varying over time and assumes its largest

values in crisis periods, with peaks occurring during the Asian financial crisis and LTCM bankruptcy,

the 2002-03 Iraq invasion, the 2008-09 Great Recession, and the subsequent European sovereign debt

crises.

To dig deeper into the source of the return predictability, Table 6 presents the results of the

second regression in (6.6), which decomposes V RPt(t, T ) = V RPt(t, t + 1) + V RPt(t + 1, T ) into

its short-run and forward VRP components. As with the Expectation Hypothesis tests, the return

predictability regressions show that virtually all of the return predictability in V RPt(t, T ) is due

to the one-month variance risk premium. This result strongly suggest that prices for protection

against long-run variance risk are disproportionately driven by the protection afforded over the
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Table 5: Excess Return Predictability.

t(β̂h,τ )

h \ τ 1 2 3 4 5 6 7 8 9 10 11 12

1 -1.21 -1.28 -1.41 -1.53 -1.61 -1.65 -1.63 -1.59 -1.55 -1.52 -1.49 -1.47
2 -2.00 -2.02 -2.12 -2.24 -2.30 -2.30 -2.24 -2.18 -2.11 -2.06 -2.01 -1.97
3 -2.28 -2.17 -2.22 -2.32 -2.40 -2.41 -2.36 -2.30 -2.23 -2.18 -2.14 -2.09
4 -2.03 -1.96 -2.04 -2.16 -2.26 -2.30 -2.27 -2.23 -2.19 -2.15 -2.12 -2.09
5 -1.92 -1.97 -2.10 -2.24 -2.34 -2.38 -2.36 -2.32 -2.28 -2.25 -2.22 -2.18
6 -2.09 -2.09 -2.17 -2.27 -2.33 -2.35 -2.33 -2.30 -2.26 -2.23 -2.20 -2.16
7 -2.04 -2.03 -2.10 -2.19 -2.26 -2.28 -2.27 -2.24 -2.21 -2.18 -2.14 -2.11
8 -1.75 -1.78 -1.85 -1.92 -1.97 -1.99 -1.98 -1.96 -1.94 -1.91 -1.89 -1.86
9 -1.54 -1.59 -1.65 -1.71 -1.75 -1.77 -1.76 -1.75 -1.74 -1.73 -1.71 -1.70
10 -1.30 -1.39 -1.47 -1.54 -1.59 -1.61 -1.62 -1.61 -1.61 -1.60 -1.59 -1.58
11 -1.17 -1.27 -1.36 -1.43 -1.48 -1.51 -1.52 -1.52 -1.51 -1.50 -1.49 -1.48
12 -1.10 -1.18 -1.25 -1.31 -1.35 -1.37 -1.37 -1.36 -1.35 -1.34 -1.33 -1.32

Notes: This table reports Hodrick (1992) t-statistics from regressions of monthly CRSP value-weighted
excess returns on the lagged term structure of variance risk premia (6.6), i.e. Ret+h = αh,τ+βh,τV RPt(t, T )+
εt+h, where T = t+ τ .

leading month.

Taken together, these findings provide conditional evidence that the short-run variance risk

premium is a significant driver of the compensation that investors receive when buying long-run

variance swaps, which is consistent with the recent work of Dew-Becker et al. (2014), who find

(unconditionally) high risk-adjusted returns for selling short-run variance swaps. A reconciliation

of these results with asset pricing theory is still open and makes for interesting future work.
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Figure 6: The Equity Risk Premium Êt[Ret+6] = α̂6,12 + β̂6,12V RPt(t, t+ 12).
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Table 6: Excess Return Predictability of Forward Variance Risk Premia.

t(β̂h,τ )

h \ τ 1 2 3 4 5 6 7 8 9 10 11 12

1 -1.28 -1.40 -1.49 -1.55 -1.56 -1.54 -1.51 -1.48 -1.47 -1.45 -1.44
2 -2.02 -2.12 -2.22 -2.28 -2.29 -2.27 -2.24 -2.22 -2.20 -2.19 -2.18
3 -2.15 -2.23 -2.34 -2.43 -2.46 -2.45 -2.44 -2.42 -2.41 -2.40 -2.40
4 -1.94 -2.04 -2.17 -2.26 -2.31 -2.30 -2.29 -2.28 -2.28 -2.27 -2.26
5 -1.97 -2.10 -2.22 -2.30 -2.33 -2.32 -2.30 -2.29 -2.27 -2.26 -2.25
6 -2.08 -2.17 -2.27 -2.33 -2.36 -2.35 -2.34 -2.33 -2.32 -2.31 -2.30
7 -2.03 -2.11 -2.19 -2.25 -2.29 -2.29 -2.28 -2.27 -2.26 -2.25 -2.24
8 -1.78 -1.85 -1.92 -1.96 -1.99 -1.99 -1.98 -1.98 -1.97 -1.96 -1.95
9 -1.59 -1.65 -1.70 -1.74 -1.76 -1.76 -1.76 -1.76 -1.76 -1.76 -1.76
10 -1.40 -1.46 -1.52 -1.56 -1.58 -1.58 -1.58 -1.58 -1.58 -1.58 -1.58
11 -1.28 -1.35 -1.41 -1.45 -1.46 -1.47 -1.47 -1.47 -1.46 -1.46 -1.46
12 -1.18 -1.25 -1.30 -1.32 -1.34 -1.34 -1.34 -1.34 -1.34 -1.33 -1.33

t(γ̂h,τ )

h \ τ 1 2 3 4 5 6 7 8 9 10 11 12

1 -0.06 -0.33 -0.52 -0.62 -0.67 -0.64 -0.61 -0.58 -0.55 -0.53 -0.52
2 -0.27 -0.63 -0.88 -0.98 -0.98 -0.91 -0.85 -0.80 -0.77 -0.74 -0.72
3 0.14 -0.33 -0.73 -0.95 -1.03 -1.01 -0.97 -0.94 -0.92 -0.90 -0.88
4 -0.26 -0.70 -1.04 -1.24 -1.32 -1.31 -1.28 -1.25 -1.23 -1.21 -1.19
5 -1.03 -1.40 -1.64 -1.75 -1.78 -1.73 -1.67 -1.63 -1.59 -1.55 -1.52
6 -1.01 -1.31 -1.52 -1.63 -1.66 -1.63 -1.60 -1.57 -1.54 -1.51 -1.48
7 -1.06 -1.32 -1.51 -1.61 -1.65 -1.63 -1.60 -1.56 -1.54 -1.50 -1.47
8 -1.10 -1.30 -1.43 -1.50 -1.52 -1.50 -1.47 -1.44 -1.41 -1.38 -1.36
9 -1.06 -1.21 -1.30 -1.34 -1.36 -1.34 -1.32 -1.31 -1.30 -1.28 -1.27
10 -1.15 -1.27 -1.34 -1.36 -1.36 -1.34 -1.32 -1.30 -1.28 -1.27 -1.25
11 -1.19 -1.29 -1.34 -1.35 -1.34 -1.31 -1.29 -1.27 -1.25 -1.23 -1.21
12 -1.01 -1.12 -1.15 -1.16 -1.15 -1.12 -1.10 -1.08 -1.06 -1.04 -1.03

Notes: This table reports Hodrick (1992) t-statistics from regressions of monthly CRSP value-weighted
excess returns on the lagged components of the term structure of variance risk premia (6.6), i.e. Ret+h =
αh,τ + βh,τV RPt(t, t+ 1) + γh,τV RPt(t+ 1, T ) + εt+h, where T = t+ τ .
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7 Conclusion

This paper presented a new estimation and inference framework for the term structures of model-free

option spanning portfolios, including the VIX and related measures. By constructing sieve approx-

imations to the term structure of state-price densities, the framework inherits the structural shape

information contained in the risk-neutral valuation equation at all maturities. The shape informa-

tion is used to inform nonparametric estimates of the option price surface at long maturities, where

options are less liquid and therefore increasingly subject to measurement error, strike truncation,

and maturity sparseness. To quantify the intuition that long-run option spanning portfolios are less

precisely estimated than their liquid short-run counterparts, the paper also develops an asymptotic

distribution theory for option spanning portfolios.

The framework is tested both empirically and in Monte Carlo simulations. The simulations

show that the sieve-estimated VIX term structure considerably outperforms existing benchmarks

in situations where a subset of maturities display significant strike truncation. Furthermore, the

distribution theory for spanning portfolios is used to construct confidence intervals for the VIX

term structure, which are shown to display size control in empirically realistic finite samples. In an

empirical application, the sieve was used to estimate the term structure of the synthetic variance

swap. Expectation hypothesis and return predictability regressions involving forward variance risk

premia found that the term structure of the variance risk premium is dominated by compensation

for bearing short-run variance risk.

In future work, the framework could be used to explore option-implied term structures in the

cross-section. To the extent that options written on individual stocks, industry ETFs, and in-

ternational stock indices are less liquid than the S&P 500 index options considered above, the

nonparametric confidence intervals provided in this paper provide a useful metric with which to

compare the precision of option spanning portfolios across assets.
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A Definitions and Preliminary Results

A.1 Defining the Sobolev Sieve Spaces

Establishing consistency and asymptotic normality of functionals requires a precise definition of the sieve
approximation spaces. The final sieve spaces of interest are collections of conditional densities that we obtain
by first defining a space of joint densities, and whose future payoff component can be integrated out to yield
marginals. As mentioned above, the space of joint densities is the Gallant-Nychka class of densities first
defined in Gallant and Nychka (1987). This class of densities is reviewed here.

