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Abstract: 
 

We introduce a methodology for dynamic modelling and forecasting of realized 

covariance matrices based on generalization of the heterogeneous autoregressive 

model (HAR) for realized volatility. Multivariate extensions of popular HAR 

framework leave substantial information unmodeled in residuals. We propose to 

employ a system of seemingly unrelated regressions to capture the information. The 

newly proposed generalized heterogeneous autoregressive (GHAR) model is tested 

against natural competing models. In order to show the economic and statistical 

gains of the GHAR model, portfolio of various sizes is used. We find that our 

modeling strategy outperforms competing approaches in terms of statistical 
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precision, and provides economic gains in terms of mean-variance trade-off. 

Additionally, our results provide a comprehensive comparison of the performance 

when realized covariance and more efficient, noise-robust multivariate realized 

kernel estimator, is used. We study the contribution of both estimators across 

different sampling frequencies, and we show that the multivariate realized kernel 

estimator delivers further gains compared to realized covariance estimated on higher 

frequencies. 
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1 Introduction

The risk of individual financial instruments is crucial for asset pricing, portfolio and risk man-
agement. Besides volatility of individual assets capturing the risk, knowledge of covariance
structure between assets in portfolio is of great importance. Accurate forecasts of variance-
covariance matrices are particularly important in asset allocation and portfolio management.

Nature of the financial data with dependencies in higher moments of the daily return series
motivated the work of Engle (1982) and Bollerslev (1986), who developed widely used family
of Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models. Subsequent
research developed numerous multivariate extensions of the framework, most importantly con-
stant conditional correlation GARCH of Bollerslev (1990) further generalized by Engle (2002)
to capture dynamics in correlation structure, and BEKK model of Engle and Kroner (1995).
Multivariate GARCH (MGARCH) models are popular in the literature although they suffer
from curse of dimensionality problem. Detailed information about MGARCH specifications
can be found in Bauwens et al. (2006) for example.

Increased availability of high-frequency data in the last decade resulted in development
of the new non-parametric approach of treating volatility, which is an interesting alternative
to traditional MGARCH models. Model-free estimator called “realized volatility” that makes
volatility observable has been proposed by Andersen et al. (2001), and later rigorously studied
by Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2004). Barndorff-Nielsen and
Shephard (2004) further completed the theory to multivariate “realized covariation”. Estimates
of variance-covariance matrix that are obtained by realized covariation do not have to be nec-
essarily positive semi-definite due to market microstructure noise. Therefore Barndorff-Nielsen
et al. (2011) introduced multivariate realized kernels estimator guaranteeing the positive semi-
definiteness of the variance-covariance matrix.

Once the covariance matrix is estimated from the high-frequency data, it needs to be further
modelled. The research dedicated to modeling the entire covariance matrices is still lively. From
the already established methods, let us mention Wishart Autoregression (WAR) of Gouriéroux
et al. (2009) with numerous extensions presented in Bonato (2009) and Bonato et al. (2013).
Different approach of realized volatility modelling can be found in Bauer and Vorkink (2011)
model realized stock market volatility using matrix-logarithm transformation and primarily
concentrate on forecasting performance of factor model. More common approach of obtaining
positive definite forecasts of covariance matrices is use of Cholesky decomposition. The use
of Cholesky factors further estimated by Vector Autoregressive Fractionally Integrated Moving
Average (VARFIMA), Heterogeneous Autoregression (HAR) or WAR-HAR can be found in
recent work of Chiriac and Voev (2011).

In this paper, we contribute to this literature by proposing a new model for dynamic co-
variance matrix modelling and forecasting. We model Cholesky factors of realized covariance
matrix as a system of seemingly unrelated heterogeneous autoregressions. The main motiva-
tion is that we may expect the residuals from simple HAR model to be contemporaneously
correlated, and moreover heteroscedastic due to well known volatility in volatility effect (Corsi
et al., 2008). Estimating the system of HAR equations using generalized least squares allows to
capture these dependencies. Hence the generalizated HAR (GHAR) may provide more precise
and more efficient forecasts, which will translate to economic gains directly. On the portfolios
of various sizes, we show that GHAR model delivers significant economic gains and statistically
is not substantially outperformed, when compared to natural benchmark models based on high
frequency data (HAR, VARFIMA), as well as daily data (DCC-GARCH, RiskMetrics). In ad-
dition, we study the economic benefits of estimating the realized covariance with more efficient
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sub-sampled realized covariance and multivariate realized kernel estimators.
The rest of the paper is structured as follows. We provide background for estimation of

realized covariation from high frequency data in section 2. Section 3 describes frameworks
for modeling multivariate volatility, and it presents our GHAR model. Section 4 provides
description of dataset, and research design including economic as well as statistical evaluation
criteria. In Section 5, we discuss out-of-sample forecast evaluation, and Section 6 concludes.

