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Abstract: 

 

In this work we focus on the application of wavelet-based methods in volatility 

modeling. We introduce a new, wavelet-based estimator (wavelet Whittle 

estimator) of a FIEGARCH model, ARCH-family model capturing long-memory and 

asymmetry in volatility, and study its properties. Based on an extensive Monte Carlo 

experiment, both the behavior of the new estimator in various situations and its 

relative performance with respect to two more traditional estimators (maximum 

likelihood estimator and Fourier-based Whittle estimator) are assessed, along with 

practical aspects of its application. Possible solutions are proposed for most of the 

issues detected, including suggestion of a new speci_cation of the estimator. This 

uses maximal overlap discrete wavelet transform, which improves the estimator 

performance, as we show in the experiment extension. Next, we study all the 

estimators in case of a FIEGARCH-Jump model, which brings interesting insights to 

their mechanism. We conclude that, after optimization of the estimation setup, the 

wavelet-based estimator may become an attractive robust alternative to the 

traditional methods. 
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1 Introduction

Volatility is one of the most important concepts in �nance. As a natural measure of risk of
�nancial assets, it is frequently utilized by both academics and practitioners as a core variable in
a wide range of applications. Hence, there is a great motivation to study patterns in its behavior
and to improve our ability to forecast its future development. Over time, various approaches to
reach these goals have been developed, all of them having some strengths and weaknesses.

In this paper we focus on one of these approaches that is widely used in practice, the para-
metric volatility modeling. Generally, the concept is based on approximating the true data
generating processes in terms of reasonably complex structures (volatility models), which enable
data interpretation and forecasting. Compared to non-parametric or semi-parametric methods,
the models are fully speci�ed by a �nite set of parameters, which are estimated using empirical
data and/or theory. Due to the wide range of their practical applications, the importance of
the models (not only) in �nance is substantial, and thus, requirements on their quality as well.
Although the meaning of \quality" may di�er in various contexts, for a good performance of any
parametric model two things are always essential: �rst, it has to be well speci�ed (no relevant
patterns, such as long memory or asymmetries, should be omitted); second, an appropriate es-
timator of its parameters has to be applied. As they are complementary, simultaneous research
in both these areas is relevant.

In our work, we address the latter characteristics, the optimal method of estimation. We
introduce a new, wavelet-based estimator (wavelet Whittle estimator, WWE) of an econometric
model that is frequently used for volatility analysis and forecasting (FIEGARCH model), and
assess its properties. Although the presented method is not entirely new in econometrics, see e.g.
Jensen (1999), to our knowledge, this is the �rst time its FIEGARCH speci�cation is provided
and studied. As will be explained in more detail in the next section, the estimator is based
on maximizing an approximated likelihood function derived for the FIEGARCH process, where
the approximation is done using wavelet transform; in our case using discrete wavelet transform
(DWT) and, as an alternative, maximal overlap discrete wavelet transform (MODWT). The two
transforms di�er in some technical details (see e.g. Percival & Walden (2000)) but the main idea
behind them is the same - representation of data in a way that enables their analysis in time
and scale (frequencies) at the same time. Properties of these transforms can help us to get an
estimator that is more robust to unpredictable time-localized irregularities in the data than its
more traditional counterpart that is based on Fourier transform.

The ultimate goal of our work is to show the performance of the new estimator; discus its
advantages, disadvantages and applicability in practice; and to contribute to the literature on
wavelet-based methods in economics. To enable a comprehensive study of the new method sug-
gested, an extensive Monte Carlo experiment is designed. Based on its results both accuracy and
empirical convergence of the new estimator under changing optional settings can be examined,
as well as its relative performance with respect to two more traditional estimators: Fourier-based
Whittle estimator (FWE, approximation of the likelihood function using Fourier transform) and
maximum likelihood estimator (MLE, no approximation).

Although many questions remain open, our results are believed to contribute to the knowledge
of the WWE behavior and applicability; especially due to the detailed analysis we provide and
number of questions we raise. The work shows that even in the case of simulated data, which
follow a pure FIEGARCH process, and thus do not allow to fully utilize the advantages of
WWE over its traditional counterparts, the estimator can work reasonably well. When we focus
on the individual parameters estimation, in terms of bias the performance is comparable, in
some cases even better than that of the FWE, while in terms of RMSE the latter is usually
better. As expected, the exact MLE mostly outperforms both of the Whittle estimators, with
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rare exceptions in situations, which are of small importance for most practical applications in
�nance. Though, due to the computational complexity of the MLE, for large data sets FWE
and WWE represent attractive alternatives. Concerning the experiment setup, we show that the
presence and strength of long memory in the data a�ects both absolute and relative performance
of the estimators, but the e�ect is mostly not strong enough to change their relative positions.

Next to the main results, signi�cant part of the discussion focuses on the practical aspects of
the WWE application. Based on observation of its behavior under changing experiment setup,
several issues are detected. All of them are properly discussed and possible solutions are proposed.
The most important outcome of the discrete wavelet transform-based WWE analysis is a detailed
study of the empirical convergence of the estimator (with sample size and with level of wavelet
transform applied - analogy to the local whittle estimation studied in Moulines et al. (2008) )
and suggestion of an alternative WWE speci�cation (based on maximal overlap discrete wavelet
transform, MODWT) that should signi�cantly improve its performance in all applications, not
only in the context of FIEGARCH model estimation. In turn, this is shown in a subsequent
Monte Carlo experiment. In this experiment we not only add the new WWE estimator, but we
also extend it to enable forecasting performance analysis. The results show both the superiority
of MODWT-based WWE over the DWT-based one and the overall similarity of the WWE and
FWE performance that looks signi�cantly better in terms of forecasting performance than in the
case of individual parameters estimation. As a next step, we show the results of a Monte Carlo
experiment, where the pure FIEGARCH model is enriched by jumps. It is shown that due to
the nature of the FIEGARCH model and the implicit forecasting algorithms, the WWE cannot
be as fully utilized to improve the estimates, as has been expected.

Focusing on more technical aspects, we also discuss the possibility that the relative perfor-
mance of estimators is a�ected by optimization issues. It is shown that the identi�cation of the
parameters in the Whittle objective functions is problematic and may signi�cantly increase the
importance of the optimization algorithm choice for estimation accuracy. This choice is consid-
ered to be a non-trivial task, but when dealt with correctly, the estimates may be signi�cantly
improved.

Due to the pioneering nature of this work and the complexity of the problem concerned, the
results presented are not intended to be directly projected to changes in estimation methods used
in practice. For practitioners, the presented conclusions should be interesting as a message that
given su�cient demand for further research in this area, new, possibly highly e�cient methods
based on wavelet transform could be available in the future. Though, the target group are the
academics. It is believed that the results provided are a good basis for future research.

The paper is structured as follows: section 2 provides a literature review; section 3 introduces
the FIEGARCH model and the individual estimators; in section 4 the setup of the Monte Carlo
experiment is described and results are discussed (all tables and �gures referred to are available
in the appendices, either at the end of this paper or in the online supplement that is available
at [http://ies.fsv.cuni.cz/en/sta�/kraicova] or on request from the authors); next, in section 5
we present the extended experiment; in section 6 we compare our results with related literature;
section 7 concludes.

2 Literature Review

Compared to the wide range of studies on semi-parametric Wavelet Whittle estimators (for
relative performance of local FWE and WWE of ARFIMA model see e.g. Fay et al. (2009)
or Frederiksen & Nielsen (2005) and related works), literature assessing performance of their
parametric counterparts is not extensive. Though, results of the studies completed so far suggest
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that the performance of WWE in parametric setting is an interesting and important research
topic.

One of the important papers on parametric (DWT-based) WWE is that of Jensen (1999).
The author introduces the WWE of ARFIMA process and compares its performance with that
of FWE under various settings. In most cases, both estimators perform similarly, but when
the true MA coe�cients are close to the boundary of invertibility, the Fourier-based estimator
deteriorates whereas the wavelet-based Whittle retains its accuracy. Speed of the two estimators
is similar.

Percival & Walden (2000) describe a wavelet-based approximate MLE for both stationary
and non-stationary fractionally di�erenced processes, discus its properties and show its perfor-
mance on a simulated (Fractionally di�erenced process) as well as on real data. Relatively good
performance is demonstrated even on very short samples (128 observations).

Whitcher (2004) applies WWE based on a discrete wavelet packet transform (DWPT) to a
seasonal persistent process. Good performance of the estimator is shown in both Monte Carlo
experiment and real data application.

Heni & Mohamed (2011) use the approach introduced in Whitcher (2004) and apply it on
a FIGARCH-GARMA model. Using this speci�cation, nominal daily exchange rates of the
Tunisian dinar relative to the US dollar, the Euro and the Japanese yen are modeled. Various
�lters are applied, all with support larger than 8, which is argued to be appropriate given
the process characteristics. Good forecasting performance of the model-estimator set is shown.
Further application can be seen e.g. in Gonzaga & Hauser (2011).

All these works estimate parameters in various models using the WWE. Although none of
them focuses on a FIEGARCH model, they can be used to compare the performance of the WWE
as applied in di�erent situations, as well as they provide an inspiration for the WWE setup. Yet,
our work focuses on FIEGARCH modeling, and thus it should extend results of a study, where
this particular model is estimated using estimators di�erent from the WWE, such as the paper
by Perez & Za�aroni (2008). In their work the authors compare �nite sample properties of the
MLE and two FWEs (univariate and bivariate) for (FI)EGARCH models on simulated series of
length T = 29; 210 and 211; the MLE represents the traditional approach, while the two FWEs
are introduced as possible alternatives, performance of which is to be tested. It is concluded that
\MLE is more e�cient, but bivariate FWE sometimes performs comparably". FWE becomes
dominant in cases of processes close to nonstationarity. For EGARCH(1,1)1 FWE is, in most
cases, more biased than the other two estimators, but in some cases it even outperforms the
MLE. For EGARCH(1,2) Whittle estimators perform worse than MLE in terms of RMSE, but
outperform the former method in terms of bias. For FIEGARCH(1,d,2) Whittle estimators are
always underestimating the long memory parameter, whereas FWE becomes dominant at high
levels of persistence in the time series. Compared to MLE, Whittle methods seem to o�er lower
bias at the cost of higher RMSE.

