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Abstract: 
 

In the past decade, the popularity of realized measures and various linear models for 

volatility forecasting has attracted attention in the literature on the price variability 

of energy markets. However, results that would guide practitioners to a specifc 

estimator and model when aiming for the best forecasting accuracy are missing. This 

paper contributes to the ongoing debate with a comprehensive evaluation of 

multiple-step-ahead volatility forecasts of energy markets using several popular 

high-frequency measures and forecasting models. To capture the complex patterns 

hidden to linear models commonly used to forecast realized volatility, this paper also 

contributes to the literature by coupling realized measures with artificial neural 

networks as a forecasting tool. Forecasting performance is compared across models 

as well as realized measures of crude oil, heating oil, and natural gas volatility during 

three qualitatively distinct periods covering the precrisis period, recent global 

turmoil of markets in 2008, and the most recent post-crisis period. We conclude that 

coupling realized measures with arti_cial neural networks results in both statistical 

and economic gains, reducing the tendency to over-predict volatility uniformly 

during all tested periods. Our analysis favors the median realized volatility, as it 
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delivers the best performance and is a computationally simple alternative for 

practitioners. 
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1. Introduction

The prediction of energy price variability has become one of the most significant is-
sues faced by the natural gas industry and energy companies in recent decades. With
their considerable volatility, natural gas, crude oil, and heating oil, a leading product of
energy markets,1 contributed to a climate of uncertainty and distrust of energy compa-
nies and investors on the one side and consumers, regulators, and legislators on the other
side. The high volatility in energy markets is likely due to supply uncertainty (depending
on a variety of macroeconomic and political factors in crude oil or simply storage-level
constraints in natural gas) and the short-term inelasticity of demand (difficulty of reduc-
ing consumption within a short period of time), which makes it extremely difficult for
both consumers and producers to forecast their costs and profits. The desire to protect
market participants against these losses has led to immense interest in empirical research
focusing on the prediction of variability of energy prices.

Volatility research from previous decades, affected mainly by the work of Engle (1982)
and Bollerslev (1986, 1987), showed that although it is difficult to forecast the direction
of future price changes, price variability is much easier to understand. However, the vast
majority of the research has focused on financial markets, with the focus only recently
turning to the energy markets2 (Wilson et al., 1996; Yang et al., 2002; Linn and Zhu,
2004; Pindyck, 2004; Kuper and van Soest, 2006; Mohammadi and Su, 2010; Wei et al.,
2010; Kang and Yoon, 2013).

More recent advances in financial econometrics have led to the development of new
estimators of volatility using high-frequency data, which made volatility observable.
Whereas pioneering studies in the realized volatility literature recognized the benefits
from using high-frequency data in terms of increased accuracy (Merton, 1980; Zhou,
1996), recent work3 propose several estimators to improve the efficiency, robustness to
market microstructure effects, and the ability to estimate the variation due to the contin-
uous part of the price process separately from the variation due to the jump part of the
price process. See Andersen et al. (2006), McAleer and Medeiros (2008), or Barndorff-
Nielsen and Shephard (2007) for excellent reviews of the realized volatility literature.

Whereas the estimation of realized volatility is the first step to more accurate predic-
tion, using an appropriate model is a second step. Popular heterogeneous autoregressive
(HAR) models and autoregressive fractionally integrated (ARFIMA) models became
widely used to forecast the realized volatility because they capture the long memory
property of the volatility well (Corsi, 2009; Andersen et al., 2003). In contrast to FI-
GARCH models capturing the long memory of volatility using daily returns data,4 these
approaches are more flexible and easier to estimate once we have high-frequency data
available. Whereas both HAR and ARFIMA are developed to capture a specific long
memory feature of the volatility, there may be more complex patterns to be explored.

1According to the CME Group Leading Products Resource, crude oil, natural gas, and heating oil
futures are traded with the highest average volume among energy commodities (http://www.cmegroup.
com/education/featured-reports/cme-group-leading-products.html).

2For a complete review of GARCH-type models used in the energy literature, see Wang and Wu
(2012).

3Andersen and Bollerslev (1998); Andersen et al. (2001, 2003); Zhang et al. (2005); Bandi and Russell
(2006); Hansen and Lunde (2006); Barndorff-Nielsen et al. (2008).

4Kang and Yoon (2013) recently investigate the ability of FIGARCH models to capture the volatility
of energy markets.
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Artificial neural networks (ANN) may be viewed as a generalization of these classical
approaches that may help to uncover the more complex patterns in volatility. Concisely,
neural networks are semi-parametric non-linear models, which are able to approximate
any reasonable function Haykin (2007); Hornik et al. (1989). Whereas the number of
models using machine learning is rapidly growing in the academic literature, applica-
tions to forecasting in energy markets are very limited. Among the few, Fan et al. (2008)
proposes a generalized pattern matching based on genetic algorithm for multi-step-ahead
prediction of crude oil prices. Yu et al. (2008); Xiong et al. (2013) proposes an empir-
ical mode based on the decomposition of neural networks to forecast crude oil prices.
Jammazi and Aloui (2012) uses a hybrid model for crude oil forecasting, Panella et al.
(2012) use a mixture of gaussian neural network to forecast energy commodity prices,
and Papadimitriou et al. (2014) investigates the efficiency of a support vector machines
in forecasting next day electricity prices. Moreover, focus is placed solely on the forecast-
ing of prices, whereas research using neural networks to forecast volatility is still being
developed.

The main contribution of this paper is in coupling measures of volatility from high-
frequency data with artificial neural networks to deliver a reliable forecast of energy
price volatility. Whereas researchers in financial econometrics have done the pioneering
work using stock market index data (McAleer and Medeiros, 2011), we are the first to
comprehensively test the strategy against competing models in the energy literature.
Instead of choosing from a plethora of advanced machine learning algorithms, we use
the simplest and most popular feed-forward neural network, as a first step in this field.
The main motivation is to show whether there are statistical and economic gains from
coupling high-frequency data and easy-to-implement artificial neural networks.

Another contribution of this work is a comprehensive evaluation of the most pop-
ular models and realized measures. The realized volatility measures rely on different
assumptions, and results guiding practitioners to use a specific one when working with
the volatility forecasting of energy markets are still missing from the literature. To bridge
this gap, we focus on the three most liquid energy commodities, crude oil, heating oil,
and natural gas, during the period from January 5, 2004 to December 31, 2012 and put
the models into a horse race through several distinct periods to see which model is able
to produce uniformly lower errors in a multiple-step-ahead forecasts of volatility. The
period under study is especially interesting, as it covers the period of high and rapidly
rising prices, an interruption of the price increase in 2008 due to turmoil in financial
markets, and profound regime change in past few years when price variability became
much calmer. In particular, the last period is interesting from the forecaster’s perspec-
tive, as it appears that from the demand side, the consumption of liquid transport fuels
has peaked in the developed economies as car engines become more efficient and amid
partial substitution by biofuels. On the supply side, high prices reversed the previous
trend towards growing dependence on conventional oil fields in the OPEC member states.
Proper modeling strategies should be able to reflect these changes.

We test the ANN against widely used HAR and ARFIMA models using the recently
proposed frameworks of Model Confidence Set (MCS) from Hansen et al. (2011) and Su-
perior Predictive Ability (SPA) from Hansen (2005) with several popular loss functions
used in the literature. Moreover, we use realized variance (RV), realized kernel (RK),
two-scale realized variance (TSRV), bipower variation (BV), median realized volatility
(MedRV), and the recently proposed jump-adjusted wavelet two-scale realized variance
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(JWTSRV) measures of volatility. Motivated by the possible reduction in model un-
certainty, we also experiment with the linear combination of forecasts from the popular
HAR model and artificial neural network. This experiment proves to yield the lowest
error uniformly through all tested periods regardless of the realized measure used. These
error levels also translate to economic benefits in terms of Value-at-Risk. One of the
loss functions we use in the exercise allows us to assess whether the models tend to
over-predict the volatility, as commonly found by the GARCH-type models (e.g., see
Nomikos and Pouliasis (2011), who confirm the strong tendency of GARCH-type models
to over-predict the volatility of crude oil, heating oil, and gasoline, further confirmed
by Wang and Wu (2012), who find multivariate GARCH-type models to suffer from
over-predictions as well). A uniform finding is that coupling neural networks with high-
frequency data brings large reductions in over-estimation tendency compared with the
previous literature. In addition, we find that MedRV delivers the best forecasts when
compared to other measures. As a computationally simple alternative to other measures,
we prefer the MedRV for forecasting energy volatility.

