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Abstract

It has often been observed that there is substantial spatial variation in criminality, i.e. crimi-

nality clusters in neighborhoods. Differences in neighborhood characteristics are one possible

reason, social interactions another. In this paper we use detailed data on the residential

location of criminals to disentangle the effects of individual characteristics, neighborhood

characteristics and social interaction on criminality. Our basic model is an individual binomial

logit model for the probability of being a criminal which we use to extract neighborhood

effects. In a second stage, we model neighborhood effects, where we use as explanatory

variables physical and social neighborhood characteristics such as characteristics of the

housing stock and the demographic composition. We also include the share of criminals to

be able to measure a social interaction effect. Note that this approach takes into account

unobserved neighborhood characteristics. Since these may affect the criminality rate we

instrument for this variable in a two stage estimation procedure.
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1 Introduction

Economists have traditionally focused on market interactions, but in the second half of the

20th century many economists began to see their discipline as relevant for all kinds of resource

allocation processes including that of crime (see Manski 2000). Within the economic literature

on crime the importance of social interactions has frequently been emphasized. An important

reason for conjecturing such a relationship is the large amount of spatial variation in crime

rates (see, e.g., Glaeser et al. 1996). The mechanism of social interaction is not always made

completely explicit, but the general idea is clear enough: if one’s peer group contains a relatively

large numbers of criminals, the probability to become a criminal increases.

One question that has received relatively little attention in this literature is the spatial level

at which the relevant type of social interaction takes place. For instance, Glaeser et al. (1996)

use data that refer to metropolitan areas, but is seems probable that the relevant spatial level is

much smaller. A priori, it seems much more likely that neighborhoods are the relevant level.

Moreover, attention is often concentrated on the location where criminal acts are carried out,

whereas residential locations of the criminals seem at least as relevant to study.

In this paper we use a rich dataset on the residential location of criminals to investigate the

relationship between criminality, neighborhood composition and its associated social interaction.

More specifically, we use the 4-digit postal code classification of the Netherlands as the relevant

size of the neighborhoods. Although this definition is partly the result of practical considerations,

the Dutch postal codes also have several substantive advantages. First, the boundaries of

the postal codes are constructed so that there are few or no mobility constraints within the

neighborhood. Moreover, the postal codes classification refers to ‘neighborhoods’ in cities, but

encompass small villages in its entirety. Thus, its geographical area is usually easily walkable,

with meaningful geographic and social boundaries.

Our basic research question boils down to the question whether an individual’s decision to

commit crime depend on whether other neighborhood residents commit crime? In this case, the

neighborhood residents are considered as his peers. We aim to do so by disentangling the effects

of individual characteristics, neighborhood characteristics and social interaction on criminality.

Our methodological approach is as follows. First, we estimate for each neighborhood an average

probability level of becoming a criminal by using a large individual data of being a criminal

or not using sex and age as co-variates. In the second stage, we regress various neighborhood

characteristics, including a social interaction effect, on the neighborhood fixed effects using an

instrumental variable approach. As instruments we use a spatial and a social peer reference

group (cf. Walker et al. (2011)).

The paper is structured as follows. The next section discusses the literature concerning

criminality and social interactions mainly from a (very rich) criminality literature. The subsequent

section deals with the methodological approach. Section 4 treats extensively the data we use.
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Section 5 offers the results where after the last section concludes concisely.

2 Literature

In criminology, it has long been observed that peer delinquency and individual delinquency

are correlated.1 Two mechanisms are hypothesized to underlie that correlation. Differential

Association Theory (Sutherland 1947) argues that criminal behavior is learned from delinquent

peers; this includes learning techniques of committing delinquent behavior, as well as learning

motives and attitudes that promote delinquent behavior, i.e. techniques of neutralization (Sykes

and Matza 1957). Further elaborated by Akers (1985), it is argued that individuals are influenced

by delinquent peers through processes such as social reinforcement and imitation. The general

proposition of these theories is that the excess of definitions favorable to deviance over definitions

unfavorable to deviance enhances the probability of offending.

