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Abstract 

Recently Bayesian Model Averaging and spatial filtering techniques have been combined in 

the study of income convergence, in order to deal with the uncertainties regarding potential 

growth determinants and the underlying spatial structure that arise in the context of spatial 

growth regressions. While spatial eigenvector filtering has proven to be computationally 

advantageous for a limited number of observations, the method also imposes restrictions 

regarding the interpretation of the parameter estimates. This paper attempts to overcome this 

issue by using spatial filtering together with Bayesian Model Averaging as a means to identify 

10,000 top models (i.e. the models with the highest posterior probability), which can in turn 

be used for impact estimations within Spatial Autoregressive and Spatial Durbin 

specifications. These impact estimates allow for a more detailed assessment of convergence 

between regions, as they account for effects that can be attributed to spatial spillovers. Using a 

dataset covering 255 European regions (NUTS-2), we illustrate our approach and compare the 

findings with spatial filtering estimates that neglect the role of spatial spillovers in the 

convergence process. 
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1 Introduction 

Spatial regression models have gained popularity in recent years in the empirical study of the 

determinants of economic growth and the related question of income convergence. Using such 

models, growth spillovers between regions can be explicitly taken into account. However, 

when investigating growth determinants and income convergence in a spatial econometric 

framework, one is confronted with two dimensions of uncertainty. The first dimension, model 

and parameter uncertainty, arises from what Brock and Durlauf (2001) call the ‘open-

endedness’ of growth theories, which refers to the existence of a multitude of theories that 

aim to explain economic growth which are not mutually exclusive, i.e. finding evidence for 

the validity of one theory does not render the other growth theories invalid. As a consequence, 

there are many variables that have the potential to explain growth and are therefore candidates 

for being included in the model to be estimated. It is, however, inefficient or even infeasible 

to include all of the potential growth determinants into a single model. Thus, there is the 

question of which variables should be considered, i.e. we are uncertain about the ‘correct’ 

model. There is a growing literature that tries to address the issue of model uncertainty by 

employing Bayesian Model Averaging (BMA) techniques, for example Crespo-Cuaresma et 

al. (2009) who carry out a BMA exercise in the context of a Spatial Autoregressive (SAR) 

model. 

Even though model and parameter uncertainty is accounted for in the approach taken by 

Crespo-Cuaresma et al. (2009), the BMA exercise is carried out conditional on a given spatial 

weight matrix. In fact, most of the empirical studies thus far stick to a single spatial weighting 

scheme. There are, however, many ways to define such a neighborhood structure, which is 

why studies sticking to a single spatial weight matrix ignore the second dimension of 

uncertainty, namely uncertainty with respect to the underlying spatial structure. Noteworthy 

exceptions are the approaches proposed by LeSage and Fischer (2008) and Crespo-Cuaresma 

and Feldkircher (2012). Relying on numerical integration techniques, the former consider 

different spatial structures originating from the same class of weighting schemes (k-nearest 

neighbors) in the context of a Spatial Durbin Model (SDM). This approach is computationally 

burdensome when using a large number of variables and spatial weight matrices. A 

computational more efficient approach that allows for the inclusion of many different spatial 

weight matrices is proposed by the latter, who make use of spatial filtering techniques based 

on the eigenvector approach put forward by Tiefelsdorf and Griffith (2007). 

Since spatial filtering treats spatial effects as a mere nuisance that the data is being rid of, a 

coefficient capturing growth spillovers cannot be elicited. As a consequence, the impacts of 
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changes in the explanatory variables cannot be properly assessed, i.e. it is not possible to 

determine direct, indirect and total effects, as suggested by LeSage and Pace (2009). 

Concerning the question of income convergence this implies that only the part of convergence 

that is spillover free can be obtained. The calculation of direct, indirect and total effects is 

therefore necessary, in order to arrive at a more complete picture regarding the magnitude of 

income convergence, i.e. convergence estimates that include effects stemming from spatial 

spillovers. Hence, relying on the approach by Crespo-Cuaresma and Feldkircher (2012) and 

thereby focusing on a number of top models as well as their posterior model probabilities, we 

propose a procedure which allows the computation of direct, indirect and total effects. We 

apply this procedure, using the same dataset as Crespo-Cuaresma and Feldkircher (2012) and 

Crespo-Cuaresma et al. (2009), to investigate income convergence across 255 European 

regions (NUTS-2) for the period 1995 to 2005. 

This paper is organized as follows. While section 2 lays out the econometric setting, sections 

3 and 4 introduce the techniques used by Crespo-Cuaresma and Feldkircher (2012) which 

allows taking uncertain spatial effects into account. Section 5 explains how these findings can 

be used for obtaining an estimate of the spatial spillover parameter which in turn renders a 

proper impact assessment possible. The results of our empirical exercise are presented in 

section 6. Section 7 concludes. 

2 Econometric Setting 

Following Crespo-Cuaresma and Feldkircher (2012) our point of departure in the empirical 

analysis of income convergence across European regions is marked by SAR model, which 

allows for explicitly modeling potential growth spillovers by introducing a so-called spatial 

lag of the dependent variable on the right-hand side of the regression equation. The SAR 

model can be written as: 

                 (1) 

  is an  -dimensional vector containing the annual income growth rate of each cross-

sectional unit, where   denotes the total number of observations (regions).   is the intercept 

parameter and    is an  -dimensional vector of ones. The second term on the right-hand side 

of (1) constitutes the spatial lag of the dependent variable, where the       spatial weight 

matrix   specifies the underlying spatial structure, with its corresponding parameter   

capturing the intensity of spatial autocorrelation. The elements     of the   matrix assume a 



4 

non-zero value when observations   and   are neighboring regions and zero otherwise. Since a 

region cannot be its own neighbor, all entries on the main diagonal are zero, i.e.      . 