A.1.1 The Gallant-Nychka Joint Density Spaces

Let u = (y,x)′ ∈ Y × X ≡ U , where Y = R and X ⊂ Rdx is a compact rectangle. Let du ≡ 1 + dx, and
define the following notation for higher order derivatives,

Dλf(u) =
∂λ1∂λ2 . . . ∂λdu

∂uλ1
1 ∂uλ2

2 . . . ∂u
λdu
du

f(u),

with λ = (λ1, . . . , λdu)′ consisting of nonnegative integer elements. The order of the derivative is |λ| =∑du
i=1 |λi|, and D0f = f .

Definition A.1. (Sobolev norms). For 1 ≤ p < ∞, define the Sobolev norm of f with respect to the
nonnegative weight function ζ(u) by

‖f‖m,p,ζ =

 ∑
|λ|≤m

∫
Y

∣∣Dλf(u)
∣∣p ζ(u)du

1/p

.

For p =∞ and f with continuous partial derivatives to order m, define

‖f‖m,∞,ζ = max
|λ|≤m

sup
u∈Rdu

∣∣Dλf(u)
∣∣ ζ(u).

If ζ(u) = 1, simply write ‖f‖m,p and ‖f‖m,∞. Associated with each of these norms are the weighted Sobolev
spaces

Wm,p,ζ(U) ≡ {f ∈ Lp(U) : ‖f‖m,p,ζ <∞},

where 1 ≤ p ≤ ∞.

The following definitions are precisely the same as the collections H and HK in Gallant and Nychka
(1987).

Definition A.2. (The Joint Density Space FY,X). Let m denote the number of derivatives that characterize
the degree of smoothness of the true joint SPD. Then for some integerm0 > du/2, some bound B0, some small
ε0 > 0, some δ0 > du/2, and some probability density function h0(u) with zero mean and ‖h0‖m0+m,2,ζ0

≤ B0,
let FY,X consist of those probability density functions f(u) that have the form

fY,X(u) = h(u)2 + εh0(u)
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with ‖h‖m0+m,2,ζ0
≤ B0 and ε > ε0, where

ζ0(u) = (1 + u′u)δ0 .

Let
H ≡ {h ∈Wm0+m,2,ζ0 : ‖h‖m0+m,2,ζ0

≤ B0}.

The collection FY,X is the parent space of densities from which the conditional class of densities of
interest are derived. Similarly, the sieve spaces that approximate the conditional parent space are obtained
from joint density sieve spaces that approximate FY,X .

Definition A.3. (The Joint Sieve Space FY,XK ). Let φ(u) = exp(−u′u/2)/
√

2π, and let PK(u) denote a
Hermite polynomial of degree K. FY,XK consists of those probability density functions that are of the form

fY,XK (u) = [PK(u)]2φ(u) + εh0(u)

with
∥∥PK(u)φ(u)1/2

∥∥
m0+m,2,ζ0

≤ B0 and ε > ε0 and β′β = 1, where β is the stacked vector of all Hermite
polynomial coefficients in PK(u). Denote HK ≡ {h ∈Wm0+m,2,ζ0 : h = PKφ

1/2}.

Because the ultimate object of interest is a conditional density, I put additional structure on the term
εh0(u) to prevent explosive tail behavior when dividing by marginal densities on x.

Assumption A.1. (Support and Tail Conditions)

(i) The function h0 satisfies
h0(u) = φ(y) · hx(x), (A.1)

where hx is bounded away from zero on its compact support X ⊆ Z, φ(y) is Gaussian, and Y = R.

(ii) For option characteristics Z = (κ, τ, r, q), Z ∈ Z, where Z is a compact hyperrectangle in Rdz .

Remark A.4. The compactness of X and the functional form of the lower bound in (A.1) are not constraining
in empirical implementations. Since X represents the support of variables related to option maturity, it can
be set wide enough to encompass maturities ranging from zero to 1000 years. Similarly, the decomposition
of h0(u) = φ(y) · hx(x) is only slightly more restrictive than the workhorse choice φ(y) · φ(x1) · · · · φ(xdx).
In any case, one can argue as in Gallant and Nychka (1987) that the value of ε can be set so that the term
εh0(u) is smaller than machine epsilon in applications. Importantly, the return variable can have unbounded
support Y. The condition on Z ensures integrability of the put option payoff, and furthermore enables the
invocation of Sobolev embedding theorems. This assumption can be relaxed to domains satisfying a strong
local Lipschitz condition (Adams and Fournier (2003, §4.9)), which is more general than what is needed for
the option pricing application.

A.1.2 The Conditional Density Spaces

The transformed state-price density of interest, f0, is a conditional density that resides in some parent
function space of conditional densities. The associated sieve spaces are subspaces constructed to approximate
this parent function space. The conditional density spaces of interest are obtained by simply dividing each
member of FY,X by a marginal in x, after having integrated out the first component in y.
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Definition A.5. (The Sieve Spaces F and FK). Define

F ≡

{
f : f(y|x) =

fY,X(y,x)∫
Y f

Y,X(y,x)dy
some fY,X ∈ FY,X

}
and

FK ≡

{
fK : fK(y|x) =

fY,XK (y,x)∫
Y f

Y,X
K (y,x)dy

some fY,XK ∈ FY,XK

}
.

This definition says that to each joint density in FY,X , one can associate its corresponding conditional
density. This association naturally gives rise to a Lipschitz continuous map Λ : FY,X → F (Lemma A.9
below). Note that the densities in F are related to the return distribution via the change of variables formula
in (3.3).

Definition A.6. (The Option Spaces P and PK). Define

P ≡ {P : Z → R+ : P (Z) = P (f,Z) some f ∈ F}

PK ≡ {P : Z → R+ : P (Z) = P (fK ,Z) some fK ∈ FK} .

Definition A.7. (Hölder Spaces). Define

Cj,η(Z) =

{
g ∈ Cm(Z) : max

|λ|≤j
sup
z∈Z

∣∣Dλg(z)
∣∣ ≤ L

max
|λ|=j

sup
z1 6=z2∈Z

∣∣Dλg(z1)−Dλg(z2)
∣∣

|z1 − z2|η
≤ L

}
.

A.2 Preliminary Results

Lemma A.8. The following results will be invoked later on. Under Assumption A.1,

(i) There exists a constant M such that for all marginals fX(x) =
∫
Y f

Y,X(y,x)dy with fY,X ∈ FY,X , one
has

∥∥fX∥∥
m,1
≤M .

(ii) The conditional space F ⊂Wm,1(U).

(iii) The option space P ⊂Wm,1(Z).

(iv) P (f,Z) is a bounded linear functional in f , i.e. there exists M , such that ‖P‖m,1 ≤M ‖f‖m,1. Hence
P (f,Z) is locally bounded, that is, for any f ∈ F , there exists a neighborhood U 3 f such that for some
MU , supg∈U ‖P (g,Z)‖m,1 ≤MU .

(v) Let m = j + k, k = dz + 1, η = 1, j > 0. Then there exists a Hölder Space embedding P ↪→ Cj,η(Z).

Proof. In what follows, M and Cj refer to generic constants and, as before, u = (y,x)′.

(i) Step 1: Show that fY,X ≤ C3(1 +u′u)−δ for δ ∈ (du/2, δ0). First, from Definition A.2, ‖h‖m0+m,2,ζ0
≤
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B0 implies ∣∣∣ζ0(u)1/2h(u)
∣∣∣ ≤ max

|λ|≤m
sup
u

∣∣∣Dλζ0(u)1/2h(u)
∣∣∣ =

∥∥∥ζ0(u)1/2h(u)
∥∥∥
m,∞

≤ C1 ‖h‖m0+m,2,ζ0
Gallant-Nychka Lemma A.1(b)

≤ C1B0

⇒ ζ0(u)h(u)2 ≤ (C1B0)2

h(u)2 ≤ (C1B0)2(1 + u′u)−δ0 ≤ (C1B0)2(1 + u′u)−δ

and |h(u)| ≤ (C1B0)(1 + u′u)−δ/2.

(A.2)

Since ‖h0‖m0+m,2,ζ0
≤ B0 as well, one has fY,X ≤ C3(1 + u′u)−δ.

