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1 Introduction:

The relationship between agglomeration, i.e. the spatial concentration of economic activ-

ity within countries or regions, and economic growth has been of long-standing scholarly

interest in economics. Economic historians have observed a positive correlation between

the two during the industrial revolution in Europe in the 19th century, when a marked

rise in economic growth was accompanied by increasing concentration of economic activity

in urban centres and industrial clusters.1 Similar developments in China since the late

1970s are a more modern example. In urban and development economics, agglomeration

also plays an important role. For example, Williamson (1965) suggests that in countries

that are at an early stage of economic development, growth is relatively fastest in a few

more prosperous and better-endowed “growth pole” regions such as urban and industrial

agglomerations, so that rising income levels during the catch-up phase are associated with

rising regional disparities.2

Recently, a number of theoretical contributions have provided a unified framework for

analysing the relationship between agglomeration and growth, by integrating two strands

of economic theory that had proceeded along separate lines until then: endogenous growth

theory and the new economic geography initiated by Krugman (1991a), which analyses

the distribution of economic activity in space. This recent research predicts a two-way

relationship, whereby agglomeration is conducive to growth, and growth also leads to

agglomeration.

In this paper, we investigate the link between the agglomeration of economic activity

and economic growth at the level of European regions. While the empirical evidence that

exists on this issue for Europe has mostly been concerned with Western Europe, we focus

on the regions of Central and Eastern Europe (CEE), where there are good reasons to

expect this relationship to be strong.

First, economic activity is more concentrated in CEE than in Western Europe, es-

pecially around the national capitals. For example, Landesmann and Römisch (2006)

calculate that the regional dispersion of GDP per capita, measured by the coefficient of

variation, averaged at 0.47 since the mid-1990s across the CEE regions when calculated

both at NUTS-2 and NUTS-3 level, while the values for Western European regions were

0.29 and 0.38 respectively. Repeating the exercise without the capital regions, the dis-

persion across CEE falls markedly and is much closer to that for Western Europe, which

declines only slightly. In part, this comparatively larger disparity between the capital

regions and the rest of the CEE countries is a legacy of the centrally planned economic

system of the Soviet Union, which favoured the capital cities as national centres of political

1See Martin and Ottaviano (2001), who cite Hohenberg and Lees (1985).
2For more advanced countries, the “Williamson hypothesis” predicts the opposite, so that regional

disparities fall as income rises further above a certain level. Overall, we may thus observe an inverted
U-shaped relationship between a country’s income level and regional inequality.
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administration, education and transport infrastructure.

Second, economic growth in CEE has been quite substantial since about 1995, and it

exceeded growth in Western Europe by several percentage points during the first half of

the 2000s. While the initial phase of transition to a market-based economic system that

followed the disintegration of the Soviet Union in 1989/1990 involved severe recessions in

most countries, by the mid-1990s output recovered and growth returned. Until the late

1990s, interruptions due to fiscal, currency or banking crises occurred in several countries,

but from about 2000 onwards, growth rates accelerated and reached annual averages of 5.5%

and more in the Baltics, Bulgaria and Romania, and 3-5% on average in the remaining

CEE countries.3

Third, recent evidence suggests that economic growth in CEE has gone hand-in-hand

with an increase in the pronounced regional concentration of economic activity that already

characterised the CEE countries at the beginning of transition. This trend has mainly been

the result of exceptionally strong growth in certain prosperous and highly agglomerated

regions, coupled with a weaker performance of lagging regions (Römisch 2003, Paas and

Schlitte 2007). In addition, empirical work on growth in the enlarged European Union since

the mid-1990s has tended to find convergence occurring across all EU countries, as well

as across CEE regions when convergence in the absolute form is tested for, but divergence

across CEE regions when country-specific effects are introduced (e.g. Niebuhr and Schlitte

2004 and 2008, European Commission 2004). That is, while the poorer CEE countries are

catching up to the richer EU-15, and catch-up and the concomitant reduction in income

disparities is also taking place across the regions of different CEE countries, disparities

within CEE countries have been rising. This combination of declining between-country

disparities and increasing within-country disparities also points to the existence of a few

regions which grow exceptionally fast and in which an increasingly large share of economic

activity concentrates over time, while other regions cannot keep pace.

There are two types of highly agglomerated CEE regions that have grown more strongly

than most other regions. On the one hand, the capital regions were better able to adjust

to the massive structural changes induced by the transition than regions that had spe-

cialised in agriculture or industry under central planning, since compared to the latter,

the capitals had maintained a more diversified economic structure. Moreover, the capitals

have had access to a better educated labour force and they have been more successful in

attracting foreign direct investment (FDI). The rise of the modern services sector is also

most advanced in the capitals. By contrast, some rural and formerly heavy industry-based

regions have not fully recovered from the severe slumps they experienced during transition

and register below-average growth rates (e.g. Jasmand and Stiller 2005, Horvath 2000).

On the other hand, regions bordering Western Europe benefited from the shift in their

relative geo-economic location brought about by the fall of the Iron Curtain. Their position

3Landesmann and Römisch (2006) pp.1-2.
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changed from being relatively remote from their national economic centres to having the

closest access to the large Western European market, a position of considerable advantage

during the advancing trade integration of the CEE countries with the West. Correspond-

ingly, economic activity in the border regions has increased, while eastern CEE regions

have generally not performed as well. For example, their proximity to the West made

the border regions an attractive destination for manufacturing FDI (e.g. the automotive

clusters in western Slovakia and western Hungary). Several studies, for example Resmini

(2003) and Niebuhr (2008), find that border regions in CEE experienced above-average

growth rates in the 1990s.

The main contribution of this paper is to investigate the relationship between agglomer-

ation and (short-run) economic growth for the regions of the ten CEE accession countries.

We draw on a panel of 48 NUTS-2 regions over the period from 1995 to 2006. Consistent

with the recent empirical literature on agglomeration and growth, we use the term “ag-

glomeration” to refer to the concentration of aggregate economic activity within regions,

that is, we do not consider the spatial concentration of individual industries.

Compared to much of the existing research for Western European regions, our mea-

sure of agglomeration has an important advantage. We use the “topographic” Theil index

developed by Brülhart and Traeger (2005) to measure the concentration of total employ-

ment across NUTS-3 subregions within each CEE NUTS-2 region. This index allows the

distribution of aggregate economic activity to be compared to the distribution of NUTS-3

region areas within each NUTS-2 region. The topographic Theil index differs from so-

called “absolute“ concentration indices that have been employed in some previous studies

on agglomeration and regional growth in Western Europe, which measure concentration

relative to the uniform distribution of economic activity across regions.

We estimate a transitional growth specification in the spirit of Mankiw, Romer and Weil

(1992), which we augment with our measure of agglomeration, similar to other empirical

studies on the topic. We make use of panel data estimators that allow us to deal with

several estimation issues that may arise from the presence of unobserved region-specific

fixed effects and the dynamic nature of our model, endogeneity of explanatory variables,

and spatial dependence in our regional dataset.

In our empirical analysis, we find evidence of a statistically significant positive effect

of agglomeration on transitional growth for our panel of CEE regions that is robust across

estimation methods and models. In addition, the size of the long-run effect of agglomeration

on income is economically significant. These results suggest that in terms of the Williamson

hypothesis, the regions of Central and Eastern Europe as a whole are still at a stage

where encouraging the geographic concentration of economic activity is growth-enhancing.

However, since higher within-region concentration may also entail greater within-region

inequality, policy makers could face a trade-off between economic growth and regional

cohesion.
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The remainder of this paper is organised as follows. The next two sections give an

exposition of the recent theoretical literature linking agglomeration and economic growth

and review the existing empirical literature. Section 4 outlines our modelling approach and

estimation strategy. Section 5 describes the data and variables including our agglomeration

measure. Section 6 presents and discusses the results, and section 7 concludes.

2 Theoretical Links between Agglomeration and Growth:

The recent theoretical literature on the agglomeration-growth nexus combines elements

from the endogenous growth models of Romer (1990) and Grossman and Helpman (1991)

with a new economic geography framework in the spirit of Krugman (1991a) or Venables

(1996). A common theme of this literature is a mutually beneficial relationship between

agglomeration and growth. Since the models are similar, we focus on two early protagonists,

Martin and Ottaviano (1999, 2001), and comment briefly on the contributions by Baldwin

and Forslid (2000), Baldwin, Martin and Ottaviano (2001), Fujita and Thisse (2003) and

Baldwin and Martin (2004).

All agglomeration-and-growth models share the same general set-up. As in new eco-

nomic geography, there are two regions that are initially identical. There are also the

two standard sectors: a perfectly competitive sector producing a homogeneous good under

constant returns to scale (e.g. agriculture), and a monopolistically competitive sector pro-

ducing varieties of a horizontally differentiated good under increasing returns to scale as

in Dixit and Stiglitz (1977) (e.g. manufacturing). The homogeneous good can be costlessly

traded between regions. It serves as the numeraire and is produced in both regions using

only immobile labour as an input. The differentiated good faces “iceberg” transport costs

such that a fraction of the good “melts away” in trade. Each firm in the monopolistically

competitive sector produces only one variety of the good using labour which may or may

not be mobile between regions, depending on the model. Firms in this sector are free

to locate in either region. Consumers have Cobb-Douglas preferences over the homoge-

neous good and a constant elasticity of substitution (CES) aggregate of varieties of the

differentiated good.

In addition, a perfectly competitive R&D sector is introduced that operates as in Romer

(1990) or Grossman and Helpman (1991). In Martin and Ottaviano (1999, 2001) and Fujita

and Thisse (2003), it invents blueprints for new varieties of the differentiated good which

are then patented, while in Baldwin and Forslid (2000), Baldwin et al. (2001) and Baldwin

and Martin (2004), it produces capital (physical, human or knowledge capital). In both

cases, it is the source of growth, which takes the form of growth in the number of vari-

eties of the differentiated good or in the stock of capital. The production of new ideas (or

capital goods) in the R&D sector is proportional to the stock of existing knowledge (cap-

ital) because knowledge spillovers make every innovation accessible to the entire research
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community. Hence, as the output of the R&D sector rises, the marginal productivity of

the input (e.g. researchers) employed in the sector rises, or equivalently, the marginal cost

of producing a given innovation falls. The accumulation of knowledge therefore does not

run into diminishing returns, which makes sustained long-run economic growth possible.