The rest of the study is organized as follows. Section 2 describes the realized measure
used in this study. Section 3 presents prediction models including HAR, ARFIMA, and
ANN. Section 4 presents the data and discusses research setup, including methodology
for statistical and economic evaluation of forecasts. Section 5 discusses the results, and,
finally, Section 6 concludes. Note that the number of results produced by this research
setup is large, and results using different loss functions are overlapping; therefore, we
relegate auxiliary results to the online supplementary appendix available at http://
ies.fsv.cuni.cz/sci/publication/show/id/5062/lang/en.

2. Estimation of realized volatility

In this analysis, we assume that the latent logarithmic commodity price follows a
standard jump-diffusion process contaminated with microstructure noise. Let yt be the
observed logarithmic prices evolving over 0 ≤ t ≤ T , which will have two components;
the latent, so-called “true log-price process” dpt = µtdt+ σtdWt + ξtdqt, and zero mean
i.i.d. microstructure noise, εt, with variance η2,

yt = pt + εt. (1)

In a latent process, qt is a Poisson process uncorrelated with Wt, and the magnitude of
the jump, denoted as Jl, is controlled by factor ξt ∼ N(ξ̄, σ2

ξ ).
The quadratic return variation over the interval [t−h, t], for 0 ≤ h ≤ t ≤ T associated

with the price process yt may be naturally decomposed into two parts: integrated variance
of the latent price process, IVt,h and jump variation JVt,h

QVt,h =
∫ t

t−h
σ2
sds︸ ︷︷ ︸

IVt,h

+
∑

t−h≤l≤t

J2
l︸ ︷︷ ︸

JVt,h

(2)

As detailed by Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002a),
quadratic variation is a natural measure of variability in the logarithmic price process.
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A simple consistent estimator of the overall quadratic variation under the assumption
of zero noise contamination in the price process is provided by the well-known realized
variance, introduced by Andersen and Bollerslev (1998). The realized variance over
[t− h, t] may be estimated as

Q̂V
(RV )

t,h =
N∑
k=1

(∆kyt)
2
, (3)

where ∆kyt = yt−h+( kN )h−yt−h+( k−1
N )h is the k-th intraday return in the [t− h, t] and N

is the number of intraday observations. The estimator in Eq (3) converges in probability
to IVt,h + JVt,h as N →∞ (Andersen and Bollerslev, 1998; Andersen et al., 2001, 2003;
Barndorff-Nielsen and Shephard, 2001, 2002a,b).

Due to the fact that the observed price process yt is contaminated with noise and
jumps in real data, we must account for this feature, as the main object of interest is
the IVt,h part of quadratic variation. Zhang et al. (2005) propose a solution to the
noise contamination by introducing the so-called two-scale realized volatility (TSRV)
estimator. The authors adopt a methodology for the estimation of the quadratic variation
utilizing all of the available data using an idea of precise bias estimation. The two-scale
realized variation over [t− h, t] is measured by

Q̂V
(TSRV )

t,h = Q̂V
(average)

t,h − N̄

N
Q̂V

(all)

t,h , (4)

where Q̂V
(all)

t,h is computed as in Eq (3) on all available data and Q̂V
(average)

t,h is con-

structed by averaging the estimators Q̂V
(g)

t,h obtained on G grids of average size N̄ = N/G
as

Q̂V
(average)

t,h =
1
G

G∑
g=1

Q̂V
(g)

t,h. (5)

where the original grid of observation times, M = {t1, . . . , tN} is subsampled to M (g),
g = 1, . . . , G, where N/G → ∞ as N → ∞. The estimator in Eq (4) provides the first
consistent and asymptotic estimator of the quadratic variation of pt. Zhang et al. (2005)
also provide the theory for the optimal choice of G grids, G∗ = cN2/3, where the constant
c may be set to minimize the total asymptotic variance.

A different approach to addressing noise developed by Barndorff-Nielsen et al. (2008)
is realized kernels. The realized kernel variance estimator over [t− h, t] is defined by

Q̂V
(RK)

t,h = γ0 +
H∑
η=1

K

(
η − 1
H

)
(γη + γ−η), (6)

with γη =
∑N
k=1 ∆kyt∆k−ηyt denoting the η-th realized autocovariance with η = −H, . . . ,

− 1, 0, 1, . . . ,H, and K(.) denotes the kernel function. Note that for η = 0, γη = γ0 =

Q̂V
(RV )

t,h is an estimate of the realized variance from Eq (3). For the estimator to work,
we must choose the kernel function K(.). In our study, we will focus on the Parzen
kernel because it satisfies the smoothness conditions, K ′(0) = K ′(1) = 0, and is guar-
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anteed to produce a non-negative estimate.5 We should note that the realized kernel
estimator is computed without accounting for end effects, i.e., replacing the first and the
last observation by local averages to eliminate the corresponding noise components (so-
called “jittering”). Barndorff-Nielsen et al. (2008) argue that these effects are important
theoretically but are negligible practically.

When studying conditional volatility, it is important to separate the contribution of
the two components of the quadratic variation process, i.e., the continuous part from the
jump part. Recent evidence from the volatility forecasting literature indicates that the
two sources of variation in the price possess substantially different time series properties
and impact future volatility in different ways. Despite being mainly interested in fore-
casting integrated variance, we also disentangle jumps from the data. Barndorff-Nielsen
and Shephard (2004, 2006) first develop a bipower variation estimator, which may de-
tect the presence of jumps in high-frequency data. The main idea of the estimator is to
compare two measures of the integrated variance, one containing the jump variation and
the other being robust to jumps and thus containing only the integrated variation part.
In our work, we use the Andersen et al. (2011) adjustment of the original Barndorff-
Nielsen and Shephard (2004) estimator, which helps to render it robust to certain types
of microstructure noise. The bipower variation over [t− h, t] is defined by

ÎV
(BV )

t,h = µ−2
1

N

N − 2

N∑
k=3

|∆k−2yt|.|∆kyt|, (7)

where µa = π/2 = E(|Z|a), and Z ∼ N(0, 1), a ≥ 0 and ÎV
(BV )

t,h →
∫ t
t−h σ

2
sds. Therefore,

ÎV
(BV )

t,h provides a consistent estimator of the integrated variance. Although Q̂V
(RV )

t,h

provides a consistent estimator of the integrated variance plus the jump variation, the
jump variation may be estimated consistently as the difference between the realized
variance and the realized bipower variation

plimN→∞(Q̂V
(RV )

t,h − ÎV
(BV )

t,h ) = JVt,h. (8)

Under the assumption of no jump and some other regularity conditions, Barndorff-Nielsen
and Shephard (2006) provide the joint asymptotic distribution of the jump variation.6

Using this theory, the contribution of the jump variation to the quadratic variation of

5The Parzen kernel function is given by K(x) =

8<: 1− 6x2 + 6x3 0 ≤ x ≤ 1/2
2(1− x)3 1/2 ≤ x ≤ 1.
0 x > 1

6Under the null hypothesis of no within-day jumps,

Zt,h =

dQV (RV )
t,h −cIV (BV )

t,hdQV (RV )
t,hvuut“`π

2

´2
+ π − 5

”
1
N

max

 
1,

dTQt,h“cIV (BV )
t,h

”2
! ,

where dTQt,h = Nµ−3
4/3

“
N
N−4

”PN
k=5 |∆k−4yt|4/3|∆k−3yt|4/3|∆k−2yt|4/3 is asymptotically standard

normally distributed.
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the price process is measured by

JVt,h = IZt,h>Φα

(
Q̂V

(RV )

t,h − ÎV
(BV )

t,h

)
, (9)

where IZt,h>Φα denotes the indicator function and Φα refers to the chosen critical value
from the standard normal distribution. The measure of integrated variance is defined as

ÎV
(CBV )

t,h = IZt,h≤ΦαQ̂V
(RV )

t,h + IZt,h>Φα ÎV
(BV )

t,h , (10)

ensuring that the jump measure and the continuous part add up to the estimated variance
without jumps.