Positive values for   can be interpreted as spillovers from neighboring spatial units, which in 

our case amounts to income growth spillovers across European regions. If    , we are left 

with a non-spatial specification, which is therefore just a special case of the SAR model.   is 

a  -dimensional vector of parameters corresponding to   , a       matrix whose columns 

represent the   explanatory variables, which are composed of potential growth determinants 

in our analysis. A potential growth determinant in   , which is of particular interest, is the 

level of income per capita at the beginning of the period for which the average annual income 

growth rate is calculated. If we find the coefficient of initial income to be negative, after 

controlling for other factors as well as accounting for spatial spillovers, conditional income 

convergence occurs, i.e. regions with low initial income levels grow on average faster, 

compared to regions that started out with relatively higher per capita income levels.   

represents the       vector of iid errors. 

The two initially mentioned dimensions of uncertainty affect different parts of the model 

specification given in (1). While model uncertainty concerns the set of covariates    to be 

included in the model, uncertainty about the underlying spatial structure has implications for 

the choice of the spatial weight matrix  . Non-spatial BMA procedures or BMA procedures 

with certain spatial effects, i.e. using one   matrix, as in Crespo-Cuaresma et al. (2009), have 

been put forward as a means of taking model uncertainty into account. This leaves us, 

however, with the problem of uncertainty regarding the spatial effects. Therefore, the 

following two sections introduce the approach by Crespo-Cuaresma and Feldkircher (2012), 

which, through the use of spatial filtering techniques, allows for uncertain spatial effects in 

the BMA exercise. 

3 Spatial filtering 

Two different approaches, which account for uncertainty with respect to the set of covariates 

and the underlying spatial structure   are worth mentioning: (a) numerical integration 

techniques as put forward by LeSage and Parent (2007) as well as LeSage and Fischer (2008) 

and (b) spatial filtering approaches, as suggested by Tiefelsdorf and Griffith (2007) and used 

within a BMA setting by Crespo-Cuaresma and Feldkircher (2012). 

While the literature has shown that numerical integration approaches are computationally 

expensive, the eigenvector approach of spatial filtering is able to mitigate this problem and 
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allows for many different spatial structures to be considered in a BMA exercise. This 

advantage results from the fact that the procedure filters out the spatial part of the data prior 

to estimating. However, spatial filtering has its drawbacks: First, filtering is an approximation 

technique and the appropriateness of the approximation depends on the properties of the 

spatial structure  .
2
 Furthermore, as the spatial information is filtered out, no inference about 

the spatial parameter   can be drawn. 

We start by rewriting the SAR model specification given in (1), using the properties of the 

Neumann series, so that the equation is divided in a spatial and a non-spatial part: 

 

                (    )  (             )   

           ∑     (

 

   

         ) 
(2) 

The term ∑     ( 
            ) is treated as a nuisance term and is to be filtered out 

by finding a suitable approximation which replaces that term in the estimation. Following 

Tiefelsdorf and Griffith (2007), a subset of eigenvectors of the matrix   can be used as such 

a proxy. Based on the set of eigenvectors resulting from an eigenvalue decomposition of  , a 

minimal subset of E eigenvectors           required for the approximation can be identified 

via a step-by-step procedure. Using the eigenvectors, a simple first-order SAR process can be 

rewritten as:                   ∑     
 
     ̃. Starting with the eigenvector that 

corresponds to the highest eigenvalue, we continue adding eigenvectors (in decreasing 

manner according to their corresponding eigenvalues) to this rewritten SAR process as long as 

the Moran’s I statistic of the residuals  ̃ lies above the threshold 0.1. The set of E 

eigenvectors that needs to be included in order to undercut this value represents the 

aforementioned subset. 

Using the extracted subset of eigenvectors of   as an approximation for the last term in (2), 

our estimation equation can be rewritten as follows: 

       ∑    

 

   

      ̃ (3) 

                                                 
2
Pace et.al. (2011) discuss this issue in more detail. 
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4 Bayesian Model Averaging 

Since we use a Bayesian framework, we are able to depart from single model considerations 

by simply applying Bayes’ Theorem. The posterior distribution of the parameters   contains 

all information about   after seeing the data and is given by: 

  ( | )  ∑∑ ( |  
   ) (  

 | )

 

   

  

   

 (4) 

where   denotes the available data and   a certain parameter.
3
 The sub- and superscripts   

and   indicate that we consider more than just a single model, with   
   . The model space 

is given by      
    

     
  
      

     
  
      

     
  
 }, with   and   denoting 

the set of potential explanatory variables and the potential spatial weight matrices, 

respectively. This leads to a total number of      potential models. 

As shown in (4), the idea of BMA is to evaluate the entire model space  , and calculate a 

weighted average of the models using posterior model probabilities  (  
 | ). Let  (  

 ) 

denote the prior model probability assigned to model   
 , then the posterior model probability 

(PMP) is given by: 

  (  
 | )  

 ( |  
 ) (  

 )

∑ ∑  ( |  
 ) (  

 ) 
   

  

   

 (5) 

Since we are not only interested in the relevance of certain models, we can also calculate the 

relative importance of the inclusion of a certain variable, the posterior inclusion probability 

(PIP) of variable   , which is given by the sum of PMPs including variable   . 

In order to obtain the integrated likelihood  ( |  
 ), we have to assign prior distributions to 

the parameters   and  . For   we use the well-known  -prior:
4
 

  ( |        
 )  (     (  

   )
  ) (6) 

A  -prior specification provides several advantages. Perhaps the most advantageous property 

of the  -prior is that the integrated likelihood has a closed form, which reduces the 

computational burden severely, since we can rely on analytical solutions. Furthermore, it 

                                                 
3
See Koop (2003) or Hoeting et al. (1999) for more details about BMA. 

4
See for instance Zellner (1989). 



7 

seems reasonable to specify the prior variance of the estimators in a similar way as a classical 

OLS estimate does. We therefore only have to choose the scalar  , which measures our 

uncertainty about the prior mean. 