Step 2: For readability let f(x) ≡ fX(x) and f(y,x) ≡ fY,X(y,x). Let α = (0, α1, . . . , αdx) denote
a multi-index over x. By Step 1, dominated convergence, triangle inequality, Hölder’s inequality, and
Gallant-Nychka Lemma A.1(c),

∥∥fX∥∥
m,1

=
∑
|α|≤m

∫
X
|Dαf(x)| dx =

∑
|α|≤m

∫
X

∣∣∣∣Dα

∫
Y
f(y,x)dy

∣∣∣∣ dx
≤
∑
|α|≤m

∫
X

∫
Y

∣∣Dα[h(y,x)2 + ε0h0(y,x)]
∣∣ dy dx

≤
∑
|α|≤m

{
2

∫
X

∫
Y
|h(y,x)Dαh(y,x)| dy dx + ε0

∫
X

∫
Y
|Dαh0(y,x)| dy dx

}

≤
∑
|α|≤m

2

{
sup
y,x
|Dαh(y,x)|

}∫
X

∫
Y
|h(y,x)| dy dx

+
∑
|α|≤m

ε0

{∫
X

∫
Y
|φ(y) ·Dαhx(x)| dy dx

}

≤ C1

{
max
|α|≤m

sup
y,x
|Dαh(y,x)|

}∫
X

∫
Y

(1 + y2 + x′x)−δ/2dy

+
∑
|α|≤m

ε0

{∫
X
|Dαhx(x)| dx

}

≤ C2 ‖h‖m,∞ +
∑
|α|≤m

ε0

{
sup
x
|Dαhx(x)|

}
leb(X ) ≤ C2 ‖h‖m,∞ + C3 ‖hx‖m,∞

≤ C4 ‖h‖m0+m,2,ζ ≤ C4B0 <∞,

where leb(X ) is the Lebesgue measure of the compact hyperrectangle X . Thus fX ∈Wm,1(X ).

(ii) Step 1: Show
∥∥1/fX

∥∥
m,1
≤M . Apply a quotient derivative formula (e.g. Leslie (1991)) and the bound

on fX in part (i) to get
∥∥1/fX

∥∥
m,1
≤ C1

∥∥fX∥∥
m,1

.
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Step 2: By Leibniz’ formula, Hölder’s inequality, and Step 1,

‖f‖m,1 =
∑
|λ|≤m

∫
X

∫
Y

∣∣Dλf(y|x)
∣∣ dy dx ≤ ∑

|λ|≤m

∑
β≤λ

[
λ

β

]∫
X

∫
Y

∣∣∣∣Dβf(y,x)Dλ−β 1

f(x)

∣∣∣∣ dy dx
=
∑
|λ|≤m

∑
β≤λ

[
λ

β

]∫
X

∫
Y

∣∣∣∣Dβ {f(y,x)} ζ(y,x)Dλ−β
{

1

f(x)

}
ζ(y,x)−1

∣∣∣∣ dy dx
≤ C1

∑
|λ|≤m

∑
β≤λ

[
λ

β

]{
sup
y,x

∣∣Dβf(y,x)
∣∣ ζ(y,x)

}∫
X
Dλ−β

{
1

f(x)

}∫
Y

(1 + y2 + x′x)−δdy dx

≤ C2

{
max
|λ|≤m

sup
y,x

∣∣Dλf(y,x)
∣∣ ζ(y,x)

}∥∥fX∥∥
m,1

= C3

∥∥fY,X∥∥
m,∞,ζ <∞,

(A.3)

and hence conditional densities f ∈Wm,1(U).

(iii) Let ψ(y,Z) = e−rτ [κ− S0 exp(µ(Z) + σ(Z)y)] · 1[y ≤ d(Z)] denote the discounted option payoff. Since
X ⊆ Z, write Z = X

⊕
(Z − X ). Then by Leibniz formula and Hölder’s inequality, multi-index

λ = (λ1, . . . , λdz ), Assumption A.1, and part (ii)

‖P‖m,1 =
∑
|λ|≤m

∫
Z

∣∣DλP (Z)
∣∣ dZ

≤
∑
|λ|≤m

∑
|β|≤λ

[
λ

β

]∫
Z−X

∫
X

∫
Y

∣∣Dβ [ψ(y,Z)]Dλ−βf(y|X)
∣∣ dy dx d(z− x)

≤ C1

∑
|λ|≤m

∑
|β|≤λ

[
λ

β

]∫
Z−X

∫
X

∫
Y

∣∣Dλ−βf(y|X)
∣∣ dy dx d(z− x)

≤ C2 ‖f‖m,1 <∞.

(A.4)

(iv) Follows directly from (A.4) and the property that bounded linear functionals are locally bounded.

(v) This is a consequence of the Sobolev Embedding Theorem (Adams and Fournier (2003, Theorem 4.12,
Part II)) and the regularity condition on Z.

Lemma A.9. The map Λ : FY,X → F taking joint densities to their conditional counterparts in F , i.e.
Λ(fY,X) = f , is ‖·‖m,∞,ζ − ‖·‖m,1 Lipschitz continuous, where f is defined pointwise by

f(y|x) ≡ Λ(fY,X(y,x)) =
fY,X(y,x)∫
Y f

Y,X(y,x)dy

and where ζ(u) = (1 + u′u)δ and δ ∈ (du/2, δ0).

Proof. Let f0(x) =
∫
R
fY,X0 (y,x)dy and fj(x) =

∫
R
fY,Xj (y,x)dy denote the marginal distributions of X of

generic fY,X0 , fY,Xj ∈ FY,X .

‖fj(y|x)− f0(y|x)‖m,1 =
∑
|λ|≤m

∫
X

∫
Y

∣∣∣∣Dλ

{
fj(y,x)

fj(x)
− f0(y,x)

f0(x)

}∣∣∣∣ dy dx
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=
∑
|λ|≤m

∫
X

∫
Y

∣∣∣∣Dλ

{
fj(y,x)

[
1

f0(x)
+
f0(x)− fj(x)

f0(x)fj(x)

]
− f0(y,x)

f0(x)

}∣∣∣∣ dy dx
≤
∑
|λ|≤m

∫
X

∫
Y

∣∣∣∣Dλ

{
[fj(y,x)− f0(y,x)]

1

f0(x)

}∣∣∣∣ dy dx
+
∑
|λ|≤m

∫
X

∫
Y

∣∣∣∣Dλ

{
[fj(x)− f0(x)]

1

f0(x)fj(x)

}∣∣∣∣ dy dx
≤ C1 ‖fj(y,x)− f0(y,x)‖m,∞,ζ ,

where the last inequality follows from derivations analogous to (A.3). The result follows.

This continuity result implies that the conditional spaces inherit the topological structure from the
parent joint spaces. Moreover, the strengthening to Lipschitz continuity will be used below to regulate the
complexity of the space of option pricing functions that are obtained by integrating the option payoff against
a candidate from F . Note that the map in Lemma A.9 is also surjective by definition.

Lemma A.9 gives rise to the following two critical properties of the sieve spaces.

Lemma A.10. The sieve spaces FK satisfy the following conditions:

(i) FK is compact in the topology generated by ‖·‖m,1 for all K ≥ 0.

(ii) ∪∞K=0FK is dense in F with the topology generated by ‖·‖m,1.

Proof. (i) and (ii) are a result of the above Lemma A.9. To see this, fix any K ≥ 0 and let {fK,n}
denote a sequence of joint densities in FX,YK . By definition it can be written as fK,n = h2

K,n + εh0, where
hK,n = PK,nφ

1/2 satisfies ‖hK,n‖m0+m,2,ζ0
≤ B0. By Lemma A.4 in Gallant and Nychka (1987), there

exists h with ‖h‖m,∞,ζ1/2 <∞ and a subsequence {hK,nj} with limj→∞
∥∥hK,nj − h∥∥m,∞,ζ1/2 = 0. Then by

Gallant and Nychka’s Lemma A.3, one has
∥∥h2
∥∥
m,∞,ζ < ∞ and limj→∞

∥∥∥h2
K,nj

− h2
∥∥∥
m,∞,ζ

= 0, whence

limj→∞
∥∥fK,nj − f∥∥m,∞,ζ = 0. Thus FX,YK is compact in the topology generated by ‖·‖m,∞,ζ . Finally,

because Λ in the above Lemma A.9 is ‖·‖m,∞,ζ − ‖·‖m,1 continuous and surjective (by construction), one
has that the conditional space FK is compact in the topology generated by ‖·‖m,1. To show (ii), note that
for any joint density fX,Y ∈ FX,Y , one has fX,Y = h2 + εh0. By Gallant and Nychka’s Lemma A.5,
there exists a sequence {hK} such that limK→∞ ‖hK − h‖m0+m,2,ζ = 0, and by their Lemmas A.1-A.3, this

implies limK→∞
∥∥h2

K − h2
∥∥
m,∞,ζ = 0. One therefore has limK→∞

∥∥∥fX,YK − f
∥∥∥
m,∞,ζ

= 0, which implies that

∪∞K=0F
X,Y
K is dense in FX,Y . Applying the above Lemma A.9 and noting that Λ is continuous and surjective

shows that the conditional space ∪∞K=0FK is dense in F with the topology generated by ‖·‖m,1.

Proof of Lemma 3.2. The task is to show that conditional sieve densities have a representation fK(y|τ) =∑2Ky
k=0 γk(B, τ)Hk(y)φ(y) that is required to get closed-form option prices. Let α(B, τ) = (

∑Kτ
j=0 β0jHj(τ),

. . . ,
∑Kτ
j=0 βKyjHj(τ))′. Then

∫
Y
fX,ZK (y, τ)dy =

∫
Y

Ky∑
k=0

αk(B, τ)Hk(y)

2

φ(τ)φ(y)dy

= φ(τ)

∫
Y

Ky∑
k=0

αk(B, τ)2Hk(y)2φ(y)dy = φ(τ)

Ky∑
k=0

αk(B, τ)2 = α(B, τ)′α(B, τ)φ(τ),
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where the second and third equality follow from the orthonormality of the Hermite polynomials. Then,

fK(y|τ) =
fX,ZK (y, τ)∫
Y f

X,Z
K (y, τ)dy

=

[∑Ky
k=0 αk(B, τ)Hk(y)

]2
φ(τ)φ(y)

α(B, τ)′α(B, τ)φ(τ)

=

∑2Ky
k=0 α(B, τ)′Akα(B, τ)Hk(y)φ(y)

α(B, τ)′α(B, τ)

where the last equality and the definition of Ak follow by applying Proposition 1 of León et al. (2009). The
result follows.