A fixed cost of one unit of the R&D sector’s output - a patent or a unit of capital - is

required by the monopolistically competitive sector to produce each variety. In some of

the models, the R&D sector is mobile across regions in that its output can be costlessly

traded, while in others, it is immobile.

In Martin and Ottaviano (2001), the R&D sector is mobile and its only input is the

same CES aggregate of varieties of the differentiated good that is produced by the monop-

olistically competitive manufacturing sector and demanded by consumers. Similar to the

new economic geography models of Venables (1996) and Krugman and Venables (1995),

this creates vertical linkages between the two sectors, which generate the process of cumu-

lative causation that eventually results in the agglomeration of economic activity in one of

the two regions.4 In order to isolate this channel, the model assumes that manufacturing

labour is immobile, thus abstracting from the mechanism that brings about agglomeration

in the seminal Krugman (1991a) model.

The R&D sector’s use of differentiated goods as inputs in the innovation process means

that part of the overall demand for the manufacturing sector’s output comes from the

R&D sector. To realise economies of scale and to minimise transport costs, manufacturing

firms thus have an incentive to concentrate production in the region where a larger share

of the R&D sector is located, that is, where expenditure on their products is higher.5 This

constitutes a demand linkage between the two sectors. If the growth rate of the economy

increases, which means that the R&D sector invents new varieties at a faster rate and

therefore requires more of the differentiated good as an input, more manufacturing firms

will choose to move to the region with the larger share of researchers, thereby raising the

geographic concentration of manufacturing. As a result, the demand linkage makes the

geographic agglomeration of manufacturing firms in a region a positive function of the rate

of growth.

In turn, the cost of inputs in the R&D sector depends on the price of the differentiated

goods produced by the manufacturing sector. To save on transport costs, the R&D sector

thus has an incentive to locate in the region where more manufacturing firms are located,

which represents a cost linkage between the sectors. If the geographic concentration of

manufacturing increases as more firms move to a region, the cost of innovation in the

research sector declines, which raises the rate of growth as new researchers enter the R&D

4The Venables and Krugman-Venables models assume vertical linkages between firms within the mo-
nopolistically competitive sector, so that the analogy is not exact.

5This implies the “home market effect” introduced by Krugman (1980), according to which the region
with the larger share of demand for a good has a more than proportionately larger share of production of
that good.
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sector until profits return to zero. The cost linkage therefore makes the economy’s growth

rate a positive function of the geographic agglomeration of manufacturing.

Overall, the combination of the two linkages implies that an initial situation where both

regions are symmetric - in that they have equal shares of the manufacturing and research

sectors - is only a stable equilibrium if the growth rate of the economy is zero.6 In this

case, the research sector is not active, so that the linkages that make agglomeration and

growth mutually reinforcing processes do not operate. If growth is positive, however, a

small disturbance to the symmetric equilibrium sets in motion a cumulative process that

leads to both rising economic growth and the agglomeration of the R&D and manufacturing

sectors in one region.7 In the stable equilibrium with positive growth, the R&D sector is

entirely concentrated in one region, but manufacturing is less than fully agglomerated.

This is because as the economy grows and new varieties are created only in the region in

which the research sector is located, the increasing competition in manufacturing in that

region induces a steady flow of some firms to the other region, which has no innovation

activity.

In Martin and Ottaviano (2001), the linkage effects that foster agglomeration and

growth are pecuniary externalities that result from market interactions between the man-

ufacturing and research sectors. In all other models, the technological externalities in the

form of knowledge spillovers that exist in the R&D sector, and in particular their poten-

tially localised nature, also play an important role in linking agglomeration and growth.

The main input in the research sector is now labour, so that input-output linkages with

the manufacturing sector, as in Martin and Ottaviano (2001), are absent.

Martin and Ottaviano (1999) distinguish between a situation where knowledge spillovers

within the R&D sector are global, in that they extend costlessly to both regions, and one

where they are local, so that they benefit only their region of origin. In the first case, the

invention of a new variety in the research sector of one region reduces the marginal cost of

R&D in both regions, so that the cost of R&D in each region depends on the total number

of existing varieties (which equals the number of monopolistically competitive firms) in

the global economy.8 By contrast, in the second case, a new variety or firm lowers the

marginal cost of R&D only in the region where it was created, so that the cost of R&D in

each region depends on the number of varieties or firms in that particular location.

Martin and Ottaviano (1999) show that when R&D knowledge spillovers are localised,

the agglomeration of manufacturing firms is beneficial to economic growth. With localised

6In equilibrium, the growth rate and each region’s share of manufacturing firms are constant.
7Consider, for instance, the defection of one manufacturing firm from one region to the other. As the

cost of innovation is now lower in the latter region, this region attracts all research activity, which raises
the demand for manufacturing output in that region, inducing more firms to move in. This further lowers
the cost of innovation, attracting new researchers into the R&D sector until profits are driven back to zero,
raising the growth rate in the process. Manufacturing firms continue to move in until profits in the sector
are equalised across regions.

8This assumption is made in Martin and Ottaviano (2001).
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knowledge spillovers, a greater concentration of manufacturing firms in a region lowers the

marginal cost of R&D, which raises the growth rate by attracting more researchers into the

sector. On the other hand, when knowledge spillovers are global, growth is independent

of agglomeration, since in this case, the presence of an additional firm lowers the cost of

R&D equally everywhere, no matter where the firm is located.

When spillovers are localised, the R&D sector - which is mobile in this model - has

an incentive to concentrate all of its activity in the region where a larger share of the

manufacturing sector is located, because the cost of research is lower there (a cost linkage

between the sectors). Hence, if one of the two regions has an exogenously given higher

number of firms at the outset, the R&D sector will end up fully agglomerated in this

region. However, there is no further linkage that would give the manufacturing sector

an incentive to locate near researchers as in Martin and Ottaviano (2001), and labour is

assumed to be immobile. Overall therefore, no cumulative process arises in this model that

would lead to the concentration of manufacturing activity in one location, as is the case in

the other models.

In Fujita and Thisse (2003) and Baldwin and Forslid (2000), agglomeration raises the

growth rate via the same cost linkage as in Martin and Ottaviano (1999) when knowledge

spillovers in the research sector are localised. Both models build on Krugman (1991a),

where labour mobility is the mechanism that leads to the complete agglomeration of eco-

nomic activity in one region. Finally, Baldwin et al. (2001) and Baldwin and Martin (2004)

show that when the R&D sector is immobile, growth also fosters agglomeration, in addition

to the positive effect of agglomeration on growth that arises when knowledge spillovers are

localised.

3 Previous Empirical Evidence:

There is a small empirical literature investigating the relationship between the agglomer-

ation of aggregate economic activity and the evolution of European regional incomes that

is motivated by the theoretical models outlined above. In an early contribution, Sbergami

(2002) uses a “Barro-style” transitional growth specification to investigate the effect on

national GDP growth of the geographic concentration of employment in manufacturing

industries across NUTS-1 regions within six EU countries. She uses panel data from 1984

to 1995 and employs three different indices to measure industrial concentration: the “loca-

tional” Gini coefficient, the Theil index and a concentration index derived from Krugman

(1991b). For two of these three indices, she obtains a significant negative coefficient, which

suggests that greater dispersion rather than agglomeration of manufacturing industries is

beneficial for (short-run) growth. The author’s own interpretation is that if it is the spatial

distribution of R&D activity that matters for growth, and if the distribution of R&D differs

from that of manufacturing industries, then the latter may not be very informative.
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The following papers consider agglomeration at the level of the aggregate economy

instead of the industry level, in contrast to Sbergami (2002). Crozet and Koenig (2008)

estimate a convergence specification augmented with the log-difference of their measure

of agglomeration, so that the growth rate of agglomeration affects long-run income levels.

They consider the NUTS-1 regions of 14 Western European countries from 1980 to 2000.

Agglomeration is measured alternatively by the standard deviation and a Theil index of per-

capita GDP across NUTS-3 regions within each NUTS-1 region. Crozet and Koenig find a

positive and significant coefficient for the full sample, which results also when agglomeration

is proxied by the standard deviation of GDP density (GDP per km2) instead of GDP per

capita. However, when the coefficient on agglomeration is allowed to differ between the

richer northern and the poorer southern regions of Western Europe, it turns out that the

positive relationship only holds for the former. For the less developed southern regions,

changes in the growth rate of agglomeration have no significant effect.

Bosker (2007) examines the relationship between agglomeration and transitional growth

for the NUTS-2 regions of 16 Western European countries from 1977 to 2002. Because of

data limitations, he does not consider the sub-regional agglomeration of economic activity

but employment density (employment per km2) at the NUTS-2 level. However, density

measured at the aggregate regional level does not capture the distribution of economic

activity across sub-regional units and is therefore not an adequate gauge of the within-

regional concentration of economic activity that we are interested in.9 Bosker augments

Mankiw et al.’s (1992) convergence specification with employment density and estimates

the equation on panel data by OLS as well as maximum likelihood when introducing a

spatial lag of the dependent variable. From his preferred results that control for region-

and period-specific fixed effects, he concludes that a region’s employment density has a

significant negative effect on its (short-run) rate of growth for his sample.

Finally, Brülhart and Sbergami (2009) conduct a comprehensive country-level analysis

of the subject. Their empirical specification is a “Barro-style” transitional growth model

with a large number of control variables. For a world-wide sample of about 100 coun-

tries and a sample of 16 Western European countries since 1960, the relationship between

subnational agglomeration and country-level growth is estimated using cross-section OLS

and panel system-GMM techniques. Agglomeration is measured both by variables that

capture urbanisation, such as the share of a country’s population that lives in cities or

in the largest city, and by Brülhart and Traeger’s (2005) “topographic” Theil index of

employment concentration across NUTS-2 regions within EU countries.10

9Sbergami (2002) illustrates that aggregate employment density and indices of within-region concentra-
tion do not necessarily measure the same thing and may even yield conflicting outcomes: large countries
(in terms of area) in her sample register both low levels of employment density and high values of her
agglomeration indices.

