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Abstract

Spatial Filter for spatial autoregressive models like the spatial
Durbin Model have seen a great interest in the recent literature.
Pace et al. (2011) show that the spatial �ltering methods de-
veloped by Gri¢ th (2000) have desireable estimation properties
for some parameters associated with spatial autoregessive mod-
els. However, spatial �ltering faces two conceptual weaknesses:
First the estimated parameters lack in general, and especially for
the Spatial Durbin Model a proper interpretation. Second, there
exists an inherent tradeo¤ between the estimator bias and its ef-
�ciency, depending on the spectrum of the used spatial weight
matrix.
This paper tackles both problems by introducing a new four

step estimation procedure based on the eigenvectors of the spatial
weight matrix. This new estimation procedure estimates all pa-
rameters of interest in a Spatial Durbin model and thus allows for
a proper model interpretation. Additionally the estimation pro-
cedure�s e¢ ciency is only marginally in�uenced by the number
of added eigenvectors, which allows us to use approximatly 95%
of the available eigenvectors. By using Monte Carlo Simulations
we observe that the estimaton procedure has a lower (or equal)
bias and smaller (or equal) sample variance as the corresponding
Maximum Likelihood estimator based on normality.

1 Introduction

Spatial �ltering is a very popular1 alternative estimation method for spa-
tial (autoregressive) models. These spatial autoregressive models assume

1see for example Cuaresma and Feldkircher (2010), Cuaresma et. al. (2009),
Tiefelsdorf and Gri¢ th (2007) or Fischer and Gri¢ th (2008).
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an autocorrelation structure, which is represented by the so called spatial
weight matrixWn. The idea behind spatial �ltering is to approximate
Wn via a subset of the corresponding eigenvectors and eigenvalues. If
this approximation holds one can use this subset of eigenvectors as ex-
planatory variables in a linear regression framework in order to control
for the spatial autoregressive model nature and therefore reduce the po-
tential bias in the ordinary least squares regression. Pace et. al. (2011)
for example suggest to apply the Frisch Waugh theorem to the subset
of eigenvectors and as a result �lter out the spatial dependence in the
model. The virtue of this approach is that unlike likelihood based esti-
mation approaches, no distributional assumption about the error term
is necessary. Pace et. al. (2011) argues that this is especially useful for
models where the dependent variables represent binary, discrete choice
outcomes or Poisson distributed counts and where we observe an autore-
gressive structure in the dependent variable.
Although spatial �ltering has desirable properties, this estimation

approach faces in general two intrinsic problems: First, spatial �lter-
ing as the name suggests, �lters out the spatial autoregressive term and
therefore we are left without an estimate for the spatial autocorrelation
parameter. This is a fundamental drawback if the model is spatial au-
toregressive in the dependent variable, since as LeSage and Pace (2007)
correctly point out, the model partial derivatives of the dependent vari-
able with respect to explanatory variables are in general a function of the
spatial autocorrelation parameter. Thus, in general the coe¢ cients re-
sulting form spatial �ltering lack a proper interpretation. Second, spatial
�ltering is a form of model approximation and therefore the estimation
results strongly depend on the approximation quality. The approxima-
tion quality however depends on the number of eigenvectors used as
explanatory variables. If we would use all available eigenvectors (perfect
model approximation) we would have n additional explanatory variables
and therefore are left with a model that has to estimate more parameters
than actual observations. On the other hand if too few eigenvectors are
used the resulting estimation su¤ers from considerable bias. Therefore
the spatial �ltering method has always to make a trade-o¤ between es-
timation bias and estimation e¢ ciency. Hence it�s not surprising that
di¤erent2 approaches exist for constructing an "optimal" subset of eigen-
vectors. Finally the performance of spatial �ltering strongly depends on
the spatial weight matrix�s spectrum.
This paper tackles both intrinsic problems associated with spatial

�ltering for the so called spatial Durbin model (SDM). We provide a
new iterative estimation procedure based on spatial �ltering that results

2see for example Getis and Gri¢ th (2002)
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in estimates for each parameter associated with the SDM. Therefore we
are able to calculate all partial derivatives associated with the model
and therefore can correctly interpret the implied model dynamics. The
proposed four-step estimation method can, due to its construction, incor-
porate almost all eigenvectors associated with the spatial weight matrix
without a¤ecting the e¢ ciency of the parameter estimation. Therefore
the previous described trade-o¤ between estimation bias and estimation
e¢ ciency is no longer present.
The paper is organized as follows. The next section provides some

background to the SDM and gives a short introduction to spatial �ltering
as it is suggested in Pace et. al. (2011). The second section describes our
proposed iterative four-step estimation method based on spatial �lter-
ing and provides a short discussion regarding model interpretation and
the calculation of the SDM e¤ect-measures� standard deviation. The
following section provides the set up for our Monte Carlo Simulation
where we compare the four-step estimation procedure with the max-
imum likelihood estimator based normality. Additionally this section
provides three di¤erent summary measures for comparing the perfor-
mance of both estimators. In the section "Monte Carlo Results" we �nd
that the four-step estimation procedure performs as well as the maxi-
mum likelihood estimator. We also �nd that for our experimental design,
bootstrapping seems to be more preferable as estimation technique for
the estimator�s variance compared to the Monte Carlo Simulation sug-
gested by LeSage and Pace (2007), which is based on the asymptotic
variance of the maximum likelihood estimator. Additionally we discuss
some numerical implications of the four step estimation technique and
we �nd that whereas traditional spatial �ltering has a trade-o¤ between
the estimation bias and estimation e¢ ciency, the four step estimator has
a trade-o¤ between estimation bias and computational time. The last
section concludes and summarizes this paper.

2 The spatial Durbin Model and "classical" spatial

�ltering

This section �rst provides the Spatial Durbin model and the associated
assumptions for spatial �ltering and then provides the intuition behind
spatial �ltering as suggested by Pace et. al (2011).
Notation: If the matrixWn is symmetric thenWn can be written

as �Dn
��n �D

�1
n where �Dn is the matrix containing the eigenvectors and

��n the eigenvaluematrix. A subset of the eigenvectors of �Dn is denoted
by Dn and the corresponding eigenvectormatrix by �q. The number of
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columns of Dn is denoted by q. The ith diagonal element of the eigen-
valuematrix is denoted by �i. The Operator tr() applied on a matrix
is the matrix�s trace. The operators E[] and V ar[] denote the expected
value and the variance respectively. In denotes an identity matrix of
dimension n. Let Yn2 Rn�1. One can write Yn also as Y = (y1; y2;
:::; yn)

0. Some proofs and useful Lemmas are given in the (technical)
Appendix. If Xn is a n by k matrix then rank(Xn) is the number of
linear independent columns. If x is a real number round(x) refers to the
nearest integer.
The following data generating process is referred to by the literature

as Spatial Durbin model and is the focus of our analysis:

Yn = �oWnYn +Xn�0 +WnXn
0 + �n where �i � i:i:d(0; �20) (1)

In (1) Xn represents the n by k matrix of (�nite) explanatory vari-
ables where rank(Xn) = k. The parameters in (1) � 0, �0 and 
0 are
the coe¢ cients to be estimated and the �i are independently and identi-
cally distributed with zero mean and �nite variance �20. Wn represents
the symmetric n by n spatial weights matrix of known constants. The
diagonal entries ofWn are assumed to be zero3. The SDM incorporates
various representations of spatial DGPs like the Spatial Autoregressive
Model and the Spatial Error Model4. Throughout this paper we main-
tain additionally the following (central) assumptions:

1. Wn can be seen as deterministic and is normalized such that the
absolute maximum eigenvalue is smaller or equal one

2. Wn can be approximated byWn � Dn�qD
0
n

3. �o 2 (�1; 1)

4. E[X0
n�n] = 0

Due to assumptions (1) and (3) we can solve the DGP for Yn and
end up with Eq. (2):

Yn = (In � �oWn)
�1 (Xn�0 +WnXn
0 + �n)

where �i � i:i:d(0; �20) (2)

3Although it is possible to derive parameter spaces for Wn matrices where the
diagonal elements are not zero, it is not common in applications.