B Derivation of Main Results

B.1 Closed-Form Option Pricing

I begin by proving the closed-form pricing expression stated in Proposition 1.

Proof of Proposition 1. The proof extends Proposition 9 of León et al. (2009) to allow for conditioning
on τ . The plug-in estimator of the population option price in equation (3.4), is given by

P (fK ,Z) = e−rτ
∫ d(Z)

−∞

(
κ− Seµ(Z)+σ(Z)Y

)
fK(Y |τ)dY

= κe−rτ
∫ d(Z)

−∞
fK(Y |τ)dY − Se−rτ+µ(Z)

∫ d(Z)

−∞
eσ(Z)Y fK(Y |τ)dY. (B.1)

Using Lemma 3.2, the integral in the first term becomes

∫ d(Z)

−∞
fK(Y |τ)dY =

∫ d(Z)

−∞

2Ky∑
k=0

γk(B, τ)Hk(Y )φ(Y )

 dY
=

2Ky∑
k=0

γk(B, τ)

∫ d(Z)

−∞
Hk(Y )φ(Y )dY = Φ(d(Z))−

2Ky∑
k=1

γk(B, τ)√
k

Hk−1(d(Z))φ(d(Z)), (B.2)

where the last equality follows from integration properties of the Hermite functions. The integral in the
second term on the right-hand side (RHS) of equation (B.1) can further be simplified by integrating by
parts. Let

I∗k(d(Z)) =

∫ d(Z)

−∞
eσ(Z)YHk(Y )φ(Y )dY.

For k = 0,

I∗0 (d(Z)) =

∫ d(Z)

−∞
eσ(Z)Y φ(Y )dY = eσ(Z)2/2

∫ d(Z)−σ(Z)

−∞
φ(u)du = eσ(Z)2/2Φ(d(Z)− σ(Z))
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by a change of variables. For k ≥ 1,

I∗k(d(Z)) =

∫ d(Z)

−∞
eσ(Z)YHk(Y )φ(Y )dY

=

[
− 1√

k
eσ(Z)YHk−1(Y )φ(Y )

]d(Z)

−∞
+
σ(Z)√
k

∫ d(Z)

−∞
eσ(Z)YHk−1(Y )φ(Y )dY

= − 1√
k
eσ(Z)d(Z)Hk−1(d(Z))φ(d(Z)) +

σ(Z)√
k
I∗k−1(d(Z)).

Thus,

∫ d(Z)

−∞
eσ(Z)Y fK(Y |τ)dY =

∫ d(Z)

−∞
eσ(Z)Y

2Ky∑
k=0

γk(B, τ)Hk(Y )φ(Y )

 dY
=

2Ky∑
k=0

γk(B, τ)

∫ d(Z)

−∞
eσ(Z)YHk(Y )φ(Y )dY =

2Ky∑
k=0

γk(B, τ)I∗k(d(Z))

= eσ(Z)2/2Φ(d(Z)− σ(Z)) +

2Ky∑
k=1

γk(B, τ)I∗k(d(Z)), (B.3)

where γ0(B,Z) = 1. Plugging equations (B.2) and (B.3) into (B.1) obtains the desired result. The proof for
call options is analogous and is therefore omitted.

B.2 Asymptotic Theory

I establish the consistency, rate of convergence, and asymptotic distribution results stated in Section 4.

B.2.1 Consistency

Assumption B.1. Assume

(i) The option data and characteristics {Ξi}ni=1 ≡ {(Pi,Zi)}ni=1 are independent with E |Ξi|2+δ
<∞, and

the weighting function satisfies E[W (Zi)
2] <∞.

(ii) The true state-price density f0 ∈ F and satisfies P0 = E[P (f0,Z)|Z].

Assumption B.1 is standard and very mild. It says that the options are observed with conditional
mean-zero errors with bounded 2 + δ moments. Assumption B.1 and Lemma A.8 are sufficient to derive
consistency:

Proposition 2. (Consistency, Restated) Assumptions A.1 and B.1 imply
∥∥∥P̂n − P0

∥∥∥
2

p→ 0.

Proof. Let L(f) = E{− 1
2 [P − P (f,Z)]2W} ≡ E{`(f,Ξ)}, where Ξ ≡ (P,Z), and W = W (Z) is a strictly

positive weighting function. ` is concave in f , and L is strictly concave in f . Let d(f1, f2) ≡ ‖f1 − f2‖m,1
denote the state-price density consistency norm. The goal is to estimate the unknown P0(Z) = E[P |Z]

by invoking the general sieve consistency theorem in Chen (2007) (i.e. her Theorem 3.1). This requires
verification of her Conditions 3.1’ - 3.3’, 3.4, and 3.5(i), which adapts to the present notation as follows:

Condition 3.1’.
(i) L(f) is continuous at f0 ∈ F , L(f0) > −∞.
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(ii) for all ε > 0, L(f0) > sup{f∈F :d(f,f0)≥ε} L(f)

Condition 3.2’.
(i) FK ⊆ FK+1 ⊆ · · · ⊆ F , for all K ≥ 1.

(ii) For any f ∈ F , there exists πKf ∈ FK such that d(f, πKf)→ 0 as K →∞.

Condition 3.3’.
(i) Ln(f) is a measurable function of the data {Ξi}ni=1 for all f ∈ FK
(ii) For any data {Ξi}ni=1, Ln(f) is upper semicontinuous on FK under d(·, ·).

Condition 3.4. The sieve spaces FK are compact under d(·, ·).

Condition 3.5. (i) For all K ≥ 1, supf∈FK |Ln(f)− L(f)| = 0.

I verify each of these conditions in turn but require some preliminary results that relate option prices to
state-price densities:

Lemma B.1. Assumption A.1 implies

‖P (f,Z)− P (f0,Z)‖2 ≤ C1 ‖P (f,Z)− P (f0,Z)‖m,1 ≤ C2d(f, f0).

Proof.

‖P (f,Z)− P (f0,Z)‖22 ≤ C1 ‖P (f,Z)− P (f0,Z)‖2∞ ≤ C2 ‖P (f,Z)− P (f0,Z)‖2m,1 ≤ C3d(f, f0)2,

where the first inequality is due to the compactness of the domain Z (Assumption A.1 (ii)), the second
inequality follows from a Sobolev Embedding Theorem (Adams and Fournier (2003, Theorem 4.12, Part I,
Case A)), and the third inequality from Lemma A.8 (iv). Cj denote generic constants.

Lemma B.2. P (f1,Z) = P (f2,Z) if and only if f1 = f2 almost everywhere.

Proof. If f1 = f2 a.e., then by definition P (f1,Z) = P (f2,Z). Conversely, suppose P (f1,Z) = P (f2,Z).
Then differentiating the option price with respect to strike twice yields

erτ
∂2P (f1,Z)

∂κ2

∣∣∣
κ

= erτ
∂2P (f2,Z)

∂κ2

∣∣∣
κ

=⇒ f1(κ|Z) = f2(κ|Z).

Since this holds for every κ, the result follows.

Condition 3.1’: Assumption B.1 (ii) implies L(f0) = 0 > −∞. Also,

L(f0)− L(f) = −E{1

2
[P − P (f0,Z)]2W (Z)}+ E{1

2
[P − P (f,Z)]2W (Z)}

=
1

2
E{[P (f,Z)− P (f0,Z)][−2P + P (f,Z) + P (f0,Z)]W (Z)}

=
1

2
E{[P (f,Z)− P (f0,Z)]2W (Z)} =

1

2
‖P (f,Z)− P (f0,Z)‖22 ≤ C1 d(f, f0)2,

by Lemma B.1. Thus, as d(fn, f0) → 0, one has L(f0) − L(f) = |L(f0)− L(f)| → 0. This establishes
Condition 3.1’(i). As for Condition 3.1’(ii), note that continuity of L(f) at f0 implies that for any η > 0,
there exists a ε > 0 such that for all f satisfying d(f, f0) < ε, we have ‖P (f,Z)− P (f0,Z)‖2 < η. The
contrapositive of this statement reads: Given any ε > 0, there exists η > 0 such that if d(f, f0) ≥ ε, then
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‖P (f,Z)− P (f0,Z)‖2 ≥ η. Now let ε > 0 be given as in Condition 3.1’(ii), and consider any f ∈ {f ∈ F :

d(f, f0) ≥ ε}. By the previous derivations,

L(f0)− L(f) =
1

2
‖P (f,Z)− P (f0,Z)‖22 ≥

1

2
η2,

so

L(f0)− sup
{f∈F :d(f,f0)≥ε}

L(f) = inf
{f∈F :d(f,f0)≥ε}

[L(f0)− L(f)] ≥ 1

4
η2 > 0,

which establishes Condition 3.1’(ii).
Condition 3.2’: Condition 3.2’(i) follows readily from the orthogonality of Hermite polynomials. Condition
3.2’(ii) is shown in Lemma A.10 (ii).
Condition 3.3’: First note that Chen’s Theorem 3.1 still goes through if we only require Ln(f)’s upper semi-
continuity to hold almost surely. To this end, observe that Assumption B.1 (i) implies that Pi is almost
surely finite, i.e. ∃ a Borel set ΩF with |Pi(ω)| <∞ for all ω ∈ ΩF ,22 and Lemma A.8 (iv) implies P (f,Zi)

is locally bounded P− a.s. on F . Therefore Pi − P (f,Zi) is finite on ΩF .
Next, fix ω ∈ ΩF . Given any sequence fj ∈ FK with ‖fj − f‖m,1 → 0,

|Ln(fj)− Ln(f)| ≤ 1

n

n∑
i=1

∣∣∣[P (fj ,Zi(ω))− P (f,Zi(ω))]

[(Pi(ω)− P (f,Zi(ω)))− 1

2
(P (fj ,Zi(ω))− P (f,Zi(ω)))]W (Zi(ω))

∣∣∣
≤ const. 1

n

n∑
i=1

{
∣∣[P (fj ,Zi(ω))− P (f,Zi(ω))]2W (Zi(ω))

∣∣
+ |[(Pi(ω)− P (f,Zi(ω)))(P (fj ,Zi(ω))− P (f,Zi(ω)))]W (Zi(ω))|}.