There is a vast literature that deals with the choice of  . In our application we rely on the 

results of Fernández et al. (2001) and set       (    ), commonly dubbed the BRIC-

prior.
5
 For the spatial parameter   we follow LeSage and Parent (2007) and use a beta prior 

distribution. 

The only thing that remains to be chosen is a prior on the model space. We depart from the 

usual choice of a uniformly distributed model prior, and make use of a binomial-beta prior, as 

proposed by Ley and Steel (2009). 

It is computationally infeasible to work through the entire model space. Fortunately, we can 

ease this computational burden by using Markov Chain Monte Carlo Model Comparison 

(MC³) to find a subsample of models, which acts as a proper proxy for the entire model space 

 . Since we are concerned with uncertainty about the explanatory variables as well as 

uncertainty about the spatial weighting scheme, we need a sampling procedure which 

considers both dimensions.
6
 Our sampling algorithm works as follows. 

Starting with a given set of eigenvectors, we use a birth-death sampler (Madigan and York 

1995) using 7,000,000 iterations and 5,000,000 burn-ins. However, we slightly modify the 

sampler to ensure a proper treatment of interaction terms, which is in accordance with the 

strong heredity principle, as proposed by Chipman (1996). Strong heredity means that an 

interaction between two variables (  ) is only eligible to be active, if both parent variables (  

and  ) are included in the sampled model. Likewise, squared variables are only eligible to be 

sampled when the non-squared parent is active. The acceptance probability of the candidate 

model   
  is given by: 

  ̃      [  
 (  

 ) ( |  
 )

 (  
 ) ( |  

 )
] (7) 

The second step is concerned with the sampling of the spatial weight matrices, or rather the 

corresponding set of eigenvectors. Therefore, the sampler also uniformly draws a set of 

eigenvectors of the other weight matrices. Following Crespo-Cuaresma and  

Feldkircher (2012), we use a uniform prior on the sets of spatial weight matrices. The 

                                                 
5
See Fernandez et al. (2001) 

6
For a detailed motivation of MC³-sampling see Madigan and York (1995) or Green (1995). 
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acceptance probability of the candidate set of eigenvectors representing the spatial structure is 

given by: 

  ̂       [  
 ( |  

 )

 ( |  
 )

] (8) 

5 Estimation procedure and data 

The combination of the methods introduced in the two previous sections, namely spatial 

eigenvector filtering in a BMA framework (‘spatial filtering BMA’), enables us to deal with 

uncertainty regarding the covariates on the one hand and uncertainty concerning the 

underlying spatial effects on the other. However, as all spatial information and therefore the 

spatial autoregressive parameter  , which captures spatial spillovers and in turn induces 

feedback effects, vanishes due to the filtering procedure, we are no longer able to give a full 

account of the impacts associated with changes in the explanatory variables. In other words, 

the parameter estimates and the convergence parameter in particular can no longer be 

interpreted accordingly, as it is not possible to calculate partial derivatives. In order to regain 

the information about the spatial parameter ρ, we propose, in a first step, a spatial filtering 

BMA exercise as a device to identify the 10,000 models with the highest PMPs – the so-called 

top models – each containing a certain set of covariates    and a specific spatial structure  . 

In a second step, we re-estimate the 10,000 top models using SAR and SDM specifications: 

 
                          (      ) 

                                (      ) 
(9) 

As spatial filtering annihilates all spatial information, we remain agnostic about the particular 

form of the data generating process (DGP). To mitigate this problem we separately use both 

model specifications, in order to provide evidence for the robustness of our estimates. 

Since there are    partial derivatives of   with respect to each parameter, inference is 

somewhat more difficult than in a classical linear model specification. For the interpretation 

of the parameter estimates we use commonly known metrics of average direct, indirect and 

total effects. For the parameter    of variable   , these effects are in the SDM case defined as 

follows:
7
 

                                                 
7
See LeSage and Pace (2008) 
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      ̅̅ ̅̅ ̅̅ ̅̅ ( )       (  ( )) 

        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅( )       ̅̅ ̅̅ ̅̅ ̅( )        ̅̅ ̅̅ ̅̅ ̅̅ ( ) 

     ̅̅ ̅̅ ̅̅ ̅( )       
   ( )   

   (     )  (        ) 

(10) 

The effects for the SAR case can be retrieved by setting     . Once we have obtained 

10,000 estimates for the impacts from our set of top models, we use the corresponding PMPs 

obtained from the spatial filtering BMA exercise to calculate weighted averaged impacts. By 

weighting the 10,000 parameter estimates for ρ with the respective PMPs, we are also able to 

retrieve an estimate for the spatial parameter. 

Since our regression involves several interaction terms, the impact metrics of the interaction 

terms need to be slightly modified. If the variable    of interest is also interacted with a 

variable   ,    changes according to (11): 

 
  

  (     )  (           (     
    ))(     )   

(     
    ), 

(11) 

where   denotes the Hadamard operator and     the resulting variable from the interaction. 

Again, the impact estimates are averaged using the corresponding PMPs from the first step as 

weighting factors. 

For our estimations we use data from Crespo-Cuaresma and Feldkircher (2012). This enables 

us to directly compare our estimates with those obtained in their similar setting and enrich 

their conclusions with impacts including spatial spillovers. The dataset includes 56 variables 

for 255 European regions on NUTS-2 level for all EU-27 member states.
8
 Our dependent 

variable is defined as the average annual growth rate of real GRP per capita for the period 

1995-2005. The explanatory variables can roughly be categorized into six different groups of 

potential growth determinants, with variables capturing physical factor accumulation and 

initial GRP per capita, human capital, technological innovation, sectoral structure and 

employment, infrastructure and socio-geographical variables. Where possible the explanatory 

variables are measured at the year 1995. Otherwise data for the earliest available year after 

1995 is used. Since we are concerned with income convergence in European regions, the 

explanatory variable of particular interest is the initial GRP per capita (GRPCAP0). 