Our work represents a direct extension of this paper. In an experiment setup mirroring that
of Perez & Za�aroni (2008), the WWE is introduced as an alternative to the methods above.
The main focus is on its performance compared to that of MLE and univariate FWE, which
are explicitly included in the Monte Carlo experiment, while comparison with results for the
bivariate FWE in Perez & Za�aroni (2008) is also possible due to the same estimation setup.

1using de�nition of EGARCH used in this paper, which is equivalent to EGARCH(1,0) in the original paper
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3 FIEGARCH Model and Parameter Estimators

3.1 FIEGARCH Model

Despite the extremely wide spectrum of processes generating �nancial returns time series, there
are some stylized features which many of them have in common. They have been detected over
years of �nancial market analysis and have shaped the means of �nancial time series model-
ing. One of these features, which initiated a real breakthrough in �nancial modeling, is their
time-variant, past-dependent volatility. A well known response to this observed pattern was
the introduction of conditional volatility models by Engle (1982). Over time, performance of
these models (ARCH family models) in practical applications has demonstrated the importance
of conditional volatility in time series analysis and feasibility of direct volatility estimation and
forecasting. Although several alternative concepts based on explicitly modeled volatility have
been developed since Engle (1982), generalized ARCH models are still among those best perform-
ing in practical applications. This makes it relevant to study the performance of new parameter
estimators in their context. In our study we focus on one of the generalizations of the basic
ARCH model, the FIEGARCH model, where the log-returns f�tg are modeled conditionally on
their past realizations as:

�t = zth
1=2
t (1)

ln(ht) = ! +�(L)g(zt�1) (2)

g(zt) = �zt + 
[jztj � E(jztj)] (3)

where:

�(L) = (1� L)�d[1 + �(L)][�(L)]�1 (4)

�(L) = 1 + �[2](L) = 1 +

pX
i=2

�iL
i�1 (5)

�(L) = 1�

qX
i=1

�iL
i (6)

(1� L)d = 1� d

1X
k=1

�(k � d)�(1� d)�1�(k + 1)�1Lk (7)

and where for FIEGARCH(1,d,2), i.e. q=1, p=2, we have:

�(L) = 1 + �L (8)

�(L) = 1� �L : (9)

The fztg (iid. unobservable standardized innovations) and f�tg (observable log-returns series)
are discrete-time real valued processes satisfying Et�1(zt) = 0, Et�1(z

2
t ) = 1, Et�1(�t) = 0,

Et�1(�
2
t ) = ht, L is a lag operator Ligt = gt�i and �(:) is the gamma function. The polynomials

�(L) and �(L) have no zeros in common, their roots are outside the unit circle, �
 6= 0 and

d < 0:5. The fhtg
T
t=1 is the conditional log-variance process dependent on the past innovations.

See Perez & Za�aroni (2008). Any FIEGARCH(q,d,p) process is then fully determined by
the number of parameters, their values and distribution of the standardized innovations z(t).
Concerning the last factor, the three most frequent assumptions in the literature are the Standard
normal distribution N(0,1) providing a convenient estimation environment, Student-t distribution
assuming thicker tails, and Generalized Error Distribution (GED) with parameter v determining
the tail thickness. Normal distribution is nested as a special case of GED for v=2.
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By its construction the model captures the following stylized features of the real �nancial time
series data: short-term temporal variation in �nancial returns volatility (Volatility clustering),
long-term temporal variation in �nancial returns volatility (Long memory), negative relationship
between past returns and volatility (Leverage e�ect) and fat-tailed sample distribution of returns.
For plots of a FIEGARCH process with three di�erent levels of long memory see Appendix H
(online).

While correct model speci�cation is one thing, feasibility of estimation of its parameters is
another. In general, estimation of the FIEGARCH model can be carried out by various methods.
Below, those considered in this work (the benchmark estimators MLE and FWE, and the newly
introduced WWE) are described together with practical aspects of their application.

3.2 Maximum Likelihood Estimator

Maximum likelihood estimation is one of the two benchmark methods we use. It is a traditional,
in many cases highly e�cient method applicable to a wide range of models, including FIEGARCH
model. For a general Gaussian process fxtg

T
t=1 (usual basic setting for ARCH family models that

we apply), the maximum likelihood estimator (MLE) is de�ned as

�̂MLE = argmin �2� lnL(x; �); (10)

where lnL(x; �) is the negative log-likelihood function

lnL(x; �) =
T

2
ln(2�) +

1

2
ln

�����
X
T

�����+ 1

2

2
4(x�)trans

 X
T

!�1

x�

3
5 ; (11)

where x� = x� E(x),
P
T is the covariance matrix of fxtg

T
t=1, j

P
T j is its determinant and � is

the vector of parameters determining E(x) and
P
T .

Despite the favorable properties of the MLE, there are some issues limiting its practical
applicability. The usual problem is that we have to deal with the inversion of the covariance
matrix of the process and with its determinant. Although it may not be a big problem when the
matrix is diagonal or su�ciently sparse, in cases of dense covariance matrices (characteristic for
long memory processes) it may be extremely time demanding, or even unfeasible in case of large
datasets. Moreover, as discussed in (Beran (1994), chapter 5), solution may be even unstable
in the presence of long memory, when the covariance matrix is close to singularity. Next, the
deduction of the mean in x* may be problematic in practical applications, since whenever the
mean is not known, it has to be estimated. The e�ciency and bias of the estimator of the mean
contributes to the e�ciency and bias of the MLE. In case of long-memory processes it can cause
signi�cant deterioration of the MLE. This has been shown e.g. in Cheung & Diebold (1994).
Both these issues have motivated construction of alternative estimators, usually formulated as
approximate MLE and de�ned by an approximated log-likelihood function. See for example
Beran (1994) or Nielsen & Frederiksen (2005).

Next, since the assumption of a speci�c distribution (in our case Gaussian) is usually too
restrictive for practical applications, it is important to study the estimator in situations when
it is constructed for some (Gaussian) process but applied to a di�erent (non-Gaussian) process.
The resulting estimator is called Quasi-Maximum Likelihood Estimator (QMLE). In the context
of GARCH processes with non-normal error distribution this has been studied by Bollerslev &
Wooldridge (1992), who show that the estimator remains consistent, but loses e�ciency. The
e�ciency loss, as argued in Engle & Gonzalez-Rivera (1991), is rather small for symmetric t-
distributed processes, but can be signi�cant under asymmetric distribution. As discussed in
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Bollerslev & Wooldridge (1992), standard test statistics become biased and to ensure valid in-
ference, their robusti�ed counterparts, such as those proposed by the authors, should be used.
Unlike the case of GARCH model, the asymptotic theory for EGARCH and FIEGARCH QMLE
is not yet available. Though, the (Q)MLE is the basic tool for their estimation suggested by
their authors in Nelson (1991) and Bollerslev & Mikkelsen (1996) respectively and the properties
of the estimator are assessed via empirical studies; see e.g. Baillie et al. (1996), Bollerslev &
Mikkelsen (1996) or Perez & Za�aroni (2008).

To derive the FIEGARCH (Q)MLE, we just rewrite the general formula for the negative
log-likelihood function (11). Since we assume a Gaussian, zero-mean process of independent

variables (log-returns) f�tg
T
t=1, i.e. assuming E(�t) = 0 and a diagonal

P
T with elements �2t ,

which are the unconditional variances of �t. Then without a�ecting the optimization results, the
function (11) can be reduced to

LMLE(x; �) =

TX
t=1

�
ln
�
�2t
�
+
x2t
�2t

�
: (12)

Next, conditionally on the past realizations of f�tg, the f�t; �j ; i; j = 1; :::; T ; i 6= jg remain un-
correlated; the respective conditional covariance matrix is diagonal with elements ht; and the
determinant again reduces to sum of the diagonal terms. Then, under Gaussianity assumption
on zt in (1), we can use the reduced LMLE(x) from above and de�ne the reduced negative

conditional log-likelihood function for the process f�g
T
t=1 as

LMLE(�; �j t�1) =

TX
t=1

�
ln[ht(�)] +

�2t
ht(�)

�
; (13)

where � is a vector of parameters in the equation for conditional log-variance in (1),  t�1 is the
information set at time t, containing all past observations available at time t and ht(�) is the
conditional variance de�ned by the FIEGARCH model. Then the MLE estimator is de�ned as
�̂MLE = argmin �2� L

MLE(�; �j t�1), where � is the parameter space.
Despite the simple formula, some practical issues arise because of the need to model the

conditional volatility process during the optimization. As discussed in Bollerslev & Mikkelsen
(1996), since in the context of GARCH models the forecasted volatility depends on the past
forecasts, the log-likelihood function becomes dependent on initial conditions I0, the basis for
conditional variance recursion. So the MLE based on sample f�t; t = 1; 2; :::Tg relies on the
maximization of conditional log-likelihood function logL(�; � jI0 ), where � = (�1; �2; :::; �T ) is a
T-dimensional vector of observations of the process �t and I0 stands for initial conditions. Since,
under the general speci�cation of the model, ht depends on fht�i; i = 1; 2; ::1g, a truncation is
needed. In case of a short memory process, the dependence on the past declines rapidly, which
enables to use a relatively small number of initializing values. In contrast, when long memory
is present, large number of pre-sample \observations" is necessary to prevent a signi�cant loss
of information about long-run dependencies in the process. Following the approach of Bollerslev
& Mikkelsen (1996), in our Monte Carlo experiment, the pre-sample conditional volatilities are
set to the sample volatility, conditional mean is assumed to be known and equal to zero (later
on also the non-zero case is assumed) and for both the simulation and estimation the truncation
is done at lag 1000. Using these initializing values, for each set of parameters considered by the
optimization algorithm the whole vector of conditional volatilities is estimated, together with the
implied squared returns needed for further iterations. Given the complexity of this procedure,
the method is signi�cantly time consuming.
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3.3 Fourier-based Whittle Estimator

Fourier-based Whittle Estimation is our second benchmark method. In general, the respec-
tive estimator (FWE) is a spectral-based counterpart of the MLE, where the problematic terms
in the log-likelihood function (with the possibly dense covariance matrix) the [det (

P
T )] and

the
h
x �trans (

P
T )

�1
x�
i
, are replaced by their asymptotic frequency domain representations.