2 Estimation of covariation form high frequency data

We assume that the q-dimensional efficient price process pt evolves over time 0 ≤ t ≤ T
according to the following dynamics

dpt = µtdt+ ΣtdWt + dJt, (1)

where µt is predictable component, Σt is real-values q × q volatility process, W1, . . . ,Wq is an
q-dimensional Brownian motion, and dJt is a jump process. A central object of interest is the
integrated covariation, which measures the covariance of asset returns over a particular period.
Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2004) suggest to estimate the
quadratic covariation matrix analogously to the realized variance, by taking outer product of the
observed high-frequency return over the period. This estimation although assumes synchronised
equidistant data.

In practice, trading is non-synchronous, delivering fresh prices at irregularly spaced times
which differ across stocks. In order to estimate the covariance, the data need to be synchronized,
meaning that the prices of the q assets need to be collected at the same time stamp. Research of
non-synchronous trading has been an active field of financial econometrics in past years – see, for
example, Hayashi and Yoshida (2005) and Voev and Lunde (2007). This practical issue induces
bias in the estimators and may be partially responsible for the Epps effect (Epps, 1979), a
phenomenon of decreasing empirical correlation between the returns of two different stocks with
increasing data sampling frequency. Aı̈t-Sahalia et al. (2010) compare various synchronization
schemes and find that the estimates do not differ significantly from the estimates using the so
called refresh time scheme when dealing with highly liquid assets. The data used further in our
study consists of the most liquid U.S. stocks, hence we can restrict ourselves to the refresh time
synchronization scheme in our work.

Let N(q)t be the counting process governing the number of observations in the q-th asset
up to time t, with times of trades t(q)1, t(q)2, . . . . Following Barndorff-Nielsen et al. (2011), we
define the first refresh time as

τ1 = max(t(1)1, . . . , t(d)1), (2)

for d = 1, . . . , q assets, and all subsequent refresh times as

τj+1 = max(t(1)N(1)τj
+1, . . . , t(d)N(d)τj

+1), (3)

with the resulting refresh time sample being of length N . τ1 is thus the first time that all
assets record prices, while τ2 is the first time that all asset prices are refreshed. In the following
analysis, we will always set our clock time to τj when using the estimators.

Having synchronised the data, let us denote ∆kpt = pt−1+τk/N − pt−1+τk−1/N a discretely
sampled vector of k-th intraday log-returns in [t− 1, t], with N intraday observations available
for each asset q. A simple estimator of realized covariance is then constructed as

Σ̂(RC)
t =

N∑
k=1

(∆kpt) (∆kpt)
′ . (4)
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As shown by Barndorff-Nielsen and Shephard (2004), realized covariance is consisted estimator
of integrated covariance and is asymptotically mixed normal. However, the estimator is biased
and become inconsistent in case microstructure noise is present in data. Sparse sampling is
used to mitigate the trade-off between the bias due to noise and variance of the estimator.

To effectively use all available high-frequency data Zhang et al. (2005) propose to use sub-
sampling and averaging for realized variance calculation. In their set-up whole sample is divided
into M non-overlapping sub-samples, in each sub-sample realized variance is calculated and
average across the sub-sampled estimates form the final estimate.