A contrasting view argues, firstly, that delinquent behavior is caused by other factors, such

as weak social bonds or low self-control (Gottfredson and Hirschi 1990), and secondly, that

delinquents or criminals associate with each other precisely because they choose to be friends

with others who are similar to themselves. Thus, in this view selection processes lead to

social networks of delinquents. The selection of friends need not be solely based on behavioral

similarities, but also on proximity. People located near each other are more likely to become

friends with each other than with more distant others. Such proximity selection (Festinger et al.

1950) may also be partly responsible for why delinquents befriend delinquent peers. For example,

if delinquents cluster within neighborhoods and if friend selection is based partly on proximity,

then each delinquent is more likely to befriend other delinquents rather than non-delinquents –

a ‘decision’ process independent of behavioral similarity. Selection and influence are depicted in

abstract form in Figure 1.

t1 t2 t3

Selection

Influence

Figure 1 – Abstract representation of selection and influence processes

1Here, delinguency is defined as criminality amongst youngsters.
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The correlation between peer delinquency and individual delinquency is thus hypothesized to

be affected by processes of selection and influence in social interactions. Manski (2000) argues

that a rigorous identification of social interactions will require clear thinking and adequate data.

For the latter, usually experimental data are more preferred than outcome data. There are a

few studies that go a long way to do precisely this. For example, Young et al. (2011) measured

the complete peer networks in school classes to establish whether individuals’ self-reported

delinquency matched peers’ ratings of their delinquency. However, establishing complete social

networks of individuals is a difficult, invasive, and thus very costly challenge. Moreover, in

one of the first studies to employ longitudinal network analyses to study the causal ordering

of selection and influence, Weerman (2011) shows that only the average delinquency level of

someone’s friends in the school network has a significant, although relatively small, effect on

individual delinquent behavior. Social influence thus seems to be most important to explain the

correlation between peer delinquency and individual delinquency.

There are, in addition, arguments against using the full extent of social networks to estimate

social interactions. First, the composition of social networks that includes friends and other

relations that are the object of choice is likely to be endogenous, as people may have incentives

to select as peers others who are as delinquent as they are themselves (e.g. two criminals cannot

betray each other as each knows that such behavior will be reciprocated by the other). Parents,

siblings, teachers and neighborhood residents may be more exogenous. Second, social interactions

include mechanisms that do not rely on the identification of other individuals. For example,

an individual’s decision to commit crime may be affected by merely observing the behavior of

unknown others, or even by just observing the outcomes of it, and inferring the behavior.

In this paper, we focus on the social influence that neighborhood peers exert on individual

delinquency. Our main hypothesis corresponds to Weerman (2011):

“. . . a high (mean) level of delinquency among peers increases the chances that less

delinquent adolescents adapt their behavior to that of their friends.” (p. 257)

Thus, we expect that one’s behavior is influenced by observing or ‘having knowledge’ about the

behavior of others. Relevant examples for the purposes of this paper are (i) see crime take place,

(ii) hear about crime taking place from offenders and/or victims in one’s peer group (iii) see the

results of crime (iv) become a victim of crime (v) be subjected to specific ‘norms’ about crime.

We test this hypothesis using a different method than longitudinal social network analysis (see

next section).

Our focus on social influence in the neighborhood instead of the family or school is motivated

by the wealth of research with regard to neighborhood influences on individual delinquency

(for an overview of not only crime-related outcomes, see Sampson et al. (2002)). As Shaw and

McKay (1969) pointed out in their highly influential work:

“Heavy concentration of delinquency in certain areas means [. . . ] that boys living
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in these areas are in contact not only with individuals who engage in proscribed

activity but also with groups which sanction such behavior and exert pressure upon

their members to conform to group standards. [. . . ] In contrast with the areas of

concentrations of delinquents, there are many other communities where the cases are

so widely dispersed that the chances of a boy’s having intimate contact with other

delinquents or with delinquent groups is comparatively slight.” (p. 174)

Whereas subsequent scholars have often focused on the processes of social disorganization,

i.e. social cohesion and informal social control within neighborhoods (Sampson et al. 1997),

the influence of delinquent neighbors as well as the choice-constraining effect of neighborhoods

for friend selection has been neglected. Whereas current criminological studies with regard to

selection and influence often investigate peers in general or specifically adolescent social networks

within schools, we argue that neighborhoods are important contexts for the current discussion.

