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Abstract 
 
This paper addresses parameter estimation of spatial regression models incorporating spatial 
lag. These models are very important in spatial econometrics, where spatial interaction and 
structure are introduced into regression analysis.  However, parameters of spatial lag models 
are difficult to estimate due to simultaneity bias.  These parameter estimation problems are 
generally intractable by standard numerical methods, and, consequently, robust and efficient 
optimization techniques are needed. In this paper, global optimization (specifically, particle 
swarm optimization, or PSO) is used to estimate parameters of spatial autoregressive models. 
PSO was tested with an autoregressive spatial model for which no analytic initial guess can 
be computed, and for which no analytic parameter estimation method is known.  The results 
indicate that global optimization is a viable approach to estimating the parameters of spatial 
autoregressive models, and suggest that future directions should focus on more advanced 
global techniques, such as branch-and-bound, dividing rectangles, and differential evolution, 
which may further improve parameter estimation in spatial econometrics applications.  
 
 
 
1. Introduction  

Econometrics combines economics and statistics to analyze and model economic data. These 

data are heavily based on observations, and are used to create models to either support or 

contradict specific economic theories. Since economic units and processes have varying 

levels of interaction, quantitative methods often estimate the equilibrium of the observed 

system.  

As one of the newer econometrics specializations, spatial econometrics focuses on in-

corporating spatial relationships into economic models (LeSage, Kelley Pace, 2009).  Spatial 

factors, which are most often geographic distances, may also include cultural or political 

relationships. It is important to accurately estimate the parameters in spatial models to under-



 
 

stand the effects of spatial relationships and to develop more robust predictive models. In 

many cases, a best estimator exists for parameters for many of these models. However, in 

other cases, no exact estimator exists.   

For dynamic panel data models extended with a spatially lagged dependent variable, 

two approximations are used, as there is no exact estimator (Elhorst, 2003). Even with these 

approximations, the parameters are very difficult to estimate, as the derivative of the likeli-

hood function is, in most practical cases, unattainable.  Consequently, iterative numerical 

methods are required.  Little work has been done towards determining suitable methods for 

maximizing these likelihoods, and the literature currently focuses on simpler models.  

This paper focuses on using global optimization to estimate the parameters of the dy-

namic panel data model extended with a spatially lagged dependent variable (Elhorst, 2003, 

2005).  Given the complexity of the likelihood functions involved, a global approach is im-

mediately preferred over a local one. 

 

2. Spatial Regression Models 

In regional science, relationships may be geographic, cultural, political, or economic, and 

multiple relationships can be considered in the same model. These relationships are denoted 

by N × N matrix (where N is the number of units) of spatial weights, denoted as W. The ith 

row of W represents the relationships of the ith unit with all other units, where the row is 

normalized to sum to unity, and the relationship between a unit and itself is assumed to be 0. 

Spatial dependence or autocorrelation can be described in different ways in the context of the 

standard linear regression model. The spatial lag model, or spatial autoregressive model, is 

given by (Anselin, 1988): 

         
                                                 (1)                         

 
εWy yX ++= κβ

where y is a vector of observations on the dependent variable, β  is a vector of coefficients 

(usually to be determined), κ is a spatial autoregressive coefficient, W is the spatial weights 

matrix with characteristic roots ωi, X is a matrix of observations on independent variables, 

and ε is the vector of error terms. The dependent variable for a unit relies on both the ob-

served data associated with it and on that of all other units as well – the spatial lag. This 

system is difficult to estimate because of the simultaneity bias (the dependent variable y is in 

a feedback relationship with the independent variable X) encountered when utilizing spatial 
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analogues of ordinary least squares (Franzese and Hays, 2007), but can be computed with 

maximum likelihood estimation (Ord, 1975). 

A system with some spatial interdependence that does not directly affect the explanatory 

observations is the spatial error model, and is given by (Anselin, 1988): 

ϕβ += Xy                              (2) 

where                                              

,ελϕ ϕ += W                     (3)              
and λ is a spatial error coefficient. It is assumed that the errors are normally distributed with 

finite variance. The parameters of this model can be estimated with maximum likelihood 

estimation (Ord, 1975). 