Σ̂(RCSS)
t =

1
M

M∑
i=1

Σ̂(RC)
t,i (5)

In addition, covariance matrix estimated by realized covariance might not necessary be pos-
itive semi-definite. To overcome these problems, Barndorff-Nielsen et al. (2011) introduced
multivariate realized kernels (MRK) estimator that guaranties covariance matrix to be positive
semi-definite. Moreover, MRK is more efficient, and it is able to deal with noise. Following
Barndorff-Nielsen et al. (2011) the MRK estimator is defined as

Σ̂(MRK)
t =

n∑
h=−n

k

(
h

H

)
Γh (6)

where Γh stands for h-th realized autocovariance and k(x) is a non-stochastic weight function.
In the empirical implementation, we need to choose the kernel function and bandwidth pa-
rameter. Following Barndorff-Nielsen et al. (2011), we use a Parzen kernel,1 which satisfies the
smoothness conditions, K ′(0) = K ′(1) = 0, and guarantees Σ̂(MRK)

t to be positive semi-definite.
We use optimal bandwidth derived in Barndorff-Nielsen et al. (2011).

3 Modeling and forecasting multivariate volatility

Modeling and forecasting conditional covariance matrix of asset returns Σt is pivotal to asset
allocation, risk management, and option pricing. In order to have a valid multivariate forecast-
ing model, one needs to specify a model that produces symmetric and positive semi-definite
covariance matrix predictions. Whereas it is still relatively scarce to use high frequency data
in multivariate modeling, literature dealing with challenging issues is growing quickly. There
are three types of approaches proposed recently: modeling the Cholesky factorisation of co-
variance matrix (Chiriac and Voev, 2011), its matrix-log transformation with the use of latent
factors (Bauer and Vorkink, 2011), and direct modeling of the covariance dynamics as a Wishart
autoregressive model (Bonato, 2009; Jin and Maheu, 2013).

To ensure positive semi-definiteness of covariance matrix forecasts, we adopt approach from
Chiriac and Voev (2011) - we apply the Cholesky decomposition on covariance matrix. This
approach is attractive, as it also helps to reduce the curse of dimensionality, especially in the
model structures we are going to use in this study. Following Chiriac and Voev (2011), we
model the lower triangular elements of the Cholesky factorization,

Xt = vech (Pt) , (7)

1The Parzen kernel function is given by k(x) =

8<:
1− 6x2 + 6x3 0 ≤ x ≤ 1/2
2(1− x)3 1/2 ≤ x ≤ 1.
0 x > 1
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where Pt are Cholesky factors P ′tPt = Σt, and Xt is m × 1 vector, with m = q(q+1)
2 . Forecasts

of the covariance matrix are then obtained by reverse tranformation.

3.1 Generalized heterogeneous autoregressive (GHAR) model

A simple approximate long-memory model for realized volatility, heterogeneous autoregression
(HAR), has been introduced by Corsi (2009). Whereas the approach has been introduced for
the univariate volatility modeling, its extension to multivariate volatility has been recently
used in the literature (see e.g. Chiriac and Voev (2011) or Bauer and Vorkink (2011)). Original
HAR model has an autoregressive structure, and combines volatilities measured at different
frequencies (daily, weekly, monthly). Chiriac and Voev (2011) propose a multivariate extension
of the HAR to model vector of Cholesky factors Xt, as

X
(1)
t+1 = c+ β(1)X

(1)
t + β(5)X

(5)
t + β(22)X

(22)
t + εt, εt ∼ i.i.d. (8)

where 1,5, and 22 stands for day, week (5 days) and month (22 days) respectively, c is m × 1
vector of constants, β(.) are scalar parameters, and X

(.)
t are averages of lagged daily volatility

e.g. X(5)
t = 1

5

4∑
i=0

Xt−i. To obtain parameter estimates, ordinary least squares are used.

One of the disadvantages of this modeling strategy is that we are assuming the same struc-
ture for all elements of the Cholesky factors in Xt. Much more importantly, we are leaving
significant amount of information in error term. One can expect error term to be heteroscedas-
tic due to volatility of volatility (Corsi et al., 2008) present in the realized measures. More
importantly, a common structure of Xt elements may be left unmodeled in residuals. Hence,
it may be more natural to estimate the model in Eq. 15 as system of equations with some
covariance structure of the error terms.

To deal with this problem, we propose to build a system of seemingly unrelated HAR
regressions (Zellner, 1962) for all elements of Xt. The advantage of this approach is that we
estimate a multivariate HAR model, which will capture the separate dynamics of the variances
and covariances, but also possible common structure. Moreover, it will also yield more efficient
estimates. As we know, error terms from HAR are heteroscedastic (Corsi et al., 2008), which
makes the coefficient estimates less efficient. Moreover, in case there is no information about
dependence between equations left in the residuals from regression Eq. 15, estimator will
converge to a simple OLS estimates, as diagonal weighting matrix in generalized regression will
reduce the estimates to OLS. On the other hand, the possible disadvantage is in larger number
of parameters to be estimated, which may yield the model unreliable with highly dimensional
portfolios.