4For more details to the assumptions and properties of the data generating process
stated in (1), see Elhorst (2010)
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Due to the following fundamental identity (In � �oWn)
�1 = In +

(In � �oWn)
�1 �oWn we can write Eq.. (3) as

Yn = Xn�0 + �n +An (Xn�0 +WnXn
0 + �n)

where An = (In � �oWn)
�1 �oWn (3)

The main idea behind Gri¢ th�s approach (see Gri¢ th (2003)) is to
use an approximation for the matrixAn in order to construct a projector
MD such that: MDAn � 0 where MD = In �Dn (D

0
nDn)

�1D0
n. Since

eigenvectors are orthogonal per construction MD can be simpli�ed to:
MD = In � DnD

0
n. Given such a projector the estimation problem

written in (3) is reduced to a simple linear model where ordinary least
squares can be applied

MDYn �MDXn�0 +MD�n. (4)

However it is not clear how many eigenvectors are necessary for a
reasonable model approximation. Given assumption (3) we can writeAn

as a Neumann Series (In � �0Wn)
�1 �0Wn =

1X
k=1

�k0W
k
n and therefore

the eigenvectors corresponding to the absolute largest5 eigenvalues are
a good approximation for An. Getis and Gri¢ th (2002) for example
compare the Moran�s I statistic with the Getis Gi local statistic.

Given a reasonable number of eigenvectors for approximatingMD An

� 0 Pace et. al. (2011) use the simple OLS estimator, �̂ = (X0
nMDXn)

�1

X0
nMDYn, as an estimator for �0 given in the DPG by Eq. (4). If the

approximation given in Eq. (4) holds, this estimator is unbiased since
E[�̂] = �0 +E

�
(X0

nMDXn)
�1X0

nMD�n
�
= �0 where the last equal sign

is due to assumptions (4) and (1). Pace et. al. (2011) provide examples
ofWn-matrices where the estimator �̂ has these desirable properties.
This approach however faces two inherent weaknesses: First the �̂ co-

e¢ cient vector lacks a proper interpretation, since ceteris paribus model
interpretations are associated with the partial derivatives of Yn with re-
spect to the explanatory variables Xn. Pace et. al. (2011) label this "a
philosophical issue regarding the spatial �ltering method". The second
weakness of spatial �ltering stems from the inherent estimator trade-o¤
between estimation bias and estimation e¢ ciency. Each added eigenvec-
tor adds a degree of freedom to the OLS estimation. If all eigenvectors
were used, we would have n equations for estimating n+ 2k unknowns.

5Note if j�0j � 1 then one should no longer use the biggest absolute eigenvalues,
since the choice of the eigenvectors depends on the true parameter value �0.
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This is re�ected in the projector MD so that if q ! n then MD = 0.
Therefore not all Wn-matrices are suitable for spatial �ltering. These
conceptual weaknesses motivate the next section where a new estima-
tion procedure, based on the spatial �ltering model approximation is
presented, which can tackle both weaknesses of the spatial �ltering ap-
proach.

3 Estimation procedure and Model Interpretation

This section �rst provides the estimation details regarding the new esti-
mator for (�o; �0; 
0)

0. This estimator is based on four di¤erent estima-
tion steps. Finally this section provides an approximation for the vari-
ances associated with model parameters and their implied direct/indirect
and total e¤ects.

First Step
In order to estimate the Spatial Durbin model given in (1), we �rst

use a projector for eliminating the explanatory variables Xn andWnXn

and end up with the data generating process given in (5):

�Yn = �oMxWnYn+��n �MxDn�0+��n whereMx = In�Zn (Z0nZn)
�1
Z0n,

��n =Mx�n, �Yn =MxYn, �0 = �o�qD
0
nYn and Zn= [Xn;WnXn] (5)

By applying the projectorMx the resulting model is only in�uenced
by the spatial autoregressive lag and the error term. By using the model
approximation via eigenvectors we �nd the relationship between the spa-
tial lag and the eigenvectors given by �oMxWnYn � MxDn�0. Ad-
ditionally we are able to �nd an estimator for �20 which is given by
�̂2 = 1=(n� 2k � q)ê0ê where ê =MxMnY.

Second Step
Applying the OLS- estimator for Eq.. (5) yields: \�oMxWnYn =

MxDn
b� where b� = (D0

nMxDn)
�1D0

n
�Yn. Given �oMxWnYn �MxDn�0

the following estimator for �o seems to be "natural": b�1 = (Y0
nW

0
nMx

WnYn)
�1 Y0

nW
0
n MxDn

b� where we regressMxWnYn onMxDn
b�.

Third Step
However, the estimator b�1 is only (asymptotically) unbiased if �20 !

0. Theorem 1 in the Appendix derives the asymptotically expected value

of b�1 given thatMxWn = Dn�qD
0
n: limn!1E [�̂1] = �0 +

�20tr(S0nW0
nMxDDn)

(�20+�2�)tr(S0nW0
nMxWnSn)

whereDDn=Dn (D
0
nDn)

�1D0
n , Sn = (In � �0W0

n)
�1 and �2� = V ar(Xn�0+

6



WnXn
0). Hence, we can construct the following asymptotically unbi-
ased estimator, given thatMxWn = Dn�nD

�1
n :

�̂ = arg min
�2(�1;1)

�����b�1 � �� �20tr
�
(In � �W0

n)
�1W0

nMxDDn

�
Y0
nW

0
nMxWnYn

����� (6)

SinceW is symmetric, the Appendix shows additionally that tr( (In�
�W0

n)
�1 W0

nMx DDn) =
Pn

i=max(2k;q)
�i

1���i . Hence the optimization
procedure given in (6) is a computational simple nonlinear minimization
problem. In order to optimize (6) we need an estimator for �20, where
we use the estimator from Step one.

Fourth Step
Given an estimator for �̂ we can use the spatially �ltered dependent

variables in an ols regression to get estimates for (�̂
0
; 
̂0)0, given in the

following Eq.. (7):�
�̂

̂

�
= (Z0nZn)

�1
Z0n (In � �̂Wn)Yn (7)

Note that this four step estimation procedure can use a large mag-
nitude of eigenvectors without increasing the overall degrees of freedom,
since the second and third step reduce the �tted eigenvectors to a single
number, namely the spatial autocorrelation parameter �̂. We suggest to
set the number of chosen eigenvalues equal to: q = round(0:95(n� 2k)).
However, this large number of q might leads to an ine¢ cient estima-
tor for �20. We therefore suggest to use �̂

2 = 1=(n � 2k � q)ê0ê (where
ê = MxMnYn) only as an initial estimator and then update it with
�̂2up = 1=(n� 2k)ê0ê where ê = Yn��̂WnYn �Xn�̂ �WnXn
̂. We re-
peat the estimation of step 3 and step 4. Further, we denote the current
estimation of �20 with �̂

2
up and the estimation from the previous step with

�̂2up�1. Finally, we use as an abort criterion (�̂
2
up�1� �̂2up)=�̂2up � 0:01.