To estimate the integrated volatility in the presence of jumps, we employ an additional
estimator, the median realized volatility, introduced by Andersen et al. (2012):

ÎV
(MedRV )

t,h =
π

6− 4
√

3 + π

(
N

N − 2

) N∑
k=3

med (|∆k−2yt|, |∆k−1yt|, |∆kyt|)2
. (11)

2.1. Estimation of quadratic variation using Wavelets
Fan and Wang (2007) use a different approach to measuring realized volatility. They

use wavelets to separate jump variation from the price process as well as for the estimation
of the integrated variance on the jump–adjusted data. Although we use the wavelet-based
estimator as one of the six realized measures, we do not discuss the details of the wavelet
theory here and direct the reader to the literature.

Assume that the sample path of the price process yt has a finite number of jumps.
Following the results of Wang (1995) on the wavelet jump detection of the deterministic
functions with i.i.d. additive noise, we use a special form of a discrete wavelet transform,
the maximal overlap discrete wavelet transform (MODWT), which, unlike the ordinary
discrete wavelet transform, is not restricted to a dyadic sample length. Jump locations are
detected by the first-level wavelet coefficients obtained on the process yt over [t − h, t],
W1,k. Because we use the MODWT, we have k wavelet coefficients at the first scale,
which corresponds to the number of intraday observations, i.e., k = 1, . . . , N . In case the
value of the wavelet coefficient W1,k is greater7 than the universal threshold d

√
2 logN

(Donoho and Johnstone, 1994), then a jump with size ∆kJt is detected as

∆kJt =
(
yt−h+( kN )h − yt−h+( k−1

N )h
)
1{|W1,k|>d

√
2 logN} k ∈ [1, N ], (12)

where d =
√

2med{|W1,k|}/0.6745 for k ∈ [1, N ] denotes the intraday median absolute
deviation estimator: (Percival and Walden, 2000).

Following Fan and Wang (2007), the jump variation over [t− h, t] in discrete time is
estimated as the sum of squares of all the estimated jump sizes,

ĴV t,h =
N∑
k=1

(∆kJt)
2
. (13)

7Using the MODWT filters, we must slightly correct the position of the wavelet coefficients to obtain
the precise jump position; see Percival and Mofjeld (1997).

7



Fan and Wang (2007) prove that using Eq (13), we are able to estimate the jump variation
from the process consistently.

Having precisely detected jumps, we proceed to the jump adjustment of the observed
price process yt. We adjust the data for jumps by subtracting the intraday jumps from
the price process as follows:

∆ky
(J)
t = ∆kyt −∆kJt, k = 1, . . . N, (14)

where N is the number of intraday observations. Finally, volatility may be computed
using the jump-adjusted wavelet two-scale realized variance (JWTSRV) estimator on
the jump-adjusted data ∆ky

(J)
t . The JWTSRV is an estimator that is able to estimate

integrated variance from the process under the assumption of data containing noise as
well as jumps. The estimator utilizes the TSRV approach of Zhang et al. (2005) as well
as the wavelet jump detection method. Another advantage of the estimator is that it
decomposes the integrated variance into Jm + 1 components; therefore, we are able to
study the dynamics of volatility at various investment horizons. Following Barunik and
Vacha (2014), we define the JWTSRV estimator over [t− h, t] on the jump-adjusted data
as follows:

ÎV
(JWTSRV )

t,h =
Jm+1∑
j=1

ÎV
(JWTSRV )

j,t,h =
Jm+1∑
j=1

(
ÎV

(average)

j,t,h − N̄

N
ÎV

(all)

j,t,h

)
, (15)

where ÎV
(average)

j,t,h = 1
G

∑G
g=1

∑N
k=1

(
W(g)
j,k

)2

is obtained from wavelet coefficient esti-

mates on a grid of size N̄ = N/G, and ÎV
(all)

j,t,h =
∑N
k=1 (Wj,k)2 is the wavelet realized

variance estimator at a scale j on all the jump-adjusted observed data, ∆ky
(J)
t . Wj,k de-

notes the MODWT wavelet coefficient at scale j with position k obtained on the process
yt over [t− h, t].

Barunik and Vacha (2014) show that the JWTSRV is a consistent estimator of the
integrated variance, as it converges in probability to the integrated variance of the process
pt, and they assess the small sample performance of the estimator in a large Monte Carlo
study. The JWTSRV is found to be able to recover true integrated variance from the
noisy process with jumps very precisely. Moreover, the JWTSRV estimator is also tested
in a forecasting exercise, which has been found to improve substantially the forecasting
of the integrated variance.

3. Prediction models

Well documented evidence for the strong temporal dependence of realized volatility
suggests that realized volatility should be modeled by an approach allowing for a slowly
decaying autocorrelation function and possibly long memory. Müller et al. (1997), Ar-
neodo et al. (1998) and Lynch and Zumbach. (2003) show that volatility over long time
intervals has a strong influence on volatility at shorter time intervals but that volatility
over short time intervals does not have an effect on longer intervals. A possible eco-
nomic interpretation is that long-term volatility matters for short-term traders, whereas
short-term volatility does not affect long-term trading strategies.
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Standard, ARCH-type volatility models of (Engle, 1982; Bollerslev, 1986, 1987) and
one-factor stochastic volatility models treat volatility as a latent variable and do not cap-
ture the long memory. In this study, we use the realized volatility as ex-post observed
variance, and to assess the relative performance of the artificial neural network, we con-
sider benchmark models for forecasting volatility capturing its properties. We compare
the forecasts from neural networks to the heterogeneous autoregressive (HAR) model of
Corsi (2009) and an autoregressive fractionally integrated moving average (ARFIMA)
model briefly described in this section.

3.1. The linear heterogeneous autoregressive (HAR) model
A simple, popular model for forecasting realized volatility is the heterogeneous au-

toregressive model (HAR) of Corsi (2009) based on the heterogeneous realized volatility
components

νt+1 = α+ βDνt + βW νt,t−5 + βMνt,t−22 + εt+1, (16)

where νt,t−k = 1
k

∑k−1
l=0 νt−j is the average νt over the past k days, where νt,h is chosen

from the estimated quadratic variation or its components,
√
Q̂V

(est)

t,h , and
√
ÎV

(est)

t,h ,
where (est) are RV, RK, TRSV, CBV, MedRV, and JWTSRV measures.

3.2. Long-memory autoregressive fractionally integrated moving average (ARFIMA)
Although the HAR model is popular due to its simplicity, it is an approximate long-

memory model and as a result might not be able to capture the dynamics of long memory
properties in volatility well. Therefore, in our forecasting exercise, we follow Ander-
sen et al. (2003) and adopt the autoregressive fractionally integrated moving average
(ARFIMA) class of models.

If we assume that the volatility series belong to the class of ARFIMA processes of
Granger and Joyeux (1980), then the dth difference of each series is a stationary and
invertible ARMA process where parameter d may be any real number such that −1/2 <
d < 1/2 to ensure stationarity and invertibility. More precisely, νt is an ARFIMA(p, d, q)
process if it follows:

α(L)(1− L)d(νt − µ) = β(L)vt, (17)

where α(z) = 1 − α1z − · · · − αpzp and β(z) = 1 + β1z + · · · + βqz
q are polynomials of

order p and q, respectively, in the lag operator L(Lνt = νt−1), which is rooted strictly
outside the unit circle, vt is iid with zero mean and σ2

v variance, and (1− L)d is defined
by its binomial expansion. The model is estimated using a maximum likelihood method,
and forecasting is performed by extrapolating the estimated model. Deo et al. (2006),
Andersen et al. (2003) show that forecasting log realized volatility based on a simple
ARFIMA(1, d, 0) specification is a very good competitor to other time-series methods of
forecasting realized volatility. We estimate a simple ARFIMA(1, d, 0).

3.3. Artificial neural networks for predicting volatility
Both HAR and ARFIMA models are developed to capture a specific features of the

time series, and they are suitable for volatility modeling due to its ability to capture long
memory. Artificial neural networks (ANN) may be viewed as a generalization of these
classical approaches, which allows us to model another type of nonlinearities in the data
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in addition to long memory. Concisely, neural networks are semi-parametric non-linear
models, which are able to approximate any reasonable function Haykin (2007); Hornik
et al. (1989).