Let us consider the system of i = 1, ...,m equations, where m = q(q+1)
2

X
(1)
i,t+1 = β

(c)
i + β

(1)
i X

(1)
i,t + β

(5)
i X

(5)
i,t + β

(22)
i X

(22)
i,t + εi,t, εi,t ∼ i.i.d. (9)

There are m equations representing elements of the Cholesky factors, with T observations.
Define the mT × 1 vector of disturbances ε = (ε′1, . . . , ε

′
m)′, and rewrite the model as

X
(1)
1,t+1
...

X
(1)
m,t+1

 =

X1,t · · · 0
...

. . .
...

0 · · · Xm,t


β1

...
βm

+

 ε1,t
...

εm,t

 (10)
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where Xi,t =
(
e X

(1)
i,t X

(5)
i,t X

(22)
i,t

)
is i-th element of Xt and e being vector of ones, βi =(

β
(c)
i β

(1)
i β

(5)
i β

(22)
i

)′
and β

(c)
i being estimates of intercept. It is more convenient to work

with this system in the following form

y = Zβ + ε, (11)

where y =
(
X

(1)
1,t+1, . . . , X

(1)
m,t+1

)′
and ε are mT × 1 vectors, Z = diag{X1,t, . . . , Xm,t} is block

diagonal matrix of dimension (m × 4) × T , and β = (β1, . . . , βm)′ is (m × 4) × 1 vector of
parameters.

The disturbances will satisfy strict exogeneity E[ε|Z] = 0, but will be correlated across
equations, E[ε′iεj |Z] = σijIT or

Ω =

σ11IT · · · σ1mIT
...

. . .
...

σm1IT · · · σmmIT

 = Σ⊗ IT , (12)

where Σ = σij for i, j = 1, ...,m, ⊗ is Kronecker product and IT is identity matrix of dimension
T × T . The model parameters are estimated in two step feasible generalized least squares. We
run ordinary least squares regression in the first step to obtain estimates σ̂ij from residuals. In
the second step, we run generalized least squares regression using variance matrix Ω̂ = Σ̂⊗ IT
as

β̂ =
(
Z
′
Ω̂−1Z

)−1
Z
′
Ω̂−1y (13)

The estimator β̂ is unbiased, and consistent estimator of β with asymptotically normal limiting
distribution

√
T
(
β̂ − β

)
d→ N

(
0,
(

1
T
Z ′Ω̂−1Z

)−1
)

(14)

While this is a standard estimation technique, we will refrain from discussing any further details
about the properties of the generalized least squares estimator.

3.2 Competing models

To show the contribution of the GHAR model, we compare the forecasts to several competing
alternatives. The first natural choice of benchmark model is multivariate extension of original
HAR. By comparing these two models, we will see the portion of contribution brought by allow-
ing for correlated residuals in the estimation. Another natural candidate is vector ARFIMA as
Chiriac and Voev (2011) find it to outperform the HAR model slightly, but conclude that HAR
performs reasonably well in comparison to VARFIMA. Hence we may have reason to believe
that our approach will provide better results than VARFIMA model.

These three main models share the same framework of modeling elements of Cholesky factors
from realized covariance matrix. Hence, we also contrast them to two benchmark models,
namely popular DCC GARCH of Engle (2002) and risk metrics standard widely used in the
business industry. These benchmark models operate on the daily data, so we will have a direct
comparison of gains from high frequency data.
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3.2.1 HAR

A first, natural competing model to our generalized HAR strategy is multivariate extension of
an original HAR, which models vector of Cholesky factors Xt, as

X
(1)
t+1 = c+ β(1)X

(1)
t + β(5)X

(5)
t + β(22)X

(22)
t + εt, εt ∼ i.i.d. (15)

where 1,5, and 22 stands for day, week (5 days) and month (22 days) respectively, c is m × 1
vector of constants, β() is m × 1 vector of parameters and X

()
t are averages of lagged daily

volatility e.g. X
(5)
t = 1

5

4∑
i=0

Xt−i. To obtain parameter estimates, ordinary least squares are

used.