10The urbanisation variables serve as agglomeration proxies chiefly in the world-wide sample, where
information on the distribution of employment across subnational regions is not readily available for many
countries.
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Brülhart and Sbergami (2009) specifically investigate the Williamson hypothesis, for

which they find supportive evidence: across samples and methods, agglomeration fosters

transitional growth in poorer countries, while for countries with per-capita incomes above

about 10 000 U.S. dollars (12 300 U.S. dollars for the Western European sample) in 2006

prices, agglomeration is detrimental to growth.11 For more advanced countries, the neg-

ative effects associated with the concentration of economic activity, such as congestion

externalities and greater competition, therefore appear to outweigh the positive effects.

Since compared to Western Europe, the CEE countries in our sample are relatively poor,

Brülhart and Sbergami’s results seem consistent with the positive relationship between

agglomeration and transitional growth that we conjecture for the CEE regions.

Overall, the existing empirical evidence appears to be neither exhaustive nor conclusive.

In particular, the use of different agglomeration measures and data at different spatial

scales makes it difficult to compare the results of these contributions and to draw more

general conclusions. The only other paper that considers NUTS-2 regions as we do, Bosker

(2007), employs an agglomeration measure that is not ideal. In addition, to the best of

our knowledge, the case of the Central and Eastern European regions has so far not been

studied in depth.

4 Empirical Framework:

4.1 Baseline Model Specification:

Since the theoretical literature on agglomeration and growth is based on endogenous growth

theory, it predicts an effect of agglomeration on the economy’s long-run equilibrium growth

rate via an effect on the rate of technological progress. However, the empirical studies

presented above invariably make use of the Barro- and Mankiw-Romer-Weil (henceforth

also MRW) versions of the neoclassical framework that model short-run growth along a

transition path to the long-run equilibrium, where growth is constant and exogenous. To

keep our results comparable, we base our analysis on Mankiw et al.’s (1992) convergence

specification, which we augment with our measure of agglomeration.12

The Mankiw et al. (1992) model of growth in the neighbourhood of the steady state

may be appropriate for the CEE countries from the mid-1990s onwards, when they were

beginning to leave the upheavals of economic regime change behind. During our sample

period, their growth process could be characterised as adjustment towards a long-run equi-

11The cutoff income levels correspond roughly to the GDP per capita of Brazil or Bulgaria for the world-
wide sample and of Spain for the Western European sample.

12We refer to the simple version of Mankiw et al.’s (1992) specification that does not include human
capital.
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librium driven by the accumulation of physical capital.13 In contrast to Western Europe,

for the CEE regions such transitional or “catch-up” growth is likely to have dominated

variation in long-run growth rates - as measured, for instance, by total factor productiv-

ity growth rates - which may be more difficult to identify in this paper. We also regard

the available time series on gross fixed capital formation for the CEE regions to be too

short and, for the initial years, too unreliable for the calculation of physical capital stocks

required to construct TFP indices.

Our baseline specification for the log-level of income per capita of region i in year t is

the following dynamic model:

ln yit = γ ln yi,t−1 + θ1 ln sit + θ2 ln(nit + g + δ) + θ3agglomit + uit, (1)

where sit is the regional fraction of output that is saved or invested at time t, nit and g

are the growth rates of labour and technology, and δ is the depreciation rate of the capital

stock. uit is a mean-zero error term.

The term agglomit represents our measure of agglomeration. The theoretical discussion

in section 2 suggests that this variable should have a positive effect on the long-run growth

rate as given by the rate of technological progress. On the other hand, our MRW-type

specification in equation (1) implies that greater agglomeration of economic activity raises

growth in the short run, so that we expect θ3 to be positive. However, we may still be able

to gain some indication of the importance of agglomeration in the long run from its effect

on long-run income levels, measured as θ3

1−γ
.

Other explanatory variables of interest in the context of CEE regional growth are hu-

man capital, R&D and FDI. As emphasised by endogenous growth models, for example,

the first two are key drivers of technological progress by fostering own innovation as well as

the imitation of knowledge developed at the technological frontier. Similarly, FDI may be

regarded as an important channel of technology transfer for countries behind the frontier.

FDI inflows into the CEE countries since the mid-1990s have been substantial, and espe-

cially secondary educational attainment rates are high in comparison to Western Europe.

However, data on FDI are generally unavailable at the regional level, and regional R&D

and human capital series for CEE are available only patchily and cover few years. By

employing region-specific fixed effects in estimation (see below), on the other hand, we are

at least able to capture permanent differences in human capital, R&D and FDI between

the CEE regions.

13For example, Arratibel et al. (2007) find that the share of investment in GDP was high in the CEE
countries compared to Western Europe over our sample period. Moreover, growth accounting exercises such
as in European Commission (2004) suggest that capital accumulation contributed significantly to output
growth in these countries since 1995.
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4.2 Estimation Methods:

To estimate equation (1), we use the panel data framework, which allows controlling for

unobservable region-specific fixed effects that are time-invariant and may be correlated

with other explanatory variables, such as physical geography and economic institutions.

We therefore write uit in equation (1) as

uit = µi + ηt + vit,

where µi are region-specific fixed effects and ηt represent unobserved period-specific effects

that are common to all regions but vary over time, such as macroeconomic shocks. vit is a

mean-zero disturbance.

In dynamic models like (1) with the error term defined as above, the presence of both

region-specific fixed effects and a lagged dependent variable implies that the pooled OLS

(POLS) estimator is inconsistent. Similarly, the within-groups (WG) estimator is likely to

be inconsistent if the number of time periods T in the panel is small (Nickell 1981). Bond

(2002) notes that the bias in the POLS and WG estimates of the coefficient on the lagged

dependent variable, γ in our case, is likely to be in opposite directions - upward in the case

of OLS and downward for WG.

When the number of cross-sectional units N in the panel is large, the first-differenced

(FD-GMM) and system-GMM (S-GMM) estimators developed by Arellano and Bond

(1991), Arellano and Bover (1995) and Blundell and Bond (1998) may provide consis-

tent estimates of model (1). Both first-difference the equation and use lagged levels dated

t − 2 and earlier as instruments for the first-differenced equations (FD-GMM) and lagged

first differences as instruments in the levels equations (S-GMM). When the series used in

estimation are highly persistent, the instruments employed by FD-GMM may be weak and

the S-GMM estimator may be preferred.

However, since our cross-sectional sample size, N = 48, is relatively small, we do not

focus on GMM estimation in this paper. Instead, we adopt the following strategy to deal

with the region-specific fixed effects. We primarily estimate model (1) using within groups

(WG), assuming that our time dimension is large enough for any inconsistencies of the

Nickell (1981) type not to be important. Then, we investigate the sensitivity of the WG

results to allowing for T = 11 to be too short to avoid these inconsistencies, by using a

modified version of the FD- and S-GMM estimators.

With this modification, we attempt to minimise finite-sample bias in the GMM esti-

mates that may result from a large number of instruments relative to the cross-sectional

sample size (“overfitting”). It consists of restricting our instrument set in two ways. First,

the maximum lag length of the endogenous variables used as instruments in the first-

differenced equations is limited to three. In addition, the size of the instrument matrix

is reduced by stacking the instruments available per variable for each time period into a
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single column, as in standard two-stage least-squares, rather than generating a separate

column for each time period and lag available for that time period, as in panel GMM. This

approach may therefore be more appropriately referred to as “parsimonious” or “restricted”

GMM.

When testing the validity of the instruments, we pay particular attention to the ad-

ditional instruments for the equations in levels employed by S-GMM. Blundell and Bond

(2000) show that for the lagged first difference of the dependent variable to be a valid

instrument, one condition is that the model we specify for ln yit has generated this variable

for long enough before the start of the sample period for the influence of the true initial

conditions to vanish. For our application to Eastern Europe since 1995 however, this argu-

ment could be considered less compelling. For example, the structural changes associated

with economic transition may have radically altered the process generating income per

capita from 1989/1990 onwards.

A second estimation issue that we may face is contemporaneous correlation of the

explanatory variables in equation (1) with vit due to e.g. simultaneity. For example, the

theoretical models in section 2 describe growth and agglomeration as joint processes that

reinforce each other, so that agglomit may be endogenous. In addition, this could be the

case for the share of output that is invested, sit, and for the growth rate of labour, nit, if

we allow for inward or outward migration to take place in response to shocks to regional

output. We therefore check the robustness of our results to treating each of the explanatory

variables as endogenous and instrumenting them with their own time lags.

A third estimation issue that may be present in our setup is spatial dependence or

spatial autocorrelation between the regional observations in our dataset. This arises in sit-

uations where observations across cross-sectional units are not independent but correlated

with outcomes at other points in geographical space. Spatial dependence may be of the

“substantive” type, i.e. the result of economically meaningful interactions between spatial

units which form part of the model of interest, or of the “nuisance” type, resulting from

measurement issues associated with the underlying spatial data that lead to spatially cor-

related measurement error. In both cases, spatial dependence that remains unaccounted

for in estimation manifests itself in spatially correlated regression residuals.

However, the consequences for the model parameter estimates differ between the two.

In the substantive case, if the values of e.g. the dependent variable at neighbouring locations

- its “spatial lag” - are relevant to the model (which is then called spatial lag model) but

omitted, the standard POLS estimator is biased and inconsistent. In the nuisance case,

usually represented by means of a spatial lag in the error term (spatial error model), POLS

parameter estimates remain unbiased and consistent but are no longer efficient, and the

estimated standard error are biased and inconsistent.

Spatially lagged variables are operationalised by means of an N × N spatial weight

matrix W with typical element wij , which defines the nature and strength of spatial in-
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teraction between locations i and j. We use a weight matrix based on inverse squared

distances between the capitals of the CEE NUTS-2 regions, which is a common choice in

the literature. That is, we define wij = 1/d2
ij ∀i 6= j, where dij is the great-circle distance

between the capitals of regions i and j. By convention, wii = 0 and W is row-standardised.

In this paper, we follow the standard approach in the empirical spatial econometrics

literature and first test for spatial autocorrelation in the residuals of our OLS and WG

estimates of model (1). Upon finding evidence of significant residual spatial dependence

of the substantive type, we estimate two alternatives to model (1) that augment it with

spatially lagged dependent and explanatory variables respectively. In addition, we tackle

potential remaining spatial error autocorrelation by estimating our standard errors in a

way that is robust to the presence of cross-section correlation. Overall, our main interest

remains with the coefficient on agglomit.