≤ const. 1
n

n∑
i=1

{ sup
g∈(fj ,f)

|P (g,Zi(ω))|2 ‖fj − f‖2m,1

+ |(Pi(ω)− P (f,Zi(ω))| sup
g∈(fj ,f)

|P (g,Zi(ω))| ‖fj − f‖m,1}

→ 0

where the last inequality follows from the mean value theorem, and Lemma A.8 (iv) implies that the suprema
are bounded for sufficiently large j. Hence Ln(f) is almost surely continuous and therefore upper semi-
continuous. On the other hand, Ln(f) = 1

n

∑n
i=1−

1
2 [Pi − P (f,Zi)]

2W (Zi) is continuous in Zi for each
f ∈ F and is therefore measurable. Thus Condition 3.3’(i) is satisfied.
Condition 3.4: Compactness of the FK is the result of Lemma A.10 (i).
Condition 3.5(i): Finally, we require the uniform convergence of the empirical criterion over sieves, i.e. for
all K ≥ 1, supf∈FK |Ln(f)− L(f)| p→ 0 as n→∞, where Ln(f) = 1

n

∑n
i=1−

1
2 [Pi−P (f,Z)]2Wi. First, note

that by Assumption B.1 (i) and the law of large numbers, |Ln(f)− L(f)| = op(1) pointwise in f on FK .

22To see this, note by Markov’s inequality that P(|Pi| > M) ≤ V ar(Pi)/M
2. Applying the Borel-Cantelli Lemma

then shows that Pi is almost surely finite. See Billingsley (1995).
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Second, standard arguments show

sup
f∈FK

|L′n(f)| ≤ sup
f∈FK

1

n

n∑
i=1

|Pi − P (f,Zi)| |W (Zi)|

≤ 1

n

n∑
i=1

|PiW (Zi)|+ sup
g∈FK

|P (g,Zi)|

(
1

n

n∑
i=1

|W (Zi)|

)

≤

(
1

n

n∑
i=1

|Pi|2
)1/2(

1

n

n∑
i=1

|W (Zi)|2
)1/2

+ sup
g∈FK

|P (g,Zi)|

(
1

n

n∑
i=1

|W (Zi)|

)
.

The first term is Op(1) by Assumption B.1 (i). The second term is also Op(1) by the following arguments. By
Lemma A.10 (i), the FK are compact. Next, cover each point in FK with balls of radius small enough to make
the local boundedness Lemma A.8 (iv) hold. By compactness of FK , there exists a finite subcover {Ui}Ni=1

of FK where for each set Ui in the subcover, supf∈Ui P (f,Z) ≤ Mi P − a.s. Then M = max{M1, . . . ,MN}
is a bound on supg∈FK |P (g,Zi)|, so the second term in the above display is Op(1) under Assumption B.1
(i). Hence, by the mean value theorem, for f1, f2 ∈ FK ,

|Ln(f1)− Ln(f2)| ≤ Op(1) ‖f1 − f2‖m,1 .

This Lipschitz condition, the compactness of FK , and the pointwise convergence of Ln(f) to L(f) mean that
the conditions for Corollary 2.2 in Newey (1991) are met, so that supf∈FK |Ln(f)− L(f)| p→ 0, as required.
Since the conditions for Chen’s Theorem 3.1 are met, we conclude that d(f̂n, f0) = op(1). Applying Lemma
B.1 gives

∥∥∥P (f̂n,Z)− P (f0,Z)
∥∥∥

2

p→ 0.

The rate of convergence of the sieve option prices depends on notions of size or complexity of the space of
admissible option pricing functions as measured by the latter’s bracketing numbers. Note that each candidate
option price P (f,Z) is uniquely identified by the state-price density f (Lemma B.2). In turn, f ∈ F is the
target of a Lipschitz map with preimage fY,X = h2 + ε0h0, a Gallant-Nychka density (Appendix A and
Lemma A.9). The Gallant-Nychka class of densities requires h to reside in H, a closed Sobolev ball of some
radius B0. The rate result obtained below hinges on the observation that the collection of possible option
prices P is ultimately Lipschitz in the index parameter h ∈ H. Therefore, the size and complexity of P, as
measured by its L2(Rdz ,P) bracketing number, is bounded by the covering number of the Sobolev ball H
(see Van Der Vaart and Wellner (1996)).

B.2.2 Rate of Convergence

Assumption B.2. σ2
e(Z) ≡ E[e2|Z] and W (Z) are bounded above and away from zero, where e = P−P0(Z).

Assumption B.3. The deterministic approximation error rate satisfies

‖h− πKh‖m0+m,2,ζ0
= O(K−α)

for some α > 0, where h ∈ H and its orthogonal projection πKh ∈ HK are defined in Definitions A.2 and
A.3, and where K ≡ [Ky + 1][Kx,1 + 1] . . . [Kx,dx + 1] denotes the total number of series terms for functions
in HK .

Assumption B.4. For state-price densities in Wm,1(Y × X ), we have m ≥ du + 2.
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Assumption B.2 is mild and commonly adopted in the literature (see Chen (2007)). Assumption B.3 takes
as given the deterministic approximation error rate, and Assumption B.4 imposes additional smoothness in
order to invoke Sobolev embedding theorems (see Adams and Fournier (2003)).

Proposition 3. Under Assumptions A.1 and B.1–B.4,∥∥∥P̂n − P0

∥∥∥
2

= OP (εn),

εn = max{n−(m0+m)/(2(m0+m)+du), n−αdu/(2(m0+m)+du)}.

and Kn � ndu/(2(m0+m)+du).

Proof. Recall that the option prices P(Z) are generated by a conditional density, i.e. P(Z) ≡ P (f,Z), where
f ∈ F is the target of a Lipschitz map with preimage fY,X = h2 + ε0h0. The function h ∈ H lives in a
Sobolev ball of radius B0. The complexity of the space of possible option prices P is then firmly linked to the
complexity of the Sobolev ball H. The proof strategy is therefore to establish this link, and then to apply
Theorem 3.2 in Chen (2007) once we have a handle on the complexity of P.

Application of Theorem 3.2 in Chen (2007) requires verification of her Conditions 3.6, 3.7, and 3.8,
reproduced here for the current notation. It also requires the computation of a certain bracketing entropy
integral, which is undertaken below. Condition 3.6 requires an independent sample, which is already assumed
in Assumption B.1. It remains to check Conditions 3.7 and 3.8 and to compute the bracketing entropy
integral.

Condition 3.7. There exists C1 > 0 such that ∀ε > 0 small,

sup
P∈Bε(P0)

V ar
(
`(P,Ξi)− `(P0,Ξi)

)
≤ C1ε

2.

Condition 3.8. For all δ > 0, there exists a constant s ∈ (0, 2) such that

sup
P∈Bδ(P0)

∣∣`(P,Ξi)− `(P0,Ξi)
∣∣ ≤ δsU(Ξi),

with E[U(Ξi)
γ ] ≤ C2 for some γ ≥ 2.