3.2.2 Vector ARFIMA model

Second competing model to HAR family is vector autoregressive fractionally integrated moving
average (VARFIMA) model of Chiriac and Voev (2011), who use restricted VARFIMA (1,d,1)
specification to model and forecast dynamics of Xt directly. Authors find that ARFIMA pro-
vides slightly better forecast in comparison to HAR model, which makes it natural candidate
to our modeling strategy. We consider the vector ARFIMA model

(1− φL)D(L) [Xt − c] = (1− θL) εt, εt ∼ N(0,Σ) (16)

where φ and θ are scalars, c is m× 1 vector of constants and D(L) = (1−L)dIm with common
parameter of fractional integration d for all constituents of Xt. In our case we reject the
hypothesis about equality of d thus we estimated each element of Xt using unique dt : D(L) =
diag

{
(1− L)d1 , · · · , (1− L)dm

}
. Hence, we use the model 1 in Chiriac and Voev (2011).

3.2.3 RiskMetrics

RiskMetrics of J.P. Morgan Chase, based on exponentially weighted moving average (EWMA),
is a financial industry standard and common benchmark for any volatility model (univariate or
multivariate). In our work we use specification from Longerstaey and Spencer (1996) with decay
factor, λ set to 0.94. We assume a q×1 vector of daily returns rt =

∑n
k=1 (∆kpt) for t = 1, ..., T

such that rt ∼ N
(
µt, σ

2
t

)
, where µt is conditional mean and σ2

t is conditional variance of daily
returns. Moreover if we assume µt = 0, conditional covariance has the form

σi,j = (1− λ)
T∑
t=1

λt−1rirj . (17)

Previous equation can be rewritten into recursive form

σi,j,t = λσi,j,t−1 + (1− λ)ri,t−1rj,t−1 (18)

where expression σi,j,t stands for covariance between assets i and j in time t.

3.2.4 DCC-GARCH

Dynamic conditional correlation generalized autoregressive conditional heteroscedasticity (DCC-
GARCH) of Engle (2002) is widely used multivariate GARCH model in practice. It is a gen-
eralization of Bollerslev (1990)’s constant conditional correlation GARCH, with time-varying
correlation matrix R. The model is defined as

Ht = DtRtDt, (19)
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where Dt is diagonal matrix of conditional time varying standard deviations, Dt = diag
(√

hi,t
)
,

and hi,t are univariate GARCH processes, hi,t = ωi +
Pi∑
p=1

αi,pr
2
i,t−p +

Qi∑
q=1

βi,qhi,t−q. Dynamics of

correlation matrix is given by transformation

Rt = Q∗−1
t QtQ

∗−1
t , (20)

where Qt =
(

1−
M∑
m=1

αm −
N∑
n=1

βn

)
Q̄ +

M∑
m=1

Am
(
εt−mε

T
t−m

)
+

N∑
n=1

BnQt−n ,Q̄ is the uncondi-

tional covariance matrix of the standardized residuals from the univariate GARCH processes
and Q∗t = diag

(√
qii,t
)
. In our work we use two stage estimator presented in Engle (2002) or

Engle and Sheppard (2001).

4 Data and research design

The dataset consists of tick prices of 15 S&P 500 index constituents with highest liquidity and
market capitalization. Final portfolio thus consists2 of Apple Inc. (AAPL), Exxon Mobile Corp.
(XOM), Google Inc. (GOOG), Wal-Mart Stores (WMT), Microsoft Corp. (MSFT), General
Electric Co (GE), International Business Machines Corp. (IBM), Johnson & Johnson (JNJ),
Chevron Corp. (CVX), Procter & Gamble (PG), Pfizer Inc. (PFE), AT&T Inc. (T), Wells
Fargo & Co (WFC), JP Morgan Chase & Co (JPM) and Coca-Cola Co. (KO). We obtain
390, 78, 39, 26 and 19 time-synchronized intraday observations using refresh-time, resulting
in 1, 5, 10, 15 and 20 minute intraday returns. Besides 1 to 20 minute returns we construct
also open-to-close returns that are used for RiskMetrics and DCC-GARCH models. Moreover,
we create sub-portfolios consisting of 5, 10, and 15 assets (assets chosen according to market
capitalization). Hence in total, we study 18 different datasets.