The link between time domain and frequency domain is de�ned by means of Fourier transform.
The approximation is based on a study of eigenvectors and respective eigenvalues of the covari-
ance matrix leading to a conclusion that the matrix can be diagonalized by means of Fourier
transform. Orthogonality of the Fourier transform projection matrix then allows to achieve
the approximation by means of multiplications by identity matrices, simple rearrangements and
approximation of integrals by Riemann sums, see Beran (1994). The approximated Whittle
negative log-likelihood function for estimation of parameters in the distribution function of the
process fxg

T
t=1 under Gaussianity assumption can be written as:

~LW (x; �) =
2

(2�)

m�X
j=1

ln [f(�j ; �)]
2�

T
+

2

(2�)
2

m�X
j=1

I (�j ; x)

f(�j ; �)

2�

T
; (14)

which can be reduced to

~LW (x; �) =
1

T

m�X
j=1

�
ln [f(�j ; �)] +

I (�j ; x)

f(�j ; �)

�
; �j = 2�j=T (15)

j = 1; 2; :::m�; m� = max fm 2 Z; m � (T � 1)=2g ; i:e: �j < �; (16)

where f(�; �) is the spectral density of process x decomposing the process variance with respect
to frequency:

cov(xt; xs) =
�2

2�

Z 2�

0

f(�; �)ei(s�t)�d�; (17)

see Percival & Walden (2000); and I (�j ; x) is the value of periodogram of x at j th Fourier
frequency, whereas there are at most m� = (T � 1)=2 frequencies available, with the highest
frequency �1 = 2�=T and the smallest frequency detectable �m� = 2�(T � 1)=2T = � � (�=T ):

I (�j ; x) = (2�T )
�1

�����
TX
t=1

xtexp (i�jt)

�����
2

; �j = 2�j=T ; j = 1; 2; :::m � : (18)

The respective Fourier-based Whittle estimator is de�ned as

�̂FWE = argmin �2� ~LW (x; �): (19)

For a detailed FWE derivation see e.g. Beran (1994).
It can be shown that the FWE has the same asymptotic distribution as the exact MLE,

hence is asymptotically e�cient for Gaussian processes. See Fox & Taqqu (1986), Dahlhaus
(1989) and Dahlhaus (2006). In the literature, FWE is frequently applied to both Gaussian
and non-Gaussian processes (equivalent to QMLE), whereas even in the later case, both �nite
sample and asymptotic properties of the estimator are often shown to be very favorable and
the complexity of the computation depends on the form of the spectral density of the process.
Next to a signi�cant reduction in estimation time, the FWE also o�ers an e�cient solution for

8



long-memory processes with an unknown mean, which can impair e�ciency of the MLE. By
elimination of the zero frequency coe�cient FWE becomes robust to addition of constant terms
to the series, and thus in case, when no e�cient estimator of the mean is available, FWE can
become an appropriate choice even for time series where the MLE is still computable within
reasonable time.

Concerning the FIEGARCH estimation, the FIEGARCH-FWE is, to the authors' knowledge,
the only one out of the three estimators considered in this work, for which an asymptotic theory
is currently available. The theory is derived in Za�aroni (2009) for a whole class of exponen-
tial volatility processes; both strong consistency and asymptotic normality are established, even
though the estimator works as an approximate QMLE of a process with an asymmetric distri-
bution, rather than an approximate MLE. This is due to the need to adjust the model to enable
derivation of the spectral density of the estimated process. More speci�cally, as discussed and
derived in Perez & Za�aroni (2008) and Za�aroni (2009), it is necessary to rewrite the model in
a signal plus noise form

xt = ln
�
�2t
�
= ln

�
z2t
�
+ ! +

1X
s=0

�sg(zt�s�1) (20)

g(zt) = �zt + 
[jztj � E(jztj)] (21)

�(L) = (1� L)�d[1 + �[2](L)][�(L)]
�1 (22)

where for FIEGARCH(1,d,2): (23)

�(L) = 1 + �L (24)

�(L) = 1� �L (25)

(1� L)d = 1� d

1X
k=1

�(k � d)�(1� d)�1�(k + 1)�1Lk; (26)

for which the spectral density can be derived. The fztg and f�tg denote discrete-time real valued
processes satisfying Et�1(zt) = 0, Et�1(z

2
t ) = 1, Et�1(�t) = 0, Et�1(�

2
t ) = ht and Phis is the

coe�cient s of the polynomial �(L). The process fxtg
T
t=1 then enters the FWE objective function

instead of the process f�tg
T
t=1. For the detailed derivation of the transformed process and for the

formula for its spectral density see Appendix A.
Having the formula for the spectral density, the only term remaining to be speci�ed is the

periodogram of xt = ln
�
�2t
�
at Fourier frequencies. In MATLAB the respective coe�cients

can be calculated using Fast Fourier Transform (FFT), that gives us coe�cients IT (j), and
appropriate rescaling re
ecting switch from evaluation at simple frequencies to evaluation at
Fourier frequencies. The periodogram takes the form

IT (�j ; x) =
IT (j)

2�
=

���PT
t=1 (xt � �̂x)e

�i2�jt=T
���2

2�T
(27)

�j = 2�j=T ; j = 1; 2; :::m�; m� = max fm 2 Z; m � (T � 1)=2g ; (28)

where �̂x is the estimate of the mean of the process x. Now, the objective function (Equation 16)
can be minimized with respect to all its parameters and the vector of Fourier-based Whittle
estimates can be obtained.
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3.4 Wavelet-Whittle Estimator

Although, based on Perez & Za�aroni (2008), the FWE seems to be a good alternative to MLE
for the FIEGARCH model estimation in the case of application on pure FIEGARCH processes,
its use on real data may be, in some cases, problematic. This is because the FWE perfor-
mance depends on the accuracy of the spectral density estimation using periodogram, which
may be impaired by various time-localized patterns in the data diverging from the underly-
ing FIEGARCH process. Motivated by the advances in the spectral density estimation using
wavelets, we propose a wavelet-based estimator, the Wavelet Whittle Estimator (WWE), as an
alternative. As in the case of Fourier-based Whittle, the Wavelet Whittle e�ectively overcomes

the problem with the [det (
P
T )] and the

h
x �trans (

P
T )

�1
x�
i
by means of transformation.

The di�erence is that instead of using discrete Fourier transform (DFT, projection of the time
series on periodic functions with in�nite support, complex exponentials, at Fourier frequen-
cies �j = (2�j)=T ; j = 1; :::m� � (T � 1)=2), the data are subject to discrete wavelet transform
(DWT, projection on a �nite-support function, wavelet, at various levels of translation (k) and
dilation (j), fk; j 2 Zg).

3.4.1 Discrete Wavelet Transform

To provide a good introduction to the WWE, it seems to be reasonable to start with a brief
description of the wavelet transform that determines its properties and makes it di�erent from the
FWE. The core of any wavelet transform is a wavelet system, whose construction, together with
means of the projection applied, determine the characteristics of the transformed data. A basic
wavelet system can be de�ned as a set ff'j0;k(x)g ; f j;k(x)g ; k 2 Z; j = j0; j0 � 1; j0 � 2::::g
creating an orthonormal basis (ONB) in L2(R); which means that any function f 2 L2(R) can
be expressed as

f(x) =
X
k

�j0;k'j0;k(x) +

j0X
j=�1

X
k

�j;k j;k(x) (29)

�k =
R
f(x)'j0;k(x) dx, �j;k =

R
f(x) j;k(x) dx, where the elements �k; �j;k; '(x) and  (x)

are called scaling coe�cients, detail (wavelet) coe�cients, scaling function (father wavelet) and
wavelet function (mother wavelet) respectively, and the translated and dilated transformations
of the mother wavelet  j;k(x) = s(j)(�0:5)  (s(j)x� k) are called daughter wavelets.

The basic conditions for  (x) to be a valid mother wavelet are that
R
 (x)dx = 0 andR

 2(x)dx = 1, while the usual requirement is also the \admissibility" condition
R j ̂(!)j2

! d! <1,

where  ̂ is the Fourier transform of  . This condition ensures that we can reconstruct the
original time series from its transform. For complete conditions on '(x);  (x) to be valid father
and mother wavelets in the context various subsets of L2(R) and for other details concerning
construction of wavelet systems see Hardle et al. (1998), for examples of wavelets see Figure 17
in Appendix J.

Next, any method that decomposes original data using the wavelet system and expresses
them in terms of coe�cients f�k; �j;kg and functions f'(x);  (x)g de�ned above, is a wavelet
transform. In case of j 2 Z, as applied in this thesis, we speak about a discrete wavelet transform
(DWT), while for j 2 R the transform is continuous (CWT). By tradition, the default choice
of scales is

�
2�j ; j 2 Z

	
, thus the standard (traditional, not modi�ed) DWT can be de�ned in

terms of the wavelet expansion (29) with scaling de�ned as s(j) = 2�j (i.e.\scale j" refers to
the scaling 2�j). The DWT coe�cients are obtained using two-channel �lter banks and down-
sampling, so that at each level of decomposition j of a series of length M we get M=2j DWT
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coe�cients, see e.g. Jensen (2000). These coe�cients can be in turn used for decomposition of
the variance �2 of the process x:

�2 = E(x2)� [E(x)]2 =
jjxjj2

T
� [E(x)]2 =

PJ
j=1 jjWj jj

2 + jjVJ jj
2

T
� [E(x)]2; (30)

where Wj ; j = 1; :::J and VJ are vectors of wavelet and scaling coe�cients respectively and the
[E(x)]2 can be estimated using the squared sample mean �x2, or using the true squared mean
whenever known. Alternatively, we can use the coe�cients for estimating the spectral density
f(�; �) of x using the relationship:

jjWj jj
2

T
=
�2W;j
2j

� 2

Z 1=2j

1=2j+1
f(�; �); j = 1; 2; :::J (31)

jjVJ jj
2

T
� �x2 =

�2V;J
2J

�

�
1�

1

2J

�
�x2 � 2

Z 1=2J+1

0

f(�; �); (32)

where �2W;j and �
2
V;J are the sample variances of the wavelet and scaling coe�cients respectively.