3 The model

This sections presents the methodology. It first lays out the basic model along the lines of

Walker et al. (2011). Subsequently, it deals with the issue of correct identification of the social

interaction effect. The last subsection addresses the problem that our social interaction effects,

the number of criminals within a neighborhood, is endogeneous.

3.1 Introduction

The model we use focuses on the choice to be a criminal. Our basic model is binomial: one can

choose to be a criminal, or not. The choice depends on personal and neighborhood characteristics,

not all of which are observed. Let Cij be a zero-one variable that indicates whether individual i

in neighborhood j is a criminal. The probability that Cij equals 1 (indicating that this person is

a criminal) depends on personal characteristics Xi, and on neighborhood characteristics Zj . A

social interaction effect is present if the expected value of the variable Cij in neighborhood j has

an impact on the probability that a particular individual i is a criminal. Since we are not informed

about all the relevant characteristics, we introduce two random variables representing unobserved

characteristics: εi for unobserved personal characteristics and ξj for unobserved neighborhood

characteristics. We now define a latent variable yij that is linear in these characteristics:2

yij = βXi + γZj + δE(Cj) + ξj + εi. (1)

When this latent variable (yij) takes on a positive value, then Cij = 1, otherwise Cij = 0.

If we assume the random variable εi to be extreme value type I distributed the probability

2A simple extension would be to allow for cross effects by introducing the terms θXiZj .
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that Cij = 1 is given by the logit expression:

Pr(Cij = 1) =
eβXi+γZj+δE(Cj)+ξj+εi

1 + eβXi+γZj+δE(Cj)+ξj+εi
(2)

Without the social interaction and unobserved neighborhood effects (i.e., δ = ξj = 0), this is a

standard binomial logit model. When there is social interaction, but no unobserved heterogeneity

(ξj = 0), this is the logit version of the binomial model of Brock and Durlauf (2001).

The unobserved heterogeneity term ξj captures neighborhood characteristics that may have

an impact on the individual’s probability to become a criminal, but are unobserved by the

analyst. The importance of such unobserved heterogeneity in discrete choice models has been

first analyzed thoroughly by Berry et al. (1995) in their seminal study of the automobile market.

Their approach has been used in other fields as well. For instance, Walker et al. (2011) have used

a model like (2), but without neighborhood variables Zj , to study the effect of social interaction

on traffic mode choice.

3.2 Identification

Berry et al. (1995) suggest a two-stage procedure. In the first step the neighborhood-specific

terms are taken together in a single neighborhood constant αj , where the probability of becoming

a criminal is now given by:

Pr(Cij = 1) =
eβXi+αj

1 + eβXi+αj
, (3)

which can be estimated in the usual way. αj can then be defined as a neighborhood specific

attractivity index to become a criminal, conditional on as much individual characteristics, Xi,

as possible. Note that this is a general measure, and is still composed of various exogeneous,

endogeneous and contextual effects which can affect the probability to become a criminal on a

neighborhood level Manski (1993).

In the second stage the alternative specific constants are analyzed further by writing them

again as:

αj = γZj + δE(Cj) + ξj (4)

and using techniques for linear equations.

The unobserved heterogeneity terms ξj are now the residuals of the linear regression equation.

A complication is that OLS cannot be used, since E(Cj) must be expected to be correlated with

ξj . The reason is that a high value of ξj makes it more likely that a particular individual in

the neighborhood is a criminal, which tends to increase E(Cj). Hence the error term is not

independent of the explanatory variables. In the next subsection we will propose a solution to

this problem using an instrumental variable approach.

Manski (1993) looked at identification issues within a linear model with social interactions in

which there are endogenous interaction effects as well as contextual effects. In our model the
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variable E(Cj) embodies an endogenous social interaction effect, while contextual effects may

be included in the vector Zj when it contains variables like the average age of neighborhood

inhabitants. In Manski’s model, the two effects cannot be distinguished. Brock and Durlauf

(2001) have shown that the nonlinearity that occurs in a discrete choice model like (2) has

identifying power. They develop a set of conditions under which all the remaining parameters

are identified. These conditions apply to the model (2) when the term referring to unobserved

heterogeneity is absent.