Although neural networks are primarily associated with biological systems and suc-
cessfully applied in numerous fields, such as pattern recognition, medical diagnostics,
many econometricians argue that neural networks are a black box. A standard ANN
imitates neural processing in brain activation. Together with the fact that one must
make arbitrary decisions about the implementation of the network, i.e., the number of
hidden layers, the choice of transformation functions, the number of neurons, etc., neural
networks are still not commonly used for financial time series modeling.

Abandoning these concerns, we use neural network as a generalized nonlinear regres-
sion, being able to describe the complex patterns in volatility time series. Like linear or
nonlinear methods, a neural network relates a set of input variables, say lags of volatility
to output, the forecast. The only difference between network and other models is that
the approximating function uses one or more so-called hidden layers, in which the input
variables are squashed or transformed by a special function.

The most widely used artificial neural network in financial applications with one
hidden layer (Hornik et al., 1989) is the feed-forward neural network. The general feed-
forward or multilayered perception (MLP) network we use for volatility νt forecasting
may be described by the following equations:

nk,t = ωk,0 +
21∑
i=0

ωk,iνt−i (18)

Λ(nk,t) =
1

1 + e−nk,t
(19)

νt+h = γ0 +
k∗∑
k=1

γkΛ(nk,t) (20)

where Λ(nk,t) is the log-sigmoid activation function. To make the model comparable
to HAR model, we use 22 lags of volatility νt as input variables and k∗ neurons nk,t.
ωk,i represents a coefficient vector or weights vector to be found. The variable nk,t is
squashed by the logsigmoid function and becomes a neuron Λ(nk,t). Next, the set of k∗

neurons are combined linearly with the vector of coefficients {γk}k
∗

k=1 to form the final
output, which is the volatility forecast νt+h. This model is the workhorse of the neural
network modeling approach in finance, as almost all researchers begin with this network
as the first alternative to linear models.

Note that HAR and ARFIMA are simple special cases within this framework if trans-
formation Λ(nk,t) is skipped and one neuron that contains a linear approximation func-
tion is used. Therefore, in addition to classical linear models, there are neurons that
process the inputs to improve the predictions.

To be able to approximate the target function, the neural network must be able
to “learn”. The process of learning is defined as the adjustment of weights using a
learning algorithm. The main goal of the learning process is to minimize the sum of the
prediction errors for all training examples. The training phase is thus an unconstrained
nonlinear optimization problem, where the goal is to find the optimal set of weights of
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the parameters by solving the minimization problem:

min{Ψ(ω) : ω ∈ Rn}, (21)

where Ψ : Rn → Rn is a continuously differentiable error function. There are several
ways of minimizing Ψ(ω), but basically we are searching for the gradient G = ∇Ψ(ω) of
function Ψ, which is the vector of the first partial derivatives of the error function Ψ(ω)
with respect to the weight vector ω. Furthermore, the gradient specifies a direction that
produces the steepest increase in Ψ. The negative of this vector thus provides us the
direction of steepest decrease.

Nevertheless, the traditional gradient descent algorithms often fail in learning intricate
patterns in the data efficiently due to many possible initial settings. One of the efficient
methods for learning the patterns in feed-forward neural networks, which we use, is
the resilient propagation algorithm Riedmiller and Braun (1993). The algorithm differs
from the previous one by concentrating solely on the sign of gradients rather than on
the overall numerical estimate, which might be imprecise in many cases. This simple
idea brings more stability and a higher speed of convergence than in the case of plain
backpropagation or quickpropagation algorithms.

The best ANN model is chosen from a set of models having either 7 or 15 hidden
neurons (to determine whether the amount of neurons in the hidden layer help to process
the information better) and decay either 0 (without decay) or 1e-10 (standard decay used
in the literature). To prevent overfitting, we use cross-validation over time with fixed
window. The best model is chosen based on the cross-validation scheme.

4. Data description and research design

The data set consists of transaction prices for crude oil, heating oil and natural gas
traded on the New York Mercantile Exchange (NYMEX).8 We use the most active rolling
contracts from the pit (floor traded) session during the main trading hours between 9:00
– 14:30 EST. From the raw irregularly spaced prices, we extract 5-minute logarithmic
returns using the last-tick method for the RV, RK, BV, and MedRV estimators and,
in addition, one-second logarithmic returns for TSRV and JWTSRV estimators. The 5-
minute choice is guided by the volatility signature plot, and previous literature employing
the same data. The sample period extends from January 5, 2004 to December 31, 2012
covering the recent U.S. recession from Dec 2007 – June 2009. We eliminate transactions
executed on Saturdays and Sundays, U.S. federal holidays, December 24 to 26, and
December 31 to January 2, due to the low activity on these days, which could lead to
estimation bias.

4.1. Realized measures
We construct the following measures of the various components of quadratic variation:

realized variance Q̂V
(RV )

t,h , defined by Eq (3), realized kernel Q̂V
(RK)

t,h , defined by Eq (6),

two-scale realized variance Q̂V
(TSRV )

t,h , defined by Eq (4), the “continuous part” of the

8The data were obtained from the Tick Data, Inc.

11



bipower variation ÎV
(CBV )

t,h , defined by Eq (10), the median realized volatility ÎV
(MedRV )

t,h ,

defined by Eq (11), and jump-adjusted wavelet two-scale realized variance ÎV
(JWTSRV )

t,h ,
defined by Eq (15). We work with forecasts of volatility, which is the square root of the
component of quadratic variation. For ease of notation, we will use only abbreviations
in the analysis of results: RV, RK, TRSV, CBV, MedRV, and JWTSRV.

Our main motivation in using more realized measures in the forecasting is to determine
the impact of noise and jumps on forecasting volatility. Although RV is very simple to
compute for a practitioner, RK and TSRV measure the volatility of the true price process
contaminated with microstructure noise, and these three are measures for the quadratic
variation. In addition, CBV, and MedRV measure integrated variance directly, whereas
MedRV offers a number of advantages over the alternative measures in the presence
of infrequent jumps. This measure is less sensitive to the presence of occasional zero
intraday returns and yields smaller finite-sample bias induced by jumps. Finally, the
most complicated JWTSRV measure offers robustness to both microstructure noise and
jumps.

Table 1 reports the summary statistics for the estimated realized measures. The
natural gas price shows greatest degree of variability in comparison to crude oil and
heating oil with twice larger averages. Ljung-Box statistics point to large degree of
dependence, as commonly found in the volatility time series. The daily prices, returns
and volatility are plotted in Figure 1.

4.2. Research design for forecast evaluation
The main interest of this work lies in relative forecasting performance rather than in

the in-sample fit of various models. Although the literature describes the fits of partic-
ular models in detail, we are interested in comparing them in the forecasting exercise;
therefore, we have made the in-sample model fits available upon request and wish to
state that we have conducted all the necessary tests to conclude that all the models fit
the data well.

Our data sample covers the period from January 5, 2004 to December 31, 2012. The
first 600 observations are used for the in-sample fit of the tested models, whereas we
reserve the remaining 1631 observations for evaluating out-of-sample forecasting perfor-
mance. We compute and evaluate 1-step-ahead and cumulative 5- and 10-step-ahead
forecasts of price volatility. The cumulative h-step-ahead forecasts are obtained from the
usual multi-step-ahead forecast by cumulating νt,t+h = h−1

∑h
j=1 νt+j daily volatilities.

We focus on cumulative forecasts, as they are more interesting in applications.
After estimating the volatility forecasts for all 1631 observations from July, 6, 2006

until December 31, 2012 on a rolling basis, we divide the forecasts into three periods.
The main motivation is the recent crisis, which occurred in the middle of our forecasted
sample. Therefore, evaluating the forecasts in the three equal periods will allow us to
evaluate the forecasting performance of all models before the crisis on the data from July
6, 2006 until August 31, 2008, during the crisis, using the period from September 1, 2008
until October 31, 2010, and after the crisis, covering the period from November 1, 2010
until December 31, 2012. The periods are visually depicted by Figure 1. We observe a
highly distinct evolution of prices in all three studied assets through the three periods.
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4.3. Statistical evaluation of the forecasts
We split the evaluation analysis into two parts to evaluate the out-of sample forecasts

statistically as well as economically. To statistically compare the accuracy of the volatility
forecasts from different models, we employ two common loss functions, namely the root
mean square error (RMSE) and the mean absolute error (MAE). The measures are
calculated for the t = 1, . . . , T forecasts as

RMSE =

√√√√ 1
N

T∑
i=1

(ν̂t+i − νt+i)2 (22)

MAE =
1
N

T∑
i=1

|ν̂t+i − νt+i| (23)

As discussed by Nomikos and Pouliasis (2011), these metrics do not provide infor-
mation about the asymmetry of the errors commonly found by the literature, especially
for the parametric GARCH models. Nonetheless, the asymmetry of forecast error is im-
portant for the practitioners, as it alerts us to whether the modeling strategy tends to
over-predict or under-predict the volatility. Testing the forecasts of energy commodities,
Nomikos and Pouliasis (2011) confirm the strong tendency of GARCH type models to
over-predict the volatility of crude oil, heating oil, and natural gas. This finding was
further confirmed by Wang and Wu (2012), who find multivariate GARCH-type models
to suffer from over-predictions as well.