3.4.2 Wavelet Whittle Estimator

Analogically to the FWE, we use the relationship between wavelet coe�cients and the spectral
density of x to approximate the problematic likelihood function of the MLE. The main advantage
is, compared to the FWE, that the wavelets have limited support, and thus, the coe�cients are
not determined by the whole time series, but by a limited number of observations only. This
increases the robustness of the resulting estimator to irregularities in the data well localized
in time, such as jumps. These may be poorly detectable in the data, especially in the case of
strong long memory that itself creates jump-like patterns, but at the same time, their presence
can signi�cantly impair the FWE performance. On the other hand, the main disadvantages of
using the DWT are the restriction to sample lengths 2j and the low number of coe�cients at the
highest levels of decomposition j.

Skipping the details of wavelet-based approximation of the covariance matrix and the detailed
WWE derivation, which can be found e.g. in Percival & Walden (2000), the Wavelet-Whittle
objective function can be de�ned as

lnWWL(x; �) = �
T

2
ln(2�)�

1

2
ln
��OT�TO��� 1

2

�
xT
�
OT�TO

�
x
�

(33)

lnWWL(Wj;k; �) = �
T

2
ln(2�)�

1

2
ln
���OT �� j�T j jOj��

�
1

2

h
(Ox)T (�T )

�1
(Ox)

i
(34)

lnWWL(Wj;k; �) = �
T

2
ln(2�)�

1

2
ln (j�T j)�

�
1

2

h
W t
j;k (�T )

�1
Wj;k

i
(35)

lnWWL(Wj;k; �) = �
T

2
ln(2�)�

�
1

2

JX
j=1

2
4Nj ln

Z 1=2j

1=2j+1
2 � 2jf(�; �) d�+

NjX
k=1

W 2
j;kR 1=2j

1=2j+1
2 � 2jf(�; �) d�

3
5 (36)
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Where Wj;k are the wavelet (detail) coe�cients, (O = Oorth) is an orthogonal matrix repre-
senting the wavelet transform x = OTorthxtransf = OTorthOorthx = INx = x and �T is a diago-
nal matrix with elements fC1; C1; :::C1; C2; :::; CJg, where for each level j we have Nj elements�
Cj =

R 1=2j
1=2j+1

2 � 2jf(�; �) d�
�
, where Nj is the number of DWT coe�cients at level j. The

Wavelet Whittle Estimator is then de�ned as

�̂j
WW

= argmax �2� lnWWL(Wj;k; �) (37)

and as in the case of Fourier-based Whittle, the problem can be simpli�ed to

�̂j
WW

= argmax �2� lnWWL(Wj;k; �) = argmin �2� LWW (Wj;k; �) (38)

LWW (Wj;k; �) =

=

JX
j=1

2
4Nj ln

Z 1=2j

1=2j+1
2 � 2jf(�; �) d�+

NjX
k=1

W 2
j;kR 1=2j

1=2j+1
2 � 2jf(�; �) d�

3
5: (39)

Similarly to the Fourier-based Whittle, the estimator is equivalent to a (Q)MLE of parameters in
the probability density function of wavelet coe�cients under normality assumption. At this time,
the negative log-likelihood function can be rewritten as a sum of partial negative log-likelihood
functions respective to individual levels of decomposition, whereas at each level, the coe�cients
are assumed to be homoskedastic, while across levels the variances di�er. All wavelet coe�cients
are assumed to be (approximately) uncorrelated (the DWT approximately diagonalizes the co-
variance matrix), which requires an appropriate �lter choice. Next, in our work the variance of
scaling coe�cients is excluded. This is possible due to the WWE construction, the only result
is that the part of the spectrum respective to this variance is neglected in the estimation. This
is optimal especially in cases of long-memory processes, where the spectral density goes to in�n-
ity at zero frequency, and where the sample variance of scaling coe�cients may be signi�cantly
inaccurate estimate of its true counterpart due to the embedded estimation of the process mean.

3.4.3 Full vs. Partial Decomposition

Similarly to the omitted scaling coe�cients, we can exclude any number of the sets of wavelet
coe�cients at the highest and/or lowest levels of decomposition. What we get is a parametric
analogy to the Local Wavelet Whittle Estimator (LWWE) developed in Wornell & Oppenheim
(1992) and studied by Moulines et al. (2008), who derive the asymptotic theory for LWWE with
general upper and lower bound for levels of decomposition fj 2 hL;Ui ; 0 � L < U � Jmaxg.

Although, in the parametric context, it seems to be natural to use the full decomposition,
there are several features of the WWE causing that it may not be optimal. To make the point,
let's rewrite the WWE objective function as:

LWW (Wj;DWT ; �) =

JX
j=1

Nj

"
ln ~�2W;j;DWT (�) +

�̂2W;j;DWT

~�2W;j;DWT (�)

#
; (40)

where ~�2W;j;DWT (�) is the theoretical variance of j
th level DWT coe�cients and �̂2W;j;DWT is its

sample counterpart, � is the vector of parameters in ~�2W;j;DWT (�) and fWj;DWT ; j = 1; :::Jmaxg

are vectors of DWT coe�cients used to calculate �̂2W;j;DWT . Using the de�nition of wavelet vari-

ance �2j =
R 1=2j
1=2j+1

2 � f(�; �) d� =
�2W;j;DWT

2j ; j = 1; 2; :::J and using the fact that the optimization
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problem does not change by multiplying the right-hand side term by 1=N�, the total number of
coe�cients used in the estimation, the LWW (Wj;DWT ; �) above is equivalent to

LWW (Wj;DWT ; �) =

JX
j=1

Nj
N�

"
ln ~�2W;j;DWT (�) +

�̂2W;j;DWT

~�2W;j;DWT (�)

#
; (41)

where ~�2W;j;DWT (�) is the theoretical j
th level wavelet variance and �̂2W;j;DWT is its estimate using

DWT coe�cients; � is the vector of parameters in ~�2W;j;DWT (�) and fWj;DWT ; j = 1; :::Jmaxg

are vectors of DWT coe�cients used to calculate �̂2W;j;DWT .
So in fact, the quality of our estimate of � depends on the the quality of our estimates of

~�2W;j;DWT (�) using sample variance of DWT coe�cients, or equivalently, on the quality of our

estimates of ~�2W;j;DWT (�) using the rescaled sample variance of DWT coe�cients, whereas each
level of decomposition has a di�erent weight (Nj=N

�) in the objective function. The weights
re
ect the number of DWT coe�cients at individual levels of decomposition and, asymptoti-
cally, the width of the intervals of frequencies (scales) which they represent (i.e. the intervals
(2�(j+1); 2�j)).

The problem, and one of the motivations for the partial decomposition, is the deteriorat-
ing quality of information provided by coe�cients at subsequent levels of decomposition. With
declining number of coe�cients, the averages of their squares are becoming poor estimates of
their variances. Consequently, at these levels, the estimator is trying to match inaccurate ap-
proximations of the spectral density, and the quality of estimates is impaired. Then the full
decomposition, that uses even the highest levels with just a few coe�cients, may not be optimal.
The importance of this e�ect should increase with the total energy concentrated at the lowest fre-
quencies used for the estimation and with the level of inaccuracy of the variance estimates. To get
a preliminary notion of the magnitude of the problem in the case of FIEGARCH model, see Ta-

ble 1, Figure 3 and Figure 4 in Appendix C, where integrals of the spectral density
R 1=2j
1=2j+1

f(�; �)

(for several sets of coe�cients) over intervals respective to individual levels are presented, together

with the implied theoretical variances of the DWT coe�cients �2W;j;DWT =
R 1=2j
1=2j+1

2 � 2jf(�; �).

By their nature, the variances of the DWT coe�cients re
ect not only the shape of the spectral
density (the integral of the spectral density multiplied by two), but also the decline in their
number at subsequent levels (the 2j term). This results in the interesting patterns observable
in Figure 3, which suggest to think about both the direct e�ect of the decreasing number of
coe�cients on the variance estimates and about the indirect e�ect that changes their theoretical
magnitudes. This indirect e�ect can be especially important in case of long-memory processes,
where a signi�cant portion of energy is located at low frequencies, the respective wavelet coe�-
cients variances to be estimated become very high, while the accuracy of their estimates is poor.
In general, dealing with this problem can be very important in case of small samples, where
the share of the coe�cients at \biased levels" is signi�cant, but the e�ect should die out with
increasing sample size.

One of the possible means of dealing with the latter problem is to use a partial decomposition.
The idea is to set a minimal required number of coe�cients at the highest level of decomposition
considered in the estimation and discard all levels with lower number of coe�cients. Under
such a setting, the number of levels is increasing with the sample size, as in the case of full
decomposition, but levels with small number of coe�cients are cut o�. According to Percival
& Walden (2000), the convergence of the wavelet variance estimator is relatively fast, so that
128 (27) coe�cients should already ensure a reasonable accuracy2. Though, for small samples

2Accuracy of the wavelet variance estimate, not the parameters in approximate MLE.
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(such as 29) this means a signi�cant cut leading to estimation based on high frequencies only,
which may cause even larger problems than the inaccuracy of wavelet variances estimates itself.
The point is that every truncation implies a loss of information about the shape of the spectral
density, whose quality depends on the accuracy of the estimates of wavelet variances. Especially
for small samples, this means a tradeo� between inaccuracy due to poor variance estimation
and inaccuracy due to insu�cient level of decomposition. As far as our results for FIEGARCH
model, based on partial decomposition suggest, somewhat inaccurate information may be still
better than no information at all, and consequently, the use of truncation of 6 lags ensuring 128
coe�cients at the highest level of decomposition may not be optimal. The optimal level, will be
discussed together with the experiment results.