First, note that `(P,Ξi)− `(P0,Ξi) = W (Zi)[P (Zi)− P0(Zi)]{ei + 1
2 [P (Zi)− P0(Zi)]}. Then

E{[`(P,Ξi)− `(P0,Ξi)]
2} = E

{
W (Zi)

2[P (Zi)− P0(Zi)]
2{ei +

1

2
[P (Zi)− P0(Zi)]}2

}
= E{W (Zi)

2[P (Zi)− P0(Zi)]
2e2
i }+ E{1

4
W (Zi)

2[P (Zi)− P0(Zi)]
4}

= E{W (Zi)
2[P (Zi)− P0(Zi)]

2σ2
e(Zi)}+

1

4
E{W (Zi)

2[P (Zi)− P0(Zi)]
4}

≤ const. ‖P − P0‖22 +
1

4
E{W (Zi)

2[P (Zi)− P0(Zi)]
4}

where the last inequality uses the bound from Assumption B.2. The second term on the RHS can be further
bounded,

E{W (Zi)
2[P (Zi)− P0(Zi)]

4} ≤ C sup
Z∈Z

[P (Z)− P0(Z)]2E{[P (Zi)− P0(Zi)]
2W (Zi)}

= C ‖P − P0‖2∞ ‖P − P0‖22
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The smoothness of P and P0 can be used to bound ‖P − P0‖2∞ as follows. Let η = 1 and let j = m−(dz+1),
which is greater than or equal to 1 by Assumption B.4. Thus, by Lemma A.8 (v), there exists a Hölder
Space embedding P ↪→ Cj,η(Z). Applying Lemma 2 in Chen and Shen (1998), one then has ‖P − P0‖∞ ≤
‖P − P0‖2/(2+dz). Therefore

E{W (Zi)
2[P (Zi)− P0(Zi)]

4} ≤ C ‖P − P0‖2+4/(2+dz)
2 ,

and one has

E{[`(P,Ξi)− `(P0,Ξi)]
2} ≤ const. ‖P − P0‖22 +

C

4
‖P − P0‖2+4/(2+dz)

2 .

This implies that Condition 3.7 is satisfied for all ε ≤ 1.
To show Condition 3.8, note that

|`(P,Ξi)− `(P0,Ξi)| =
∣∣∣∣[P (Zi)− P0(Zi)]

[
ei +

1

2
[P0(Zi)− P (Zi)]

]∣∣∣∣
≤ const. ‖P − P0‖∞ {|ei|+

1

2
‖P0‖∞ +

1

2
‖P‖∞}.

The terms involving ‖P0‖∞ and ‖P‖∞ are bounded by Assumption B.1 as well as the arguments in the proof
of Proposition 2. Thus Lemma 2 in Chen and Shen (1998) and another appeal to the Sobolev Embedding
Theorem imply that

|`(P,Ξi)− `(P0,Ξi)| ≤ const. ‖P − P0‖∞ U(Ξi)

≤ const.U(Ξi) ‖P − P0‖2/(2+dz)
2

for U(Ξi) = |ei|+const. Thus s = 2/(2+dz) is the required modulus of continuity, and γ = 2 by Assumption
B.1. This establishes Condition 3.8.

An appeal to Chen (2007)’s Theorem 3.2 requires the computation of δn satisfying

δn = inf

{
δ ∈ (0, 1) :

1√
nδ2

∫ δ

bδ2

√
H[ ](w,Gn, ‖·‖2)dw

}
,

for the bracketing entropy H[ ](w,Gn, ‖·‖2), where

Gn = {`(P,Ξi)− `(P0,Ξi) : ‖P − P0‖2 ≤ δ, P ∈ PKn}. (B.4)

Consider the following chain of inequalities

|`(P,Ξi)− `(P0,Ξi)| = |[P (Zi)− P0(Zi)|
∣∣∣∣ei +

1

2
[P0(Zi)− P (Zi)]

∣∣∣∣
≤M1 ‖f − f0‖m,1 U(Ξi)

≤M2U(Ξi)
∥∥∥fY,X − fY,X0

∥∥∥
m,∞,ζ0

by Lemma A.9

= M2U(Ξi)
∥∥∥(hY,X)2 − (hY,X0 )2

∥∥∥
m,∞,ζ0

by Def. A.2

≤M3U(Ξi)
∥∥∥hY,X − hY,X0

∥∥∥
m0+m,2,ζ0

(B.5)
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To see the last inequality, observe that∥∥∥(hY,X)2 − (hY,X0 )2
∥∥∥
m,∞,ζ0

≤ C
∥∥∥hY,X + hY,X0

∥∥∥
m,∞,ζ1/20

∥∥∥hY,X − hY,X0

∥∥∥
m,∞,ζ1/20

≤ C1

∥∥∥ζ1/2
0 (hY,X + hY,X0 )

∥∥∥
m,∞

C2

∥∥∥ζ1/2
0 (hY,X − hY,X0 )

∥∥∥
m,∞

≤ C3

∥∥∥hY,X + hY,X0

∥∥∥
m0+m,2,ζ0

C4

∥∥∥hY,X − hY,X0

∥∥∥
m0+m,2,ζ0

≤ C3(2B0)C4

∥∥∥hY,X − hY,X0

∥∥∥
m0+m,2,ζ0

.

(B.6)

for some constantsMj and Cj , and where the first inequality follows from Gallant and Nychka (1987) Lemma
A.3, the second from Gallant and Nychka (1987) Lemma A.1(d), the third from Gallant and Nychka (1987)
Lemma A.1(b), and the fourth by the definition of Hn ≡ HKn as a bounded Sobolev ball.

Theorem 2.7.11 in Van Der Vaart and Wellner (1996) implies that the bracketing number for Gn can be
bounded

N[ ](w,Gn, ‖·‖2) ≤ N
(

w

2CM3
,Hn, ‖·‖m0+m,2,ζ0

)
,

where the RHS is the covering number of a Sobolev ball with dimension Kn ≡ [Ky(n) + 1][Kx,1(n) +

1] . . . [Kx,dx(n) + 1]. By Lemma 2.5 in Van De Geer (2000), we can further bound the RHS, giving

N[ ](w,Gn, ‖·‖2) ≤ N
(

w

2CM3
,Hn, ‖·‖m0+m,2,ζ0

)
≤
(

1 +
8B0CM3

w

)Kn
.

Therefore,

1√
nδ2
n

∫ δn

bδ2n

√
H[ ](w,Gn, ‖·‖2)dw ≤ 1√

nδ2
n

∫ δn

bδ2n

√
Kn log

(
1 +

8B0CM3

w

)
dw ≤ C 1√

nδ2
n

√
Knδn,

which is less than or equal to a constant for the choice δn �
√
Kn/n. Put Ky(n) � Kx,1(n) � · · · �

Kx,dx(n) � n1/(2(m0+m)+du), so that Kn � ndu/(2(m0+m)+du), yielding

δn �
√
Kn√
n
� ndu/[2(2(m0+m)+du)]n−1/2 = n

−(m0+m)

2(m0+m)+du .

On the other hand, this choice of Kn combined with Assumption B.3 yields the approximation error rate

‖[P (Zi)− P0(Zi)‖2 ≤ const.
∥∥∥hY,X − hY,X0

∥∥∥
m0+m,2,ζ0

= O(K−αn ) = O
(
n

−αdu
2(m0+m)+du

)
,

where the inequality follows from the ones in (B.5). Applying Chen (2007)’s Theorem 3.2 yields the stated
result.

B.2.3 Asymptotic Distribution of Option Portfolios

Let Ξi ≡ (Pi,Zi) denote observations on option prices and characteristics, and define `(β,Ξi) ≡ − 1
2 [Pi −

P (β,Zi)]
2Wi and R̂Kn = − 1

n

∑n
i=1

∂2`(β̂n,Ξi)
∂β∂β′ .

Assumption B.5.
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(i) The smallest and largest eigenvalues of RKn are bounded and bounded away from zero uniformly for
all Kn.

(ii) limKn→∞

∥∥∥∂Γ(P0)
∂P [

∂PKn
∂β ]

∥∥∥2

2
<∞.

(iii) The deterministic sieve approximation rate (Assumption B.3) satisfies α > 2(m0+m)+du
4du

.

(iv) For the functional Γ(·) in (2.4), g(·) has bounded first and second derivatives over the domain of
interest.

Proposition 4. Under Assumptions A.1 and B.1–B.5,

√
nV̂ −1/2

n [Γ(P̂n)− Γ(P0)]
d−→ N(0, 1) (B.7)

where
V̂n = Ĝ′KnR̂

−1
Kn

Σ̂KnR̂
−1
Kn
ĜKn (B.8)

and where

ĜKn =
∂Γ(P (β̂n,Z))

∂β
, R̂Kn = − 1

n

n∑
i=1

∂2`(β̂n,Ξi)

∂β∂β′
, Σ̂Kn =

1

n

n∑
i=1

∂`(β̂n,Ξi)

∂β

∂`(β̂n,Ξi)

∂β

′

.

Proof. The aim is to connect the sieve asymptotic theory with simple non-linear least squares implementa-
tions by using techniques from Chen et al. (2014).

Riesz Representers Let PKn(Z) = P (βn,Z) and `(PKn ,Z) = `(βn,Z) for the purposes of this proof.
Then following Chen et al. (2014), one can define the inner product

〈P1 − P0, P2 − P0〉 ≡ −E{r(P0,Ξ)[P1 − P0, P2 − P0]},

where

r(P0,Ξ)[P1 − P0, P2 − P0] ≡ ∂`′(P0 + η(P2 − P0),Ξ)[P1 − P0]

∂η

∣∣∣∣∣
η=0

can be interpreted as a second-order Gateaux derivative in the directions P1−P0 and P2−P0. The associated
norm is given by

‖P − P0‖2 = −E{r(P0,Ξ)[P − P0, P − P0]}.

Heuristically, this norm measures deviations of the objective function from its linear approximation and will
have a Hessian interpretation later on.

In light of the consistency and rate results in Proposition 2 and Proposition 3, one can confine the
analysis to the local setting of Chen et al. (2014). That is, the convergence rate εn in Proposition 3 implies
that P̂ ∈ Bn with probability approaching one, where

Bn ≡ B0 ∩ PKn , where B0 ≡ {P ∈ PKn : ‖P − P0‖2 ≤ εn log logn}.