The model (2) is identified if the parameters β and α in (3) are identified and if the parameters

γ and δ in (4) are identified. The first is not a problem (see Manski 1988). The estimated

xij ’s are complex nonlinear functions of the variables Cij and Xi, whereas in Manski’s linear

model Cij is on the left-hand side of the equation. This is the reason why Manski’s identification

problem does not occur in the context of a binomial choice model. However, there is another

problem that has to be faced: the term ξj , which represents unobserved heterogeneity has an

impact on all Cij ’s and therefore also on E(Cj). The implication is that E(Cj) is potentially

correlated with ξj . In the next subsection we will propose an instrumental variable strategy to

solve this problem.

3.3 Endogeneity

We need additional variables that have no direct impact on αj , are correlated with E(Cj), but

not correlated with ξj . We adopt the approach by Walker et al. (2011) and define two types of

instruments. A spatial reference group, or the average social interaction effect of the adjacent

postal codes and a social reference group, variables that indicate whether inhabitants of a

neighborhood share similar socio-economic characteristics.3

The intuition behind this approach is – theoretically at least – straightforward. E(Cj) is

defined as the expected number of criminals within a neighborhood. This can also be seen

an the probability to encounter a criminal within neighborhood j. Note that one of the main

assumptions of our model is that social interactions take place within a neighborhood. Thus,

spatially lagged encounter probabilities WE(Cj) are not correlated with the neighborhood

specific effect, but might contain information about E(Cj).

Similarly, the social distance in the neighborhood to other groups should be correlated with

E(Cj) (it contains information about the strength of the network and thus the intensity of the

social interactions) and it can be argued that the correlation with αj is rather weak. For instance,

it has not been proven that a neighborhood’s age structure correlates with the propensity of

becoming a criminal other than via group interactions.

Section 5 deals further with this implementations and treats the instruments more in detail.

3Actually, Bayer et al. (2004) have suggested that an instrument can be computed by computing the ‘equilibrium’
values for E(Cj) that would obtains if all ξj ’s would be equal to 0. This computed variable is certainly not
correlated with the ξj ’s and almost certainly strongly correlated with the E(Cj)’s. We elaborate further on this
approach in Appendix A and leave the calculation of this instrument for near further research.
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4 Data

Criminality is notoriously difficult to measure. Because criminal behavior is morally objectionable

and legally sanctioned, most people are unwilling to confess their involvement in crime, either to

law enforcement or to researchers. While there are surveys asking adolescent subjects for their

involvement in crimes and rule breaking (see, amonst others, Farrington et al. 1996, Steffensmeier

and Allan 1996, Piquero et al. 2002), crime self-report surveys are rare amongst adult populations

(Morselli and Tremblay 2004).

To measure criminality, we used anonymized national population data from the Dutch

National Police. The police information system from which the data were extracted, contains

data on all individuals that have been arrested by the Dutch police as criminal suspects (the large

majority are subsequently convicted, some obtain a ‘transaction’ from the prosecutor’s office,

and a few are dismissed). The data contain some personal characteristics (sex, age, nationality,

country of birth, postal code of residential address) and also contain details about all crimes of

which the individual has been suspected (including the dates and the types of crime). In the

analysis in this paper we use involvement in any crime(s) in the year 2006 as the dependent

variable as well as involvement in (i) violent and (ii) property crime.

Because the police information system is used for investigative purposes, it is updated

continuously, and updates include changes of address as well as removal of individuals after an

expiration period, the length of which depends on the seriousness of their criminal record. The

database used in this analysis was an archival copy of the information system included crimes

already removed from the real ‘living’ information system. Data from special investigative services

are excluded, so that tax and other economic crimes, social security fraud, and environmental

crimes are underrepresented.