This bias then translates to direct economic losses. Hence, as suggested by Nomikos
and Pouliasis (2011), we employ two additional mean mixed error (MME) loss functions
(Brailsford and Faff, 1996) to assess the forecasts. These functions use a mixture of
positive and negative forecast errors with different weights allowing us to discover the
cases if the model tends to over- or under-predict

MME(O) =
1
N

(∑
i∈U
|ν̂t+i − νt+i|+

∑
i∈O

√
|ν̂t+i − νt+i|

)
, (24)

MME(U) =
1
N

(∑
i∈U

√
|ν̂t+i − νt+i|+

∑
i∈O
|ν̂t+i − νt+i|

)
, (25)

where U is the set containing under-predictions andO is the set containing over-predictions.
To test significant differences of competing models, we use the Model Confidence Set

(MSC) methodology of Hansen et al. (2011). Given a set of forecasting models, M0, we
identify the model confidence set M̂∗1−α ⊂ M0, which is the set of models that contain
the “best” forecasting model given a level of confidence α. For a given model i ∈ M0,
the p-value is the threshold confidence level. Model i belongs to the MCS only if p̂i ≥ α.
MSC methodology repeatedly tests the null hypothesis of equal forecasting accuracy

H0,M : E[Li,t − Lj,t] = 0, for all i, j ∈M

with Li,t being an appropriate loss function of the i-th model. Starting with the full set
of models,M =M0, this procedure sequentially eliminates the worst-performing model
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fromM when the null is rejected. The surviving set of models then belong to the model
confidence set M̂∗1−α. Following Hansen et al. (2011), we implement the MCS using a
stationary bootstrap with an average block length of 20 days.9

In addition, we employ the superior predictive ability (SPA) test of Hansen (2005) to
identify the best performing model. The null hypothesis of the SPA methodology is that
the chosen benchmark model is the best forecasting model to its competitors, indicating
that the benchmark model produces the smallest loss. Again, we use the bootstrapped
p-values and follow Hansen (2005) in the implementation of the test.

We determine the set of statistically best models in three steps.

1. Determine MCS M̂∗1−α across the forecasting models: ARFIMA, HAR, Neural
Networks (ANN) and HAR-ANN combination.

2. Determine the best forecasting model based on SPA by benchmarking all the models
against the rest.

3. Determine MCS M̂∗1−α across the realized measures: RV, TSRV, RK, CBV, MedRV,
and JWTSRV.

As a result, the best forecasting model is the one we are unable to reject by SPA and
which belongs to the both MCS across models and realized measures. We repeat the
procedure for all chosen loss functions, MAE, RMSE, MME(O), and MME(U).

4.4. Economic Evaluation of the forecasts
A modelÕs statistical superiority does not necessarily translate to economic ben-

efits; therefore, in addition to performing statistical evaluation, we evaluate the fore-
casts economically. Quantile forecasts are central to risk management decisions due to a
widespread Value-at-Risk (VaR); therefore, we use VaR metrics for the economic evalu-
ation of the forecasts. From the volatility forecasts, we compute 1%, 5% VaR for both
long positions and short positions.

Although quantile forecasts may be readily evaluated by comparing their actual (es-
timated) coverage Ĉα = 1/n

∑T
n=1 1(yt+h < q̂αt+h), against their nominal coverage rate,

Cα = E[1(yt,t+1 < qαt,t+1)], with q̂αt+h being h-step-ahead forecast of VaR at α, this ap-
proach reduces to the simple comparison of unconditional coverage rates. Therefore, we
evaluate the accuracy of VaR forecasts statistically by defining the expected loss of VaR
forecasts of Giacomini and Komunjer (2005) made by a forecaster m as follows:

L̂α,m = E
[
α− 1

(
yt,t+1 < q̂α,mt,t+1

)] [
yt,t+1 − q̂α,mt,t+1

]
, (26)

and VaR forecasts are tested using the same methodology as in the previous section,
namely, using MSC and SPA procedures. Again, we test the performance across both
forecasting models and realized measures.

9We have used different block lengths, including the ones depending on the forecasting horizons, to
assess the robustness of the results, without any change in the final results. These results are available
from the authors upon request.
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5. Empirical results

The following section compares the performance of neural networks against the com-
peting ARFIMA and HAR models in volatility forecasting. Each of the models is esti-
mated using all six realized measures: RV, TSRV, RK, CBV, MedRV, and JWTSRV. In
addition, we experiment with equally weighted combinations of the popular HAR and
neural network model, as model averaging may help reduce model uncertainty. Although
these two alternatives offer the best forecasts, its linear combination is a good candidate
for offering the best forecasting framework for a practitioner in any situation.

We begin the discussion with the statistical evaluation of the forecasting models and
move to the economic implications later on. As mentioned earlier, we aim to assess the
forecasting performance of all models in three separate periods: before, during, and after
the recent financial crisis of 2008. We thus discuss the results in this logical sequence.
The number of tables produced by this research setup is large, and results using different
loss functions are overlapping; therefore, we report part of the results in the online sup-
plementary appendix available at http://ies.fsv.cuni.cz/sci/publication/show/
id/5062/lang/en.

5.1. Statistical evaluation of forecasts
We present the results for RMSE, MAE, MME(O), and MME(U) in separate tables

for each of the periods. Each table contains results for all three commodities; crude oil,
heating oil, and natural gas, and several forecasting horizons: 1-step-ahead, 5- and 10-
step-ahead. The statistical significance of the difference in the performance is evaluated
across forecasting models (row-wise comparison) and across volatility estimators (column-
wise comparison) using MCS. We use (b), and (a) to denote the model and estimators
that belong to the corresponding 10% model confidence sets, respectively. In addition, a
bold entry depicts a model that cannot be rejected as the best forecasting model against
its competitors using the SPA test.

Although we do not know the true process generating the data, we must make a de-
cision about volatility proxy in the testing procedure. When testing model performance,
we use the realized measure being forecasted by the model as a volatility proxy. When
testing the performance across measures, we choose a simple proxy of absolute value
of open-close returns, as common in the literature. This approach allows us to identify
which realized measures perform best. We have also experimented with all different mea-
sures as a proxy for volatility, but the results do not change; therefore, we leave these
results upon request from authors.

5.1.1. Forecasting performance before the crisis
We begin with studying the forecasting performance of the models in the pre-crisis

period from July, 6, 2006 – August 31, 2008. Table 2 presents the results for the RMSE
and MAE.

To assist the interpretation of the tables, let us consider the results in Table 2, the first
column of which shows the RMSE of the models forecasting volatility of the crude oil.
Starting with 1-step-ahead forecasts and holding the realized measure, say, TSRV (first
column), fixed, ANN and HAR-ANN models produce the lowest error of 0.357 × 10−2,
whereas all models belong to the model confidence set, as they are depicted by (b).
Moreover, HAR, ANN, and HAR-ANN combinations are set in bold, indicating that
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they are not rejected as the best benchmark forecasting model by the SPA test, whereas
ARFIMA is rejected due to its largest error of 0.365 × 10−2. This result holds for all
columns (all realized measures) except JWTSRV and CBV, which forecast only integrated
variation part. For the JWTSRV and CBV, ANN and HAR-ANN combination are
the only two models in the model confidence set. This approach indicates that if we
are interested in forecasting the whole quadratic variation, the HAR and ANN models
are both in the model confidence set and produce statistically indistinguishable results,
whereas ANN produces lowest error. If we are interested in forecasting only the integrated
variation part, ANN is superior to other models. Holding the model and comparing the
errors column-wise, MedRV is the only measure belonging to the confidence set. Note
that RMSE and MAE values for comparison across measures are different from those
reported in the table, as we use a single volatility proxy for the absolute value of open-
close returns to conduct the MCS.