LeSage and Pace (2007) suggest to use direct/indirect or total e¤ects
for the model interpretation of a SDM model, which are given by the
following Eqs. (8) to (10):

direct e¤ectk =
1

n

nX
i=1

@yi
@xi;k

(8)

indirect e¤ectk =
1

n

nX
i=1

nX
j=1;i6=j

@yi
@xj;k

(9)
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total e¤ectk =
1

n

nX
i=1

nX
j=1

@yi
@xj;k

(10)

where the partial derivative of yi with respect to xj;k, denoted by
@yi
@xj;k

can be written as @yi
@xj;k

= Ski;j where the matrix S
k is equal to Sk =

(In � �0Wn)
�1 (In�k +Wn
k). Furthermore Eq. (10) can additionally

be written in matrix notation as total effectk = 1
n
�0nS

k�n and therefore,
ifWn is row normalized, the corresponding total e¤ect simpli�es to total
effectk =

1
1��0

(�k + 
k).
In order to derive the standard deviations for the direct/indirect or

total e¤ects LeSage and Pace (2007) suggest Monte Carlo Simulations.
Note that if Wn is not row standardized, Eq.. (10) can not be further
simpli�ed and therefore each Monte Carlo Simulation step needs the cal-
culation of (In � �̂Wn)

�1. Since almost all symmetricWn matrices used
in applied cases are not row standardized the calculation (In � �̂Wn)

�1

is almost always necessary. In that light we regard Bootstrapping as
a useful estimation method for calculating the standard deviations of
(�̂; �̂

0
; 
̂0)0 and the implied indirect/direct and total e¤ects. Given we

use bootstrapping we estimate that the computational time will approx-
imately double or triple compared to the standard Monte Carlo approach
suggested in LeSage and Pace (2007).
Alternatively Theorem 2 in the Appendix derives the standard devi-

ation of b�1 as a �rst step for calculating the variance covariance matrix
of (�̂; �̂

0
; 
̂0)0. However our Monte Carlo experience suggest that this es-

timator has a very high variance itself and therefore we regard this �rst
step analytical solution as an imprecise variance approximation.
A third possibility would be to use the variance covariance matrix

of the Maximum Likelihood estimator as an approximation for the esti-
mator given in Eq. (8) - Eq. (10). As the Monte Carlo simulations in
the next section suggest that the proposed estimator is in small samples
equally e¢ cient as the ML counterpart.

4 Monte Carlo Design and used performance mea-

sures

In our Monte Carlo study, the data generating process is given by (11)

Yn = �oWnYn +Xn�0 +WnXn
0 + �n

where �i � i:i:N(0; �20) and Xn � (In � �0Wn)
�1 �n (11)

where Xn has one column. We follow Le Sage et al (2011) by intor-
ducing spatial autocorrelation inXn, where �n is drawn from an uniform
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distribution and is �xed for a given n while n is set to 100; 200 and 400.
We use these rather small sample sizes in order to reduce the compu-
tational burden. We set �0 = 1, �0 = 0 and use two di¤erent settings
for 
0: once 
0 is set equal �0 and then equal to ��0�0. Note that in
the second case the SDM model given in (11) simpli�es to the so called
spatial error model. Additionally we also consider �0 = 1 and �0 = 0:99.
Le Sage et al (2011) argue that spatial atuocorrelation in the regrossor
introduces problems for the estimation ML estimation method and also
has to be considered realistic for typically housing data regressors.
Each con�guration of Eq. (11) is simulated TrialsMC = 1000 times.

Since the error term in Eq. (11) is drawn from an independently distrib-
uted normal distribution we can compare the estimator performance of
our new estimator with the Maximum likelihood estimator. We follow
LeSage et. al. (2011) by �xing �20 such that the R

2, given in Eq. (12) as
proxy for the information to noise ratio, is �xed across di¤erent values
of �0.

R2 =
V ar

�
(In � �0Wn)

�1 �n
�

V ar [Yn]
(12)

The spatial autocorrelation parameter �0 takes in our Monte Carlo
experiment the following values: �0:8;�0:4; 0; 0:4; 0:8. We use as a spa-
tial weight matrix a maximum eigenvalue normalized one forward one
behind pattern. The major reason for this rather unrealistic neighbor-
hood structure is its associated eigenvalue density. The traditional spa-
tial �ltering approach�s (see Gri¢ th (2003) or Pace et. al. (2011)) bias
is smaller if most eigenvalues of Wn are near zero and as a result the
spatial �ltering bias depends on the density of theWn�s spectrum. To
compare the one forward one behind pattern we use an originally binary
spatial weight matrix6 re�ecting the neighborhood among 203 European
NUTS 2 regions, which was used by Fischer et. al. (2008). We compare
the unrealistic one forward one behind weight matrix�s spectrums den-
sity with the weight matrix�s spectrum density used in Fischer et. al. in
Figure (1).
Comparing these two histograms in Figure (1) we �nd out that the

one forward one behind pattern is more problematic for spatial �ltering
methods than for example the pattern re�ecting real life neighborhood
structure. We observe as a characteristic of the eigenvalue density of
the spatial weight matrix used by Fischer et. al. (2008) that indeed
a large proportion of the weight matrix�s eigenvalues are centered near
zero. This characteristic is also observed by Pace et. al. (2011) for other

6In Fischer et. al. (2008) "the weights matrix is constructed so that a neighboring
region takes the value of 1 and 0 otherwise"
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Figure 1: (Figure 1): Eigenvalue-histogram of di¤erent spatial weigth
matrices

binary neighborhood structures. Hence we are con�dent that using the
one forward one behind pattern imposes an adverse environment for the
new estimation procedure, which in return generalizes the Monte Carlo
results.
In our Monte Carlo Simulation we use approximately 95 per cent of

the eigenvectors corresponding to the largest eigenvalues. Additionally
we let estimation step 3 and 4 iterate until7 (�̂2up�1� �̂2up)=�̂

2
up � 0:01.

The Monte Carlo experiment is programed in MATLAB and as compar-
ison we use the sdm-function based on maximum likelihood estimation,
where the function is provided by the MATLAB spatial econometrics
toolbox8 programmed by James LeSage and Kelly Pace. In each exper-
imental trial we will calculate the models total e¤ects and its estimated
standard deviation. The standard deviation is based on 100 bootstrap
(Monte Carlo) trials for the new estimation procedure (maximum likeli-
hood based sdm function). Overall the experimental design uses for each
sample size 3 � 5 � 3 = 45 di¤erent parameter con�gurations. We report
for each estimator and DGP con�guration three di¤erent performance
measures for the spatial auto correlation parameter and the models total
e¤ect.
The �rst performance measure is the so called relative estimator bias,

7We �nd in our studies that on average 2 to 5 iteration steps are necessary.
8toolbox can be downloaded at www.spatialeconometrics.com . For details re-

garding the toolbox see LeSage and Pace (2007)
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which is given in Eq. (13)

Bias(�̂) =

8>>>><>>>>:
1

TrialsMC

TrialsMCX
i=1

�̂i��0
�0
100 if �0 6= 0

1
TrialsMC

TrialsMCX
i=1

�̂i if �0 = 0

(13)

where �̂ is either the estimator for the spatial autocorrelation para-
meter or the estimator for the DGPs total e¤ect. If �̂ is indexed by i
then �̂i corresponds to parameter estimate in the i

th Monte Carlo trial.
Note that the Bias is adjusted for the relative size of the true parameter
value and can be interpreted percentage deviation if the true parameter
value is not equal to zero.