Sample covers period from July, 1 2005 to January, 3 2012 (1623 trading days), and we
consider trades between 9:30 to 16:00 EST time. To ensure sufficient liquidity on the market
we explicitly exclude weekends and holidays (New Year’s Day, Independence Day, Thanksgiving
Day, Christmas). For estimation and forecasting purposes we divide our sample into in-sample
spanning from July, 1 2005 to July, 9 2008 and out-of-sample July, 10 2008 to January, 3 2012.
For the forecasting, we use rolling window estimation with fixed length of 750 days. Summary
statistics of all returns are presented in the Appendix D.

Accuracy of the forecasts is evaluated primarily according to economic criteria. Rationale
behind is importance of well-conditioned and invertible forecasts rather than focus on unbiased-
ness, as unbiased forecast does not necessarily translate into unbiased inverse (Bauwens et al.,
2012). As a robustness check we also provide ranking of the models based on statistical loss
functions.

4.1 Economic forecasts evaluation

For economic evaluation of volatility forecasts, we use approach of Markowitz (1952). There are
two possibilities of constructing optimal portfolio. In the first one we specify expected portfolio
return and try to find assets weights minimizing the risk. In the second one expected return of
portfolio is maximized according to certain risk. Asset weights, w = (w1, . . . , wq)′, maximizing

2Assets are ordered according to market capitalization.
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utility of risk averse investor can be found by solving following problem

min
wt+1

w′t+1Σ̂t+1|twt+1 (21)

s.t. l′wt+1 = 1
w′t+1µ̂t+1|t = µP

where wt+1 is q × 1 vector of assets weights, Σ̂t+1|t represents a covariance matrix forecast, l
denotes a q × 1 vector of ones, µ̂t+1|t is a vector of mean forecasts and µP stands for portfolio
return. Once the optimization problem is solved for different risk levels we are able to construct
efficient frontier. Markowitz-type portfolio relies heavily on mean forecasts. As these forecasts
might be noisy, portfolio weights and variance can become notably sensitive to changes in assets
mean. To overcome these difficulties we also consider problem of finding Global Minimum
Variance Portfolio (GMVP). Specification of the optimization problem is similar to Markowitz
set-up

min
wt+1

w′t+1Σ̂t+1|twt+1 (22)

s.t. l′wt+1 = 1

which can be solved analytically3

wGMV
t+1 =

Σ̂−1
t+1|tl

l′Σ̂−1
t+1|tl

, (23)

with expected return variance being

σ2GMV
t+1 = wGMV

t+1
′
Σ̂t+1|tw

GMV
t+1 =

1

l′Σ̂−1
t+1|tl

. (24)

4.2 Statistical forecasts evaluation

For statistical evaluation of covariance forecasts, we employ Root Mean Squared Error (RMSE)
loss functions based on the Frobenius norm 4. As a volatility proxy we use Realized Covariance,
Sub-Sampled Realized Covariance (RCOV SS) and Multivariate Realized Kernels estimates
at given frequencies i.e. to calculate loss function for forecasts based on 5 minutes Realized
Covariance we use Realized Covariance estimates based on 5 minutes data as a benchmark. In
case of DCC-GARCH and RiskMetrics forecasts we calculate loss functions using all RCOV,
RCOV SS and MRK estimates at all frequencies. The measures are calculated for the t =
1, . . . , T forecasts as

et,t+h = Σt+h − Σ̂t+h|t (25)

LRMSE =

√√√√ 1
T − 1

T∑
t=1

∑
i,j

∣∣eti,j ∣∣2 (26)

where Σ̂t+h|t is a covariance matrix forecast and Σt+h is the volatility proxy.
To test significant differences of competing models, we use the Model Confidence Set (MCS)

methodology of Hansen et al. (2011). Given a set of forecasting models, M0, we identify the
3Kempf and Memmel (2006)
4Frobenius norm of m× n matrix A is defined as ‖A‖F

2 =
P
i,j

|ai,j |2
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model confidence set M̂∗1−α ⊂M0, which is the set of models that contain the “best” forecasting
model given a level of confidence α. For a given model i ∈ M0, the p-value is the threshold
confidence level. Model i belongs to the MCS only if p̂i ≥ α. MCS methodology repeatedly
tests the null hypothesis of equal forecasting accuracy