For the 5-step-ahead and 10-step-ahead forecasts, all realized measures belong to
the model confidence set, and HAR, ANN, and the combination HAR-ANN produce
statistically same forecasts, whereas ARFIMA is rejected, and the ANN models bring
the lowest error. Turning to the results found for MAE, they yield similar conclusions,
but the ARFIMA model is not rejected. Nonetheless, a higher forecasting horizon h
implies a lower error for ANN compared to other competing models.

When examining the rest of the results reported by Table 2 for heating oil and natural
gas, we observe a similar picture, although the results are more mixed. In conclusion, a
larger forecasting horizon h implies less error from ANN or a combination of the HAR-
ANN model in comparison to the HAR and ARFIMA (with exception of heating oil).
Whereas on many occasions HAR or even ARFIMA belong to the model confidence set,
note that the HAR-ANN combination always belongs to the model confidence set and is
never rejected by the SPA test (again, except for a few occasions concerning heating oil).
As for the comparison across realized measures, MedRV belongs to the MCS in all cases,
while other estimators of integrated variance; namely, CBV and JWTSRV belong to the
MCS more often than in the crude oil case. This fact points us to the conclusion that
MeRV is the best measure for forecasting volatility. One may oppose that the results are
not robust, as these are measures of integrated variance, excluding jumps. However, the
result is strong, as the volatility proxy used is the absolute value of open-close returns,
which also includes jumps.

Turning our attention to the over- and under- predictions reported in the online
appendix, the main conclusions remain unchanged.10 An important result emerges: the
models yield similar results for both MME(O) and MME(U) in terms of significance but
also in terms of % predicted. We may conclude that for all the tested futures, crude
oil, heating oil, and natural gas, the models tend to over-predict slightly, but only by
approximately 55% on average (with maximum levels of over-predictions for natural gas
under 60%), whereas in many occasions, models yield an equal number of over- and
under-predictions. This is an important finding, as, in comparison to GARCH-type
models that strongly over-predict volatility (Nomikos and Pouliasis, 2011; Wang and
Wu, 2012), high-frequency data appear to yield substantial improvement in this respect.

10To conserve space, we report the actual MME(U), and MME(O) values together with percentages of
over- and under-predictions in the online supplementary appendix, available at http://ies.fsv.cuni.

cz/sci/publication/show/id/5062/lang/en.
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5.1.2. Forecasting performance during the crisis
Forecasting performance of the models during the crisis, covering the September 1,

2008 – October 31, 2010 period follows in terms of RMSE and MAE is reported in Table
3. A general overview of results from the pre-crisis period hold, whereas all of the RMSE
and MAE are larger in comparison with the pre-crisis period. ANN and the HAR-ANN
combination of models produce the lowest errors, whereas in most cases, HAR, ANN,
and their combination belong to the model confidence set. ARFIMA is rejected as a
best-performing model several times, whereas the combination of ANN and HAR models
is never rejected and always belongs to the model confidence set.

When comparing the results across realized measures, we observe that MedRV again
belongs to the MCS across all commodities and forecasting horizons. In addition, when
forecasting crude oil 1- and 5-steps-ahead, it does not matter which measure is used.
Therefore, logically, the simplest realized volatility is preferred in this case. In many
cases, CBV and JWTSRV belong to the model confidence set as well.

CBV and MedRV belong to the model confidence set most often together with JWT-
SRV. From the remaining estimators, RK appears to perform best.

The comparison using over- and under-prediction loss functions reported in the online
appendix provides even more support for the ANN models. ANN or the HAR-ANN
combination belong to the model confidence set, whereas HAR may not be rejected as
the best forecasting model more often. Generally, models tend to over-predict volatility
during the crisis little bit more on average, but again, the degree of over-prediction is
not larger than 60%.

To conclude, the results from forecasting volatility during the recent crisis produce
larger errors than before the crisis, but generally, ANNs again prove to be uniformly best
forecasting vehicle. In terms of realized measure, MedRV is decisively the best choice.
Interestingly, the rate of over-prediction is not much higher, which proves the modelsÕ
general ability to forecast the volatility correctly.

5.1.3. Forecasting performance after the crisis
Next, we compare the model performance on the data after the crisis, November

1, 2010 – December 31, 2012. Table 4 presents the results for the RMSE, and MAE.
Whereas the reported loss functions are the lowest in comparison to the previous periods,
the statistical tests tend to reject more models. ANN tends to deliver larger errors than
competing models, but its combination with HAR produces lowest errors. After turmoil
of the 2008, the HAR-ANN combination again always belongs to the model confidence set,
while it is the only model in the model confidence set in many occasions. Interestingly,
ARFIMA produces lowest errors in many cases as well. The results of column-wise
comparison favor MedRV.

The comparison of the errors from a volatility forecast through the lens of over- and
under-prediction yields similar conclusions. The HAR-ANN combination again belongs
to the model confidence set in all cases. This time, all of the models tend to over-predict
the volatility to a larger extent, up to 70%. This result is attributed to the fact that
the model parameters are estimated in times of high volatility during 2008, whereas the
predictions are made during a calmer period. In this respect, the models all perform
very well in terms of statistical criteria.
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5.1.4. Forecasting performance over whole period.
As a robustness check, we also compute the statistics for all 1631 obtained fore-

casts. RMSE/MAE are reported in Table 5, whereas the results for the over- and
under-prediction statistics are reported in the online appendix. Combination of HAR
and ANN always belongs to the model confidence set, and generally produces the best
forecast, with few exceptions when forecasting heating oil. A larger forecasting period,
improves the errors produced by ANN or HAR-ANN when compared to competing mod-
els. When we compare the errors through the realized measures, MedRV again belongs
to the model confidence set in most cases. In addition, CBV and JWTSRV belong to
the model confidence set in many cases as well.

In comparison to more complicated TSRV, JWTSRV measures, MedRV is a simple al-
ternative, and it provides the best performance. Therefore, MedRV would be a preferred
measure in forecasting the variability of energy prices.

5.2. Comparison of forecasts across realized measures
In addition, we analyze the forecasting efficiency and information content of different

volatility estimators and models with the help of simple Mincer and Zarnowitz (1969)
regressions. Although we do not know which measure is the most accurate measure of true
process underlying the volatility, we simply test the efficiency of all estimators against
the rest and expect that if there is an estimator to be chosen among the others, it should
be predicted by all others as well. This approach allows us to avoid making decisions
about choosing a volatility proxy, as all measures become a proxy. In other words, we
seek to describe the information content of the measures and forecasting models. The
regression takes the following form:

ν̂RMt+h = α+ βν̂
(RM,f)
t+h + εt, (27)

with ν̂t+h being the volatility estimated with RM measures, namely the TSRV, RV, RK,
JWTSRV, CBV, and MedRV volatility, and ν̂

(RM,f)
t+h its forecast using ARFIMA, HAR,

ANN, HAR-ANN models. For example, we first consider RM = TSRV as a true process
underlying the data; therefore, we use forecasts from all four models using all six measures
to determine which measure and model combination carries over the most information
for forecasting TSRV. In this way, we test all the remaining realized measures, resulting
in 144 final regressions for one commodity. Following Patton and Sheppard (2009), we
estimate the Mincer-Zarnowitz (MZ) regression using Generalized Least Squares (GLS),
employing the form ν̂RMt+h /ν̂

(RM,f)
t+h = α/ν̂

(RM,f)
t+h + β + ε∗t . In cases where the forecast is

optimal, we expect α = 0 and β = 1 jointly.
The results from the MZ regressions are reported in the online appendix for all periods.

Testing the joint null hypothesis that (α, β) = (0, 1) shows us that except for the heating
oil for the last period – after November 2010 – we never reject the hypothesis that the
parameters are significantly different. This finding leads us to the conclusion that all the
forecasts are uniformly optimal.

Finally, we study R2 from the regressions, as it will tell us what portion of variance
is explained by forecasts. The results from the MZ regressions for the entire period are
reported by Figures 2, 3, and 4 for all forecasting horizons. We also include the R2 results
for all three periods in an online supplementary appendix. We observe from the figures
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that all of the models perform well in all forecasting horizons, with R2 being over 70%
in all cases except for natural gas forecasted 1-step-ahead. This is the expected result,
as natural gas shows the greatest degree of price variability, leading the models to be
able to explain lower amounts of variance. When comparing performance across models,
we may conclude that all the models deliver very similar accuracy of explained variance,
and the results are in line with previous analyses.