In addition to model (1), which can be rewritten as

ln yit = γ ln yi,t−1 + xitθ + µi + ηt + vit

with xit a (1×3) row vector of the explanatory variables ln sit, ln(nit +g+δ), and agglomit

and θ a (3 × 1) vector of coefficients, we estimate the following models:

ln yit = γ ln yi,t−1 + ρ
N∑

j=1

wij ln yjt + xitθ + µi + ηt + vit (2)

ln yit = γ ln yi,t−1 + xitθ +
N∑

j=1

wijxjtφ + µi + ηt + vit (3)

where φ is another (3 × 1) vector of coefficients. Model (2) could be called a dynamic

spatial lag model and model (3) a dynamic spatial cross-regressive model, except that

these specifications usually assume iid errors. The only assumption that we make on

the error term vit is that it is serially uncorrelated with mean zero, that is, we allow for

cross-section correlation of a general form in vit.

Models (2) and (3) can be estimated by straightforward extension of the methods that

we employ to address the first two estimation issues discussed previously in this section.

Following our approach to the presence of region-specific fixed effects in model (1), we

initially use the WG estimator for models (2) and (3). In model (2), the spatially lagged

dependent variable is treated as endogenous with respect to vit, due to the two-directional

nature of the neighbour relation in space, where each location is its neighbour’s neighbour.

Consequently, we adopt an instrumental variables approach to estimating model (2), us-

ing as instruments the time lags of
∑N

j=1 wij ln yjt and, following Kelejian and Robinson

(1993), the spatially lagged explanatory variables
∑N

j=1 wijxjt, which we treat as exogenous

throughout this paper. Given this, model (3) raises no particular estimation issues.

Analogous to the a-spatial case, WG may be inconsistent due to the presence of both a
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time-lagged dependent variable and region-specific fixed effects in a panel with a moderately

short time dimension. As suggested by Kukenova and Monteiro (2009), this problem

may be remedied also in the spatial case by applying the S-GMM estimator described

above. The spatially lagged dependent variable would again be treated as endogenous and

instrumented as above. Monte Carlo simulations in Kukenova and Monteiro (2009) indicate

that using S-GMM for spatial dynamic panel data models such as model (2) dominates

a range of other estimators regarding unbiasedness and consistency. It also performs well

in terms of efficiency, particularly when additional endogenous explanatory variables are

considered. We use our parsimonious version of the estimator.

5 Data and Variables:

The data we use in this paper come from the 2008 edition of the Cambridge Econometrics

(CE) European Regional Database, which provides information on the CCE regions from

1990 to 2006, and from Eurostat. We measure regional income per capita yit as regional

gross value added (GVA) divided by population. GVA is given at constant prices in 2000

euros in the CE database, which we adjust for cross-country price-level differences using

national purchasing power standard (PPS) exchange rates, which are national purchasing

power parities defined relative to the EU average. The saving rate sit is constructed as the

share of gross fixed capital formation, also expressed in PPS-adjusted 2000 euros, in total

regional GVA. The growth rate of the labour force nit is proxied with the growth rate of

the total population. As is common in the literature, we set g + δ equal to 0.05 for all

regions and years.14 To construct our agglomeration index, we use data on regional area

from the Eurostat Regional Statistics database together with employment series from CE.

We begin our empirical analysis in the year 1995 and disregard the period from 1990

to 1994. Economic data for Central and Eastern Europe during the early transition period

until the mid-1990s are generally believed to be unreliable and not comparable to later

years, as a result of considerable measurement problems raised by the momentous changes

in economic systems at the time (Eckey et al. 2009, Tondl and Vuksic 2003).

Our sample comprises 48 NUTS-2 regions from the ten CEE countries.15 For Esto-

nia, Latvia, Lithuania and Slovenia, where no subdivision at NUTS-2 level exists, we use

country-level data instead. Since we measure agglomeration for each region across its

NUTS-3 sub-regions, we drop three CEE regions (one Czech, two Polish) which are not

further subdivided into NUTS-3 regions. This is also the case for three further regions:

the Czech capital Prague and the region it is embedded in, Central Bohemia, and the

14In line with results from Eckey, Dreger and Türck (2009), who find that values for g and δ computed
for most CEE countries over the period 1995 to 2004 are higher than for the EU-15, we varied our figure
from 0.05 to 0.10 and 0.15. However, this made no significant difference to the results.

15The regions in the sample are from Bulgaria (6 NUTS-2 regions), the Czech Republic (6), Estonia (1),
Latvia (1), Lithuania (1), Hungary (7), Poland (14), Romania (8), Slovenia (1) and Slovakia (3).
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Slovakian capital Bratislava. We merge the first two with each other and the third with its

neighbour Western Slovakia. In contrast to the regions we drop, Prague and Bratislava are

unambiguously surrounded by one neighbouring region, so that aggregating them appears

natural and preferable to dropping them, given our relatively small cross-sectional sample

size. The resulting aggregates also satisfy Eurostat’s population thresholds for NUTS-2

regions.

Appendix A provides a list of all regions in the sample and the number of their respective

NUTS-3 sub-regions. Variable summary statistics are provided in Appendix B.

5.1 Measuring Agglomeration:

Our focus in this paper is on the concentration of aggregate economic activity across

NUTS-3 regions within each CEE NUTS-2 region. Following Krugman (1991b), one ap-

proach to measuring the geographic distribution of economic activity has been to adapt

indices used in the income inequality literature. Examples include the “locational” Gini

coefficient based on the Balassa index of revealed comparative advantage, the Theil index,

the coefficient of variation, and an index suggested by Krugman (1991b) based on the rela-

tive mean deviation. The Herfindahl index has also been a popular choice. All indices can

be constructed as measures of concentration (of economic activity in given geographical

areas) or specialisation (of geographical areas in particular activities). We are interested

in the former.

Choosing an appropriate measure of the spatial concentration of economic activity

across regions raises a number of empirical challenges. Combes, Mayer and Thisse (2008)

outline six desirable properties that an ideal index of spatial concentration should satisfy.

The first two are only relevant for industry-level data and therefore do not apply. The

third and fourth are that the index should be comparable across spatial scales and unbiased

with respect to arbitrary changes in the spatial classification. Fifth, it should be defined

relative to a well-established benchmark distribution under which geographic concentration

is assumed to be zero. And sixth, it should be amenable to significance testing. Of these

criteria, all inequality indices mentioned above meet only the fifth, and sometimes the

sixth.16

5.1.1 The Modifiable Areal Unit Problem:

Problems with satisfying the third and fourth criteria are related to the well-known Mod-

ifiable Areal Unit Problem (MAUP). This is a source of bias in statistical measures that

are based on geographical units, in the sense that these measures are sensitive to the way

in which the units are organised. It arises from the partition of continuous heterogeneous

16See Combes et al. (2008) pp. 256-266.
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space into discrete regions, and it is more acute when the latter are, like the NUTS regions,

based on administrative rather than economic principles.

The MAUP has two components. The first is that the value taken by a statistical

measure like an index of spatial concentration depends on the scale of spatial aggregation

considered, since different scales imply different levels of heterogeneity of economic activity

within regions (scale problem). For example, the degree of concentration within NUTS-

1 regions measured across NUTS-2 regions is likely to differ from that measured across

NUTS-3 regions. Consequently, the concentration index is not comparable across spatial

scales as required by criterion three. In the case of the NUTS, this problem is compounded

by the heterogeneity of region sizes that exists within each classification band.

The second component of the MAUP is that at a given spatial scale, the value taken by

an index of spatial concentration depends on the way the boundaries are drawn between

regions (zone problem). This is because changing the boundaries leads to an artificial

reallocation of economic activity between regions, thus altering the degree of concentration

measured within or across them, while the underlying distribution of economic activity

remains the same. As a result, the concentration index is not unbiased with respect

to arbitrary changes in the spatial classification and therefore does not satisfy criterion

four. In this context, a problem with the NUTS is that the administrative basis of the

classification makes arbitrary boundaries that cut through economically integrated areas

more likely.

One approach to addressing the scale problem that has been taken in the literature is

to check the robustness of the results to using alternative levels of aggregation. However,

since our main unit of analysis are NUTS-2 regions, for which only one further subdivision

(NUTS-3) exists, this route is not open to us.17 To minimise the zone problem, some

authors attempt to get as close as possible to measuring the true distribution of economic

activity by using a geographical classification that is based on economic rather than ad-

ministrative criteria. An example is the use of local labour market areas (e.g. Travel to

Work Areas in the United Kingdom or Local Labour Systems in Italy), which are defined,

via daily commuting patterns, such that a majority of the resident population in an area

also works in that area. Data at this level of detail are not yet available from Eurostat.18

None of the empirical papers reviewed in section 3 use a measure of concentration that

overcomes the MAUP. Our strategy for dealing with it relies on the fact that we control for

time-invariant region-specific fixed effects in estimation. If the bias in our agglomeration

17Eurostat has developed a classification system at the sub-NUTS-3 level called “LAU”, for Local Admin-
istrative Units. There are two LAU levels, of which the lower (most disaggregated) consists of municipalities
in many countries. Currently, LAU-level data available from Eurostat are limited to area and population
for 2009 and 2010.

18Eurostat does provide data on so-called “larger urban zones” and “metropolitan regions”, which are
functional urban areas defined by taking into account commuting from surrounding territories and can
thus be considered labour market areas. However, these data cover only cities and do not exhaust the
geographical territory of the countries we study.
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measure that arises from the MAUP does not vary over time, it will be eliminated by the

within-groups and GMM estimators that we use.

5.1.2 The Benchmark Distribution:

With regard to the fifth criterion, three main distributions have typically been chosen as the

benchmark in the literature. The first is the uniform distribution, so that the concentration

of economic activity is assumed to be zero if the latter is uniformly distributed across

the regions, irrespective of their geographic or economic size. Under the null hypothesis

of no concentration, each region therefore has the same share of total activity, and any

deviation from this even distribution would result in a positive value of the concentration

index. However, this may not be a very meaningful way to measure concentration given

the irregular distribution of region areas and endowments. Indices that use the uniform

distribution as their benchmark have been labelled “absolute” concentration indices.

An alternative that seems economically more relevant, but is only applicable when

measuring concentration at the industry level, is to use the distribution of aggregate eco-

nomic activity across the regions as the benchmark.19 Such indices are called “relative”

concentration indices. Under the null of no concentration, the distribution of activity in

an industry matches that of total economic activity across the regions. Consequently, the

index takes a positive value if a given industry is geographically more concentrated than

the economy as a whole.