Next possible solution to the problem can be based on a direct improvement of the variances
estimates at the high levels of decomposition (low frequencies). Based on the theoretical results
on wavelet variance estimation provided in Percival (1995) and summarized in Percival & Walden
(2000), where the wavelet variance is de�ned as

�2j =
�2W;j;DWT

2j
; j = 1; 2; :::J ; (42)

where �2W;j;DWT is the sample variance of the DWT wavelet coe�cients, this should be possible
by applying maximal overlap discrete wavelet transform (MODWT) instead of DWT. The main
di�erence between the two transforms is that there is no sub-sampling in the case of MODWT.
The number of coe�cients at each level of decomposition is equal to the sample size, which
can improve our estimates of the coe�cients' variance. Generally, it is a highly redundant non-
orthogonal transform, but in our case this is not an issue. Since the MODWT can be used for
wavelet variance estimation, it can be used also for the estimation of the variances of DWT
coe�cients, and thus, it can be used as a substitute for the DWT in the WWE. Let's recall the
WWE de�nition:

�̂WW = argmin�2�

JX
j=1

2
4Nj
N�

0
@ln ~�2W;j;DWT +

NjX
k=1

�̂2W;j;DWT

~�2W;j;DWT

1
A
3
5: (43)

Using the de�nitions of variances of DWT and MODWT coe�cients at level j and their relation
to the original data spectral density f(�; �) described in Percival & Walden (2000)

�̂2W;j;DWT =

PNj
k=1W

2
(DWT )j;k

Nj
= 2j+1

Z 1=2j

1=2j+1
f(�; �); Nj =

T

2j
(44)

�̂2W;j;MODWT =

PT
k=1W

2
(MODWT )j;k

T
= 2

Z 1=2j

1=2j+1
f(�; �); (45)

it follows that

�̂2W;j;DWT = 2j �̂2W;j;MODWT : (46)

Then the MODWT-based WWE can be de�ned as

�̂WW
MODWT = argmin�2�

JX
j=1

"
Nj
N�

 
ln ~�2W;j(�) +

2j �̂2W;j;MODWT

~�2W;j(�)

!#
; Nj =

T

2j
: (47)

According to Percival (1995), in theory, the estimates of wavelet variance using MODWT can
never be less e�cient than those provided by the DWT, and thus the approach described above
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should improve the estimates. Results for this alternative estimator are presented later in the
text.

Next interesting question related to the optimal level of decomposition concerns the possibility
to make the estimation faster by using a part of the spectrum only. The idea is based on the
shape of the spectral density determining the energy at every single interval of frequencies. As
can be seen in table Table 1 and Figure 3 in Appendix C, for FIEGARCH model, under a wide
range of parameter sets most of the energy is concentrated at the upper intervals. Therefore,
whenever it is reasonable to assume that the data-generating process is not an extreme case with
parameters implying extremely strong long memory, estimation using a part of the spectrum
only may be reasonable. In general, this method should be both better applicable and more
useful in case of very long time-series compared to the short ones, especially when fast real-time
estimation is required. In case of small samples the partial decomposition can be used as a simple
solution to the inaccurate variance estimates at the highest levels of decomposition, but in most
cases it is not reasonable to apply it just to speed up the estimation.

At this point the questions raised above represent just preliminary notions based mostly
on common sense and the results of Moulines et al. (2008) in the semi-parametric setup. To
treat them properly, an asymptotic theory, in our case for the FIEGARCH-WWE, needs to be
derived. This should enable to study all the various patterns in detail, decompose the overall
convergence of the estimates into convergence with increasing sample size and convergence with
increasing level of decomposition and to optimize the estimation setup respectively. Yet, this
would be beyond the scope of our current research. Therefore, the analysis we present reduces
to an extension of the set of Monte Carlo experiments to cover both the full and the partial
decomposition, to demonstrate the relevancy of the problems mentioned above and to provide a
motivation for further research in this area.

3.4.4 FIEGARCH WWE

After de�ning the general form of the estimator and discussing its properties, let's focus on the
FIEGARCHWWE application. First, using WWE, the same transformation of the data as in the
case of the FWE is necessary. Second, due to the 
exibility of the DWT, important choices have
to be made before the WWE can be applied. Percival & Walden (2000) in chapter 4 discus some
general practical considerations, including the wavelet choice, handling of boundary coe�cients,
choice of the decomposition level and application of the DWT on series whose length is N 6= 2y.
Focusing on the choices we have applied: The �lters chosen for the Monte Carlo experiment
are the same as those chosen in Percival & Walden (2000), i.e. Haar wavelet, D4 (Daubechies)
wavelet and LA8 (Least asymmetric) wavelet, but the need of a detailed study focusing on the
optimal wavelet choice for FIEGARCH WWE is apparent. The only property of the �lters that
was tested before the estimation was their ability to decorrelate the FIEGARCH process, that is
important for the WWE derivation and its performance (see Percival & Walden (2000), Jensen
(1999), Jensen (2000) or Johnstone & Silverman (1997)). In Appendix J (online) the quality of
the DWT-based decorrelation is assessed based on the dependencies among the resulting wavelet
coe�cients. We provide estimates of autocorrelation functions (ACFs) of wavelet coe�cients
respective to FIEGARCH processes for (T = 211; d = 0:25; d = 0:45; d = �0:25) and �lters
Haar, D4 and LA8. Both sample mean and 95% con�dence intervals based on 500 FIEGARCH
simulations are provided for each lag available. Based on the results, the approximation of
the spectral density can be applied. Next, to avoid the problem with boundary coe�cients,
they are excluded from the analysis; sample sizes considered are: 2k; k = 9; 10; 11; 12; 13; 14
and concerning the level of decomposition, both full and partial decomposition are used, the
respective results are compared. Making all these choices, the WWE is fully speci�ed and the
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objective function is ready for parameters estimation.

3.4.5 Preliminary Results: FWE vs. WWE

Since the relative accuracy of the Fourier- and wavelet-based spectral density estimates determine
the relative performance of the parameters estimators, it is interesting to see how the sample
Fourier- and wavelet-based approximations of the spectral density match its true shape. For this
purpose, a set of �gures in Appendix B is provided, showing the rationale for WWE application.
Figure 1 shows the true shape of a FIEGARCH spectral density under three di�erent parameter
sets, demonstrating the smoothness of this function and the importance of the long memory.
Figure 2, then provides the wavelet-based approximations based on the simple assumption that
the spectral density is constant over the whole intervals, equal to the estimated averages. Using
this speci�cation is relevant given the de�nition of the WWE. Wavelet-based approximations are
compared with the respective true spectral densities, true averages of these spectral densities
over intervals of frequencies, as well as with two Fourier-based approximations, one providing
point estimates and the second estimating the averages over whole intervals. The �gures show a
good �t of both Fourier-based and wavelet-based approximations at most of the intervals, some
problems can be seen at the lowest frequencies, which supports the idea of partial decomposition.
In general, the wavelet-based approximation works well especially for processes with well behaved
spectral densities without signi�cant patterns well localized in the frequency domain, when the
average energy over the whole intervals of frequencies represents a su�cient information about the
shape of the true spectral density. For these processes, the wavelet transform can be e�ectively
used for visual data analysis and both parametric and semi-parametric estimation of parameters
in the spectral density function. More �gures for the spectral density approximation are available
in Appendix I (online).

4 Monte Carlo Experiments

In order to study how the WWE performs compared to the two benchmark estimators (MLE
and FWE), an extensive Monte Carlo experiment has been carried out. Each round consisted of
1000 simulations of a FIEGARCH process at a �xed set of parameters, and estimation of these
parameters by all methods of interest. The experiment setup mirrors that of Perez & Za�aroni
(2008), which ensures consistency with that work and enables interpretation of the new results as
an extension to those already published. Since in this benchmark study no wavelet-based methods
are used, choices concerning the WWE application and extension of simulations to longer data
sets have been made with respect to other relevant literature (Jensen (1999), Percival & Walden
(2000)), as discussed earlier. Technical details of the experiment and tables with results are
provided in Appendix K (online).

4.1 Results I: Maximal Decomposition

At �rst, the experiment has been performed using MLE, FWE and DWT-based WWE with
maximal level of decomposition. The maximal level of decomposition means that for sample of
length 2j , using Haar, D4 and LA8 wavelets, we have levels j, j-2 and j-3 respectively.This is due
to the truncation of boundary coe�cients explained in the previous section.

In general, the WWE works fairly well in all setups. Especially biases are low, and in
most cases decline with increasing sample size. The exception is parameter � for all �lters and
parameter � for Haar �lter, where the convergence is problematic. Yet, even in these situations
the bias remains low for all �lters and samples up to 211, and RMSE (although relatively high) is
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declining with sample size as for all the other parameter estimates across all setups. Focusing on
the di�erences between individual �lters, the strength of long memory, sample size and parameter
concerned seem to be important. In all setups, Haar performs the best in estimating the long-
memory parameter d. Other parameters (�, �, 
 and in case of small samples also the �),
under d = 0:25, are better estimated using �lters with larger support. In case of d = 0:45 and
d = �0:25 the relative performance slightly improves for �lters with smaller support. The overall
performance of the wavelet-based estimators (WWE using various �lters) in the experiment
suggests using D4 for 210 and 211 and switching to LA8 for 29 and

�
2j ; j > 11

	
in case of long

memory in the data (a simple ACF analysis before estimation should reveal this pattern). For
negative dependence the optimal choice seems to be Haar for 29 and D4 otherwise (with possible
shift to LA8 for samples longer than 214).

Concerning the relative performance of the WWE, FWE and MLE, the WWE works in
general comparably to the FWE. In many cases it outperforms the FWE in terms of bias, while
in terms of RMSE the FWE is better. Yet, the absolute di�erences are usually small. As
expected, estimates using MLE are in most cases the best. This remains true even in cases with
strong long memory, since the long memory is in the variances, not in the (log-return) process
itself and the problem with mean estimation under long memory does not apply. The Whittle
estimators outperform the exact MLE in some cases, but usually it is in situations with negative
memory in the data, which is, based on the current literature on �nancial returns analysis, not
of a great interest for most practical applications.

4.2 Results II: Partial Decomposition

The additional Monte Carlo experiments have been designed to mirror the setup used in the case
of full decomposition, with the only di�erence in the number of levels used for the estimation.
For all sample lengths (2M ; M = 9; 10; :::; 14) experiments for levels J; J = 4; 5; :::M have been
carried out. Results are available for both processes with long memory (d = 0:25 and d = 45),
which are of the most interest for practical applications, the case of d = �0:25 is omitted to keep
the extent of simulations reasonable. For results including mean estimates, respective levels of
bias and RMSE see tables in Appendix L(online).