There are some disadvantages to using police records to measure criminality. First, a

substantial percentage of crimes never comes to the attention of the police, either because

there is not an individual victim to report it (e.g. drug dealing) or because the victim does

not report the crime to the police (Goudriaan et al. 2004). Second, in most jurisdictions the

police solve only approximately 20 percent of all crimes (Dodd et al. 2004). As a consequence,

any estimate of criminality based on police data must be a severe underrepresentation. Third,

specific surveillance or investigative strategies used by the police may result in some areas being

more intensely supervised and investigated than others, resulting in an overrepresentation of

these areas in the data. Fourth, police records have data on suspects and individuals charged

with criminal offences, but some of these people may be unjustly suspected and will not be

convicted subsequently in court. Notwithstanding these limitations police records seem to be

the best available large-scale measures of criminality that we have.

To obtain a full population data set on criminal involvement in 2006 in The Netherlands,

we used population data from Statistics Netherlands. The relevant table applies to January
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1st, 2006 and cross-tabulates neighborhood of residence (4,028 neighborhoods) with age (20

categories, each 5 years width) and sex (male versus female). As the police records contain

these three variables as well, both sources were combined to create a national dataset containing

approximately 16 million persons with the following four variables:

1. neighborhood (4028 neighborhoods);

2. sex (male or female);

3. age (20 categories: 0–4 years, 5–9 years, 10–14 years, 15–19 years, etc. );

4. involved in crime in 2006 (yes or no).

Because in The Netherlands only individuals of age 12 and older can be prosecuted, age categories

0–4 years and 5–9 years were removed from the analysis. Ages 10–11 are included because the

population data are available only in 5-years age categories. Because no individuals above age 89

were prosecuted in 2006, ages 90 and above were also removed from the analysis. The remaining

dataset contains 14,298,733 individuals aged 10–89 in 2006.

Table 1 – Dutch population ages 10–89, January 1st, 2007. Absolute population size (#) and
percentage involved in crime in 2006 (%), by sex and age category (source: police force Haaglanden
Statistics Netherlands

Female Male

Population Criminal Population Criminal

# % # %

10–14 years 480,980 0.32 504,455 1.02

15–19 years 487,747 1.31 510,485 6.27

20–24 years 477,712 1.06 488,167 6.21

25–29 years 494,210 0.78 494,942 4.17

30–34 years 534,001 0.64 533,858 3.23

35–39 years 641,060 0.64 653,601 2.82

40–44 years 646,021 0.59 663,348 2.50

45–49 years 613,101 0.50 621,996 2.02

50–54 years 562,241 0.36 569,603 1.53

55–59 years 550,147 0.26 560,466 1.13

60–64 years 460,035 0.19 464,104 0.86

65–69 years 361,255 0.12 345,704 0.62

70–74 years 314,045 0.09 270,665 0.41

75–79 years 274,375 0.07 200,438 0.28

80–84 years 216,185 0.04 122,983 0.20

85–89 years 126,630 0.02 54,173 0.18

Total 7,239,745 0.50 7,058,988 2.49
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For this population, Table 1 lists the percentages of criminal involvement in the year 2006

by sex and age category. The table confirms two stylized facts about criminality: the criminal

involvement of men is five times larger than women’s involvement (cf. Steffensmeier and Allan

1996, Mears et al. 1998), and criminal involvement of both sexes peaks during adolescence and

early adulthood at ages 15–24 (cf. Blokland et al. 2005). On average, 1.5 percent of the 10–89

population became a crime suspect in 2006. For boys in the age category 15–24 years, the

percentage is more than four times larger than the average.

The focus of our investigation is the percent of people in the neighborhood involved in crime.4

“Spatial reference group” are neighborhoods. Substantive arguments for neighborhood as a valid

peer group were already given in the literature overview. There are also several methodological

arguments in favor of the neighborhood (instead of a larger or smaller areal unit): (1) smaller

areas result in very skewed crime distributions (2) no areal data on smaller areas. Note: we use

pc4 postal code areas as our definition of neighborhood. In short, following Walker et al. (2011),

we assume that “these postal code boundaries delineate spatial peers and that individuals within

a postal code are more similar, exerting a stronger influence than individuals who live outside of

one’s postal code”.