                                                 
8
A list of all variables including a brief description and data sources as well as an overview of the European 

regions in the dataset can be found in the data appendix. 
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The set of possible spatial structures   consists of a large variety of different specifications. 

We construct a total of 39 different   matrices which can be categorized into four different 

groups: (i) Queen matrices   
 

 with           , which reflects queen neighborhood of 

order  , (ii) k-nearest neighbors   
     based on                              nearest 

neighbors, (iii) distance band matrices   
  with 

                                            where a region is considered a 

neighbor if it lies within a band of   kilometers, and (iv) inverse distance matrices with the 

typical element    
       and    

        
  

 for all    , where in this case     represents 

the distance between region   and   and   the decay parameter which takes the values 

          . A higher decay parameter   causes a more rapid decay of spatial weight. 

6 Empirical results 

The results of the first stage, i.e. spatial filtering BMA, are overall in line with the results of 

Crespo-Cuaresma and Feldkircher (2012).
9
 We identify the initial GRP per capita 

(GRPCAP0), the capital city dummy (Captial), indicating if a region contains the respective 

country’s capital city, and the share of the low-skilled labor force (ShSL) to be robust 

determinants of the income growth pattern in European regions, where the latter is in contrast 

to Crespo-Cuaresma and Feldkircher (2012) who find the share of the high-skilled labor force 

(ShSH) to be of predominant importance. However, as the sign of our posterior mean for ShSL 

is negative, the interpretation of the role of education remains similar. Quadratic terms of both 

human capital variables appear to have low PIPs, hence we do not find support for potential 

non-linear relationships between human capital and economic growth. The interaction of 

Capital with ShSL suggests that regions containing the respective country’s capital city are 

more adversely affected by the share of low-skilled labor than other regions. The interaction 

term between GRPCAP0 and Capital, however, indicates that regions containing a country’s 

capital city converge, on average, faster to the steady state than other regions. 

The interpretation of the results from the first stage is, however, problematic as the parameter 

estimate for GRPCAP0 only captures the spillover-free part of convergence and hence may 

underestimate (or overestimate) the magnitude of the ‘real’ convergence effects depending on 

the form of spatial spillovers. Crespo-Cuaresma and Feldkircher (2012) argue, in light of their 

results, that the estimate of the convergence parameter is reduced in magnitude once 

uncertainty about the spatial structure is accounted for. When not accounting for spatial 

                                                 
9
 Results for the first stage are available from the authors upon request. 
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spillovers, they are absorbed by the convergence coefficient, whereas in the spatial filtering 

case the spillovers are integrated out of the coefficient. Therefore, they interpret the difference 

between the coefficients as evidence for the presence of positive spatial growth spillovers. 

However, since filtering techniques treat spatial effects as a mere nuisance, Crespo-Cuaresma 

and Feldkircher (2012) are not able to retrieve an estimate for the spatial parameter  , which 

is necessary for explicitly investigating the workings of spatial spillovers, as defined in (10) 

and (11), respectively. Therefore, the role of spatial spillovers remains elusive. Our re-

estimation of the 10,000 top models draws a more detailed picture of the role of growth 

spillovers in the process of income convergence. 

Table 1 summarizes the posterior means of the SAR and SDM specifications using different 

classes of spatial weight matrices. The first column depicts the full model considering all 39 

spatial weight matrices. The columns two to five contain the parameter averages for the 

corresponding classes of weight matrices. We only observe minor changes between the results 

of the first and the second stage, suggesting that the 10,000 top models are an appropriate sub-

set and therefore proxy for the whole model space. 

The role of growth spillovers in the convergence process can be assessed by comparing the 

posterior means of the full model reported in the first column in Table 1 and the averaged 

impact estimates in Table 2 (refer also to Figure 1 and Figure 2). For GRPCAP0, the direct 

and total effects in the SDM setting are -0.015 and -0.020, respectively (the difference of -

0.004 being the indirect effects), compared to -0.014 for the posterior mean. Direct effects can 

be interpreted as the average impact on income growth of a typical region resulting from a 

change in the typical region’s initial GRP per capita, including all feedback effects (i.e. 

growth spillovers) generated by this change. The total effect measures the average impact on a 

typical region’s income growth emanating from a change in GRPCAP0 in all regions 

simultaneously. The difference between the GRPCAP0’s posterior mean and its direct effect 

signals only small growth spillovers experienced by a typical region occurring from changes 

in that region. However, as the total effects suggest, spillovers are not of negligible size, if all 

regions are considered to converge. This conclusion is therefore in line with the one drawn by 

Crespo-Cuaresma and Feldkircher (2012). Our results are, however, based on an impact 

assessment that explicitly deals with spillovers in the income convergence process. 
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PM 

SDM 
PIP 

PM 

SAR 

PM 

SDM 
PIP 

PM 

SAR 

PM 

SDM 
PIP 

PM 

SAR 

PM 

SDM 

Capital 1.000 0.077 0.076 1.000 0.072 0.072 1.000 0.137 0.139 1.000 0.140 0.147 1.000 0.042 0.040 

GRPCAP0 0.986 -0.014 -0.015 0.985 -0.014 -0.015 1.000 -0.016 -0.017 0.999 -0.016 -0.018 0.998 -0.015 -0.013 

ShSL 0.675 -0.009 -0.013 0.715 -0.009 -0.014 0.074 -0.001 -0.001 0.037 0.000 0.000 0.783 -0.003 -0.010 

AccessAir 0.454 0.004 0.005 0.458 0.004 0.005 0.290 0.002 0.002 0.895 0.006 0.008 0.291 0.001 0.002 