As the results suggest, for small samples, estimation under the restriction to �rst four levels
of decomposition leads to better estimates of d and worse estimates of � in terms of both bias and
RMSE, while for longer samples the opposite holds. Other coe�cients are estimated sometimes
with lower bias, sometimes with lower RMSE than in the case of full decomposition depending
on the sample size, strength of the long memory and also on the �lter applied. With increasing
sample size the performance of the estimator under partial decomposition deteriorates relatively
to that using full decomposition. Comparing the performance of individual �lters, in most cases
LA8 provides the best sets of estimates for both d = 0:25 and d = 0:45, except for the case of
small samples with d = 0:25, where Haar seems to be better. In general, it can be said that this
partial decomposition setup o�ers just a di�erent set of bias and RMSE for all parameters than
the full decomposition. The choice would depend on the weights assigned to the bias and RMSE
and the importance we attach to individual parameters, which could be based on a bias and
RMSE of one day forecasts added to the Monte Carlo experiment. While there is a relatively
high probability that based on the more detailed analysis the level 4 setup may be preferred in
case of short samples, for long samples the full decomposition is likely to be more appropriate.

Moving on to the truncation at level 5, signi�cant overall improvement in the short-sample
estimates is apparent for both d = 0:25 and d = 0:45. Not only are they better compared
to the level 4 setup, but also compared to the full decomposition. Relative performance with
respect to FWE and MLE also changes, WWE works in most cases better than the FWE for
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all �lter speci�cations. Focusing on the relative performance of the �lters considered, the results
suggest to use D4 for 210 � 213 and switching to LA8 for 29 and 2j ; j > 13 in case of d = 0:25;
under d = 0:45 LA8 performs the best for all sample sizes as in the case of preceding partial
decomposition setup.

Next, under truncation at level 6 the estimator seems to work comparably to the case of
truncation at level 5. In most cases it o�ers an alternative of somewhat lower RMSE at the cost of
slightly higher bias, for some parameters even the bias improves. Though, due to the signi�cantly
worse estimates of long memory, even to some extent counterbalanced by better estimates of
other parameters, the truncation at level 5 may be preferred. The relative performance could be
assessed based on the bias and RMSE of one day forecasts added to the Monte Carlo experiment
as already proposed in the case of level 4 truncation. Regarding the relative performance of the
�lters considered, in case of d = 0:25 D4 performs the best for almost all sample sizes, while it is
outperformed by LA8 when the parameter d becomes larger. Compared to the full decomposition,
in case of small samples the estimator works better in most cases in terms of both bias and RMSE.
In case of longer samples, the estimates of the long memory parameter deteriorate relatively to
their full decomposition counterparts, while short-term dynamics parameters are still estimated
in most cases with lower bias and in case of d = 0:45 also with lower RMSE under the truncation.

We conclude that the results well demonstrate the e�ects mentioned when discussing the
partial decomposition in 3.4.3. We can see how the partial decomposition helps in the case of
short samples and how the bene�ts from truncation (no use of inaccurate information) decrease
relative to the costs (more weight on the high-frequency part of the spectra and no information
at all about the spectral density shape at lower frequencies) as the sample size increases, as
the long-memory strengthens and as the truncation becomes excessive. Moreover, the e�ect
becomes negligible with longer samples, as the share of problematic coe�cients goes to zero. Yet,
the convergence with sample size and with the level of decomposition is not easy to interpret.
To see the interesting convergence patterns determined by the synergy of various e�ects of the
truncation on the estimates see 3D plots in Appendix D providing a graphical decomposition of
the convergence into the convergence with sample size and convergence with increasing level of
decomposition; graphs for the estimates of d and � under d = 0:25; D4; LA8 and d = 0:45; LA8
are available. To make the �gures comprehensive and well interpretable, additional Monte Carlo
experiments have been performed enabling to present the whole spectrum of possible truncations
from that leading to estimation at level 4 to full decomposition. As can be seen, the optimal
setup choice for small samples is a non-trivial problem that cannot be reduced to a simple method
of cutting a �xed number of highest levels of decomposition to ensure some minimal number of
coe�cients at each level. Although in case of long samples a nice convergence with both sample
size and level of decomposition can be seen for all speci�cations, the results for small samples
are mixed. In this latter case the convergence with sample size still works relatively well, but
the increase in level of decomposition does not always improve the estimates. To understand
the speci�c patterns, next to the derivation of the asymptotic theory, it would be interesting to
compare the results with their MODWT-based counterparts, which would enable to separate the
e�ect of deteriorating DWT variance estimates and would potentially lead to better interpretable
convergence patterns.

5 Monte Carlo Extension: Jumps and Forecasting

As has been concluded in the previous section, on simulated pure FIEGARCH processes the best
estimator in terms of both bias and RMSE (in case of individual parameters estimation) seems
to be the MLE, followed by FWE and somewhat less \accurate" WWE. But, as discussed in
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the sequel, deprecating WWE based on these results only might be premature. Let's look what
happens when we assume a more realistic scenario, where the simulated process is augmented by
speci�c time-localized irregularities - jumps - in the log-return process. Next, since the evaluation
based on individual parameters estimation only may not be the best practice when forecasting
is the main concern, let's analyze also the relative forecasting performance. As a motivation for
this step additional plots have been prepared, which can be found in Appendix E (online) and
some of them also in Appendix N. They show the bias of the mean estimated spectral densities
using FWE and DWT-based WWE under various setups. Except for small samples, where the
performance of the FWE is signi�cantly worse than that of WWEs in terms of bias, both the
estimators perform very well and in most cases di�erences are almost negligible. This suggests
that the forecasting RMSE should play the major role. Then, based on the results for individual
coe�cients, FWE can be expected to dominate the DWT-based WWE, at least in case of larger
samples and, of course, data generated by a pure FIEGARCH process. But this is just an ex
ante guess, the need for a Monte Carlo experiment extension is apparent. Practical issues of this
kind of evaluation are discussed later in this section.

5.1 FIEGARCH-Jump Model

Jumps are one of the several well known stylized features of log-returns and/or realized volatility
time series and there is a lot of studies on incorporating this pattern in volatility models. For
a summary see e.g. Mancini & Calvori (2012). So even if the FIEGARCH process could well
approximate the true underlying volatility, it is important to study the jump process and use
the additional information for forecasts improvement.

To test the performance of the individual estimators in the case of FIEGARCH-Jump process-
es, an additional Monte Carlo experiment has been conducted. The simulations are augmented
by additional jumps, which do not enter the conditional volatility process, but the log-returns
process only. This represents the situation, when the jumps are not resulting from the long
memory in the volatility process, which can produce patterns similar to jumps in some cases, as
well as they do not determine the volatility process in any way. The log-return process is then
speci�ed as:

�t = zth
1=2
t + Jt(�); (48)

where the process ht remains the same as in the original FIEGARCH model (Equation 1) and
Jt; t = 1; 2; :::; T is a Jump process. The jumps are modeled as a sum of intraday jumps, whereas
the number of intraday jumps in one day follows a Poisson process with parameter � = 0:028
and their size is drawn from a normal distribution N(0; 0:2). The Jump process is based on
Mancini & Calvori (2012), with parameters slightly adjusted (originally � = 0:014 and sizes
follow N(0; 0:25) ) based on analysis of resulting simulations and comparison with real data.
Moreover, unlike in the previous Monte Carlo experiment, a non-zero constant is assumed. Since
we would like to keep consistency in the research (keep the parameters the same throughout this
paper) and at the same time to simulate time series as close to the real ones as possible, we have
compared our simulated time series with real data from \yahoo.�nance.com" ( for facebook and
zynga) and found that the optimal mean for series like these could be around �7. It is a rule of
thumb decision, but we believe that it is a reasonable value at least as a starting point for the
future research.
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5.2 Forecasting

Next extension, as mentioned above, is the evaluation of the in-sample and out-of-sample fore-
casting performance. For each simulation the �tted values and a one day ahead forecast per each
estimator are calculated. The out-of-sample forecasts are directly stored for further analysis, the
in-sample forecasts are transformed to mean error, mean absolute deviation and mean squared
error statistics. These statistics are stored and used for overall statistics calculation. When we
get the data from all 1000 simulations, we compute the mean error, mean absolute deviation and
root mean squared error for both the in-sample and out-of-sample forecasts.

Although the idea of forecasting evaluation seems to be simple, there are some issues we
had to deal with. The most important one is the dependency of the forecasting results on the
�tting algorithm. This algorithm is technically the same as the the used in MLE and it is in fact
possible to manage the maximal error of the forecasts in case of divergence of the �tted time
series as well as to ensure robustness to extreme log-returns observations in the data input. We
have chosen a basic algorithm that only ensures that the operation does not break and that that
in case of non-positive and/or in�nite �tted conditional variance the algorithm returns sample
variance instead and continues computing. But then we have situations, especially in case of
jumps, where a few forecasts can have a huge �nite error, but other are quite accurate. Then,
average error measures are not the best practice, since then the estimator with slightly lower
maximal error would be considered better even though in most cases it could be much worse
than the alternatives. In case of out-of-sample forecasts (one forecast per simulation) we solve
this problem by using error and absolute deviation quantiles. In case of in-sample forecast we
set a rule of thumb level of allowed excessive errors (1%) and we analyze further only the 99%
of better forecasts. Then, if any NaN is present, we count this observation but exclude it from
the further analysis (for all estimators). Next, extremely high in-sample mean absolute errors
are considered to be equivalent to in�nite ones and treated accordingly, in case of out-of-sample
forecasts they are not excluded and their magnitude can be studied - we study the real out-of
sample forecasting performance in case of non-extreme in-sample �t. Therefore it is essential to
look at the quantile results rather than on the summary measures, where in case of one excessive
error out of the 1000 realizations the mean, mean absolute deviation and RMSE are huge even
though 999 estimates may be pretty accurate.