The second performance measure is based on the mean squared error
and is given by the following equation

RMSE(�̂) =

8>>>>>><>>>>>>:

vuut 1
TrialsMC

TrialsMCX
i=1

�
�̂i��0
�0

�2
100 if �0 6= 0vuut 1

TrialsMC

TrialsMCX
i=1

�̂2i if �0 = 0

(14)

Eq. (14) measures the average squared di¤erence between the pa-
rameter estimated in the ith Monte Carlo trial and the true parameter
value. Given that the true parameter value is not equal to zero, the
average squared di¤erence is normalized by dividing it with the squared
true parameter value, taking the square root of the resulting average and
then multiplying it by 100 such that it can be interpreted as a percent-
age value. Note that if the average estimated parameter value over the
MC trials is unbiased Eq. (14) can be written either as

p
V AR[�̂]100

�0
if

�0 6= 0 or
p
V AR[�̂]100 otherwise.

The third performance measure compares the estimated second mo-
ment of the estimator with its corresponding Monte Carlo second mo-
ment sample analog. This performance measure given in Eq. (15) is
similar to the measure given in Eq. (13) since both measure the bias
of a parameter estimate where Eq. (13) concerns the estimators �rst
moment and Eq. (15) the estimator�s second moment estimate.

Bias2(�̂) =
1

TrialsMC

TrialsMCX
i=1

\std[�̂i]� std0[�̂i]
std0[�̂i]

100 (15)
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In Eq. (15) \std[�̂i] denotes for each Monte Carlo trial i the cor-
responding estimated standard deviation of �̂i. The true standard de-
viation of the estimator �̂i is denoted by std0[�̂i]. Note that the sdm
function uses an approximation for std0[�̂i] which converges only asymp-
totically. Since there are no small sample analytical solutions available
for std0[�̂i] we approximate this number by its Monte Carlo in- sample
analog. Hence Eq. (15) can be interpreted as the percentage bias of the
estimated standard deviation of the corresponding parameter estimator.

5 Monte Carlo Results

We compare the performance of our new estimator with the maximum
likelihood estimator suggested by LeSage and Pace (2007). First we
compare the estimator�s performance by the estimation of the spatial
autocorrelation parameter �0 and second via the estimation performance
for the total e¤ect implied by the DGP. Hence the main Monte Carlo
results are divided into 12 di¤erent tables. Each table reports di¤erent
performance measures for each estimator and weather 
0 = �0, 
0 =
��0�0 or �0 = 0:00, �0 = 0:99. The tables (1)-(4) correspond to the
total e¤ects where 
0 = �0 and �0 is either 0:00 or 0:99 the tables
(4)-(12) are given in the Appendix. Since the interpretation of Spatial
Durban models primarily depend on their implied e¤ects, we are focusing
our discussion of the Monte Carlo results on the implied total e¤ects.
In all tables the performance measures improve with increasing sample
size and R2.

Table 1: Monte Carlo Results Results Maximum Likelihood for the total
e¤ect of x where 
0=1 and �0=0.00

R2 .1 .4 .8
�0 Bias RMSE Bias2 Bias RMSE Bias2 Bias RMSE Bias2

100

-0.8 0.08% 4.54% -1.68% 0.00% 1.81% -2.98% 0.01% 0.54% 1.07%
-0.4 -0.11% 7.56% -0.90% 0.04% 3.37% -0.38% 0.01% 1.43% -1.96%
0 0.29% 11.33% -0.04% 0.07% 3.98% 4.03% 0.06% 1.96% 0.60%
0.4 0.36% 12.89% 7.91% -0.09% 4.51% 2.25% 0.10% 2.33% -2.93%
0.8 -0.82% 17.07% 6.93% -0.28% 7.33% 2.21% 0.00% 2.05% -0.33%

200

-0.8 -0.02% 2.45% -6.56% 0.01% 0.99% 0.15% 0.01% 0.35% 0.55%
-0.4 -0.01% 4.54% -1.32% -0.01% 1.51% 2.07% -0.01% 0.76% 0.21%
0 0.09% 5.15% 0.99% -0.10% 2.26% 0.67% -0.02% 0.96% -0.47%
0.4 0.11% 7.21% 2.57% 0.06% 2.80% 4.23% 0.00% 1.24% -0.29%
0.8 -0.24% 7.55% 0.18% 0.00% 3.27% 4.30% 0.01% 1.22% -0.62%

400

-0.8 -0.07% 1.78% 0.02% 0.00% 0.71% 1.14% 0.01% 0.28% -0.39%
-0.4 0.00% 3.44% 0.22% -0.10% 1.52% 1.53% -0.04% 0.58% 2.47%
0 0.00% 5.18% 1.54% -0.01% 2.05% 0.40% -0.03% 0.81% -1.32%
0.4 -0.11% 6.42% 2.04% 0.09% 2.74% -2.54% 0.03% 1.04% 2.27%
0.8 0.44% 7.29% 1.55% -0.02% 3.51% -0.61% 0.03% 1.32% -1.28%
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Table 2: Monte Carlo Results Results new estimator for the total e¤ect
of x where 
0=1 and �0=0.00

R2 .1 .4 .8
�0 Bias RMSE Bias2 Bias RMSE Bias2 Bias RMSE Bias2

100

-0.8 0.08% 4.54% -2.18% 0.00% 1.81% -3.70% 0.01% 0.54% 0.06%
-0.4 -0.11% 7.56% -2.39% 0.04% 3.37% -1.13% 0.00% 1.43% -2.59%
0 0.29% 11.33% -2.38% 0.07% 3.98% 1.17% 0.06% 1.96% -1.68%
0.4 0.37% 12.90% 3.85% -0.08% 4.51% -1.43% 0.11% 2.33% -6.14%
0.8 -0.81% 17.06% -3.34% -0.26% 7.33% -6.09% 0.00% 2.05% -4.97%

200

-0.8 -0.02% 2.45% -6.58% 0.00% 0.99% -0.25% 0.01% 0.35% -0.03%
-0.4 -0.01% 4.54% -2.47% -0.01% 1.50% 1.02% -0.02% 0.76% -0.66%
0 0.09% 5.15% -0.30% -0.10% 2.26% -0.48% -0.02% 0.96% -1.28%
0.4 0.11% 7.21% 0.72% 0.07% 2.80% 2.85% 0.01% 1.24% -1.87%
0.8 -0.24% 7.55% -4.00% 0.01% 3.27% 0.29% 0.01% 1.22% -3.62%

400

-0.8 -0.07% 1.78% 0.44% 0.00% 0.71% 0.61% 0.01% 0.28% -0.62%
-0.4 0.00% 3.44% -0.35% -0.11% 1.52% 1.36% -0.04% 0.58% 1.82%
0 0.00% 5.18% 0.88% -0.01% 2.05% -0.99% -0.03% 0.81% -2.03%
0.4 -0.11% 6.42% 1.21% 0.09% 2.74% -2.69% 0.03% 1.04% 1.46%
0.8 0.44% 7.29% -0.77% -0.01% 3.52% -2.98% 0.02% 1.32% -2.75%

Comparing tables (1) and (2) we �nd that both estimators perform
equally well regarding bias, RMSEs and Bias

2
. Addittionally the perfor-

mance measures are similar for the MC-case 
0 = ��0�0 and �0 = 0:00
given in the Appendix in table (). Therefore we conclude for �0 = 0:00
that both estimators have a similar performance regarding the estima-
tion of the �rst and second moment of the total e¤ects.