TELF 0.352 -0.001 -0.001 0.378 -0.001 -0.001 0.002 0.000 0.000 0.012 0.000 0.000 0.041 0.000 0.000 

AccessRoad 0.219 -0.002 -0.002 0.236 -0.002 -0.002 0.003 0.000 0.000 0.005 0.000 0.000 0.005 0.000 0.000 

ShSH 0.201 0.008 0.007 0.211 0.009 0.007 0.068 0.003 0.002 0.019 0.001 0.001 0.300 0.011 0.009 

AirportDens 0.110 0.829 0.789 0.111 0.842 0.802 0.027 0.166 0.165 0.510 4.226 3.873 0.023 0.128 0.114 

POPDENS0 0.098 -0.001 -0.001 0.098 -0.001 -0.001 0.014 0.000 0.000 0.525 -0.007 -0.010 0.003 0.000 0.000 

EMPDENS0 0.086 0.001 0.002 0.086 0.001 0.002 0.014 0.000 0.000 0.486 0.009 0.013 0.003 0.000 0.000 

Distde71 0.081 0.000 0.000 0.004 0.000 0.000 0.002 0.000 0.000 0.005 0.000 0.000 0.002 0.000 0.000 

RegPent27 0.062 0.000 0.000 0.067 0.000 0.000 0.003 0.000 0.000 0.005 0.000 0.000 0.002 0.000 0.000 

RoadDens 0.047 0.001 0.001 0.051 0.001 0.001 0.006 0.000 0.000 0.013 0.000 0.000 0.004 0.000 0.000 

INTF 0.024 0.001 0.001 0.018 0.001 0.000 0.113 0.003 0.002 0.008 0.000 0.000 0.143 0.005 0.005 

URT0 0.021 -0.001 -0.001 0.023 -0.001 -0.001 0.002 0.000 0.000 0.003 0.000 0.000 0.025 -0.002 -0.001 

ConnectAir 0.019 0.000 0.000 0.019 0.000 0.000 0.029 0.000 0.000 0.008 0.000 0.000 0.011 0.000 0.000 

PatentHT 0.017 0.001 0.001 0.018 0.001 0.001 0.003 0.000 0.000 0.007 0.000 0.000 0.003 0.000 0.000 

ShLLL 0.015 0.000 0.000 0.016 0.000 0.000 0.002 0.000 0.000 0.003 0.000 0.000 0.002 0.000 0.000 

PatentICT 0.015 0.001 0.000 0.016 0.001 0.000 0.003 0.000 0.000 0.007 0.000 0.000 0.003 0.000 0.000 

OUTDENS0 0.015 0.000 0.000 0.016 0.000 0.000 0.003 0.000 0.000 0.044 0.000 0.000 0.003 0.000 0.000 

URL0 0.014 0.000 0.000 0.015 0.000 0.000 0.002 0.000 0.000 0.003 0.000 0.000 0.014 0.000 0.000 

shGFCF 0.014 0.000 0.000 0.007 0.000 0.000 0.014 0.000 0.000 0.122 0.000 0.002 0.562 0.003 0.008 

ERET0 0.013 0.000 0.000 0.014 0.000 0.000 0.003 0.000 0.000 0.003 0.000 0.000 0.004 0.000 0.000 

ARH0 0.008 0.000 0.000 0.009 0.000 0.000 0.002 0.000 0.000 0.003 0.000 0.000 0.006 0.000 0.000 

ARL0 0.008 0.000 0.000 0.006 0.000 0.000 0.055 0.000 0.000 0.015 0.000 0.000 0.003 0.000 0.000 

PatentT 0.007 0.000 0.000 0.007 0.000 0.000 0.002 0.000 0.000 0.003 0.000 0.000 0.003 0.000 0.000 

PatentBIO 0.006 0.001 0.001 0.006 0.001 0.001 0.005 0.001 0.001 0.006 0.001 0.001 0.004 0.000 0.000 

RegCoast 0.006 0.000 0.000 0.006 0.000 0.000 0.005 0.000 0.000 0.008 0.000 0.000 0.003 0.000 0.000 

ShCE0 0.006 0.000 0.000 0.006 0.000 0.000 0.002 0.000 0.000 0.003 0.000 0.000 0.004 0.000 0.000 

Airports 0.005 0.000 0.000 0.005 0.000 0.000 0.009 0.000 0.000 0.004 0.000 0.000 0.002 0.000 0.000 

PatentShICT 0.005 0.000 0.000 0.005 0.000 0.000 0.002 0.000 0.000 0.005 0.000 0.000 0.002 0.000 0.000 

EREL0 0.005 0.000 0.000 0.004 0.000 0.000 0.025 0.000 0.000 0.006 0.000 0.000 0.003 0.000 0.000 

EREH0 0.004 0.000 0.000 0.005 0.000 0.000 0.003 0.000 0.000 0.003 0.000 0.000 0.005 0.000 0.000 

RegObj1 0.004 0.000 0.000 0.005 0.000 0.000 0.002 0.000 0.000 0.018 0.000 0.000 0.003 0.000 0.000 

DistCap 0.004 0.000 0.000 0.087 0.000 0.000 0.008 0.000 0.000 0.003 0.000 0.000 0.009 0.000 0.000 

gPOP 0.004 0.001 0.001 0.004 0.001 0.001 0.002 0.000 0.000 0.003 0.001 0.000 0.004 0.001 0.000 

URH0 0.004 0.000 0.000 0.003 0.000 0.000 0.009 0.000 0.000 0.004 0.000 0.000 0.091 0.003 0.002 

HRSTcore 0.004 0.000 0.000 0.004 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.007 0.000 0.000 

RailDens 0.004 0.000 0.000 0.003 0.000 0.000 0.006 0.000 0.000 0.005 0.000 0.000 0.003 0.000 0.000 

PatentShHT 0.003 0.000 0.000 0.003 0.000 0.000 0.002 0.000 0.000 0.005 0.000 0.000 0.002 0.000 0.000 