Spatial lag and spatial error dependence can be introduced into the cross-sectional dimen-

sion of panel data models. The spatial lag specification of such model is given by (Anselin, 

1988): 

  tttt εXy Wy ++= κβ                          (4)                          

where observations are indexed by spatial unit (i = 1,..., N) and time period (t = 1,..., T). 

Although the relationship matrices may vary over time, this does not affect the model as long 

as the relationships are known. It can be assumed that the relationship matrix is invariant over 

time, as it will not affect computational complexity, and the error terms are not spatially or 

temporally interdependent.  Spatial lag can be modeled entirely by interactions between units. 

The system can be estimated via maximum likelihood estimation (Beck et al., 2006).  

Systems may lag temporally as well as spatially. That is, a unit is dependent not only 

upon the current state of other units, but upon its own previous states (and thus upon the 

previous states of other units). This model is given as (Beck et al., 2006):  

 
ttttt εXy yWy +++= −− 11 φκβ                     (5) 

 
whereφ is the temporal lag coefficient. The spatial lag occurs at the previous time, which is 

realistic in many situations (i.e. a unit does not react instantaneously to other units, but rather 

after some delay), assuming that the error terms are temporally independent (verified with a 

Lagrange multiplier test). This model can be estimated using ordinary least squares, as the 

time delay on the spatial lag removes the simultaneity bias (Beck et al., 2006). 

In a system where the spatial lag occurs instantaneously, the model is given by: 

ttttt εX yWy +++= −1φκβ                         (6)                                                                     y
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which is significantly more difficult to estimate than the previous models. Again, it is as-

sumed that the errors are temporally independent, and that xi,0 and yi,0 are observable. OLS is 

ineffective due to simultaneity bias. Maximum likelihood becomes unattainable due to the 

fact that the covariance matrix of the error term relies on the expected values of pre-sample 

observations, of which nothing is known. In fact, no satisfactory estimation has been found 

(Beck et al., 2006). To solve this problem, two approximations, the first based on the Bhar-

gava and Sargan method (BS) and the second on the Nerlove and Balestra method (NB), have 

been proposed (Elhorst, 2003). The brief derivation that follows [see (Elhorst, 2003) for 

additional details] is intended to clarify the cost functions that are optimized in this paper.  

Taking first differences of Equation (6), the model changes to:  

 

tttt εy yyW Δ+Δ+Δ= −Δ 1φκ                      (7) 
 

tyΔ  is well defined for all 2 ≤ t ≤ T, but not for 1yΔ because 0yΔ  is not observed. Thus, the 

probability function of  must first be derived. Let and let Vb be 

the N × N matrix defined as  

1yΔ NN IBAIB −== −1φW− ,κ
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where V is an N × N matrix, and 0 represents an N × N matrix of zeroes. For fixed m > 1,  
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Since Xt is stationary, it follows that E[ tXΔ ] = 0 . Thus  Be-

cause X* is not observed, Var[BΔy1] cannot be determined. The BS approximation suggests 

that the optimal predictor of X* when t = 1 is 

.] )1(
1[ mt

mmE −
−− Δ=Δ yByB φ

ξXX +Δ+X +Δ+= TTN πππ 10* ...11  where 

is a scalar and , (t = 1, ... T) are K × 1 vectors of parameters. It follows 

that:  

0
2 ),,0(~ πσξ ξ Ni N I tπ

       11101 ...1 eXXyB Δ+Δ++Δ+=Δ TTN πππ  where .                         (11) j
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Now, let θ  yielding E Define BSV e covari-
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 is given in (9). Then the log-likelihood function becomes: 
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The BS approximation gives a log-likelihood function containing KT+K+5 parameters to be 

estimated: π1, …, πΤ, β, π0, θ2, φ, κ, and σ2. The parameters σ2, π, β can be solved from their 

first-order maximizing conditions (Elhorst, 2003). 

With the Nerlove and Balestra approximation, Var[BΔy1] can be approached by: 
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This approximation results in a log-likelihood function containing K+4 parameters to be 

estimated: β, π0, φ, κ, and σ2. None of these parameters can be solved analytically from the 

first-order maximizing conditions. 