Table 3: Monte Carlo Results Results new estimator for the total e¤ect
of x where 
0=1 and �0=0.99

R2 .1 .4 .8
�0 Bias RMSE Bias2 Bias RMSE Bias2 Bias RMSE Bias2

100

-0.8 -0.17% 3.56% 0.96% -0.06% 1.91% -3.38% -0.01% 0.58% -1.29%
-0.4 -0.19% 9.88% -1.13% 0.00% 3.70% -0.55% -0.04% 1.61% 1.90%
0 0.21% 17.85% -3.26% -0.06% 6.63% 3.10% -0.01% 2.87% -7.02%
0.4 1.00% 21.10% -1.34% 0.01% 8.80% -2.38% 0.04% 3.72% -1.14%
0.8 0.34% 30.83% 0.63% -0.03% 12.55% -4.16% 0.13% 7.48% -6.94%

200

-0.8 0.10% 2.38% 0.73% -0.08% 1.11% 2.24% 0.00% 0.48% 0.34%
-0.4 -0.14% 6.27% -1.52% 0.01% 2.61% -2.91% 0.06% 1.19% -0.59%
0 0.27% 10.97% -3.46% -0.05% 4.13% -0.14% 0.05% 1.69% 0.44%
0.4 0.08% 15.56% -2.63% -0.25% 6.55% 0.59% 0.04% 2.65% 0.29%
0.8 0.28% 23.05% -3.98% -0.22% 11.42% 0.14% -0.16% 3.64% -2.59%

400

-0.8 0.18% 2.04% 1.07% -0.03% 0.83% -0.14% -0.01% 0.32% 0.79%
-0.4 0.14% 5.63% -2.03% 0.04% 2.06% 1.25% -0.01% 0.93% -3.79%
0 0.14% 8.08% -2.82% -0.07% 3.31% -3.57% 0.04% 1.30% 3.28%
0.4 0.25% 12.70% -0.26% 0.12% 5.01% 0.35% 0.08% 1.94% 2.97%
0.8 -0.03% 19.46% -1.59% 0.14% 8.14% 0.13% 0.04% 2.87% -2.80%

If the explanatory variable exhibit a high spatial autocorrelation,
then the estimation- performance for both estimators regarding the �rst
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Table 4: Monte Carlo Results Results Maximum Likelihood for the total
e¤ect of x where 
0=1 and �0=0.99

R2 .1 .4 .8
�0 Bias RMSE Bias2 Bias RMSE Bias2 Bias RMSE Bias2

100

-0.8 -0.05% 3.86% -56.77% 0.00% 1.99% -57.45% -0.02% 0.68% -48.95%
-0.4 -0.33% 9.63% -48.30% 0.16% 3.82% -50.44% 0.04% 1.43% -48.83%
0 0.17% 10.38% -39.11% -0.14% 5.80% -41.08% -0.10% 2.11% -39.82%
0.4 -0.68% 15.90% -30.74% 0.04% 5.22% -29.82% 0.09% 2.68% -27.08%
0.8 0.24% 17.25% -9.12% 0.46% 7.85% -8.18% 0.09% 3.19% -9.85%

200

-0.8 -0.02% 1.59% -34.53% -0.04% 0.61% -32.20% 0.00% 0.26% -34.00%
-0.4 0.20% 3.47% -24.42% -0.08% 1.29% -25.14% 0.02% 0.61% -26.00%
0 -0.10% 5.15% -21.42% -0.06% 2.01% -19.92% -0.05% 0.84% -19.13%
0.4 0.23% 5.72% -8.15% -0.16% 2.80% -9.40% 0.00% 1.09% -14.07%
0.8 0.20% 11.03% -2.75% 0.15% 4.59% -3.84% -0.04% 1.77% -2.72%

400

-0.8 0.01% 0.61% -10.35% 0.00% 0.28% -14.94% 0.00% 0.10% -14.11%
-0.4 -0.03% 1.47% -8.33% -0.02% 0.61% -12.42% 0.00% 0.26% -10.09%
0 0.03% 2.42% -9.40% -0.03% 0.98% -6.20% 0.01% 0.39% -7.08%
0.4 0.10% 3.16% -2.98% 0.04% 1.30% -3.28% 0.03% 0.59% -5.01%
0.8 0.01% 5.66% -0.69% -0.07% 2.09% -1.06% 0.01% 0.88% -0.22%

moment of the total e¤ects is similar well. However the asymptotic
variance of the maximum likelihood estimator seems to be no longer
an appropriate approximation for the small sample estimator variation.
Especially in small sample sizes we observer in table (4) deviations as
large as 50 per cent. Since the standard deviation of our proposed es-
timator is based on bootstrapping we do not observe such weaknesses
in table (3). Therefore we conclude, given medium sample sizes where
the estimation time is not an issue, that bootstrapping should be used
for empirical applications. Overall we conclude that the tables (1)-(12)
indicate a similar performance of the proposed estimator compared to
the maximum likelihood estimator.

Like Pace et. al. we suggest to use the ARPACK (Lehoucq, Sorensen,
and Yang, (1998)) public domain software package for calculating the
eigenvalues and eigenvectors of the sparse matrixWn. In our view the
usefulness of these algorithms lies in their ability to handle sparse ma-
trices. IfWn had to be handled as a full matrix then, given a Windows
operational system one could only handle matrices re�ecting n < 3000 in
MATLAB. Nevertheless the 4 step estimation method unlike the �ltering
approach suggested by Pace et. al. (2011), raises some computational
issues.
Pace et. al. (2011) report that for their sparse weight matrix the

computational time for calculating the 100 largest eigenvalues increases
with an order of O(n1:1). Therefore they regard models with a sample
size of one million as feasible. In contrast our results suggest that the new
estimation method requires an increasing amount of eigenvalues. We �nd
for example that our MC-results regarding the performance measures of
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the total e¤ects do not change for the one forward one behind pattern
if we set q to9 round(0:5(n � 2k)). Therefore we have to conclude that
our method has an computational order of O(n2:1) for calculating the
necessary eigenvalues/eigenvectors. In other words, unlike classical spa-
tial �ltering methods where we observe the trade o¤ between estimation
bias and estimation e¢ ciency, we �nd in our proposed method a trade-o¤
between estimation bias and computational time. Still we are con�dent
that the proposed estimator can tackle, if well programmed, sample sizes
up to10 10000 for weight matrices with similar spectrum-properties like
the ones reported in Pace et. al. (2011) or Fischer et. al. (2007). Nev-
ertheless we have to conclude that if we want to have a proper model
interpretation based on the proposed spatial �ltering method, spatial
�ltering looses the Pace et. al. (2011) reported feasibility for very large
data sets.