ART0 0.003 0.000 0.000 0.003 0.000 0.000 0.004 0.000 0.000 0.003 0.000 0.000 0.003 0.000 0.000 

Temp 0.003 0.000 0.000 0.003 0.000 0.000 0.002 0.000 0.000 0.004 0.000 0.000 0.002 0.000 0.000 

PatentShBIO 0.003 0.000 0.000 0.003 0.000 0.000 0.003 0.000 0.000 0.009 0.000 0.000 0.008 0.000 0.000 

ShAB0 0.002 0.000 0.000 0.003 0.000 0.000 0.002 0.000 0.000 0.006 0.000 0.000 0.004 0.000 0.000 

Seaports 0.002 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.003 0.000 0.000 0.002 0.000 0.000 

ConnectSea 0.002 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.003 0.000 0.000 0.002 0.000 0.000 

TELH 0.002 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.003 0.000 0.000 0.002 0.000 0.000 

Hazard 0.002 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.003 0.000 0.000 0.003 0.000 0.000 

Settl 0.002 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.005 0.000 0.000 

RegBoarder 0.002 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.003 0.000 0.000 

ShSH2 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 

ShSL2 0.017 0.000 -0.001 0.018 0.000 -0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.002 0.000 0.000 

Cap.xGRPCAP0 0.438 -0.005 -0.005 0.406 -0.005 -0.005 0.975 -0.012 -0.012 0.939 -0.012 -0.013 0.109 -0.001 -0.001 

Capital x ShSH 0.004 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.038 -0.003 -0.003 

CapitalxShSL 0.628 -0.028 -0.028 0.667 -0.029 -0.030 0.031 -0.001 -0.001 0.022 -0.001 -0.001 0.757 -0.034 -0.036 

ρ 1.000 0.217 0.187 1.000 0.195 0.156 1.000 0.233 0.200 1.000 0.267 0.147 1.000 0.337 0.454 

Table 1: SAR and SDM coefficients for all classes of W of 10,000 top models
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SAR SDM 

 
PIP Direct Indirect Total Direct Indirect Total 

Capital 1.00 0.017 0.006 0.023 0.017 0.006 0.023 

GRPCAP0 0.99 -0.015 -0.004 -0.019 -0.015 -0.005 -0.020 

ShSL 0.68 -0.012 -0.002 -0.014 -0.015 0.009 -0.006 

AccessAir 0.45 0.004 0.001 0.005 0.013 0.001 0.014 

TELF 0.35 -0.001 0.000 -0.001 0.000 0.000 0.000 

AccessRoad 0.22 -0.002 0.000 -0.002 -0.005 -0.001 -0.006 

ShSH 0.20 0.008 0.002 0.010 0.007 -0.006 0.001 

AirportDens 0.11 0.833 0.482 1.315 0.792 0.456 1.248 

POPDENS0 0.10 -0.001 -0.001 -0.002 -0.004 -0.002 -0.006 

EMPDENS0 0.09 0.001 0.001 0.002 0.006 0.004 0.009 

Distde71 0.08 0.000 0.000 0.000 0.000 0.000 0.000 

RegPent27 0.06 0.000 0.000 0.000 0.000 0.000 0.000 

RoadDens 0.05 0.001 0.000 0.001 -0.002 0.000 -0.003 

ConnectAir 0.02 0.000 0.000 0.000 0.000 0.000 0.000 

INTF 0.02 0.001 0.000 0.001 0.001 0.001 0.002 

PatentHT 0.02 0.001 0.000 0.001 -0.002 0.000 -0.003 

PatentICT 0.02 0.001 0.000 0.001 -0.002 0.000 -0.003 

ShLLL 0.02 0.000 0.000 0.001 0.001 0.000 0.001 

URT0 0.02 -0.001 0.000 -0.001 -0.002 0.000 -0.002 

Airports 0.01 0.000 0.000 0.000 0.000 0.000 0.000 

ARH0 0.01 0.000 0.000 0.000 0.001 0.000 0.001 

ARL0 0.01 0.000 0.000 0.000 0.000 0.000 0.000 

EREH0 0.01 0.000 0.000 0.000 0.000 0.000 0.000 

ERET0 0.01 0.000 0.000 0.000 -0.001 0.000 -0.002 

gPOP 0.01 0.001 0.000 0.001 0.005 0.001 0.006 

HRSTcore 0.01 0.000 0.000 0.000 0.000 0.000 0.000 

OUTDENS0 0.01 0.000 0.000 0.000 0.000 0.000 0.000 

PatentBIO 0.01 0.001 0.000 0.001 -0.001 0.000 -0.001 

PatentShICT 0.01 0.000 0.000 0.000 0.000 0.000 0.000 

PatentT 0.01 0.000 0.000 0.000 0.000 0.000 -0.001 

RegCoast 0.01 0.000 0.000 0.000 0.000 0.000 0.000 

ShCE0 0.01 0.000 0.000 0.000 -0.001 0.000 -0.001 

shGFCF 0.01 0.000 0.000 0.000 0.000 0.000 0.000 

URH0 0.01 0.000 0.000 0.000 0.000 0.000 -0.001 

URL0 0.01 0.000 0.000 0.000 0.000 0.000 0.000 

ART0 0.00 0.000 0.000 0.000 0.000 0.000 0.000 

ConnectSea 0.00 0.000 0.000 0.000 0.000 0.000 0.000 

DistCap 0.00 0.000 0.000 0.000 0.000 0.000 0.000 

EREL0 0.00 0.000 0.000 0.000 0.000 0.000 0.000 

Hazard 0.00 0.000 0.000 0.000 0.000 0.000 0.000 

PatentShBIO 0.00 0.000 0.000 0.000 0.001 0.000 0.001 

PatentShHT 0.00 0.000 0.000 0.000 0.000 0.000 0.000 

RailDens 0.00 0.000 0.000 0.000 -0.001 0.000 -0.001 

RegBoarder 0.00 0.000 0.000 0.000 0.000 0.000 0.000 

RegObj1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 

Seaports 0.00 0.000 0.000 0.000 0.000 0.000 0.000 

Settl 0.00 0.000 0.000 0.000 0.000 0.000 0.000 

ShAB0 0.00 0.000 0.000 0.000 0.000 0.000 0.000 

TELH 0.00 0.000 0.000 0.000 0.000 0.000 0.000 

Temp 0.00 0.000 0.000 0.000 0.000 0.000 0.000 

Table 2: Impact estimates of a SAR and SDM model using 10,000 top models and all spatial 

weight matrices. 
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Figure 1: Conditional posterior distribution of impacts of GRPCAP0; SAR 