5.3 Practical Aspects

Although we expected that the WWE could be easily adjusted to be robust to jumps (compared
to FWE and MLE) and thus become a good alternative in case of FIEGARCH estimation on
the real data, there are two technical details which make this hardly possible and the WWE
theoretically rather than empirically evincible. First, the transformation needed for FWE and
WWE derivation hides the jumps in the process (they add volatility, but are not detectable in
the transformed data), as can be seen in Appendix F; second, for forecasting we need jump-free
data as the input - else we get inaccurate estimates even in case of perfect coe�cient estimates.
Thus, the jump detection and data adjustment has to be done before the actual parameters
estimation takes place. To deal with the jumps we apply one of the well performing wavelet-
based jump estimators that is based on a universal threshold of Donoho & Johnstone (1994) and
that is described in detail and successfully applied in Barunik & Vacha (2012). When detected,
the jumps are replaced by average of the two adjacent values. This, of course, is not the best
practice in case of large double-jumps, where this transformation leads to two smaller jumps
instead of getting rid of them. Yet, in case of long memory that can produce jump-like patterns,
which are usually clustered in high volatility intervals, getting rid of the multiple jumps may not
be the best thing to do. So we use this simple transform for our data with moderate jumps, but
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in case of data with extreme jumps, such as those in Appendix F, we propose to use a di�erent
method that would get rid of all the jumps, otherwise the estimation results would be poor.
Anyway, the important thing here is that the jump detection and model estimation are two
separable tasks. This holds even in cases of large jumps which are detectable in the transformed
data, since in real applications we do not know what kind of jump process are we dealing with
and also even in this case it is easier to found the jumps in the data before the transformation.
Then we can only study how are the individual estimators able to deal with the residual jumps,
which are not detected and subtracted from the time series. And of course, the better the jump
estimation method, the lesser the residuals impact.

5.4 Results III: FIEGARCH-Jump

The main results of the Monte Carlo experiment are summarized in tables in Appendix G. In
the �rst two tables MLE, FWE and MODWT-based WWE are compared in terms of individual
parameters estimation performance, results for DWT-based WWE are not included due to the
limited space. Concerning the comparison of these two estimators, the overall performance of
the MODWT-WWE is better than that of the DWT-WWE both in terms of bias and RMSE
and considering also the loss of sample size limitation, the MODWT-WWE is strictly preferred.
This is only supported by the forecasting results presented in the next tables. Next, focusing
on the MLE, FWE and MODWT-WWE relative performance in terms of RMSE for jumps and
d = 0:25, the MLE, despite being a�ected by the residual jump e�ects, it remains the best
followed by the two Whittles, which perform comparably, FWE in most cases works slightly
better. Yet, the bias of the MLE is signi�cant and we would prefer the use of FWE considering
both the bias and the RMSE and in case of longer time series, WWE seems to be the best option
due to the faster bias decay. Next, for d = 0:45, the MLE performance is very poor and the use of
FWE is preferable. As expected, the bias and RMSE in case of individual parameters estimates
as well as the mean absolute deviation and RMSE of the out-of-sample forecasts decline and the
overall in-sample �t improves with sample size increase and long memory weakening. Next, the
constant term estimation performance is worth mentioning, since it is very poor in the case of
MLE and strong long memory, and therefore an ex ante estimation as in the case of FWE and
WWE is appropriate.

On the other hand, when we look at the forecasting performance, the results are much more
clear. The best in all scenarios and by all indicators is the MLE, followed by the FWE and
a little less accurate WWE. The impact of jumps depends, of course, on the jump estimator
performance and in our case, for forecasting, it is very limited, although the same cannot be said
about the impact on individual parameters estimates. Unfortunately, as discussed earlier, WWE
does not provide any signi�cant estimation improvement or time savings. Moreover, the use of
WWE causes about twice as many cases with extremely poor in-sample �t than the FWE. By its
nature, MLE does not cause these poor �t situations at all. But of course, in practice, adjustment
of the optimization algorithms as well as the forecasting algorithm could prevent these cases for
all estimators. We did not apply any special adjustments just to keep the estimators comparison
as \fair" as possible and we propose the question of the algorithms optimization as a topic for
future research.

6 Comparison with Literature

As already emphasized, the basic Monte Carlo setup has been chosen to mirror that of Perez &
Za�aroni (2008) to keep consistency in the research and enable direct comparison of the results.
Since the benchmark paper focuses on the relative performance of FWE and MLE under the
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same conditions as applied in our paper, it is interesting to check whether the results for these
two estimators are in both works the same. In the case of MLE, the answer is yes, up to small
di�erences caused by the uniqueness of every simulated time series. For FWE, the di�erences
are somewhat larger (although not extreme; the maximal deviation for both bias and RMSE
is less than 0.1, mostly amounting to about 0.06 or less). Based on an analysis of the code
underlying the benchmark paper, this may be caused by a di�erent optimization setup, that
utilizes an explicitly formulated analytical gradient of the objective function. This helps to
estimate the individual coe�cients more accurately. Then, it seems natural to run the Monte
Carlo experiments for our research using this, virtually more e�cient, algorithm (or search for
even better one). Yet, this is a non-trivial task. This follows from the form of the WWE
objective function and the respective derivations. To enable the re-estimation, more e�ciently
written code or an adjusted means of gradient calculation would be needed, which is beyond the
scope of our current work. In general, the comparison above shows the importance of taking
the estimation as a complex problem including many, both theoretical and practical, issues.
Most importantly, when comparing several estimators, it is usually not feasible to separate the
performance of the estimator from the performance of the optimization algorithm applied. Even
using the same algorithm, as applied in this work, cannot generally solve this problem, since
each of the estimators may be a�ected di�erently. Then, in case of empirical analysis, it is
reasonable to speak about comparison of methods of estimation instead of comparison of the
individual estimators. The focus is then on the whole sets of estimators and respective means of
optimization. This highlights the importance to analyze all details of the methods and optimize
the estimation setup as a whole, before any de�nite conclusions can be made.

Next, comparing the results in this paper with some other works on wavelet-based maximum
likelihood estimation, no strange patterns that would contradict the earlier conclusions are found.
A relatively good performance of the WWE comparable to that of FWE is observed, which is
in compliance with studies using simulated smooth processes. The absolute performance of the
WWE is somewhat worse than in the benchmark papers, which is expectable given the complexity
of the FIEGARCH model implying more di�cult parameters identi�cation compared to the other
models estimated in the related works, as well as given the asymmetry of the FIEGARCH process
that makes the QMLE less accurate (other works focus on symmetric processes). As mentioned
above, optimization of the estimation setup should improve the overall performance and lead to
absolute results closer to those in the benchmark studies. Next, focusing on the �lter choice,
the relative performance of the Haar, D4 and LA8 �lters seem to be in compliance with that
in Percival & Walden (2000), as well as it supports the conclusion in Jensen (1999) that Haar
can be dominated by longer �lters. To sum it up, the current work seems to extend the current
literature without any contradiction with earlier works. Given the lack of related studies, this
seems to be good news. Though, to make any strong conclusions about the WWE performance
in various applications, a lot of work has to be done in the future.

7 Conclusion

In this paper, we introduce a new, wavelet-based estimator (wavelet Whittle estimator, WWE) of
a FIEGARCHmodel, ARCH-family model allowing for long-memory and asymmetry in volatility,
and study its properties. Based on several Monte Carlo experiments its accuracy and empirical
convergence are examined, as well as its relative performance with respect to two more traditional
estimators: Fourier-based Whittle estimator (FWE) and maximum likelihood estimator (MLE).
It is shown that even in the case of simulated pure FIEGARCH processes, which do not allow
to fully utilize the advantages of the WWE, the estimator can work reasonably well. In terms

22



of bias, it often outperforms the FWE, while in terms of RMSE the FWE is better. Yet, the
absolute di�erences are usually small. As expected, MLE is in most cases the best, even under
strong long memory. The Whittle estimators outperform the MLE in some cases, but usually
it is in situations with negative memory, which is not of a great interest for most practical
applications. The forecasting performance analysis has a similar conclusion, just the di�erences
across estimators are even smaller. Yet, since the Whittle estimators are signi�cantly faster and
the di�erences in the performance are small, they are a good alternative to the MLE for long
samples. Concerning the optimal WWE settings studied, the strength of long memory, sample
size and parameter concerned seem to be important for the optimal �lter (wavelet) choice, but
further research in this area is needed.

Next, some practical aspects of the WWE application are discussed. The main focus is on the
problem of declining number of wavelet coe�cients at subsequent levels of decomposition, which
impairs the estimates accuracy. Two solutions to this problem are suggested. One is based on
a partial decomposition (local WWE) that ensures some minimal number of coe�cients at the
highest level of decomposition, the other applies an alternative speci�cation of the WWE (using
maximal overlap discrete wavelet transform, MODWT). First, we show that the partial decom-
position can improve the estimates in case of short samples, even make the WWE superior to the
FWE (and to the MLE for negative memory), while in case of long samples, full decomposition is
more appropriate. Yet, the second solution (MODWT-WWE) is argued to be better. Compared
to the former method, it ensures the number of coe�cients at every level equal to the sample size
and does not lead to any decline in the share of spectrum used in the estimation (information
loss). The only cost to bear is a somewhat longer estimation time. As our results suggest, using
the MODWT instead of the DWT improves the WWE performance in all scenarios.

Next, we study the estimators in case of jumps. The accuracy of individual parameters
estimates using MLE is signi�cantly impaired, even if we apply a simple data correction; the
FWE and the WWE are superior. Yet, based on the forecasting performance, MLE should be
preferred in all scenarios at least in case of small samples, where it can be computed in reasonable
time; FWE andWWE can be recommended only as a faster, but slightly less accurate alternative.
From these two FWE performs slightly better. Yet, we believe that after optimization of the
estimation and forecasting algorithms, the di�erences between the FWE and WWE disappear,
or even the WWE becomes superior.

Last but not least, we discuss the e�ects of optimization algorithm choice on the experiment
results. It is argued that in cases, when the identi�cation of individual parameters in the objec-
tive function is problematic, as is the case of the Whittle estimators applied in this work, the
performance of the estimator and of the optimization algorithm cannot be well separated. Based
on a comparison of our results with those of Perez & Za�aroni (2008), it is argued that appli-
cation of more sophisticated optimization algorithms to both FWE and WWE should improve
their absolute performance, and potentially also change the conclusions about their relative per-
formance. Therefore, the question of algorithm choice is an important topic to address in the
future.