6 Conclusion and Summary

This paper outlined a new four step estimation method based on spatial
�ltering for spatial Durbin models. This estimator overcomes two inher-
ent weaknesses of classical spatial �ltering, which Pace et. al. (2011)
label "a philosophical issue regarding the spatial �ltering method". First
it is possible to calculate the, by the estimated parameters implied di-
rect/indirect and total e¤ects, and therefore allow for a proper model in-
terpretation. Second, by the four step estimator�s construction there ex-
ists no longer the inherent trade-o¤ between estimation bias and estima-
tion e¢ ciency, which reduces the feasibility of spatial �ltering method.
We showed in our Monte Carlo experiments that the estimator can in-
corporate approximately 95 per cent of all eigenvectors without reducing
the estimation e¢ ciency. Therefore the estimation method is much more
independent from the weight matrices�spectrum density. Additionally
compared to classical spatial �ltering, the four step estimator allows for
a proper model interpretation and should be feasible for a much broader
class of spatial weight matrices.
A Monte Carlo simulation was conducted in order to compare the

new estimation method with the performance of the corresponding max-
imum likelihood estimator. We used a spatial one forward one behind
pattern as the data generating process�weight matrix, since it creates an
adverse environment for spatial �ltering. Even under these conditions,

9Given the weight matrix re�ecting the NUTS-2 regions given Fischer et. al.
(2008), we could set q to round(0:05(n � 2k)) without changing the performance
measures associated with the total e¤ects.
10n = 1600 requires with simple programming approximately 15 seconds
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we �nd that the proposed four step estimation method has similar es-
timation properties as the ML regarding estimation bias and e¢ ciency.
Since ML is, unlike the new four step estimator, based on the correctly
speci�ed model likelihood, the four step estimation method can be an
especially useful estimation method for spatial Durbin models, where the
dependent variable represent binary, discrete choice outcomes or Poisson
distributed counts.
The paper discussed di¤erent possibilities for calculating the stan-

dard deviation of the implied direct/ indirect and total e¤ects. Our
Monte Carlo setting indicates that the simulation approach suggested
by LeSage and Pace (2007) performs relatively poorly for estimating
these standard deviations. Hence we are con�dent that our suggestion
to use bootstrapping, which performs quiet well, is worth the additional
computational time.
Our Monte Carlo results also suggest that the proposed four step

estimator needs a �xed proportion of eigenvectors relative to the sample
size in order to maintain its desirable estimation properties. This con-
trasts �ndings for spatial �ltering suggested by Pace et. al. (2011). Here
the computational e¤ort increases by O(n1:1), since the 100 eigenvectors
corresponding to the 100 largest absolute eigenvalues are deemed su¢ -
cient for (some) realistic weight matrices. Therefore Pace et. al. (2011)
deem sample sizes where n = 1000000 as feasible for their spatial �lter-
ing approach, while our proposed four step estimator can only handle
medium sized sample sizes, like n = 10000. We have to conclude that
there exists a trade-o¤ for the four step estimator between the estimation
bias and computational burden for large data sets.

A Appendix

A.1 Useful Lemmas
Notation: We �rst provide some useful Lemmas. For these Lemmas we
drop the index for the true parameter. Let �i � i:i:d(0; �2) we then de-
noteY =(In � �0Wn)

�1 (Xn�0 +WnXn
0)+(In � �0Wn)
�1 �n = Sn (�n + �n),

where Sn=(In � �0Wn)
�1. Additionally we denote, ��;3 = E[�

3
i ], ��;4 =

E[�4i ] and the typical element of �n is denoted by �jn. If An is a sym-
metric matrix, then we denote SnAn as �An and SnAnSn as �An

A.1.1 Lemmas

Lemma (1)-(9): Let An be a symmetric n by n matrix. We denote
the typical element of An with aij. Then the following equations hold:

1. E [(�0nAn�n)] = �
2tr(An)
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2. E
�
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2
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n
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A.1.2 Proof for Lemmas

Proof for Lemma 1,2 and 7. see Lee (1999)
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A.2 Theorems

Theorem 1 The asymptotic expected value for �̂1 as it is given in Step

2 is given by: limn!1E [�̂1] = �0+
�20tr(S0nW0

nMxDDn)
(�20+�2�)tr(S0nW0

nMxWnSn)

Theorem 2 The asymptotic variance for �̂1 as it is given in Step 2 is

given by: limn!1 V ar (�̂) = limn!1 V ar (�̂� �0) = V ar
�
�
#

�
� �2�

�4#
V ar (#)+

1
�2#
V ar (�) � 2��

�3#
Cov(�; #) where � = Y0

nAn�n , # = Y0
nBnYn ,where
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A.2.1 Proof for Theorems
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Proof for Theorem 2. We use the delta method approximation (see
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A.3 Additional Monte Carlo tables

Table 5: Monte Carlo Results Results Maximum Likelihood for �0 where

0=1 and �0=0.99

R2 .1 .4 .8
�0 Bias RMSE Bias2 Bias RMSE Bias2 Bias RMSE Bias2

100

-0.8 -0.80% -5.96% -10.00% -0.93% -5.52% -1.88% -0.90% -5.72% -5.58%
-0.4 -0.77% -21.96% -2.51% -0.60% -22.31% -4.13% -0.04% -21.42% -0.34%
0 -0.76% 10.02% -0.68% -0.64% 10.10% -1.55% -0.74% 9.69% 2.70%
0.4 -3.78% 21.96% -0.09% -4.68% 22.13% 0.20% -4.77% 22.60% -1.91%
0.8 -1.98% 6.08% -4.43% -1.79% 6.11% -6.32% -2.29% 6.51% -9.34%

200

-0.8 -0.52% -4.06% -7.24% -0.40% -3.68% 1.80% -0.42% -3.69% 1.56%
-0.4 -0.34% -15.31% -0.97% -0.78% -15.92% -4.61% -0.63% -14.99% 1.26%
0 -0.27% 7.13% -1.15% -0.50% 7.00% 0.94% -0.63% 6.93% 2.04%
0.4 -1.85% 15.49% -0.95% -1.82% 16.50% -7.18% -2.74% 15.84% -2.19%
0.8 -0.88% 3.91% -0.87% -1.02% 4.13% -5.43% -0.94% 4.00% -3.00%

400

-0.8 -0.32% -2.65% -0.18% -0.27% -2.81% -6.39% -0.18% -2.50% 4.98%
-0.4 -0.39% -10.80% -0.54% -0.88% -11.49% -6.20% -0.51% -10.67% 0.78%
0 -0.42% 4.86% 3.02% -0.27% 4.74% 5.46% -0.20% 4.93% 1.32%
0.4 -2.06% 11.03% -0.41% -1.21% 10.69% 1.35% -1.01% 11.18% -3.50%
0.8 -0.63% 2.66% 2.52% -0.50% 2.74% -2.10% -0.42% 2.61% 1.72%