To the authors’ knowledge, these approximations have not received much attention in 

the literature. The complexity of the covariance matrices makes derivative calculations of the 

likelihood very difficult. For instance, consider the NB approach.  will resolve to a 

term relying on N4T4 matrix entries, each of which contains at least one model parameter. The 

complex structure of precludes developing a closed form solution, so a derivative must 

be developed for all combinations of values of N and T. For any meaningful sample sizes, 

computing these derivatives becomes prohibitively difficult, and even if derivatives can be 

found, none of them will be isolated, and would have to be solved via a multi-stage iterative 

approach, a subject to simultaneity bias. Thus, a numerical solution must be employed. Using 

generated test data, the PSO global optimization method is employed to find the maximum 

likelihood estimators of the model parameters. 

eHe 1 ΔΔ −
NBV'
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3. Particle Swarm Optimization 

Particle swarm optimization (PSO) (Kennedy et al., 2001) is an effective, iterative global 

optimization method for continuous, complicated functions with complex search spaces, and 

has received much attention in the literature. PSO begins with a population of “agents” or 

“particles”, each with a random starting location and velocity in n dimensions (n is the num-

ber of parameters of the cost function). Each particle has a pbest vector containing the loca-

tion of that particle’s best cost function value of the cost function.  The vector of the best 

location achieved by all the agents is called gbest. Two uniformly distributed random num-

bers u1 and u2 are generated as weights for the local (personal) and global component of the 

particle’s velocity. Both these values are multiplied by a constant, generally 2.0, so that the 

particles overshoot their desired location about half the time. The velocity update for the dth 

dimension of the ith agent (whose position will be denoted by xi) is updated as:       

)]()([ ,,22,,11,, didididididi ucucK xgbestxpbestvv −+−+←                           (17) 

where
ϕϕϕ 42

2
2 −−−

=K  , ϕ = c1 + c2, c1 = c2, and ϕ > 4. ϕ is generally chosen as 4.1, 

yielding K = 0.729.  The particle’s position in the search space in the next iteration is then 

given as: .  ,,, dididi vxx +←

If a maximum velocity Vmax is set, the velocity of each particle is clipped to lie within 

[-Vmax,Vmax]. The initial search is very global, but the constriction coefficient will decrease the 

effect of each particle’s previous velocity over time, resulting in a more local search.  

 

4. Methods 

4.1 Data Generation 

The data for model (6) were generated as follows: 

)1,0(~ NXi , )25.0,0(~ Niε , 1,1,1, −=+== jijijiw , otherwise,0, =jiw  

)1,0(~ Uκ , )4,0(~ Nφ , )4,0(~ Nβ ,  ).()( 1
1

tttNt εYXWIY ++−= −
− φβκ

The condition of ( ) 1<− WI κφ N  was imposed to ensure that as tyT ,∞→

()( 1
N WI − −κ

does not diverge 

more quickly than T. The first value of y was generated by y  ).initialinitialinitial εX += β

For any desired sample size (N, T), 3T +1 sets of N data were generated. The last T 

data sets are chosen to be passed to the estimators, and TT 2020 , XXyy == .  This is done to 
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mitigate the effects of the initial seed value, and to more accurately simulate a system where 

the process has started at some point before observation begins. 

 

4.2 Estimation of Parameters Using Particle Swarm Optimization 

The particle swarm procedure, also implemented in Matlab, was thoroughly tested with 

ground truth parameters, and optimized for efficiency. The maximum velocity of κ̂  was set 

as 0.005.  The procedure ran for 3000 iterations, or until the average distance between the 

particles and the centroid of all the particles was less than 0.001. The R2
 values of each model 

were computed to determine the goodness-of-fit for each estimation, which was deemed 

successful if an R2 value greater than 0 was achieved (R2 < 0 indicates that the model was 

misspecified).  