The police records include the six-digit postal codes of the residential addresses of the

individuals. Throughout the Netherlands there are about 435,000 six-digit postal code areas.

In non-rural areas they are roughly the size of a football field and contain approximately 20

residential properties and 40 residents. As they were created with pedestrian postal delivery

services in mind, single codes are nearly always on the same street, apply to adjacent properties,

and is not subdivided by physical barriers that impede pedestrian or car transportation. In line

with definitions of ‘neighborhood’ as a locus of social interaction elsewhere in the literature,

our analysis uses the four-digit Dutch postal code number as the spatial unit of analysis, i.e. a

spatial aggregation of the six-digit postal code. Many other studies in The Netherlands have

used the four-digit postal code as a neighborhood delineation criterion (Van Wilsem et al. 2006,

Nieuwbeerta et al. 2008, Walker et al. 2011).

Geographically, the Netherlands is a small country with a total land surface of 41,526 square

kilometers. The total country consists of 4,028 four-digit postal code areas with an average

surface of 10.31 square kilometer and an average population of 4,073 inhabitants. Similar to US

census tracts, the sizes of these ‘neighborhoods’ depend on population density. In urban areas

where population densities are high, the surface of neighborhoods tend to be relatively small,

while they are larger in rural areas where population densities are low.

4When the peer group is the neighborhood, the chance of interaction with a criminal is affected not only by the
relative number of criminals, but also by the size of the area. Thus, the social interaction effect can alternatively
be defined as the percent of people per square mile exhibiting a given behavior.
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5 Results

In addition to the fact whether someone is a criminal or not, we also have information about the

type of crime. We therefore choose to look at two types of crime as well: violent crime, such as

assault and domestic violence, and property crime, such as burglary, shoplifting and vandalism.

Because violent crime has a strong reciprocal nature (assault often takes place for reasons of

revenge), we hypothesize that the social interaction effect for violent crime is larger than for

property crime.

Table 2 presents the estimation results of equation (3). The socio-demographic variabkles

included are a sex indicator (0 for males, 1 for females), age (measured categorically as 10–

14= −1, 15–19= 0, 20–24= 1, . . . , i.e. centered on the peak of the age-crime curve) and age

squared. Of the 4011 neighborhoods there were 290 in which not a single resident offended in

2006, making it impossible to estimate a neighborhood specific constant term for the general

model. In 323 neighborhoods not a single violent act of crime took place and property crime

was absent in 971 neighborhoods.5

Estimation results confirm that males are much more likely to become criminals than females

and that the propensity to become a criminal first increases with age and then decreases. Violent

crime behave more or less similarly as crime in general and property crime is caused by much

younger criminals.

Table 2 – Choice models (log-odds of choice to become a criminal—Pr(Cij = 1))

All crime Violent crime Property crime

Parameter Estimation S.E. Estimation S.E. Estimation S.E.

Female −1.592 0.006 −1.830 0.007 −1.092 0.010

Age 0.049 0.002 0.079 0.002 −0.048 0.004

Age2 −0.025 0.000 −0.028 0.000 −0.019 0.000

# Observations 14,221,511 14,206,517 13,812,878

# Parameters 3 + 3721 constants 3 + 3688 constants 3 + 3040 constants

Log-likelihood −983, 941.11 −825, 950.55 −338, 008.36

A higher value of a neighborhood-specific constant means that inhabitants of the neighborhood

are genericly more likely to be suspected of criminal involvement. Because of its individual

nature, the first-stage model is silent about the reasons for this situation: they have to be sorted

out in the second stage. It is clearly not insightful to report all the values of the estimates for α.

The kernel density estimates in Figure 2 reveal that all three density functions are single peaked

and almost symmetric. Again the kernel density estimate of violent crime is remarkably similar

5Usually, only the smallest neighborhoods with few of no criminals fall out of the estimation, which might
invoke a selection bias. Note, however, that the number of observations decrease much slower than the number of
neighborhoods.
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to that of crime in general, where the kernel density estimate of property crime clearly has a

higher mean and standard error.