Table 6: Monte Carlo Results Results new estimator for �0 where 
0=1
and �0=0.99

R2 .1 .4 .8
�0 Bias RMSE Bias2 Bias RMSE Bias2 Bias RMSE Bias2

100

-0.8 -0.59% -5.72% -4.01% -0.73% -5.64% -1.49% -0.47% -5.45% 0.93%
-0.4 0.14% -21.97% -2.89% 1.06% -22.13% -3.54% 0.25% -22.20% -3.90%
0 -1.22% 10.09% -0.99% -0.69% 9.72% 2.37% -0.55% 10.43% -4.44%
0.4 -3.49% 22.73% -2.16% -4.24% 22.70% -1.01% -4.93% 22.29% 1.95%
0.8 -2.01% 6.09% 4.75% -1.90% 5.68% 11.87% -2.01% 6.11% 4.63%

200

-0.8 -0.12% -3.86% -2.44% -0.17% -3.81% -1.16% -0.21% -3.84% -1.41%
-0.4 0.56% -14.83% 2.08% -0.13% -15.30% -1.14% -0.02% -15.84% -4.41%
0 -0.33% 7.22% -2.76% -0.05% 7.14% -1.79% -0.54% 7.17% -1.88%
0.4 -2.15% 15.57% -0.05% -1.65% 15.29% 1.57% -1.82% 15.43% 0.80%
0.8 -0.86% 4.06% -0.36% -0.91% 4.08% -0.71% -0.82% 3.78% 6.68%

400

-0.8 -0.07% -10.71% 0.22% -0.14% -2.60% 1.76% -0.23% -2.58% 2.46%
-0.4 -0.22% 5.12% -2.95% 0.93% -10.87% -1.40% -0.01% -10.76% -0.85%
0 -1.13% 10.94% -0.92% -0.15% 4.93% 1.07% -0.08% 4.95% 0.77%
0.4 -0.58% 2.81% -1.87% -1.12% 11.17% -2.91% -0.99% 10.47% 3.29%
0.8 -0.14% -2.60% 1.76% -0.37% 2.71% -0.41% -0.41% 2.67% 1.52%
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Table 7: Monte Carlo Results Results Maximum Likelihood for �0 where

0=1 and �0=0.00

R2 .1 .4 .8
�0 Bias RMSE Bias2 Bias RMSE Bias2 Bias RMSE Bias2

100

-0.8 -1.16% -5.91% -7.33% -0.88% -5.50% -2.48% -1.07% -5.46% -8.20%
-0.4 -2.92% -22.08% -1.94% -1.09% -21.84% -4.02% -1.26% -19.92% -4.92%
0 -0.29% 9.82% 0.55% -0.57% 9.44% -0.08% -0.30% 8.06% 0.61%
0.4 -0.96% 21.15% 0.06% -1.93% 20.13% -4.51% -0.81% 15.40% -3.71%
0.8 -1.73% 5.95% -6.92% -1.05% 4.96% -5.84% -0.13% 2.17% -0.75%

200

-0.8 -0.73% -4.03% -5.62% -0.47% -3.78% -2.51% -0.59% -3.46% -4.36%
-0.4 -1.34% -15.44% -1.76% -0.30% -14.82% -3.04% -0.91% -12.85% -1.92%
0 -0.63% 6.91% 1.14% -0.08% 6.18% 6.65% 0.07% 5.08% 2.79%
0.4 -2.19% 15.69% -3.42% -1.59% 13.90% -0.03% -0.51% 10.27% -1.16%
0.8 -0.71% 3.66% -0.85% -0.35% 3.07% -2.42% -0.11% 1.61% -0.38%

400

-0.8 -0.20% -2.61% 0.28% -0.37% -2.48% 5.17% -0.13% -2.43% -4.52%
-0.4 -0.73% -10.90% -1.73% -0.79% -10.91% -4.06% -0.41% -9.38% -3.36%
0 -0.22% 4.84% 2.43% -0.15% 4.65% 2.60% 0.06% 3.79% 3.09%
0.4 -1.15% 11.40% -6.20% -1.15% 10.55% -4.12% -0.40% 8.20% -6.13%
0.8 -0.41% 2.59% -0.41% -0.34% 2.28% 2.32% -0.08% 1.54% -5.22%

Table 8: Monte Carlo Results Results new estimator for �0 where 
0=1
and �0=0.00

R2 .1 .4 .8
�0 Bias RMSE Bias2 Bias RMSE Bias2 Bias RMSE Bias2

100

-0.8 -1.02% -5.80% -1.42% -0.75% -5.40% 3.41% -0.93% -5.33% -2.84%
-0.4 -2.51% -21.99% -0.42% -0.66% -21.68% -2.35% -0.88% -19.87% -4.11%
0 -0.28% 9.88% 0.31% -0.56% 9.50% -0.33% -0.30% 8.12% -0.06%
0.4 -0.52% 21.01% 2.06% -1.64% 19.98% -2.91% -0.60% 15.29% -2.52%
0.8 -1.66% 5.84% 1.11% -0.94% 4.84% -0.42% -0.14% 2.15% 0.93%

200

-0.8 -0.59% -3.96% -2.51% -0.28% -3.73% 0.21% -0.46% -3.36% -0.14%
-0.4 -0.85% -15.14% 0.39% 0.05% -14.55% -1.10% -0.54% -12.65% -0.23%
0 -0.66% 6.99% 0.11% -0.10% 6.26% 5.34% 0.07% 5.16% 1.06%
0.4 -1.87% 15.41% -1.27% -1.21% 13.63% 1.79% -0.33% 10.12% 0.33%
0.8 -0.66% 3.67% 1.69% -0.30% 3.09% -2.40% -0.12% 1.58% 1.73%

400

-0.8 -0.22% -10.62% 0.76% -0.31% -2.48% 5.98% -0.07% -2.42% -3.73%
-0.4 -0.25% 4.94% 0.49% -0.22% -10.59% -1.33% 0.01% -9.12% -0.60%
0 -0.77% 11.11% -3.80% -0.18% 4.73% 0.41% 0.04% 3.85% 1.02%
0.4 -0.42% 2.64% -0.59% -0.79% 10.21% -0.92% -0.15% 8.02% -4.62%
0.8 -0.31% -2.48% 5.98% -0.31% 2.32% 1.18% -0.12% 1.47% -0.20%
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Table 9: Monte Carlo Results Results Maximum Likelihood for �0 where

0=-�0�0 and �0=0.00

R2 .1 .4 .8
�0 Bias RMSE Bias2 Bias RMSE Bias2 Bias RMSE Bias2

100

-0.8 -0.86% -5.75% -6.32% -0.94% -5.66% -4.39% -1.00% -5.54% -1.80%
-0.4 -0.86% -22.18% -3.37% -0.65% -21.37% 0.27% -1.21% -21.80% -1.43%
0 0.18% 9.90% 0.43% -0.11% 9.98% -0.40% -0.50% 10.79% -7.91%
0.4 -4.08% 22.12% -0.33% -2.74% 21.83% -0.36% -3.11% 21.47% 1.73%
0.8 -1.76% 6.10% -6.27% -1.65% 5.99% -5.21% -1.60% 6.24% -9.70%