Finally, a variant of relative concentration is the concept of “topographic” concentration

introduced by Brülhart and Traeger (2005). The benchmark here is the distribution of the

geographical areas of the regions, so that zero concentration obtains if the distribution of

economic activity matches that of the regions’ land mass. We choose an index in this class,

which allows us at least to control for variations in the size of NUTS region areas when

measuring agglomeration. In particular, we follow Brülhart and Sbergami (2009) in using

the topographic Theil index developed in Brülhart and Traeger (2005).

The Theil index belongs to the family of generalised entropy measures of inequality.

These have the advantage over the Gini and Krugman indices mentioned above that they

are easily decomposable into inequality within and between constituent subgroups.20 In

addition, Brülhart and Traeger (2005) have proposed bootstrap-based significance tests for

their Theil index, so that it satisfies Combes et al.’s (2008) criterion six.

Our agglomeration measure differs from those considered in Bosker (2007), Crozet and

Koenig (2008), and partly in Sbergami (2002). The latter employs relative versions of the

19When assessing the concentration of aggregate economic activity, as we do, this approach would imply
comparing the distribution of the latter with itself, which is meaningless.

20This decomposition would be interesting if we computed concentration, say, across all CEE NUTS-3
regions. Then overall concentration could be decomposed into concentration within and between countries
or within and between NUTS-2 regions, for instance. However, we are primarily interested in concentration
within NUTS-2 regions, so that the decomposition is less relevant.
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Gini and Krugman indices, but an absolute Theil index. The measures used by Crozet and

Koenig (2008) are also absolute. Bosker (2007) proxies agglomeration of NUTS-2 regions

with aggregate employment density at the NUTS-2 level. As discussed in section 3, this

approach does not capture the within-regional distribution of economic activity.

5.1.3 The Topographic Theil Index:

Brülhart and Traeger’s (2005) topographic Theil index for the concentration of aggregate

economic activity across NUTS-3 regions within each CEE NUTS-2 region is given by the

following expression (dropping time subscripts for simplicity):

T T
i =

∑

r

Eri∑
r Eri

ln
Eri/Ari∑

r Eri/
∑

r Ari
(4)

where r = 1, ..., R is the set of NUTS-3 subregions within each NUTS-2 region i, Eri is

total employment in NUTS-3 region r pertaining to NUTS-2 region i, and Ari is the total

area of NUTS-3 region r. By rewriting the Theil index in equation (4) as

T T
i =

∑

r

Eri

Ei
ln

Eri/Ei

Ari/Ai
, (5)

it is easily seen that this index weights the share of each NUTS-3 region in the corresponding

NUTS-2 region’s total employment by the share of that NUTS-3 region in the NUTS-2

region’s total area. This reflects the zero-concentration benchmark of the topographic

Theil index, which is the distribution of the NUTS-3 region areas within each NUTS-2

region. If NUTS-3 regional employment is distributed in line with these regions’ land area,

the topographic Theil index takes the value zero. If a NUTS-3 region has a greater share

of a NUTS-2 region’s employment than of its area, the index takes a positive value. The

topographic Theil index reaches its upper bound when all employment within a NUTS-2

region is concentrated in the NUTS-3 region with the smallest area. In this case, the

index takes the value ln(Ai/Asi), where s is the smallest NUTS-3 region within NUTS-2

region i.21 By standardising the value of the index for each NUTS-2 region by its theoretical

maximum as given by this expression, the comparability of the index across NUTS-2 regions

may be enhanced.22

We use total employment as our measure of economic activity in the NUTS-2 and

NUTS-3 regions. At the regional level, most empirical studies on concentration have chosen

data on either value added or employment. Some authors prefer the latter because of the

absence of data on price level differences between regions within countries, and almost all

papers reviewed in section 3 consider employment. To measure regional areas, we use data

on total area in km2 from the Eurostat Regional Statistics database.

21See Bickenbach and Bode (2008) p.21.
22This is currently work in progress.
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Figure 1 illustrates the distribution of some key variables of interest - the growth rate

of per-capita income, the topographic Theil index, and the log-level of per-capita income

- across the CEE NUTS-2 regions in average values over our sample period. To ease

interpretation, the figure also provides a country-level map of the area with those NUTS-2

regions where the countries’ capital cities are located shaded in dark grey (bottom right).

Figure 1: Variable Distribution across CEE NUTS-2 Regions, 1995-2006

The top left-hand map shows that income growth was highest in the Baltic countries

and in the capital regions of the Czech Republic, Hungary, Poland and Romania. The

maximum was attained by Latvia, which grew at a rate of 9% per annum, with Estonia

and Lithuania following closely behind. Fast-growing non-capital regions were Western and

Central Transdanubia in Hungary, Greater Poland province and severeral other regions in

Poland. On the other hand, growth rates were lowest on average in most Bulgarian regions
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and in the non-capital regions of Romania, where output shrank over the first half of our

sample period, in some cases at annualised rates of 5%.

The top right-hand map displays the spatial distribution of the topographic Theil index.

In each country, by far the highest values of the index are registered by the capital regions.

The Romanian capital region Bucharest-Ilfov has, at 1.43, the highest average value over

our sample period. Other highly scoring regions are the capital regions of Poland, Hungary

and the Czech Republic, for which the index averages between 1.25 and 1.33. Employment

in Latvia as a whole is also highly concentrated relative to the distribution of NUTS-3

region areas. At the other end of the spectrum, employment is geographically dispersed

relative to NUTS-3 region areas in many non-capital NUTS-2 regions of Bulgaria, the

Czech Republic, Hungary, Slovakia and Romania. Overall, within-regional concentration

of economic activity as measured by our Theil index is unevenly distributed across the

CEE NUTS-2 regions: while a few regions are very agglomerated, many are not.

The bottom left-hand map of Figure 1 depicts the average log-level of income per

capita over our sample period. This map clearly demonstrates that a west-east gradient in

per-capita income levels exists in Eastern Europe: except for the Baltic countries and the

capitals of Poland, Bulgaria and Romania, the further a region is from Western Europe, the

poorer it is. The particularly strong performance of border regions in the Czech Republic,

Slovakia, Hungary, and in Slovenia is also evident from Figure 1.

6 Estimation Results and Discussion:

In this section, we present estimates of models (1), (2) and (3) for our balanced panel

of 48 Eastern European NUTS-2 regions over the period from 1995 to 2006. As outlined

in section 4.2, we first focus on the within-groups estimator under the assumption that

our time dimension, T = 11, is long enough for problems associated with Nickell bias

not to matter much. In this framework, we test for spatial dependence and examine the

robustness of the results to treating the explanatory variables as endogenous. Finally,

we allow for the time dimension to be short enough for Nickell bias to be important and

use our “parsimonious” GMM estimators to address it. Overall, we compare the results

obtained in all cases for our main variable of interest, agglomit, to investigate whether they

are stable across estimation methods and models. Throughout, a full set of time dummies

in all regressions captures period-specific fixed effects that are common to all regions.

Table 1 reports results for model (1) using pooled OLS and within groups. In columns

(i) and (iii), we first present estimates of Mankiw et al.’s (1992) baseline transitional growth

specification. In both columns, the estimated coefficients on ln sit and ln(nit + g + δ) are

correctly signed and most are highly significant. This provides some initial evidence that

capital accumulation and possibly population growth may play an important role for long-

run regional incomes in the CEE regions. The significant estimates of the coefficient on
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the lagged dependent variable ln yi,t−1, γ̂, also indicate that convergence to region-specific

long-run paths for per-capita income levels is taking place for our sample of CEE regions.

Table 1: Model (1) - Pooled OLS and Within Groups

Dependent variable: (i) (ii) (iii) (iv)
ln yit POLS POLS WG WG

ln yi,t−1 0.996∗∗∗ 0.987∗∗∗ 0.654∗∗∗ 0.638∗∗∗

(0.008) (0.008) (0.057) (0.060)

ln sit 0.044∗∗ 0.040∗∗ 0.076∗∗∗ 0.080∗∗∗

(0.017) (0.017) (0.020) (0.020)

ln(nit + g + δ) -0.018∗∗∗ -0.017∗∗∗ -0.009 -0.009
(0.004) (0.004) (0.006) (0.006)

agglomit 0.022∗∗∗ 0.145∗∗

(0.005) (0.054)

LR agglomit 1.635 0.401∗∗∗

(1.038) (0.126)

AB-AR(1) 0.75 (0.454) 0.59 (0.558) 0.17 (0.862) 0.30 (0.764)
AB-AR(2) 2.02 (0.044) 1.63 (0.103) 1.11 (0.267) 1.04 (0.297)

Moran’s I 10.60 (0.000) 3.88 (0.000)

LM-Error 3.23 (0.073) 4.65 (0.031)
Robust LM-Error 0.29 (0.592) 0.28 (0.596)

LM-Lag 71.69 (0.000) 6.55 (0.011)
Robust LM-Lag 68.75 (0.000) 2.71 (0.100)

Adjusted R2 0.984 0.985 0.990 0.990
Time Dummies Yes Yes Yes Yes
Observations 528 528 528 528
Number of Regions 48 48 48 48

Notes: Standard errors, reported in parentheses, are robust to heteroskedasticity and cross-
section correlation (Huber-White standard errors clustered on years); ∗∗∗, ∗∗, and ∗ indicate
significance at the 1%, 5% and 10% levels; AB-AR(1) and AB-AR(2) are Arellano and Bond’s
(1991) tests of first- and second-order residual serial correlation, asymptotically standard nor-
mal under the null of no serial correlation, p-values in parentheses.
Moran’s I test of spatial autocorrelation of general form is asymptotically standard normal
under the null of no spatial autocorrelation.
LM-Error and LM-Lag are LM tests of spatially autoregressive errors and a spatially lagged
dependent variable respectively, asymptotically χ2(1) under the null of no spatial dependence
of the specified form; robust versions allow for presence of spatial dependence of the form not
tested for, also asymptotically χ2(1) under the null of no spatial dependence of the specified
form; p-values in parentheses for all spatial tests.

However, the estimate of γ̂ in column (i) is not significantly different from 1, and the

implied speed of convergence differs dramatically between OLS and WG specifications.