The values for X, Y, and W were passed to a PSO procedure for each approximation 

of the model, with 100 agents with starting parameters for each agent being set as: 

).1,1(~ˆ),4,0(~ˆ
),25.0,1(~ˆ),4,0(~ˆ),4,0(~ˆ),0225.0,5.0(~ˆ

2
0

2

NN
NNNN

ζσπ

σβφκ  

The maximum velocity was set to 0.5 for , and to 0.1 for all other parameters.  If the parti-

cles did not converge in 1000 iterations, the procedure was restart, up to a maximum of 3000 

iterations. 200 trials for each sample size were executed.  

β̂

 

5.   Results 

For the first set of trials, a sample size of N = 6, T = 4 was generated. The Nerlove and Bales-

tra approximation yielded 175 successful trials (87.5% success rate), the Bhargava and Sar-

gan approximation yielded 176 (88% success), and there were 159 (79.5%) sets of data where 

both approximations were successful. The data on which both approximations were success-

ful were used to compute the following averages: 

 

Table 1. Results of parameter estimation, N = 6, T = 4. 

Bias Kappa 
Absolute 

Bias Kappa 
Bias Phi 

Absolute 

Bias Phi 

Bias 

Beta 

Absolute 

Bias Beta 
R2 Iterations   

NB 0.033 0.073 0.030 0.179 0.017 0.439 0.867 1454.260 

BS 0.032 0.065 -0.040 0.178 0.731 1.536 0.919 1146.481 
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The PSO procedure converged in 103 (51.5%) of trials when used with the NB method, 

taking an average of 474 iterations, and converging in 128 (64%) of trials on the BS ap-

proximation taking an average of 1198 iterations. 

 The second sample size was chosen as N = 10 and T = 6. PSO returned R2 > 0 for BS 

on 170 (85%) of trials, and for NB 192 (96%) of trials. There were 168 (84%) sets of data in 

which both approximations were successful.  For those data, the procedure converged in 95 

(47.5%) of NB trials with a mean of 434 iterations, and converged in 114 (57%) of BS trials 

(mean of 443 iterations). 

 

Table 2. Results of parameter estimation, N = 10, T = 6. 

Bias 

Kappa 

Absolute 

Bias Kappa 

Bias 

Phi 

Absolute 

Bias Phi 

Bias 

Beta 

Absolute 

Bias Beta 
R2 Iterations   

NB 0.024 0.048 0.003 0.141 -0.262 0.471 0.913 1581.339 

BS 0.031 0.050 -0.001 0.146 -0.364 0.676 0.909 1281.601 

 

 The third sample size was chosen as N = 20, T = 10. The NB approximation produced 

180 (90%) successes, and the Bhargava and Sargan approximation produced 196 (98%) 

successes.  There were 178 (89%) trials where both approximations were successfully esti-

mated. 

 

Table 3. Results of parameter estimation, N = 20, T = 10. 
Bias 

Kappa 

Absolute 

Bias Kappa 

Bias 

Phi 

Absolute 

Bias Phi 

Bias 

Beta 

Absolute 

Bias Beta 
R2 Iterations   

NB 0.005 0.025 -0.023 0.076 0.089 0.674 0.908 1902.185 

BS 0.004 0.028 -0.046 0.084 0.148 0.609 0.912 1706.023 

 

 

The PSO procedure converged for 91 (40.5%) of NB trials, with an average of 853 iterations. 

There was convergence for 100 (50%) of BS trials, with an average of 689 iterations. 

 The final trial size was N = 40, T = 20. Due to the computational time required by the 

likelihood functions on such a large sample size, only 134 trials were run. The NB approxi-

mation produced 64 (47.8%) successes, while the BS approximation produced 81 (60.4%) 

successes. There were 40 (29.8%) trials where both approximations were successful. The 

following averages are taken from the 40 jointly successful trials. 

 

 9



 
 

Table 4. Results of parameter estimation, N = 40, T = 20. 
Bias 

Kappa 

Absolute 

Bias Kappa 

Bias 

Phi 

Absolute 

Bias Phi 

Bias 

Beta 

Absolute 

Bias Beta 
R2 Iterations   

NB -0.002 0.013 -0.032 0.043 0.049 0.999 0.924 3000 

BS -0.013 0.019 -0.025 0.037 -0.337 1.639 0.876 3000 

 

The PSO procedure did not converge for any of the trials, and therefore the maximum num-

ber of iterations (3000) was expended. 