Figure 2 – Kernel density estimates of the distribution of α

Results of the analysis of the neighborhood specific constants are reported in Tables 3 and 4.

The first table reports the results of the first stage regression on our social interaction variable

(% involved in crime). The second table report the second stage results of the regression on the

α’s. As instruments of % involved in crime we have chose to include only the spatially lagged

variable (thus, W×% involved in crime) and the neighborhood age structure (as a social lag, cf.

Walker et al. (2011)).

As Table 3 clearly shows, the instruments we use are relevant. The spatial lag (W % involved

in crime) is very significant and shows a positive correlation with % involved in crime as expected.

The age structure, though significant, is more difficult to interpret directly. In theory, these

estimates should give us an imputed social interaction variable % involved in crime exogeneous

to our vector of α’s. The results of this second stage estimation are reported in Table 4.

Obviously, our field variable % involved in crime is positive and significant – both statistically

and impact wise. One additional percent of criminals within a neighborhood increases α

with about 0.3, which entails that the probability to become a criminal increases with 35%.

Interestingly, this field effect is highest for property crime vis-á-vis violent crime, although we

hypothesized that, because of its recriprocal nature, violent crime should be more susceptible

to social interaction effects. Property crime is, however, associated with very young criminals

(see, e.g., the results in Table 2) and perhaps they are more susceptible to social interactions
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Table 3 – 2SLS estimation on α—first stage regression on % involved in crime

All crime Violent crime Property crime

Parameter Estimation S.E. Estimation S.E. Estimation S.E.

# Addresses per hectare -0.001 0.001 -0.001 0.001 -0.004 0.001

% owner-occupied housing -0.013 0.001 -0.013 0.001 -0.015 0.001

Average well-being -0.114 0.035 -0.118 0.035 -0.095 0.042

W % involved in crime 0.284 0.020 0.283 0.020 0.289 0.023

% 0–5 years 2.326 1.607 2.337 1.621 7.123 2.072

% 5–10 years 4.379 1.790 4.375 1.791 11.237 2.481

% 10–15 years -8.443 1.765 -9.005 1.770 -6.400 2.344

% 15–20 years 5.981 1.425 6.069 1.426 4.707 1.869

% 20–25 years 2.843 1.035 2.576 1.045 6.772 1.281

% 25–30 years 6.806 1.406 7.267 1.422 10.483 1.724

% 30–35 years 7.130 1.517 6.348 1.528 12.764 1.946

% 35–40 years -7.964 1.483 -8.106 1.496 -11.969 1.940

% 40–45 years 8.503 1.431 8.371 1.451 14.391 1.842

% 45–50 years 1.933 1.499 1.602 1.496 8.231 2.153

% 50–55 years 4.625 1.460 4.209 1.468 6.609 1.934

% 55–60 years 2.448 1.202 2.867 1.194 8.376 1.354

% 60–65 years -5.225 1.652 -5.892 1.661 -8.433 2.186

% 65–70 years 7.679 1.900 8.191 1.900 11.908 2.783

% 70–75 years -4.706 2.149 -5.623 2.147 6.433 3.063

Intercept 0.355 0.494 0.498 0.494 -2.746 0.668

Instrument (ir)relevance (Shea test) 39.84 0.000 39.61 0.000 41.71 0.000

# Observations 3,709 3,678 3,035

R2 0.308 0.306 0.319

than older criminals. Unfortunately, two of the three Durbin-Wu-Hausman reject exogeneity.

Alternative specifications (with different instruments) show that, alhough all three tests never

pass exogeneity simultaneously, our results regarding our social interaction variable are rather

robust.

The remainder of the variables give a more or less coherent and intuitive appealing picture.

A higher housing density, although very small, correlates positively with more crime. More

owner-occupied housing correlates with less crime just as a larger average well-being within a

neighborhood (measured as social-economic status).
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Table 4 – 2SLS estimation on α—second stage

All crime Violent crime Property crime

Parameter Estimation S.E. Estimation S.E. Estimation S.E.