Let V ≡ clsp(B0)−{P0} and Vn ≡ clsp(Bn)−{P0,n}, where clsp(·) denotes the closed linear span and where
P0,n = πKnP0 denotes the orthogonal projection of P0 onto the sieve space PKn .
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Vn is a finite-dimensional Hilbert space, which implies that the functional Γ(P ) in (2.4) has a Riesz
representer v∗n ∈ Vn such that the Gateaux derivative in the direction v ∈ Vn can be expressed as an inner
product

∂Γ(P0)

∂P
[v] ≡ ∂Γ(P0 + ηv)

∂η

∣∣∣∣∣
η=0

= 〈v∗n, v〉

and
∂Γ(P0)

∂P
[v∗n] = ‖v∗n‖

2
= sup
v∈Vn,v 6=0

∣∣∣∣∂Γ(P0)

∂P
[v]

∣∣∣∣2 / ‖v‖2 . (B.9)

To get a step closer to familiar expressions from non-linear least squares asymptotic theory, I linearize the
option pricing functions P ∈ PKn w.r.t. its coefficient vector βn. Since any v ∈ Vn has the form v = P −P0,n

for P ∈ PKn , one has by mean value theorem v = ∂P (β,Z)
∂β (βn − β0,n) for β between βn and the coefficients

of the projection P0,n. Thus v∗n = ∂P (β
∗
,Z)

∂β (β∗n − β0,n) for some β∗n that depends on the functional Γ(P ).
Now, let γn = (βn − β0,n), and define the directional derivative

GKn ≡
∂Γ(P0)

∂P

[
∂P (β,Z)

∂β

]
, and RKn ≡ E

{
−∂

2`(β,Ξ)

∂β∂β′

}
.

In this notation, the problem in (B.9) translates to finding the solution

γ∗n = arg sup
γn∈RKn ,γn 6=0

γ′nGKnG
′
Kn
γn

γ′nRKnγn
,

which is given by γ∗n = R−1
Kn
GKn . Therefore,

v∗n =
∂P (β

∗
,Z)

∂β
(β∗n − β0,n) =

∂P (β
∗
,Z)

∂β
γ∗n =

∂P (β
∗
,Z)

∂β
R−1
Kn
GKn ,

which by definition implies the norm ‖v∗n‖
2

= G′KnR
−1
Kn
GKn . Finally, the score process (in the direction v∗n)

`′(P0,Ξi)[v
∗
n] = [Pi − P0(Zi)]W (Zi)v

∗
n = eiW (Zi)

∂P (β
∗
,Zi)

∂β
γ∗n

is required, with so-called standard deviation norm

‖v∗n‖
2
sd = V ar

(
1√
n

n∑
i=1

`′(P0,Ξi)[v
∗
n]

)

= γ
′∗
n

(
1

n

n∑
i=1

E

[
∂`(β

∗
,Ξi)

∂β

∂`(β
∗
,Ξi)

∂β

′])
γ∗n

= G′KnR
−1
Kn

ΣKnR
−1
Kn
GKn . (B.10)

This object can be estimated by replacing the Riesz representer v∗n with an estimate v̂∗n. Define

R̂Kn = − 1

n

n∑
i=1

∂2`(β̂n,Ξi)

∂β∂β′
Σ̂Kn =

1

n

n∑
i=1

∂`(β̂n,Ξi)

∂β

∂`(β̂n,Ξi)

∂β

′

ĜKn =

∫
Z1

ω(Z)
∂P (β̂n,Z)

∂β
dZ1 +

∫
Zc1
ω(Z)

∂C(β̂n,Z)

∂β
dZ1 v̂∗n =

∂P (β
∗
,Z)

∂β
R̂−1
Kn
ĜKn .
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Then

‖v̂∗n‖
2
sd,n = Ĝ′KnR̂

−1
Kn

Σ̂KnR̂
−1
Kn
ĜKn ≡ V̂n (B.11)

corresponds to the usual variance estimator using the familiar parametric Delta method.

Infeasible Asymptotic Distribution I show here that

√
n

Γ(P̂n)− Γ(P0)

‖v∗n‖sd
d→ N(0, 1). (B.12)

Define the empirical process µ{f(Ξ)} = 1
n

∑n
i=1 f(Ξi) − Ef(Ξi), and let u∗n = v∗n/ ‖v∗n‖sd. The result

(B.12) follows by showing that
√
nΓ(P̂n)−Γ(P0)

‖v∗n‖sd
=
√
nµn {`′(P0,Ξ)[u∗n]}+op(1), since

√
nµn {`′(P0,Ξ)[u∗n]} d→

N(0, 1) by Assumption B.1 (i) Assumption B.2, and Liapunov’s CLT.
Break the LHS of (B.12) into two parts,

√
n

Γ(P̂n)− Γ(P0)

‖v∗n‖sd
=
√
n

Γ(P̂n)− Γ(P0,n)

‖v∗n‖sd︸ ︷︷ ︸
Part A

+
√
n

Γ(P0,n)− Γ(P0)

‖v∗n‖sd︸ ︷︷ ︸
Part B

(B.13)

I start with Part B and prove it in steps.
Step 1: Show ‖v∗n‖

‖v∗n‖sd
= O(1).

‖v∗n‖
‖v∗n‖sd

=
γ∗
′

n RKnγ
∗
n

γ∗′n ΣKnγ
∗
n

≤ λmax(RKn)

λmin(ΣKn)
= O(1), (B.14)

where λmax(S) and λmin(S) are the largest and smallest eigenvalues of a matrix S. The last equality follows
from Assumption B.5 (i) and Assumption B.2.
Step 2: Show ‖P − P0‖ � ‖P − P0‖2. Note that ‖P − P0‖ =

√
E[−r(P0,Ξ)[P − P0, P − P0]]

=
√

E[ 1
2 [P (Z)− P0(Z)]2W (Z)] = 1√

2
‖P − P0‖2.

Step 3: ‖v∗n‖ ↗ ‖v∗‖ <∞. By definition, since Vn ⊂ V and ‖v∗n‖
2

= 〈v∗n, v∗n〉
= supv∈Vn,v 6=0 |Γ(P0)[v]|2 / ‖v‖2 ≤ supv∈V,v 6=0 |Γ(P0)[v]|2 / ‖v‖2 = ‖v∗‖2 < ∞, where the last inequality
follows from from the bound in Assumption B.5 (ii) (see the discussion in Chen et al. (2014, Remark 3.2)).
The result follows from continuity (linearity in v) of Γ(P0)[v] and denseness of Vn in V (Lemma A.10).
Step 4: Show ‖v∗ − v∗n‖ = O(K−αn ). By definition, ‖v∗ − v∗n‖ = ‖(P ∗ − P0)− (P ∗n − P0,n)‖
= ‖(P ∗ − P ∗n)− (P0 − P0,n)‖ ≤ ‖P ∗ − P ∗n‖+ ‖P0 − P0,n‖ = O(K−αn ) by Assumption B.3 and Step 2.
Step 5: By definition, since 〈v∗n, P0,n − P0〉 = 0,

|Γ(P0,n)− Γ(P0)|
‖v∗n‖sd

=
|Γ(P0,n)− Γ(P0)|

‖v∗n‖
‖v∗n‖
‖v∗n‖sd︸ ︷︷ ︸

O(1) by Step 1

= O(1)
|Γ′(P0)[P0,n − P0]|

‖v∗n‖

= O(1)
|〈v∗, P0,n − P0〉|

‖v∗n‖
= O(1)

|〈v∗ − v∗n, P0,n − P0〉|
‖v∗n‖

≤ O(1) ‖v∗ − v∗n‖ ‖P0,n − P0‖
‖v∗‖
‖v∗n‖

= O(1) ‖v∗ − v∗n‖ ‖P0,n − P0‖

≤ O(1)O(K−αn )O(K−αn ) = O(n
−2αdu

2(m0+m)+du ) = o(n−1/2)
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by definition of the Riesz representer, Cauchy-Schwarz inequality, Step 3, Step 4, and Assumption B.5 (iii).
Conclude that Part B in (B.13) is o(1).

To show Part A, let u∗n = v∗n/ ‖v∗n‖sd.
Step 1: By linearity of Γ′(·)[v] in v,

√
n

Γ(P̂n)− Γ(P0,n)

‖v∗n‖sd
=
√
n

Γ(P0) + Γ′(P0)[P̂n − P0]− {Γ(P0) + Γ′(P0)[P0,n − P0]}
‖v∗n‖sd

=
√
n

Γ′(P0)[P̂n − P0,n]

‖v∗n‖sd
=
〈P̂n − P0,n, v

∗
n〉

‖v∗n‖sd
= 〈P̂n − P0,n, u

∗
n〉.