More interestingly, a distinction may be made when comparing realized measures.
JWTSRV, together with CBV and MedRV, may be forecasted with the highest degree
of success at all horizons. Although a longer forecasting horizon implies a lower differ-
ence, we may conclude that measures of integrated volatility are the best choice when
a forecaster requires an accurate forecast of a ‘true’ volatility process underlying the
data. In addition to previous results that have indicated that MedRV performs the best
statistically, the results of this analysis find this simple measure to outperform the others.

5.3. Economic evaluation of forecasts
Most practitioners are interested in the economic evaluation of the performance of

the models. Therefore, we evaluate the models using VaR forecasts. To conserve space,
we discuss the economic evaluation of results for the entire forecasted period, although
the results from the three periods studied previously are the same, and the comparison
of the forecasting performance does not change over time.

Table 6 and Table 7 report conditional coverage as well as statistical comparison
through the loss function of Giacomini and Komunjer (2005) described in previous sec-
tions for the long and short positions, at 1%, 5%, 95%, and 99% forecasts of return
distribution.

Examining the model confidence set and SPA results, the HAR-ANN model com-
bination belongs to the model confidence set uniformly yielding the statistically best
results. Interestingly, ARFIMA belongs to the model confidence set in many occasions.
Forecasts from the realized volatility tend to overestimate VaR, forcing a forecaster to
hold more capital than needed. VaRs of 1%, 5%, 95% and 99% are forecasted on average
at approximately 2%, 6%, 94%, and 98%. However, the results are much better than
expected, as this is a well documented feature of realized volatility forecasts.

Turning to the comparison of the VaR forecasts through realized measures used, it
appears that although MedRV again provides the best statistical performance, it also
yields greater bias in the unconditional coverage. This feature is common for measures
of integrated variance, and it is expected, as they do not include jumps, although the
forecasts are compared to the original returns containing jumps. Therefore, to use these
measures, it would be recommended to include the jump variation as well. This approach
is nevertheless beyond the scope of this study. We conduct an economic evaluation as
a robustness check for the results from statistical evaluation. The general conclusion is
that the results from statistical evaluation materialized into economic benefits.

6. Conclusion

The prediction of energy price variability is of immense interest to both practitioners
and the academic literature. Nonetheless, most of the studies focus on the usage of daily
data and rely on popular GARCH-type models when predicting the volatility of energy
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prices. In this paper, we couple the recently developed realized measures with popular
artificial neural networks to forecast energy price variability.

Examining the most liquid energy commodity markets of crude oil, heating oil, and
natural gas, we comprehensively evaluate the most popular models for realized volatility
forecasting. We test the widely used HAR and ARFIMA models against the simple ANN
using the Model Confidence Set (MCS) and Superior Predictive Ability (SPA). Moreover,
we use realized variance (RV), realized kernel (RK), two-scale realized variance (TSRV),
bipower variation (BV), median realized volatility (MedRV), and the recently proposed
jump-adjusted wavelet two-scale realized variance (JWTSRV) measures of volatility. Mo-
tivated by the possible reduction of the model uncertainty, we also experiment with the
linear combination of forecasts from the popular HAR model and ANN. This experiment
is found to yield the lowest error uniformly through all tested periods. These errors also
translate to economic benefits in terms of VaR.

Our main finding is that coupling realized measures with artificial neural networks
results in both statistical and economic gains. Importantly, the methodology reduced
the tendency to over-predict the volatility confirmed by previous research. Even in the
cases when the model is fit on the data coming from the period of high uncertainty and
forecasts the period of reduced uncertainty, the results hold. Therefore, the findings
hold uniformly through the tested periods, and the methodology yields large advances
to previously used methodologies, which tend to over-predict the volatility. In addition,
median realized volatility is preferred as a computationally simple measure delivering
best forecasting performance.

The results are of great importance for market participants, as they allow a reduction
in risk. It will be interesting to see further results in academic literature, coupling realized
measures with more sophisticated machine learning frameworks.

References

Andersen, T. and T. Bollerslev (1998). Answering the skeptics: Yes, standard volatility models do
provide accurate forecasts. International Economic Review 39 (4), 885–905.

Andersen, T., T. Bollerslev, F. Diebold, and P. Labys (2001). The distribution of realized exchange rate
volatility. Journal of the American Statistical Association 96 (453), 42–55.

Andersen, T., T. Bollerslev, F. Diebold, and P. Labys (2003). Modeling and forecasting realized volatility.
Econometrica 71 (2), 579–625.

Andersen, T., T. Bollerslev, and X. Huang (2011). A reduced form framework for modeling volatility of
speculative prices based on realized variation measures. Journal of Econometrics 160 (1), 176–189.

Andersen, T. G., T. Bollerslev, P. F. Christoffersen, and F. X. Diebold (2006). Volatility and correlation
forecasting. Handbook of economic forecasting 1, 777–878.

Andersen, T. G., D. Dobrev, and E. Schaumburg (2012). Jump-robust volatility estimation using nearest
neighbor truncation. Journal of Econometrics 169 (1), 75–93.

Arneodo, A., J. Muzy, and D. Sornette (1998). Casual cascade in stock market from the “infrared” to
the “ultraviolet”. European Physical Journal B (2), 277–282.

Bandi, F. and J. Russell (2006). Separating microstructure noise from volatility. Journal of Financial
Economics (79), 655–692.

Barndorff-Nielsen, O., P. Hansen, A. Lunde, and N. Shephard (2008). Designing realized kernels to
measure the ex-post variation of equity prices in the presence of noise. Econometrica 76 (6), 1481–
1536.

Barndorff-Nielsen, O. and N. Shephard (2001). Non-gaussian ornstein-uhlenbeck-based models and some
of their uses in financial economics. Journal of the Royal Statistical Society, Series B 63 (2), 167–241.

20



Barndorff-Nielsen, O. and N. Shephard (2002a). Econometric analysis of realised volatility and its use
in estimating stochastic volatility models. Journal of the Royal Statistical Society, Series B 64 (2),
253–280.

Barndorff-Nielsen, O. and N. Shephard (2002b). Estimating quadratic variation using realized variance.
Journal of Applied Econometrics 17 (5), 457–477.

Barndorff-Nielsen, O. and N. Shephard (2004). Power and bipower variation with stochastic volatility
and jumps. Journal of Financial Econometrics 2 (1), 1–37.

Barndorff-Nielsen, O. and N. Shephard (2006). Econometrics of testing for jumps in financial economics
using bipower variation. Journal of Financial Econometrics 4 (1), 1–30.

Barndorff-Nielsen, O. E. and N. Shephard (2007). Variation, jumps, market frictions and high fre-
quency data in financial econometrics. In Advances in Economics and Econometrics. Theory and
Applications, Ninth World Congress, Volume 3, pp. 328–372.

Barunik, J. and L. Vacha (2014). Realized wavelet-based estimation of integrated variance and jumps
in the presence of noise. To Appear in Quantittive Finance.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Economet-
rics 31 (3), 307–327.

Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative prices and rates
of return. Review of Economic and Statistics 69, 542–547.

Brailsford, T. J. and R. W. Faff (1996). An evaluation of volatility forecasting techniques. Journal of
Banking & Finance 20 (3), 419–438.

Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial
Econometrics 7 (2), 174–196.

Deo, R. S., C. M. Hurvich, and Y. Lu (2006). Forecasting realized volatility using a long memory
stochastic volatility model: Estimation, prediction and seasonal adjustment. Journal of Economet-
rics 131 (1-2), 29–58.

Donoho, D. L. and I. M. Johnstone (1994). Ideal spatial adaptation by wavelet shrinkage. Biomet-
rica 81 (3), 425–455.

Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united
kingdom inflation. Econometrica 50 (4), 987–1007.

Fan, J. and Y. Wang (2007). Multi-scale jump and volatility analysis for high-frequency financial data.
Journal of the American Statistical Association 102 (480), 1349–1362.

Fan, Y., Q. Liang, and Y.-M. Wei (2008). A generalized pattern matching approach for multi-step
prediction of crude oil price. Energy Economics 30 (3), 889–904.