It can be concluded that after optimization of the estimation setup, the WWE may become
a very attractive alternative to the traditional estimation methods. Although it is not as useful
in case of jumps in the data as we expected, the statement that, compared to FWE, it is more
robust to time-localized irregularities is still valid. The only additional requirement is that the
irregularities remain detectable even after the data transformation that is necessary for the FWE
and WWE application. Although a lot of work has to be done before the WWE applicability and
performance will be properly assessed, importance of the research results for volatility modeling
should be a su�cient motivation.
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A FIEGARCH Transformation

As discussed and derived in Perez & Za�aroni (2008) and Za�aroni (2009), to estimate the
FIEGARCH model using FWE, it is necessary to rewrite the model in a signal plus noise form,
for which the spectral density can be derived. Let's begin with the original FIEGARCH(1,d,2)
model:

�t = zth
1=2
t (49)

ln(ht) = ! +�(L)g(zt�1) (50)

g(zt) = �zt + 
[jztj � E(jztj)] (51)

�(L) = (1� L)�d[1 + �[2](L)][�(L)]
�1 (52)

where for FIEGARCH(1,d,2):�(L) = 1 + �L (53)

�(L) = 1� �L (54)

(1� L)d = 1� d

1X
k=1

�(k � d)�(1� d)�1�(k + 1)�1Lk; (55)

where fztg and f�tg denote discrete-time real valued processes satisfying Et�1(zt) = 0, Et�1(z
2
t ) =

1, Et�1(�t) = 0, Et�1(�
2
t ) = ht. Following Za�aroni (2009), this can be rewritten as

�t = zth
1=2
t (56)

�2t = z2t ht (57)

ln
�
�2t
�
= ln

�
z2t
�
+ ln (ht) (58)

ln(ht) = ! +�(L; )g(zt�1) (59)

�(L)g(zt�1) =

1X
s=0

�sg(zt�s�1) (60)

g(zt) = �zt + 
[jztj � E(jztj)]; (61)

which leads to

ln
�
�2t
�
= ln

�
z2t
�
+ ! +

1X
s=0

�sg(zt�s�1) (62)

g(zt) = �zt + 
[jztj � E(jztj)] (63)

�(L) = (1� L)�d[1 + �L][1� �L]�1: (64)

From Perez & Za�aroni (2008), the spectral density of this process for fztg � N(0; 1), ! = 0
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and Fourier (angular) frequencies �j = 2�j=T ; � 2 h��; �) is

f (�; �) =
A(�)

2�
+
B(�)

2�

�����
1X
s=0

�s (�) exp (is�)

�����
2

+ (65)

+
C(�)

2�

 
exp (i�)

1X
s=0

�s (�) exp (is�)

!
+

+
C(�)

2�

 
exp (�i�)

1X
s=0

�s (�) exp (�is�)

!

A(�) = var(ln(z20)) (66)

B(�) = var(g(z0)) (67)

C(�) = cov(ln(z20); g(z0)) (68)

� = (�0; � 0)0; (69)

where � is the vector of parameters in the distribution function of variable z. For fztg � N(0; 1):

A(�) = 	(
1

2
) (70)

B(�) = �2 + �2 � (1� �2jzj) (71)

C(�) = � � �z � ( (1)�  (
1

2
)) (72)

�jzj = E(jzj) =
p
(
2

�
); (73)

where  (x) and 	(x) are digamma and trigamma functions respectively. Evaluated at Fourier
frequencies, this spectral density occurs in both terms of the FWE objective function. For a
generalization to fztg following GED or Student-t distribution, see Perez & Za�aroni (2008).

B Spectral Density Estimation
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Figure 1: True spectral density
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Figure 2: Spectral density estimation (d=0.25/0.45/-0.25), T=2048 (211), level=10,
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C Partial Decomposition

(a) Coe�cient Sets

Coe�cients: d ! � � � 


A: 0.25 0 0.5 0.5 -0.3 0.5
B: 0.45 0 0.5 0.5 -0.3 0.5
C: -0.25 0 0.5 0.5 -0.3 0.5
D: 0.25 0 0.9 0.9 -0.3 0.5
E: 0.45 0 0.9 0.9 -0.3 0.5
F: -0.25 0 0.9 0.9 -0.3 0.5
G: 0.25 0 0.9 0.9 -0.9 0.9
H: 0.45 0 0.9 0.9 -0.9 0.9

(b) Integrals over frequencies respective to levels for the coe�cient sets from Tab.E.1
(a)

A B C D E F G H

Level 1 1.1117 1.1220 1.0897 1.1505 1.1622 1.1207 1.1261 1.1399
Level 2 0.5473 0.5219 0.6274 0.4776 0.4691 0.5306 0.6187 0.6058
Level 3 0.3956 0.3693 0.4330 0.3246 0.3056 0.3959 1.1354 1.3453
Level 4 0.3029 0.3341 0.2425 0.5559 0.7712 0.3528 2.9558 4.8197
Level 5 0.2035 0.2828 0.1175 1.0905 2.1758 0.3003 6.0839 13.2127
Level 6 0.1279 0.2297 0.0550 1.4685 3.9342 0.1965 8.2136 23.4144
Level 7 0.0793 0.1883 0.0259 1.3523 4.7975 0.0961 7.6026 28.4723
Level 8 0.0495 0.1584 0.0123 1.0274 4.8302 0.0408 5.8268 28.7771
Level 9 0.0313 0.1368 0.0059 0.7327 4.5720 0.0169 4.1967 27.3822
Level 10 0.0201 0.1206 0.0029 0.5141 4.2610 0.0071 2.9728 25.6404
Level 11 0.0130 0.1080 0.0014 0.3597 3.9600 0.0030 2.0977 23.9192
Level 12 0.0086 0.0979 0.0007 0.2518 3.6811 0.0013 1.4793 22.2986

(c) Sample Variances of DWT Wavelet Coe�cients for the coe�cient sets from Table E.1 (a)

A B C D E F G H

Level 1 4.4468 4.4880 4.3588 4.6020 4.6488 4.4828 4.5044 4,5596
Level 2 4.3784 4.1752 5.0192 3.8208 3.7528 4.2448 4.9496 4.8464
Level 3 6.3296 5.9088 6.9280 5.1936 4.8896 6.3344 18.1664 21.5248
Level 4 9.6928 10.6912 7.7600 17.7888 24.6784 11.2896 94.5856 154.2304
Level 5 13.0240 18.0992 7.5200 69.7920 139.2512 19.2192 389.3696 845.6128
Level 6 16.3712 29.4016 7.0400 187.9680 503.5776 25.1520 1051.3408 2997.0432
Level 7 20.3008 48.2048 6.6304 346.1888 1228.1600 24.6016 1946.2656 7288.9088
Level 8 25.3440 81.1008 6.2976 526.0288 2473.0624 20.8896 2983.3216 14733,8752
Level 9 32.0512 140.0832 6.0416 750.2848 4681.7280 17.3056 4297.4208 28039.3728
Level 10 41.1648 246.9888 5.9392 1052.8768 8726.5280 14.5408 6088.2944 52511.5392
Level 11 53.2480 442.3680 5.7344 1473.3312 16220.1600 12.2880 8592.1792 97973.0432
Level 12 70.4512 801.9968 5.7344 2062.7456 30155.5712 10.6496 12118.4256 182670.1312

Table 1: Energy decomposition
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Figure 3: Energy decomposition: Integrals of FIEGARCH spectral density over fre-
quency intervals respective to individual levels of decomposition, assuming
various levels of long memory (d=0.25, d=0.45, d=-0.25) and the coe�cient
sets from Table E.1 (a)
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Figure 4: Energy decomposition: True variances of wavelet coe�cients respective to
individual levels of decomposition and various levels of long memory (d=0.25,
d=0.45, d=-0.25) and the coe�cient sets from Table E.1 (a)
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D Convergence analysis
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Figure 6: 3D Plots: Partial decomposition: d̂: Bias
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Figure 7: 3D Plots: Partial decomposition: d̂: RMSE
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Figure 8: 3D Plots: Partial decomposition: �̂: Bias
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Figure 9: 3D Plots: Partial decomposition: �̂: RMSE
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Figure 10: Spectral density estimation: Wavelets (Level 5) vs Fourier

33



F Jumps: Features
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Figure 11: Jumps in the data
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Figure 12: Jumps after transformation ln(y2)

G Jumps: Results
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H FIEGARCH Process
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Figure 13: FIEGARCH: Process and respective conditional volatilities for d=0.25,
d=0.45, d=-0.25
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I Spectral density estimation II
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Figure 14: Spectral density estimation (d=0.25)
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Figure 15: Spectral density estimation (d=0.45)
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Figure 16: Spectral density estimation (d=-0.25)

46



J Wavelets and Wavelet coe�cients analysis
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Figure 17: Wavelets: Haar, D4, LA8
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Figure 18: Estimates of autocorrelation functions (ACFs) of wavelet coe�cients respec-
tive to FIEGARCH processes for T = 211; d = 0:25; d = 0:45 and �lters
Haar, D4 and LA8; both sample mean and 95% con�dence intervals based
on 500 FIEGARCH simulations are provided for each lag available.
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Figure 19: Estimates of autocorrelation functions (ACFs) of wavelet coe�cients respec-
tive to FIEGARCH processes for T = 211; d = 0:45; d = �0:25 and �lters
Haar, D4 and LA8; both sample mean and 95% con�dence intervals based
on 500 FIEGARCH simulations are provided for each lag available.
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K Results: Maximal Decomposition

Simulation:

� FIEGARCH(1,d,2)

� Truncation of in�nite ARCH representation at lag = 1000

� Discarding �rst 1000 simulated numbers

� Number of simulations after truncation = 1000

� Sample lengths: 29,210,211,212,213,214

� Parameters: (!1; �1; �2; �1; �; 
) = (0; 1; 0:5; 0:5;�0:3; 0:5), d = 0:25; 0:45; �0:25

� Estimators: MLE, FWE, WWE(Haar), WWE(D4), WWE(LA8)

� Levels of decomposition: Maximal (depending on �lter support)
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Figure 20: 3D Plots: Partial decomposition: d̂, �̂: Bias, RMSE
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Figure 21: Spectral density estimation: Partial decomposition 0.25
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Figure 22: Spectral density estimation: Wavelets (Level 4) vs Fourier
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Figure 23: Spectral density estimation: Wavelets (Level 5) vs Fourier
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Figure 24: Spectral density estimation: Partial decomposition 0.45
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Figure 25: Spectral density estimation: Wavelets vs Fourier
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