Step 2: For εn = o(n−1/2), show that

sup
‖P1−P2‖≤εn

µn{`(P1,Ξ)− `(P2,Ξ)− `′(P0,Ξ)[P1 − P2]} = op(εn). (B.15)

Let Qn(P ) ≡ µn{`(P,Ξi) − `(P0,Ξi) − `′(P0,Ξi)[P − P0]}. In this notation, the LHS in (B.15) becomes
µn{`(P1,Ξ)−`(P2,Ξ)−`′(P0,Ξ)[P1−P2]} = Qn(P1)−Qn(P2). Then by the functional mean value theorem,

|Qn(P1)−Qn(P2)| ≤ sup
P∈P
|Q′n(P )| ‖P1 − P2‖ = Op(1) ‖P1 − P2‖ ,

since by definition of the least squares objective function,

Q′n(P ) = µn{`′(P,Ξi)− `′(P0,Ξi)− `′′(P0,Ξi)[P − P0]} = −µn{P0(Z)W (Z)} = Op(1).

The result in (B.15) follows.
Step 3: Consider how the optimized sample objective function behaves in response to small changes in the
direction of the Riesz representer v∗n. To this end, I follow Chen et al. (2014) and set P̂ ∗u,n = P̂n ± εnu∗n,
where εn = o(n−1/2). Note that since P̂n ∈ Bn with probability approaching one, one has that P̂ ∗u,n ∈ Bn
with probability approaching one. Then by definition of P̂n,

−Op(ε2n) ≤ 1

n

T∑
i=1

`(P̂n,Ξi)−
1

n

T∑
i=1

`(P̂ ∗u,n,Ξi)

= E[`(P̂n,Ξi)− `(P̂ ∗u,n,Ξi)] + µn{`′(P0,Ξi)[P̂n − P̂ ∗u,n]}

+ µn{`(P̂n,Ξi)− `(P̂ ∗u,n,Ξi)− `′(P0,Ξi)[P̂n − P̂ ∗u,n]}

= E[`(P̂n,Ξi)− `(P̂ ∗u,n,Ξi)]∓ µn{`′(P0,Ξi)[εnu
∗
n]}+ op(εn)

by Step 2. Next, note that by definition of r(P0,Ξ),

`(P,Ξ) = `(P0,Ξ) + `′(P0,Ξ)[P − P0] +
1

2
r(P0,Ξ)[P − P0, P − P0],

so that

E[`(P̂n,Ξi)− `(P̂ ∗u,n,Ξi)] =

∥∥∥P̂ ∗u,n − P0

∥∥∥2

−
∥∥∥P̂n − P0

∥∥∥2

2
= ±εn〈P̂n − P0, u

∗
n〉+

1

2
ε2n ‖u∗n‖

2

= ±εn〈P̂n − P0, u
∗
n〉+Op(ε

2
n).
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Thus −Op(ε2n) ≤ ±εn〈P̂n − P0, u
∗
n〉+Op(ε

2
n)∓ εnµn{`′(P0,Ξi)[u

∗
n]}+ op(εn), so that∣∣∣〈P̂n − P0, u

∗
n〉 − µn{`′(P0,Ξi)[u

∗
n]}
∣∣∣ = Op(εn) = op(n

−1/2).

Finally, since the definition of P0,n implies 〈P0,n − P0, v〉 = 0 for any v ∈ Vn,∣∣∣〈P̂n − P0,n, u
∗
n〉 − µn{`′(P0,Ξi)[u

∗
n]}
∣∣∣ = op(n

−1/2).

This expression, plugged into Step 1 and (B.13), yields

√
n

Γ(P̂n)− Γ(P0)

‖v∗n‖sd
=
√
n

Γ(P̂n)− Γ(P0,n)

‖v∗n‖sd
+
√
n

Γ(P0,n)− Γ(P0)

‖v∗n‖sd
=
√
nµn {`′(P0,Ξ)[u∗n]}+ op(1)

d→ N(0, 1).

by Assumption B.1 (i) Assumption B.2, and Liapunov’s CLT.

Feasible Asymptotic Distribution I show that replacing ‖v∗n‖sd with the estimate ‖v̂∗n‖sd,n in (B.11)
results in

√
n

Γ(P̂n)− Γ(P0)

‖v̂∗n‖sd,n
d→ N(0, 1).

To establish the requisite stochastic equicontinuity results, I use the following lemma:

Lemma B.3. For δ > 0, the subset of option pricing functions G(δ) ≡ {P1, P2 ∈ P : ‖P1 − P2‖2 ≤ δ} is
P-Donsker.

Proof. By Lemma B.1,

‖P1 − P2‖2 ≤M1 ‖f1 − f2‖m,1
≤M2

∥∥∥fY,X1 − fY,X2

∥∥∥
m,∞,ζ0

by Lemma A.9

= M2

∥∥∥(hY,X1 )2 − (hY,X2 )2
∥∥∥
m,∞,ζ0

by Def. A.2

≤M3

∥∥∥hY,X1 − hY,X2

∥∥∥
m0+m,2,ζ0

by inequality (B.6)

≤ 2M3B0.

(B.16)

Therefore we can think of P(δ) as being Lipschitz in an index parameter that is a bounded subset of
Wm0+m,2,ζ0(Rdu). Theorem 2.7.11 in Van Der Vaart and Wellner (1996) then implies that the bracketing
number for G(δ) can be bounded, i.e.

N[ ](w,G(δ), ‖·‖2) ≤ N
(

w

4B0M3
,H, ‖·‖m0+m,2,ζ0

)
≤ N

(
w

4B0M3
,H, ‖·‖∞

)
,

where the second inequality follows from Gallant and Nychka (1987) Lemma A.1(c). Therefore,

H[ ](w,G(δ), ‖·‖2) ≤ C2w
−du/m
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by Corollary 4 of Nickl and Pötscher (2007). Because m > du/2 by assumption on the Gallant-Nychka
spaces, we have that ∫ ∞

0

H
1/2
[ ] (w,G(δ), ‖·‖2)dw <∞,

which is a sufficient condition for G(δ) to be P-Donsker (see Van Der Vaart and Wellner (1996, p. 129)).

Next, note that for Wn ≡ {v ∈ Vn : ‖v‖ = 1}, Chen et al. (2014) (CLS) Assumption 5.1(i) is trivially
satisfied for the least squares regression function, and CLS Assumptions 5.1(ii) is satisfied by Lemma B.3 and
an application of the Glivenko-Cantelli theorem. CLS Assumption 5.1(iii) can be obtained from Assumption
B.5 (iv), so that CLS Lemma 5.1 of can be invoked, which states∣∣∣∣‖v̂∗n‖‖v∗n‖

− 1

∣∣∣∣ = Op(ε
∗
n),

‖v̂∗n − v∗n‖
‖v∗n‖

= Op(ε
∗
n), (B.17)

for ε∗n = o(1).
The object of interest is

‖v∗n‖
−1
sd ‖v̂

∗
n‖

2
sd,n ‖v

∗
n‖
−1
sd = V̂ ar

(
‖v∗n‖

−1
sd

1√
n

n∑
i=1

`′(P̂n,Ξi)[v̂
∗
n]

)
.

Focusing on the term inside the variance, linearity of the directional derivative implies

1√
n

n∑
i=1

`′(P̂n,Ξi)[v̂
∗
n] =

1√
n

n∑
i=1

{
`′(P̂n,Ξi)[v̂

∗
n]− `′(P0,Ξi)[v̂

∗
n]
}

+
1√
n

n∑
i=1

`′(P0,Ξi)[v
∗
n] +

1√
n

n∑
i=1

`′(P0,Ξi)[v̂
∗
n − v∗n].

The third term on the RHS is∣∣∣∣∣ 1√
n

n∑
i=1

`′(P0,Ξi)[v̂
∗
n − v∗n]

∣∣∣∣∣ ≤ ‖v̂∗n − v∗n‖ sup
v∈Wn

∣∣∣∣∣ 1√
n

n∑
i=1

`′(P0,Ξi)[v]

∣∣∣∣∣ = Op(‖v∗n‖ ε∗n)

by the Donsker property of Lemma B.3, the functional CLT, and (B.17).
To address the first term on the RHS, consider

sup
P∈Bn

∣∣∣∣∣ 1√
n

n∑
i=1

{`′(P,Ξi)[v̂∗n]− `′(P0,Ξi)[v̂
∗
n]}

∣∣∣∣∣ ≤ ‖v̂∗n‖ sup
P∈Bn
v∈Wn

∣∣∣∣∣ 1√
n

n∑
i=1

v(Zi)W (Zi)[P0(Zi)− P (Zi)]

∣∣∣∣∣
= Op(‖v∗n‖ ε∗n),

by the Donsker property of Lemma B.3, the functional CLT, and (B.17).
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Combining results from the previous three displays and using (B.14), one has

‖v∗n‖
−1
sd ‖v̂

∗
n‖

2
sd,n ‖v

∗
n‖
−1
sd = V̂ ar

(
‖v∗n‖

−1
sd

1√
n

n∑
i=1

`′(P̂n,Ξi)[v̂
∗
n]

)

= V̂ ar

(
‖v∗n‖

−1
sd

1√
n

n∑
i=1

`′(P0,Ξi)[v
∗
n] + op(1)

)
p→ ‖v∗n‖

−1
sd ‖v

∗
n‖

2
sd ‖v

∗
n‖
−1
sd = 1

by LLN. Therefore

√
n[Γ(P̂n)− Γ(P0)]

‖v̂∗n‖sd,n
=
√
n

Γ(P̂n)− Γ(P0)

‖v∗n‖sd
‖v∗n‖sd
‖v̂∗n‖sd,n

d→ N(0, 1),

as required.
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