Column (i) suggests a slow speed of 0.4% per year, which is consistent with other empirical

studies on convergence for CEE regions using OLS (e.g. Paas and Schlitte, 2007).23 In the

23The annual speed of convergence is calculated as β̂ = −(ln γ̂)/τ , where τ=1 in our annual setup in this
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presence of region-specific fixed effects, we would expect the OLS estimate of γ to be biased

upwards and the implied speed of convergence to be biased downwards. When using the

WG estimator in column (iii) however, it rises to 42% per year.

This high number could be due to several factors. One is downward bias in γ̂ of the

Nickell (1981) type, which we investigate below. Other possible reasons may be related to

the particular sample period in this paper, or to specifics of the CEE growth experience we

do not capture. These possibilities represent an avenue for future research, so our estimates

of the speed of convergence in this paper should be regarded as preliminary.

In columns (ii) and (iv), we augment the baseline MRW specification with our ag-

glomeration index. In addition to the short-run coefficient on agglomit, θ̂3, we report the

long-run coefficient, denoted by LR agglomit.
24 While the short-run coefficient may be

interpreted as a measure of the impact of a given increase in agglomeration on growth in

transition to the steady-state path, the long-run coefficient provides an estimate of the

effect of a permanently higher level of agglomeration on the long-run level of per-capita

income. Both coefficients are positive in columns (ii) and (iv), and except for the long-run

effect in column (ii), they are highly significant.

The size of the long-run coefficient in column (iv) suggests that this effect is also eco-

nomically important. The point estimate of 0.401 implies that an increase in agglomeration

- in our case, in the geographic concentration of NUTS-2 regional employment relative to

the distribution of NUTS-3 regional areas - by one standard deviation25 raises a region’s

steady-state level of income per capita by about 17%. In fact, this result remains fairly

robust across estimation methods and models in the remainder of this section. Controlling

for region-specific fixed effects, as we do in column (iv) and all following tables, ensures

that this effect is not driven by the capital city regions, which feature so prominently in

Figure 1. Preliminary estimates using a version of the topographic Theil index that is

standardised by its maximum for each NUTS-2 region also indicate very similar results.

The estimates of the other coefficients change little when moving from the baseline

specification in column (i) to introducing agglomit in column (ii), and similarly when

moving between columns (iii) and (iv). The annual speed of convergence implied by the

OLS estimate of γ in column (ii) is 1.3%, compared to 45% when using WG in column

(iv). Taking the latter at face value suggests that regional long-run per-capita income

levels should adjust rapidly to a change in the level of agglomeration. Finally, Arellano

and Bond’s (1991) serial correlation tests detect no evidence of first- or second-order serial

correlation in the residuals of the OLS and WG estimates in columns (ii) and (iv).

paper.
24The long-run coefficient is computed as θ̂3

1−γ̂
. Standard errors are obtained using the delta method.

25The standard deviation of agglomit is 0.428, see Table B.1 in the Appendix. As an illustration, this is
roughly equivalent to the difference in the Theil index between the most agglomerated Polish region Masovia,
which comprises the capital Warsaw, and the second-most agglomerated Polish region Pomerania, home to
Gdansk, one of the country’s largest metropolitan areas.
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To investigate the implications of spatial dependence for the results in Table 1, we

first present tests of spatial autocorrelation in the residuals of the pooled OLS and WG

estimates of model (1) in columns (ii) and (iv). We use standard tests from the spatial

econometrics literature, Moran’s I and the Lagrange multiplier tests of spatial error and

lag dependence, as well as their robust versions proposed by Anselin, Bera, Florax and

Yoon (1996).26

The Moran’s I tests in columns (ii) and (iv) indicate significant spatial autocorrelation

in the residuals of model (1). The LM tests provide some guidance to the choice between

including a spatially lagged dependent variable or a spatially autoregressive error process as

the appropriate model for capturing the spatial dependence in the data. In both columns

(ii) and (iv), the LM-Lag test statistic is more significant than the LM-Error statistic.

Moreover, the Robust LM-Lag test is significant, although only marginally in column (iv),

while the Robust LM-Error test is not. That is, there is strong evidence of an omitted

spatial lag even if we allow for spatial error autocorrelation, but there is no evidence of

spatial error autocorrelation once we allow for the presence of a spatial lag. This suggests

that model (1) augmented with a spatially lagged dependent variable - i.e. model (2) - is the

preferred specification, and that our estimates of model (1) in Table 1 may be inconsistent.

In Table 2, we therefore next consider model (2). As an alternative way to control for

spatial autocorrelation, we also present results for model (3), which augments model (1)

with spatially lagged explanatory variables.

Column (i) reproduces column (iv) of Table 1, i.e. our WG estimates of model (1), for

comparison. In column (ii), we report WG estimates of model (2), where we treat the

spatially lagged dependent variable
∑

j wij ln yjt as endogenous and instrument it using

two-stage least-squares.27 Potential candidates for valid and informative instruments for

this variable are its own time lags as well as the exogenous spatially lagged explanatory

variables
∑

j wij ln sjt,
∑

j wij ln(njt + g + δ) and
∑

j wijagglomjt, or
∑

j wijxjt for short,

as explained in section 4.2.

When using the time lag of the spatially lagged dependent variable,
∑

j wij ln yj,t−1, as

an instrument together with the spatially weighted explanatory variables, the Hansen test

rejects the validity of this instrument set at the 5% level.28 Therefore, in column (ii), we

present estimates of model (2) using only the
∑

j wijxjt as instruments, which the Hansen

test does not reject at the 5% level. The AB-AR tests also point to an absence of serial

correlation in the model residuals. The Kleibergen and Paap (2006) test indicates that

the equation is identified, so that our instruments are likely informative, that is, correlated

26We implement the tests for residual spatial autocorrelation using Jeanty’s (2010) anketest command
for Stata.

27We refer to this estimator as “two-stage least-squares within groups” (2SLS-WG) henceforth. All 2SLS
estimation was carried out using Stata command ivregress as well as Baum, Schaffer and Stillman’s (2010)
command ivreg2 for Stata. WG estimates were obtained in this setup by including a full set of region
dummies.

28The p-value of the test is 0.019.
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with
∑

j wij ln yjt.

Table 2: Models (1), (2), (3) - Within Groups and Two-Stage Least-
Squares

Dependent variable: (i) (ii) (iii)
ln yit Model 1 Model 2 Model 3

WG 2SLS-WG WG

ln yi,t−1 0.638∗∗∗ 0.544∗∗∗ 0.639∗∗∗

(0.060) (0.060) (0.065)
∑

j wij ln yjt 0.694∗∗∗

(0.125)

ln sit 0.080∗∗∗ 0.047∗ 0.044
(0.020) (0.024) (0.027)

ln(nit + g + δ) -0.009 -0.010∗ -0.007
(0.006) (0.006) (0.005)

agglomit 0.145∗∗ 0.160∗∗∗ 0.177∗∗

(0.054) (0.045) (0.056)
∑

j wij ln sjt 0.122∗∗∗

(0.017)
∑

j wij ln(njt + g + δ) -0.016∗

(0.008)
∑

j wijagglomjt 0.168

(0.281)

LR agglomit 0.401∗∗∗ 0.350∗∗∗ 0.491∗∗∗

(0.126) (0.075) (0.108)

AB-AR(1) 0.30 (0.764) 1.22 (0.223) -0.28 (0.783)
AB-AR(2) 1.04 (0.297) 1.33 (0.185) 0.21 (0.835)

Hansen J 5.06 (0.080)
Kleibergen-Paap rk 56.13 (0.000)
Hausman 26.82 (0.000)

Moran’s I 3.88 (0.000) -0.93 (0.351) 3.43 (0.001)
LM-Error 4.65 (0.031) 0.43 (0.510) 0.26 (0.608)
Robust LM-Error 0.28 (0.596) 1.84 (0.176)
LM-Lag 6.55 (0.011) 4.11 (0.043)
Robust LM-Lag 2.71 (0.100) 5.68 (0.017)

Time Dummies Yes Yes Yes
Observations 528 528 528
Number of Regions 48 48 48

Notes: See notes to Table 1. Hansen J is the Hansen (1982) test of m overidentifying re-
strictions, asymptotically χ2(m) under the null that the overidentifying restrictions are valid;
Kleibergen-Paap rk is the Kleibergen and Paap (2006) test of the null that the equation is
underidentified (LM version); Hausman is the robust regression-based version of the Haus-
man (1978) test used to test the null hypothesis that Σjwij ln yjt is exogenous; p-values in
parentheses for these three tests.
Instruments used in in column (ii) are Σjwij ln sjt, Σjwij ln(njt + g + δ) and Σjwijagglomjt.
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Further, we report a Hausman test on the difference between the coefficient on the

spatially lagged dependent variable
∑

j wij ln yjt estimated by 2SLS-WG (column (ii)) and

by WG treating the variable as exogenous (not shown).29 According to the p-value of the

test, the null hypothesis of no significant difference between these coefficient estimates -

or equivalently, of zero correlation between the spatially lagged dependent variable and

the model errors - is rejected. This suggests that
∑

j wij ln yjt should indeed be considered

endogenous.

Judging from Moran’s I and the LM-Error test in column (ii), there is no evidence

of remaining spatial autocorrelation in the residuals. Model (2) therefore appears to deal

successfully with the spatial dependence present in our data. The coefficient estimate on

the spatially lagged dependent variable (ρ̂) in column (ii) is sizeable and highly significant.

Its positive sign implies that a given increase in income per capita in a region’s near

neighbours as defined by our choice of W also raises that region’s own level of income per

capita. Being located close to high-income regions is thus beneficial for a region’s economic

performance, which may be interpreted as evidence of positive spillovers emanating from

high-income regions.

In column (iii) by contrast, the residual spatial autocorrelation tests show that model

(3) does not fully capture the spatial correlation in the data. In particular, the LM-Lag test

and its robust counterpart indicate a preference for a model that includes a spatially lagged

dependent variable. We therefore conclude that of our two alternative spatial models,

model (2) is a more suitable extension of model (1) for the purpose of allowing for spatial

dependence.

The short- and long-run coefficients on our main variable of interest, agglomit, are

positive and significant in all three columns of Table 2. This supports our finding in

Table 1 of a positive effect of agglomeration as measured by the topographic Theil index

on short-run growth and steady-state income for our sample of CEE regions. Moreover,

the point estimates all lie within each other’s 95% confidence intervals across the three

specifications. In column (ii), a one standard-deviation increase in agglomeration raises

regional per-capita income by 15% in the long run, compared to our previous estimate of

17% in column (i) and 21% in column (iii). The implied annual speed of convergence in

column (ii) is 61%.