% Involved in crime 0.285 0.013 0.258 0.014 0.339 0.021

# Addresses per hectare 0.000 0.000 0.000 0.000 0.002 0.001

% Owner-occupied housing -0.009 0.000 -0.008 0.000 -0.012 0.001

Average well-being -0.026 0.011 -0.034 0.012 0.000 0.021

Intercept 0.114 0.058 0.098 0.061 0.308 0.101

Durbin-Wu-Hausman test 0.747 0.387 28.754 0.000 0.813 0.367

# Observations 3,709 3,678 3,035

R2 0.673 0.604 0.537

6 Conclusion

It has often been observed that there is substantial spatial variation in criminality, i.e. criminality

clusters in neighborhoods. Differences in neighborhood characteristics are one possible reason,

social interactions another. The main aim of this paper was to disentangle the effects of individual

characteristics, neighborhood characteristics and social interaction on criminality using a rich

dataset that provides information about the residential location of criminals in the Netherlands.

Our main (but very preliminary) results are that every percentage increase of criminals within a

neighborhood increases the change on becoming a criminal with 35%. We still have to investigate

further whether this results holds within a variety of alternative specifications, but, if so, then

this is a very sizeable effect. Moreover, the impact of social interactions seem to depend on

the type of crime as well. Property crime seems be more susceptible to social interactions than

violent crime. Probably, this is due to the fact that property crime is much more associated

with younger criminals than violent crime.

Obviously, the results are still very preliminary and there is much scope for further research.

First, and most importantly, we have to check whether our instruments are valid and whether

we can find alternative instruments, such as spatial weights matrices of criminals for each age

group. Secondly, although our first stage logit estimation performs conform expectations we

might still add additional information such that we remove most of the individual variation in

the first binary logit stage. Thirdly, and finally, we need to look more in the impact variation of

social interaction across types of crime just as in Glaeser et al. (1996), both as an indicator for

the validity of our results and to see whether some types of crime are not susceptible to social

interactions as well in the Netherlands.
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A The construction of an instrument for the crime rate

It is often difficult to find good instruments for the endogenous variables in models with

unobserved heterogeneity. It is therefore very useful that Bayer et al. (2004) have developed

a procedure for constructing an instrument in the context of such a model for neighborhood

sorting. In this appendix we follow their suggestion and develop a method for constructing an

instrument for the crime rate in the model we use here. Start by observing that, according to

the model, the expected crime rate is:

E(Cj) =

∑
i∈j

eβXi+γZj+δE(Cj)+ξj

1 + eβXi+γZj+δE(Cj)+ξj

 /Bj . (5)

where the summation is over all individuals living in neighborhood j and Bj is the total number

of these individuals. When the model is estimated, the coefficients β, γ and δ are known. The

unobserved heterogeneity terms residuals ξ are the residuals from the second stage procedure

and when they are substituted into (5) the equation holds as an identity: the observed crime

rate is exactly replicated by the estimated model. The instrument is computed by deleting the

unobserved heterogeneity terms ξ from (5) and computing the expected crime rate implied by

the resulting equation. We denote this counterfactual crime rate as IE(Cj):

IE(Cj) =

∑
i∈j

eβXi+γZj+δIE(Cj)

1 + eβXi+γZj+δIE(Cj)

 /Bj . (6)

Note that the IE(Cj)’s appear also on the right-hand side of the equation. They can therefore

be interpreted as the crime rates that would be observed in a hypothetical world in which

unobserved heterogeneity is absent.

The IE(Cj)’s are the desired instrument for the E(Cj)’s. The IE(Cj)’s are by construction

uncorrelated wit the unobserved heterogeneity terms xij . Moreover, they are, also by construction,

probably very strongly correlated with the E(Cj)’s.

One complication associated with the suggested procedure is that (6) uses the estimated

coefficients of the model, which can only be obtained through the use of the instrument. Bayer

et al. (2004) therefore propose an iterative procedure in which one starts with an informed guess

of the instrument values, then computes the coefficient estimates and use them to recomputed

the instrument, et cetera.

17


	Introduction
	Literature
	The model
	Introduction
	Identification
	Endogeneity

	Data
	Results
	Conclusion
	The construction of an instrument for the crime rate