 

 

Figure 2: Conditional posterior distribution of impacts of GRPCAP0; SDM 
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7 Conclusions 

For the purpose of studying income convergence across European regions, we propose an 

estimation procedure that allows a) for the consideration of many potential growth 

determinants as well as a multitude of spatial weight matrices and b) for a proper assessment 

of spatial effects, which results in a more detailed picture of the workings of spillovers in 

convergence processes. 

In a first step, we rely on a combination of spatial filtering and BMA techniques as put 

forward by Crespo-Cuaresma and Feldkircher (2012). While model and parameter as well as 

spatial uncertainty are taken care of this way, a proper impact assessment is no longer 

possible, since spatial filtering annihilates all spatial information. The novelty of our approach 

lies in the second step, in which we re-estimate a number of top models from the spatial 

filtering BMA stage using SAR and SDM specifications and construct averages over the 

individual models’ impact estimates using the respective PMPs as weighting factors. 

Overall, our results confirm the findings of Crespo-Cuaresma and Feldkircher (2012). The 

inverse relationship between economic growth and initial GRP per capital implies that a 

convergence process across all European regions is observable. We further find that the 

presence of a country’s capital city is an important driver of regional growth processes and 

that these capital city regions converge on average faster than other regions. Moreover, while 

a high share of low-skilled labor deters regional income growth, this is even more so for 

capital city regions. 

The assessment of spatial effects, which our proposed approach allows for, underlines the 

important role of growth spillovers in the convergence process of European regions. Even 

though our findings are similar to the ones of Crespo-Cuaresma and Feldkircher (2012), our 

conclusions are based on a more detailed and explicit treatment of spillovers.  
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9 Data Appendix 

Country Region 

Austria Burgenland 

Kärnten 

Niederösterreich 

Oberösterreich 

Salzburg 

Steiermark 

Tirol 

Vorarlberg 

Wien 

Belgium Prov. Antwerpen 

Prov. Brabant Wallon 

Prov. Hainaut 

Prov. Liège 

Prov. Limburg (B) 

Prov. Luxembourg (B) 

Prov. Namur 

Prov. Oost-Vlaanderen 

Prov. Vlaams Brabant 

Prov. West-Vlaanderen 

Région de Bruxelles-Capitale 

Bulgaria Severentsentralen 

Severoiztochen 

Severozapaden 

Yugoiztochen 

Yugozapaden 

Yuzhentsentralen 

Cyprus Cyprus  

Czech Republic Jihovýchod 

Jihozápad 

Moravskoslezsko 

Praha 

Severozápad 

StredníCechy 

Stredné Morava 

Severovýchod 

Denmark Denmark  

Estonia Estonia  

Finland Åland 

Etelä-Suomi 

Itä-Suomi 

Länsi-Suomi 

Pohjois-Suomi 

France Alsace 

Aquitaine 

Auvergne 

Basse-Normandie 

Bourgogne 

Bretagne 

Centre 

Champagne-Ardenne 

Corse 

Franche-Comté 

Haute-Normandie 

Île de France 

Languedoc-Roussillon 

Limousin 

Lorraine 

Midi-Pyrénées 

Nord - Pas-de-Calais 

Pays de la Loire 

Picardie 

Poitou-Charentes 

Provence-Alpes-Côte d’Azur 

Rhône-Alpes 

Germany Arnsberg 

Berlin 

Brandenburg - Nordost 

Brandenburg - Südwest 

Braunschweig 

Bremen 

Chemnitz 

Darmstadt 

Detmold 

Dresden 

Düsseldorf 

Freiburg 

Giessen 

Leipzig 

Lüneburg 

Mecklenburg-Vorpommern 

Mittelfranken 

Münster 

Niederbayern 

Oberbayern 

Oberfranken 

Oberpfalz 

Rheinhessen-Pfalz 

Saarland 

Schleswig-Holstein 

Schwaben 
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Hamburg 

Hannover 

Karlsruhe 

Kassel 

Koblenz 

Köln 

Stuttgart 

Thüringen 

Trier 

Tübingen 

Unterfranken 

Weser-Ems 

Greece AnatolikiMakedonia, Thraki 

Attiki 

DytikiEllada 

DytikiMakedonia 

IoniaNisia 

Ipeiros 

KentrikiMakedonia 

Kriti 

NotioAigaio 

Peloponnisos 

StereaEllada 

Thessalia 

VoreioAigaio 

Hungary Dél-Alföld 

Dél-Dunántúl 

Észak-Alföld 

Észak-Magyarország 

Közép-Dunántúl 

Közép-Magyarország 

Nyugat-Dunántúl 

Ireland Border, Midlands and Western 

Southern and Eastern 

 

Italy Abruzzo 

Basilicata  

Bolzano-Bozen 

Calabria  

Campania  

Emilia-Romagna 

Friuli-VeneziaGiulia 

Lazio  

Liguria  

Lombardia 

Marche  

Molise 

Piemonte 

Puglia 

Sardegna 

Sicilia 

Toscana 

Trento 

Umbria 

Valle d’Aosta 

Veneto 

Latvia Latvia  

Lithuania Lithuania  

Luxembourg Luxembourg (Grand-Duché)  