The parameters on the remaining variables that are common to all three models also

do not differ substantially across the columns. They are correctly signed and in model

(2), they are all significant at least at the 10% level. In model (3), the coefficients on the

investment share and the population growth rate are not significant, while their spatially

lagged versions are. This is again suggestive of spillover effects between neighbouring re-

gions in our sample. Thus, the results in column (iii) imply that a higher rate of capital

29We use the regression-based version of the test, as outlined in Wooldridge (2002) for instance. It is
asymptotically equivalent to the original Hausman (1978) test.
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accumulation in surrounding regions raises a region’s own income level, while faster pop-

ulation growth in nearby regions lowers it. The spatially lagged agglomeration index is

insignificant. However, when considering our estimates of model (2), it seems that the

spatially lagged explanatory variables in model (3) exert their influence on regional income

mainly through their effect on spatially lagged income, rather than independently.

In sum, Table 2 suggests that our conclusions regarding the effect of agglomeration

on income and growth are robust to accounting for spatial dependence. Consequently, we

now move on to exploring the potential endogeneity of the explanatory variables xit, i.e.

of ln sit, ln(nit + g + δ) and agglomit. Due to the presence of significant spatial correlation

in the residuals of model (1), we focus on model (2) for the remainder of this section.

In Table 3, column (i) contains the 2SLS-WG estimates of model (2) from the previous

table. In columns (ii) to (iv), each of the xit is treated as endogenous in turn. As instru-

ments, we use the first time lag of all xit, that is, ln si,t−1, ln(ni,t−1+g+δ) and agglomi,t−1,

in addition to the
∑

j wijxjt from above. To be valid, they must be uncorrelated with the

error term vit, which in turn must be serially uncorrelated. In all columns, the Hansen test

of overidentifying restrictions does not reject the validity of our instrument set at the 5%

level, and the AB-AR tests also provide no evidence of serial correlation in the residuals.

From the Kleibergen-Paap test, we conclude that each equation is identified, albeit more

marginally so in column (iii).

To test whether the xit can be individually considered uncorrelated with the error terms

in columns (ii) to (iv), we implement Difference Hansen tests between these models and

the benchmark model in column (i). Based on our instrument set, the tests indicate that

each variable can be treated as exogenous, and we therefore continue to do so henceforth.

Although the informativeness of our instruments for ln(nit + g + δ) could be questioned,

there are few signs of bias and imprecision, which may arise as a consequence of weak

instruments, in column (iii). Since alternative instruments are not easy to come by, we

also continue to treat ln(nit + g + δ) as exogenous.

Nevertheless, the estimated short- and long-run effects of agglomeration on per-capita

income in columns (ii) to (iv) remain positive, generally significant, and similar to - albeit

slightly below - our tentatively preferred WG estimates in column (i). The long-run effect

of a one standard-deviation increase in agglomeration on income in the last three columns

is in the region of 11% to 13%, compared to 15% in the first. The estimates of γ in columns

(ii) to (iv) suggest that implied speeds of convergence remain broadly similar to column

(i) but decline slightly.
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Table 3: Model (2) - Endogeneity of Explanatory Variables

Dependent variable: (i) (ii) (iii) (iv)

ln yit 2SLS-WG 2SLS-WG 2SLS-WG 2SLS-WG

Endogenous variables: Σjwij ln yjt and: ln sit ln(nit + g + δ) agglomit

ln yi,t−1 0.544∗∗∗ 0.568∗∗∗ 0.579∗∗∗ 0.580∗∗∗

(0.060) (0.075) (0.074) (0.074)
∑

j wij ln yjt 0.694∗∗∗ 0.903∗∗∗ 0.638∗∗∗ 0.640∗∗∗

(0.125) (0.156) (0.157) (0.163)

ln sit 0.047∗ -0.007 0.025 0.025

(0.024) (0.023) (0.020) (0.021)

ln(nit + g + δ) -0.010∗ -0.008 -0.015 -0.008

(0.006) (0.005) (0.009) (0.005)

agglomit 0.160∗∗∗ 0.111∗∗ 0.124∗∗∗ 0.113

(0.045) (0.046) (0.047) (0.074)

LR agglomit 0.350∗∗∗ 0.256∗∗∗ 0.293∗∗∗ 0.270∗

(0.075) (0.084) (0.086) (0.163)

AB-AR(1) 1.22 (0.223) 0.59 (0.552) 0.34 (0.734) 0.42 (0.677)

AB-AR(2) 1.23 (0.185) 1.08 (0.282) 1.22 (0.221) 1.24 (0.217)

Hansen J 5.06 (0.080) 6.92 (0.140) 8.99 (0.061) 9.05 (0.060)

Kleibergen-Paap rk 56.13 (0.000) 39.11 (0.000) 9.38 (0.095) 63.86 (0.000)

Hausman/Dif-Hansen 26.82 (0.000) 1.62 (0.203) 0.00 (0.980) 0.01 (0.922)

Time Dummies Yes Yes Yes Yes

Observations 528 480 480 480

Number of Regions 48 48 48 48

Notes: See notes to Tables 1 and 2. Hausman, used in column (i), is the robust regression-based ver-
sion of the Hausman (1978) test of the null hypothesis that Σjwij ln yjt is exogenous; Dif-Hansen,
used in columns (ii)-(iv), is the Difference Hansen test of the null hypothesis that each xit is exoge-
nous; p-values in parentheses.
Instruments used in columns (i)-(iv) are Σjwij ln sjt, Σjwij ln(njt + g + δ) and Σjwijagglomjt.
Additional instruments employed in each of columns (ii)-(iv) are ln si,t−1, ln(ni,t−1 + g + δ) and
agglomi,t−1.

In Table 4, we investigate our final estimation issue, the possible bias in the WG estimates

given our time dimension T = 11. We contrast the familiar 2SLS-WG estimates of model

(2) in column (i) with “parsimonious” FD- and S-GMM estimates in columns (ii) to (v).

Following the discussion of the results in Table 3, we treat the right-hand side variables

xit as exogenous. Thus, we include them in the instrument set for the first-differenced

equations in columns (ii) to (v) in the same form as they appear in these equations, that

is, as ∆xit. Similarly, the exogenous spatially lagged explanatory variables enter this

instrument set in first differences, as ∆
∑

j wijxjt. Further, we include temporally lagged
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levels of the dependent variable ln yit dated t − 2 and t − 3.

As additional instruments for the equations in levels in column (iii), we use ∆xit,

∆
∑

j wijxjt and ∆ ln yi,t−1. In column (iv), we examine the validity of ∆ ln yi,t−1, which

may be called into question in light of the major transformation experienced by Eastern

European economies during transition, by excluding it from the instrument set for the

levels equations. In column (v), we do the same for ∆
∑

j wijxjt. For both first-differenced

and levels equations, the instruments available for each variable for all time periods are

stacked into a single column in order to limit the number of instruments relative to the

number of cross-sectional units.30

In column (ii), some of the parsimonious FD-GMM estimates exhibit typical symptoms

of weak instruments. For instance, the coefficient on the lagged dependent variable is

substantially smaller than the baseline WG estimates in column (i) - which, if anything,

we may suspect to be biased downwards - and the standard errors of the coefficients on

ln yi,t−1,
∑

j wij ln yjt and agglomit are considerably higher. This points to potential gains

from using (parsimonious) S-GMM.

In column (iii), the Hansen and Difference Hansen tests neither reject the validity of our

instruments for the first-differenced equations nor of the full set of additional instruments

that we use for the levels equations (“Dif-Hansen, all levels IVs”). Also, the AB-AR tests

detect significant negative first-order serial correlation in the first-differenced residuals, as

expected, but no second-order serial correlation.

Some parameter estimates in column (iii) differ substantially from column (i). In par-

ticular, the coefficient on the lagged dependent variable is now considerably higher than the

corresponding WG estimate. It implies an annual speed of convergence of 23% compared

to 61% per year in column (i). However, if some of the additional instruments for the

equations in levels are invalid, which may be the case for ∆ ln yi,t−1 for reasons outlined

above, the estimate of γ in column (i) could be biased upwards. To test this, we carry out

Difference Hansen tests between the model in column (iii) and those in columns (iv) and

(v).

For ∆ ln yi,t−1, the test (“Dif-Hansen, ∆ ln yi,t−1”) clearly indicates that this instrument

cannot be considered uncorrelated with the region-specific fixed effects. By contrast, the

validity of the ∆
∑

j wijxjt is not rejected in column (v). These conclusions are congruent

with the Difference Hansen tests of all additional instruments for the levels equations taken

together (“Dif-Hansen, all levels IVs”) in the last two columns, which reject the validity of

the instrument set containing only ∆xit and ∆ ln yi,t−1, but not of that containing ∆xit

and ∆
∑

j wijxjt.

On the basis of these instrument validity tests, the estimates in column (iv) appear

to be the most reliable of all parsimonious GMM models in Table 4. A minor flaw is the

30We implement this by using the option “ivstyle” instead of “gmmstyle” for the instruments in Rood-
man’s (2009) xtabond2 command for Stata.
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absence of strong evidence of first-order serial correlation in the residuals, but perhaps

more importantly, there is also no strong evidence of second-order serial correlation.

Table 4: Model (2) - Parsimonious GMM

Dependent variable: (i) (ii) (iii) (iv) (v)

ln yit 2SLS-WG FD-GMM S-GMM S-GMM S-GMM

Levels IV-set: Full Excl. Excl.