Giacomini, R. and I. Komunjer (2005). Evaluation and combination of conditional quantile forecasts.
Journal of Business &amp; Economic Statistics 23 (4), 416–431.

Granger, C. W. J. and R. Joyeux (1980). An introduction to long-memory time series models and
fractional differencing. Journal of Time Series Analysis (1), 15–29.

Hansen, P. and A. Lunde (2006). Realized variance and market microstructure noise. Journal of Business
and Economic Statistics 24 (2), 127–161.

Hansen, P. R. (2005). A test for superior predictive ability. Journal of Business & Economic Statis-
tics 23 (4).

Hansen, P. R., A. Lunde, and J. M. Nason (2011). The model confidence set. Econometrica 79 (2),
453–497.

Haykin, S. (2007). Neural Networks: A Comprehensive Foundation. Prentice Hall Englewood Cliffs, NJ.

Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks are universal
approximators. Neural Networks 2 (5), 359–366.

Jammazi, R. and C. Aloui (2012). Crude oil price forecasting: Experimental evidence from wavelet
decomposition and neural network modeling. Energy Economics 34 (3), 828–841.

Kang, S. H. and S.-M. Yoon (2013). Modeling and forecasting the volatility of petroleum futures prices.
Energy Economics 36, 354–362.

Kuper, G. H. and D. P. van Soest (2006). Does oil price uncertainty affect energy use? Energy

21



Journal 27 (1).

Linn, S. C. and Z. Zhu (2004). Natural gas prices and the gas storage report: Public news and volatility
in energy futures markets. Journal of futures markets 24 (3), 283–313.

Lynch, P. and G. Zumbach. (2003). Market heterogeneities and the causal structure of volatility. Quan-
titative Finance (3), 320–331.

McAleer, M. and M. Medeiros (2008). Realized volatility: A review. Econometric Reviews (27), 10–45.

McAleer, M. and M. C. Medeiros (2011). Forecasting realized volatility with linear and nonlinear uni-
variate models. Journal of Economic Surveys 25 (1), 6–18.

Merton, R. C. (1980). On estimating the expeted return on the market. Journal of Financial Econo-
metrics 8, 323–361.

Mincer, J. and V. Zarnowitz (1969). The evaluation of economic forecasts. New York: National Bureau
of Economic Research.

Mohammadi, H. and L. Su (2010). International evidence on crude oil price dynamics: Applications of
arima-garch models. Energy Economics 32 (5), 1001–1008.

Müller, U., M. Dacorogna, R. Dav, R. Olsen, O. Pictet, and J. von Weizsacker (1997). Volatilities
of different time resolutions - analysing the dynamics of market components. ournal of Empirical
Finance (4), 213–239.

Nomikos, N. K. and P. K. Pouliasis (2011). Forecasting petroleum futures markets volatility: The role
of regimes and market conditions. Energy Economics 33 (2), 321–337.

Panella, M., F. Barcellona, and R. L. D’Ecclesia (2012). Forecasting energy commodity prices using
neural networks. Advances in Decision Sciences 2012.

Papadimitriou, T., P. Gogas, and E. Stathakis (2014). Forecasting energy markets using support vector
machines. Energy Economics.

Patton, A. J. and K. Sheppard (2009). Evaluating volatility and correlation forecasts. In Handbook of
financial time series, pp. 801–838. Springer.

Percival, D. B. and H. Mofjeld (1997). Analysis of subtidal coastal sea level fluctuations using wavelets.
Journal of the American Statistical Association 92 (439), 886–880.

Percival, D. B. and A. T. Walden (2000). Wavelet Methods for Time series Analysis. Cambridge
University Press.

Pindyck, R. S. (2004). Volatility and commodity price dynamics. Journal of Futures Markets 24 (11),
1029–1047.

Riedmiller, M. and H. Braun (1993). A direct adaptive method for faster backpropagation learning: The
rprop algorithm. In Neural Networks, 1993., IEEE International Conference on, pp. 586–591. IEEE.

Wang, Y. (1995). Jump and sharp cusp detection via wavelets. Biometrika 82 (2), 385–397.

Wang, Y. and C. Wu (2012). Forecasting energy market volatility using garch models: Can multivariate
models beat univariate models? Energy Economics 34 (6), 2167–2181.

Wei, Y., Y. Wang, and D. Huang (2010). Forecasting crude oil market volatility: Further evidence using
garch-class models. Energy Economics 32 (6), 1477–1484.

Wilson, B., R. Aggarwal, and C. Inclan (1996). Detecting volatility changes across the oil sector. Journal
of Futures Markets 16 (3), 313–330.

Xiong, T., Y. Bao, and Z. Hu (2013). Beyond one-step-ahead forecasting: Evaluation of alternative
multi-step-ahead forecasting models for crude oil prices. Energy Economics 40, 405–415.

Yang, C., M.-J. Hwang, and B.-N. Huang (2002). An analysis of factors affecting price volatility of the
us oil market. Energy Economics 24 (2), 107–119.

Yu, L., S. Wang, and K. K. Lai (2008). Forecasting crude oil price with an emd-based neural network
ensemble learning paradigm. Energy Economics 30 (5), 2623–2635.

Zhang, L., P. Mykland, and Y. Aı̈t-Sahalia (2005). A tale of two time scales: Determining integrated
volatility with noisy high frequency data. Journal of the American Statistical Association 100 (472),
1394–1411.

Zhou, B. (1996). High-frequency data and volatility in foreign-exchange rates. Journal of Business &
Economic Statistics 14 (1), 45–52.

22



Asset Estimator N Min. Max. Std. Mean Ex. Kurt. Skew. LB(5) LB(20)

Crude Oil

TSRV 2231 0.19 39.25 3.82 3.22 23.59 4.28 6184.25 22378.68
RV 2231 0.23 39.53 3.79 3.26 23.00 4.17 5903.97 21564.16
RK 2231 0.19 46.68 3.98 3.20 26.31 4.45 5657.72 20320.46
JWTSRV 2231 0.20 36.79 3.54 3.07 22.80 4.19 6607.72 23738.65
CBV 2231 0.22 39.53 3.72 3.16 24.34 4.28 5929.74 21723.68
MedRV 2231 0.15 43.52 3.46 2.96 26.50 4.32 5785.12 20964.45

Heating Oil

TSRV 2222 0.15 27.54 2.58 2.79 12.98 2.84 5078.28 17381.43
RV 2222 0.18 30.62 2.69 2.85 15.33 2.96 4370.84 15185.33
RK 2222 0.17 36.14 2.74 2.79 17.92 3.21 4286.88 14519.21
JWTSRV 2222 0.14 22.61 2.35 2.62 9.69 2.57 5921.63 20005.77
CBV 2222 0.18 30.62 2.56 2.73 13.19 2.80 4727.61 16486.29
MedRV 2222 0.14 27.05 2.42 2.55 11.40 2.69 4506.88 15461.91

Natural Gas

TSRV 2219 0.53 98.97 5.72 6.03 42.84 4.56 1636.47 3475.85
RV 2219 0.57 93.58 6.28 6.29 34.03 4.44 1471.91 2992.58
RK 2219 0.46 94.89 5.90 5.88 38.51 4.56 1357.20 2828.15
JWTSRV 2219 0.53 53.31 4.20 5.21 19.69 3.16 3791.07 8473.81
CBV 2219 0.42 66.29 4.97 5.65 27.02 3.78 2882.75 5923.80
MedRV 2219 0.46 68.69 4.96 5.28 44.97 4.86 2459.53 5028.12

Table 1: Descriptive statistics for crude oil, heating oil and natural gas for the sample period from July,
6, 2006 until December 31, 2012. Minimum, maximum, standard deviation and mean are multiplied by
×104 for convenience. LB(l) is Ljung-Box statistics for l-th lag.
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Figure 1: Realized volatility, returns, and prices of crude oil, heating oil and natural gas. The forecast
period is divided into three equal sample periods from July, 6, 2006 until August 31, 2008, from September
1, 2008 until October 31, 2010 and from November 1, 2010 until December 31, 2012.
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Figure 2: Whole period: R2 from the Mincer Zarnowitz regressions h = 1
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Figure 3: Whole period: R2 from the Mincer Zarnowitz regressions h = 5
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Figure 4: Whole period: R2 from the Mincer Zarnowitz regressions h = 10
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