Malta Malta  

Netherlands Drenthe 

Flevoland 

Friesland 

Gelderland 

Groningen 

Limburg (NL) 

Noord-Brabant 

Noord-Holland 

Overijssel 

Utrecht 

Zeeland 

Zuid-Holland 

Poland Dolnoslaskie 

Kujawsko-Pomorskie 

Lódzkie 

Lubelskie 

Lubuskie 

Malopolskie 

Mazowieckie 

Opolskie 

Podkarpackie 

Podlaskie 

Pomorskie 

Slaskie 

Swietokrzyskie 

Warminsko-Mazurskie 

Wielkopolskie 

Zachodniopomorskie 

Portugal Alentejo 

Algarve 

Centro (PT) 

Lisboa 

Norte 
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Romania Bucuresti – Ilfov 

Centru 

Nord-Est 

Nord-Vest 

Sud-Muntenia 

Sud-Est 

Sud-VestOltenia 

Vest 

Slovak Republic Bratislavskýkraj 

StrednéSlovensko 

VýchodnéSlovensko 

ZápadnéSlovensko 

Slovenia Slovenia  

Spain Andalucia 

Aragón 

Cantabria 

Castilla y León  

Castilla-la Mancha  

Cataluña  

Comunidad de Madrid  

Comunidad Foral de Navarra  

Comunidad Valenciana 

Extremadura 

Galicia 

Illes Balears 

La Rioja 

Pais Vasco 

Principado de Asturias 

Región de Murcia 

Sweden MellerstaNorrland 

NorraMellansverige 

ÖstraMellansverige 

ÖvreNorrland 

Smålandmedöarna 

Stockholm 

Sydsverige 

Västsverige 

United Kingdom Bedfordshire, Hertfordshire  

Berkshire, Bucks and 

Oxfordshire 

Cheshire 

Cornwall and Isles of Scilly 

Cumbria 

Derbyshire and Nottinghamshire  

Devon  

Dorset and Somerset  

East Anglia  

East Riding and North 

Lincolnshire  

East Wales  

Eastern Scotland  

Essex  

Gloucestershire, Wiltshire and  

North Somerset 

Greater Manchester  

Hampshire and Isle of Wight  

Herefordshire, Worcestershire 

and Warks 

Inner London 

Kent 

Lancashire 

Leicestershire, Rutland and Northants 

Lincolnshire 

Merseyside 

North Yorkshire 

Northern Ireland 

Northumberland, Tyne and Wear 

Outer London 

Shropshire and Staffordshire 

South Western Scotland 

South Yorkshire 

Surrey, East and West Sussex 

Tees Valley and Durham 

West Midlands 

West Wales and The Valleys 

West Yorkshire 

Table 3: European Regions in the sample 
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Variable name Description Source 

   

Dependent variable 

gGRPCAP Growth rate of real GRP per capita Eurostat 

   

Factor accumulation/convergence 

GRPCAP0 Initial real GRP per capita (in logs) Eurostat 

gPOP Growth rate of population Eurostat 

shGFCF Share of GFCF in GVA Cambridge Econometrics 

   

Infrastructure 

INTF Proportion of firms with own website ESPON 

TELH A typology of levels of household 

telecommunications uptake 

ESPON 

TELF A typology of estimated levels of business 

telecommunications access and uptake 

ESPON 

Seaports Regions with seaports ESPON 

AirportDens Airport density ESPON 

RoadDens Road density ESPON 

RailDens Rail density ESPON 

ConnectAir Connectivity to commercial airports by car ESPON 

ConnectSea Connectivity to commercial seaports by car ESPON 

AccessAir Potential accessibility air ESPON 

AccessRoad Potential accessibility road ESPON 

   

Socio-geographical variables 

Settl Settlement structure ESPON 

OUTDENS0 Initial output density  

EMPDENS0 Initial employment density  

POPDENS0 Initial population density  

RegCoast Coast ESPON 

RegBorder Border ESPON 

RegPent27 Pentagon EU 27 plus 2 ESPON 

RegObj1 Objective 1 regions ESPON 

Capital Capital city  

Airports Number of airports ESPON 

Temp Extreme temperatures ESPON 

Hazard Sum of all weighted hazard values ESPON 

Distde71 Distance to Frankfurt  

DistCap Distance to capital city  

   

Technological innovation 

PatentT Number of patents total Eurostat 

PatentHT Number of patents in high technology Eurostat 

PatentICT Number of patents in ICT Eurostat 

PatentBIO Number of patents in biotechnology Eurostat 

PatentShHT Share of patents in high technology Eurostat 

PatentShICT Share of patents in ICT Eurostat 

PatentShBIO Share of patents in biotechnology Eurostat 

HRSTcore Human resources in science and technology 

(core) 

Eurostat LFS 
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Human capital 

ShSH Share of high educated in working age 

population 

Eurostat LFS 

ShSL Share of low educated in working age 

population 

Eurostat LFS 

ShLLL Life long learning Eurostat LFS 

   

Sectoral structure/employment 

ShAB0 Initial share of NACE A and B (Agriculture) Eurostat 

ShCE0 Initial share of NACE C to E (Mining, 

Manufacturing and Energy) 

Eurostat 

EREH0 Employment rate - high Eurostat LFS 

EREL0 Employment rate - low Eurostat LFS 

ERET0 Employment rate - total Eurostat LFS 

URH0 Unemployment rate - high Eurostat LFS 

URL0 Unemployment rate - low Eurostat LFS 

URT0 Unemployment rate - total Eurostat LFS 

ARH0 Activity rate - high Eurostat LFS 

ARL0 Activity rate - low Eurostat LFS 

ART0 Activity rate - total Eurostat LFS 

Table 4: Variables, description and sources 

 

 

 