∆ ln yi,t−1 ∆Σjwijxjt

ln yi,t−1 0.544∗∗∗ 0.408∗∗ 0.793∗∗∗ 0.510∗∗∗ 0.962∗∗∗

(0.060) (0.177) (0.117) (0.196) (0.210)
∑

j wij ln yjt 0.694∗∗∗ 0.469∗ 0.170 0.529∗∗ 0.093

(0.125) (0.242) (0.171) (0.232) (0.350)

ln sit 0.047∗ 0.020 0.036∗∗ 0.017 0.028

(0.024) (0.016) (0.017) (0.014) (0.021)

ln(nit + g + δ) -0.010∗ -0.001 -0.003 -0.003 -0.003

(0.006) (0.002) (0.002) (0.002) (0.003)

agglomit 0.160∗∗∗ 0.281∗∗ 0.092∗ 0.170∗∗ 0.042

(0.045) (0.118) (0.048) (0.069) (0.064)

LR agglomit 0.350∗∗∗ 0.475∗∗ 0.448∗∗ 0.347∗∗∗ 1.101

(0.075) (0.231) (0.191) (0.091) (4.889)

AB-AR(1) 1.22 (0.223) -1.31 (0.191) -1.94 (0.052) -1.49 (0.136) -1.92 (0.055)

AB-AR(2) 1.23 (0.185) 1.41 (0.159) 1.60 (0.109) 1.48 (0.139) 1.55 (0.120)

Hansen J 1.61 (0.657) 11.53 (0.318) 5.93 (0.747) 11.28 (0.127)

Dif-Hansen, all levels IVs 10.36 (0.169) 4.55 (0.603) 10.48 (0.033)

Dif-Hansen, ∆ ln yi,t−1 5.60 (0.018)

Dif-Hansen, ∆Σjwijxjt 0.25 (0.969)

Time Dummies Yes Yes Yes Yes Yes

Observations 528 432 480 480 480

Number of Regions 48 48 48 48 48

Number of Instruments 17 25 24 22

Notes: See notes to Table 1. GMM estimators are two-step estimators; GMM standard errors are robust
to heteroskedasticity and serial correlation (clustered on regions), and they are corrected for small-sample
bias as suggested by Windmeijer (2005); Hansen J and Dif-Hansen are the Hansen (1982) and Difference
Hansen tests of overidentifying restrictions, p-values in parentheses.
Columns (ii)-(v): Instruments used for the first-differenced equations are ln yi,t−2, ln yi,t−3, ∆Σjwij ln sjt,
∆Σjwij ln(njt + g + δ), ∆Σjwijagglomjt, ∆ ln sit, ∆ ln(nit + g + δ) and ∆agglomit.
Column (iii): Additional instruments used for the levels equations are ∆ ln yi,t−1, ∆Σjwij ln sjt,
∆Σjwij ln(njt + g + δ), ∆Σjwijagglomjt, ∆ ln sit, ∆ ln(nit + g + δ) and ∆agglomit.
Column (iv): ∆ ln yi,t−1 is excluded from the instruments used for the levels equations in column (iii).
Column (v): ∆Σjwij ln sjt, ∆Σjwij ln(njt + g + δ) and ∆Σjwijagglomjt are excluded from the instru-
ments used for the levels equations in column (iii).
All instruments are implemented as “ivstyle” instruments in Roodman’s (2009) xtabond2 command for
Stata.
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The parsimonious S-GMM estimates in column (iv) are quite similar to the 2SLS-

WG estimates in column (i) that we have focused on so far. In particular, both short-

and long-run coefficients on agglomit are almost identical, with a long-run effect of a one

standard-deviation increase in agglomeration on regional income of around 15%.31 Further,

the implied speed of convergence and the role of the spatially lagged dependent variable are

very similar, while the estimated coefficients on the other explanatory variables in column

(iv) are not dramatically different from those in column (i). This supports the view that

the length of the time dimension in our panel may not be a source of important bias in

our WG estimates, especially regarding the long-run effect of agglomeration, so that the

results in column (i) remain our preferred estimates overall.

To summarise, for our sample of CEE regions, the preferred results point to sizeable

benefits of agglomeration for long-run income that appear to manifest themselves quickly.

Whether they are due to pecuniary externalities or to localised knowledge spillovers in

the research sector, as in the theoretical models discussed in section 2, these benefits

suggest that a strategy of fostering the geographic concentration of economic activity within

regions, e.g. by encouraging the formation of industrial clusters, holds considerable promise

for regional growth in Eastern Europe. On the other hand, the benefits of agglomeration

may come at the cost of greater within-region inequality, which implies that policy makers

could have to trade off fostering regional growth on aggregate against achieving a balanced

development of different areas within regions. Martin (1999) has noted this trade-off in

the context of EU policy. Ultimately, it makes the European Union’s goals of growth, as

expressed in the Lisbon and Europe 2020 Strategies, and catch-up of its least developed

regions, highlighted by the convergence objective of EU regional policy, appear to conflict

for Central and Eastern Europe.

7 Conclusion:

This paper studies the effect of agglomeration on economic growth for a panel of 48 NUTS-

2 regions from Central and Eastern Europe over the period 1995 to 2006. Although a

body of theory has recently emerged that analyses this relationship, empirical work has

remained scarce and focused on Western Europe. Since both growth and the geographic

concentration of economic activity have been high in Central and Eastern Europe, we fill

a gap in the existing literature by considering a set of regions that is of particular interest

for the topic under investigation.

In addition, our measure of agglomeration, which is defined in this paper as the spatial

concentration of aggregate employment within regions, differs from some others that have

been employed in the recent empirical literature on agglomeration and growth. We use the

topographic Theil index of Brülhart and Traeger (2005), which measures the distribution

31It is worth noting that in column (iii), this long-run effect is, at 19%, also not radically different.
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of total employment across the NUTS-3 subregions of each NUTS-2 region relative to the

distribution of the NUTS-3 region areas within each NUTS-2 region. In contrast to so-

called absolute concentration indices, we are thus able to account at least for differences

in region areas when measuring agglomeration. Finally, we use panel data estimation

methods that allow us to address the presence of region-specific fixed effects, the possible

endogeneity of explanatory variables and spatial correlation in the data.

Our empirical analysis provides evidence that agglomeration has a positive effect on

short-run economic growth that is both statistically and economically significant. We

show that this result is fairly robust across alternative estimation methods. Our preferred

estimate of the long-run coefficient on agglomeration implies that in Eastern Europe, a

NUTS-2 region that is more agglomerated by about one standard deviation of the Theil

index - roughly equivalent to the difference between the two most agglomerated Polish

regions - benefits from a 15% increase in steady-state income per capita.

We therefore conclude that encouraging agglomeration in Central and Eastern Euro-

pean regions could contribute substantially to raising their prosperity in the long term.

However, while this may be true for the CEE NUTS-2 regions on aggregate, a further

increase in their already high levels of geographic concentration of economic activity - and

thus plausibly of income and wealth - may also raise important issues of intra-regional

equity.

One limitation of the empirical analysis in this paper and in the existing empirical

literature is a gap to the theoretical models on agglomeration and growth. To be fully

consistent with these, one would need to examine the effect of agglomeration on the long-

run rate of growth, i.e. on the growth rate of total factor productivity. The construction

of reliable TFP indices for CEE regions will, however, require longer time series than

are currently available, since for the calculation of capital stocks, reliable initial-period

investment data are essential.
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Appendices

A List of Regions

Country Code Region Name (NUTS-3) Country Code Region Name (NUTS-3)

Bulgaria BG31 North West (5) Poland PL11 Lodz Province (3)
BG32 North Central (5) PL12 Masovia Province (5)
BG33 North East (4) PL21 Lesser Poland Province (3)
BG34 South East (4) PL22 Silesia Province (4)
BG41 South West (5) PL31 Lublin Province (3)
BG42 South Central (5) PL32 Subcarpathia Province (2)

PL34 Podlasie Province (2)
Czech CZ01+ Prague+ PL41 Greater Poland Province (5)
Republic CZ02 Central Bohemia (2) PL42 West Pomerania Province (2)

CZ03 South West (2) PL43 Lubusz Province (2)
CZ04 North West (2) PL51 Lower Silesia Province (4)
CZ05 North East (3) PL61 Kuyavia-Pomerania
CZ06 South East (2) Province (2)
CZ07 Central Moravia (2) PL62 Warmia-Masuria Province (3)

PL63 Pomerania Province (3)
Estonia EE00 Estonia (5)

Romania RO11 North West (6)
Latvia LV00 Latvia (6) RO12 Centre (6)

RO21 North East (6)
Lithuania LT00 Lithuania (10) RO22 South East (6)

RO31 South (7)
Hungary HU10 Central Hungary (2) RO32 Bucharest-Ilfov (2)

HU21 Central Transdanubia (3) RO41 South West (5)
HU22 Western RO42 West (4)

Transdanubia (3)
HU23 Southern Slovenia SI00 Slovenia (12)

Transdanubia (3)
HU31 Northern Hungary (3) Slovakia SK01+ Bratislava Region+
HU32 Northern Great Plain (3) SK02 Western Slovakia (4)
HU33 Southern Great Plain (3) SK03 Central Slovakia (2)

SK04 Eastern Slovakia (2)

Notes: The number of NUTS-3 sub-regions for each NUTS-2 region is given in parentheses.

NUTS-2 regions comprising the national capitals are given in bold font. For Estonia,

Latvia, Lithuania and Slovenia, NUTS level 2 coincides with the country level.
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B Summary Statistics

Table B.1: Summary Statistics

Variable Mean Std. Dev. Min. Max. Observations

yit overall 7843 3115 2720 22322 N = 576

between 2906 3305 17765 n = 48

within 1192 3697 12401 T = 12

∆ ln yit overall 0.034 0.054 -0.336 0.262 N = 528

between 0.018 0.007 0.090 n = 48

within 0.051 -0.315 0.240 T = 11

sit overall 0.240 0.067 0.038 0.473 N = 576

between 0.054 0.075 0.342 n = 48

within 0.040 0.114 0.415 T = 12

nit overall -0.003 0.005 -0.050 0.011 N = 528

between 0.004 -0.018 0.003 n = 48

within 0.004 -0.039 0.007 T = 11

agglomit overall 0.263 0.428 0 1.466 N = 576

between 0.431 0 1.430 n = 48

within 0.031 0.042 0.385 T = 12

Table B.2: Correlation Matrix

ln yit ∆ ln yit ln sit ln(nit + g + δ) agglomit

ln yit 1

∆ ln yit 0.2395∗∗∗ 1

ln sit 0.3400∗∗∗ 0.2556∗∗∗ 1

ln(nit + g + δ) 0.1164∗∗∗ -0.0330 0.2787∗∗∗ 1

agglomit 0.4133∗∗∗ 0.2482∗∗∗ 0.2505∗∗∗ 0.0684 1

Notes: ∗∗∗ indicates significance at the 1% level.
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