 

5.  Discussion 

It is apparent that even for a simple function such as the likelihood function of the 

general spatial model, a global optimization method rather than a local one should be used 

when no good initial guess of the parameters is available. The relatively low computational 

cost of the function makes PSO an attractive option even for large sample sizes. Moreover, 

PSO exhibited good convergence on the model used, further reducing computational cost. 

PSO is also a viable tool for optimizing the likelihood functions of the approximations 

of the time series cross-sectional spatiotemporal autoregressive model, although there is room 

for improvement. For κ̂ and  a decrease in the average of the absolute bias as N and T 

increase was observed, indicating consistency. The estimation of these parameters also ap-

pears to be unbiased, as the average bias is quite close to zero, neither overestimating nor 

underestimating the parameters. The approximations of the model are expected to improve as 

the sample size grows. 

,φ̂

However, the estimation of  is not consistent. The mean of the absolute values of 

the bias do not decrease as the sample size increases. In fact, it is larger when N = 40, T = 20 

than when N = 6, T = 4. Furthermore, the BS approximation seems to overestimate this pa-

rameter, which may be due to the choice of maximum velocity for particles traveling along 

the dimension, chosen as 0.5 rather than 0.1, as this value led to better and more frequent 

convergence during preliminary trials. There are currently no well-defined heuristics for 

choosing maximum velocities, and further study is necessary to determine whether this is due 

to the choice in velocity, and what would be a more suitable choice. 

β̂

β̂

The convergence rate is also problematic, as there is a clear upward trend. As the 

sample size increases, a small change in the value of a parameter has a larger impact. The 

search space becomes more complex as the sample size increases, and, consequently, more 

iterations are required to achieve better results. 
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 A problem with increasing the number of iterations is the computational cost of PSO.  

As the sample size increases so does the time required to compute the likelihood. For exam-

ple, when the sample size is N = 40, T = 20 the likelihood functions begin to take over to a 

tenth of a second for each computation; with 100 particles, the computation quickly time 

consuming. Even if the likelihood function can be computed in a tenth of a second, for a data 

set that does not converge, 30,000 seconds, or over 8 hours are required, which is too long for 

estimating a large number of data sets. Parallelization is one way to address the efficiency 

issue. In 1995, Schnabel (Schnabel, 1995) outlined three key ways in which optimization 

procedures can be effectively parallelized. The first option is to parallelize the cost function 

itself. In the case presented, this would not be greatly beneficial, as the routines for distrib-

uted matrix computing do not offer a significant advantage. The second strategy is to parallel-

ize the linear algebra routines, which may offer some benefit, as many matrix operations and 

inverse computations are involved.  The third approach is to parallelize the procedure itself. 

That is, the particles can be distributed across processors, allowing multiple likelihood func-

tions to be computed simultaneously. Since most of the computation time is consumed with 

cost functions, large efficiency gains can result. 

Although there is room for improvement in optimizing the two approximations can be 

improved with PSO, other methods may be considered as well. Although the usual iterative 

method for solving generalized method of moments leads to overestimation, generalized 

method of moments in concert with PSO may lead to unbiased results. In addition, although 

the literature currently suggests that BS and NB are the most accurate, proven unbiased and 

consistent estimators may yet be developed. 

 

6. Conclusions 

This paper explored the estimation of the parameters of the time-series cross-sectional spatio-

temporal autoregressive model using two different approximations of the maximum likeli-

hood combined with particle swarm optimization. The results suggest that unbiased estima-

tion of two of the three parameters of interest can be performed, with suggestions on improv-

ing the estimation of the third. For specific sets of data these methods are sufficient, although 

it is important to investigate in future work whether the failure of the estimation technique in 

some cases is due to the approximation, to the choice of PSO parameters, or to other factors. 

The model presented in this paper remains difficult, but, with PSO, a step has been taken 

towards making this model more practical. 
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