200

-0.8 -0.68% -3.95% -3.57% -0.50% -3.77% -0.05% -0.58% -3.96% -4.52%
-0.4 -0.15% -15.32% -1.07% -1.00% -15.84% -3.90% -1.13% -15.77% -3.38%
0 -0.32% 6.85% 3.05% 0.32% 6.91% 2.22% -0.18% 7.19% -1.99%
0.4 -1.29% 15.88% -3.86% -1.72% 15.62% -1.84% -1.46% 15.61% -2.04%
0.8 -0.68% 3.92% -2.84% -0.84% 4.22% -8.89% -0.75% 3.88% -1.07%

400

-0.8 -0.38% -2.66% -0.01% -0.25% -2.49% 5.65% -0.43% -2.70% -1.07%
-0.4 -1.16% -11.14% -2.82% -0.72% -11.65% -7.64% -0.68% -11.01% -2.25%
0 0.13% 4.81% 3.84% 0.10% 5.10% -2.11% 0.10% 4.99% 0.03%
0.4 -1.27% 10.89% -0.43% -1.03% 11.23% -3.76% -0.44% 11.23% -4.32%
0.8 -0.47% 2.63% 1.78% -0.35% 2.67% -0.70% -0.31% 2.66% -0.82%

Table 10: Monte Carlo Results Results Maximum Likelihood for the
total e¤ect of x where 
0=-�0�0 and �0=0.00

R2 .1 .4 .8
�0 Bias RMSE Bias2 Bias RMSE Bias2 Bias RMSE Bias2

100

-0.8 0.13% 4.37% 1.01% -0.02% 1.76% 3.19% -0.01% 0.68% 3.60%
-0.4 -0.24% 7.78% 0.06% -0.06% 3.95% -1.08% 0.01% 1.49% -2.03%
0 -0.91% 15.01% 3.98% 0.28% 5.65% 2.53% 0.07% 2.60% 0.87%
0.4 0.54% 22.34% 0.90% 0.40% 7.94% 6.76% -0.17% 4.03% 0.53%
0.8 1.33% 39.30% 3.37% 0.63% 16.34% 4.68% 0.07% 5.80% 8.54%

200

-0.8 -0.05% 2.57% 2.33% -0.02% 1.04% 0.25% -0.01% 0.48% -0.54%
-0.4 -0.05% 7.46% -3.26% 0.13% 2.76% 0.20% 0.01% 1.12% 2.67%
0 0.13% 11.15% -2.90% -0.16% 4.42% 0.66% -0.05% 1.70% 2.14%
0.4 0.75% 17.01% 0.40% -0.29% 7.14% 2.83% 0.06% 2.49% 0.80%
0.8 -0.68% 25.69% 0.57% -0.42% 8.93% 6.87% -0.05% 4.89% 0.66%

400

-0.8 -0.01% 2.58% 0.72% 0.00% 0.84% -0.32% 0.01% 0.36% -1.13%
-0.4 -0.01% 5.19% 1.39% 0.06% 2.24% -2.58% -0.05% 0.94% -1.24%
0 0.14% 8.43% 1.61% 0.11% 3.50% -0.06% 0.00% 1.46% 2.44%
0.4 -0.02% 12.19% -1.02% 0.09% 5.01% 5.41% 0.06% 2.07% -1.15%
0.8 0.95% 19.48% 1.95% -0.25% 8.05% 3.77% -0.13% 3.30% 2.60%
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Table 11: Monte Carlo Results Results new estimator for �0 where 
0=-
�0�0 and �0=0.00

R2 .1 .4 .8
�0 Bias RMSE Bias2 Bias RMSE Bias2 Bias RMSE Bias2

100

-0.8 -0.67% -5.68% -2.43% -0.56% -5.17% 6.76% -0.64% -5.54% -0.18%
-0.4 -0.44% -21.40% 0.40% 0.82% -21.38% -0.11% -0.55% -21.90% -2.36%
0 -0.60% 9.96% 0.09% -0.32% 9.76% 2.19% -0.74% 10.20% -2.56%
0.4 -4.37% 22.76% -1.17% -4.60% 22.77% -1.16% -4.17% 21.27% 5.20%
0.8 -1.38% 5.78% 5.24% -2.39% 6.20% 5.10% -1.50% 5.73% 4.68%

200

-0.8 -0.27% -3.77% 0.37% -0.32% -3.71% 1.86% -0.46% -3.63% 5.10%
-0.4 0.39% -14.48% 4.55% -0.79% -15.50% -2.03% -0.70% -15.18% 0.22%
0 -0.60% 7.05% 0.18% -0.64% 7.22% -2.15% -0.41% 7.01% -0.12%
0.4 -1.27% 15.20% 1.14% -1.08% 15.56% -1.57% -2.34% 15.65% -1.14%
0.8 -0.95% 3.89% 4.51% -0.74% 3.82% 3.69% -0.77% 3.82% -0.33%

400

-0.8 0.24% -10.79% -0.52% -0.18% -2.58% 2.47% -0.12% -2.57% 2.85%
-0.4 -0.29% 4.97% 0.40% -0.31% -11.00% -2.77% -0.41% -10.89% -1.48%
0 -0.51% 10.81% 0.04% -0.33% 4.91% 1.96% -0.47% 5.19% -4.12%
0.4 -0.32% 2.59% 4.07% -1.08% 10.45% 3.65% -0.88% 11.14% -3.69%
0.8 -0.18% -2.58% 2.47% -0.44% 2.76% -2.00% -0.51% 2.71% -2.20%

Table 12: Monte Carlo Results Results new estimator for the total e¤ect
of x where 
0=-�0�0 and �0=0.00

R2 .1 .4 .8
�0 Bias RMSE Bias2 Bias RMSE Bias2 Bias RMSE Bias2

100

-0.8 0.03% 1.75% 0.86% 0.03% 0.82% 2.30% 0.01% 0.41% -1.37%
-0.4 0.06% 5.19% -0.24% 0.10% 1.96% -3.37% -0.03% 0.78% -1.35%
0 0.31% 6.83% -0.41% 0.01% 3.04% -0.32% 0.03% 1.25% 0.47%
0.4 0.54% 10.65% -6.05% -0.09% 3.68% 0.54% 0.02% 1.72% -3.80%
0.8 -0.42% 15.14% -3.26% 0.49% 6.63% -3.37% 0.01% 3.65% -0.61%

200

-0.8 -0.04% 0.99% -3.55% 0.01% 0.36% 1.06% 0.00% 0.18% -2.97%
-0.4 0.05% 2.35% -0.52% -0.04% 1.07% 0.62% 0.00% 0.44% 1.27%
0 0.03% 3.88% -4.00% -0.02% 1.69% -3.64% -0.02% 0.67% -1.99%
0.4 0.08% 6.04% -2.92% 0.23% 2.36% -3.29% 0.01% 0.98% -3.18%
0.8 0.74% 9.68% -0.55% 0.06% 3.31% 0.83% -0.08% 1.45% -1.87%

400

-0.8 -0.01% 0.62% -0.83% 0.00% 0.27% -0.61% 0.00% 0.13% -4.55%
-0.4 0.06% 1.47% 0.17% 0.02% 0.63% -0.59% 0.01% 0.24% 0.90%
0 -0.02% 2.45% -0.62% -0.01% 1.01% -0.85% 0.00% 0.41% -0.44%
0.4 -0.03% 3.26% 3.12% -0.01% 1.53% -5.19% 0.00% 0.55% 1.00%
0.8 0.03% 5.09% 1.48% -0.06% 2.34% -1.24% 0.01% 0.93% -0.70%
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