H0,M : E[Li,t − Lj,t] = 0, for all i, j ∈M

with Li,t being an appropriate loss function of the i-th model. Starting with the full set of
models, M =M0, this procedure sequentially eliminates the worst-performing model from M
when the null is rejected. The surviving set of models then belong to the model confidence set
M̂∗1−α. Following Hansen et al. (2011), we implement the MCS using a stationary bootstrap
with an average block length of 10 days.5

5 Results

For the clarity of presentation, we begin with the discussion of the results of 1-step ahead
forecasts for the portfolio of 5 stocks (AAPL, XOM, GOOG, WMT, MSFT), whereas we leave
portfolios of 10 and 15 stocks and also 5-step and 10-step ahead forecasts as a robustness check
showing that the methodology works well also in larger dimensions and different forecasting
horizons. Focusing on the economic evaluation, we first discuss the results from GMVP,6

followed by Markowitz approach and statistical evaluation.
We present GMVP comparison through cumulative and annualized risk. In cumulative

approach we use covariance forecasts for daily rebalancing of our portfolio – at each step we
calculate optimal asset weights and using these weights we calculate corresponding daily port-
folio risk. Results presented in the Table 1 are sums of portfolio risk σcum. for whole out-of
sample period. Table 1 is divided into 7 parts according to realized measures and frequencies
used for the calculation. For RiskMetrics and DCC-GARCH corresponding σcum. are constant
for all frequencies because they are calculated using open-close returns. We present results of
DCC-GARCH and RiskMetrics in all columns of Table 1 so we can compare performance of
covariance based models estimated on different frequencies with daily data based models.

From the Table 1 we can see that the model with lowest level of risk is GHAR estimated
on 20 min. Sub-Sampled RCOV followed by GHAR estimated on 15 min. Sub-Sampled RCOV
covariance matrix. For the remaining frequencies DCC-GARCH outperformed covariance based
models. We can also observe that for RCOV and Sub-Sampled RCOV the lower the frequency
the lower the portfolio risk for all covariance based models.

Disadvantage of model comparison according to cumulative risk is daily rebalancing implying
high transaction costs. More comprehensive way of model comparison is to use annualized
annualized portfolio risks. In Table 2 we present results for annualized version of GMVP.

Similar to cumulative GMVP, model with the lowest achievable risk is GHAR estimated
on 20 min. Sub-Sampled RCOV covariance matrix. Remaining results from the Table 1 and
Table 2 partly match the results presented in Chiriac and Voev (2011). Model that scored
second is VARFIMA followed by HAR for Sub-Sampled RCOV estimated at 15 min. and 20
min. frequency. For the remaining frequencies and realized measures DCC-GARCH outperform

5We have used different block lengths, including the ones depending on the forecasting horizons, to assess the
robustness of the results, without any change in the final results. These results are available from the authors
upon request.

6With shortselling allowed.
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Table 1: Cumulative version of GMVP - portfolio of 5 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 30,50 30,50 30,50 30,50 30,50 30,50 30,50
RiskMetrics 40,64 40,64 40,64 40,64 40,64 40,64 40,64
ARFIMA 30,76 34,47 32,44 32,84 31,04 29,86 29,31
GHAR 30,60 34,14 32,22 32,53 30,83 29,65 29,08
HAR 31,42 34,84 33,05 33,35 31,61 30,50 29,99

Note: Model with the lowest risk for given frequency is highlighted

Table 2: Annualized version of GMVP - portfolio of 5 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 17,38 17,38 17,38 17,38 17,38 17,38 17,38
RiskMetrics 23,13 23,13 23,13 23,13 23,13 23,13 23,13
VARFIMA 17,62 19,39 18,44 18,61 17,68 17,04 16,77
GHAR 17,32 19,08 18,08 18,27 17,36 16,69 16,38
HAR 18,01 19,61 18,79 18,91 18,01 17,40 17,14

Note: Model with the lowest risk for given frequency is highlighted

covariance based models. Overall we can say that covariance based models with proper choice
of realized measure outperform return based models.

To assess the performance of the models not only from the risk minimizing point of view
but also return maximization, we present efficient frontiers. In contrast to GMVP we do not
allow here the short selling.7 For the calculation of the efficient frontiers we use annualized
forecasts of covariance matrices and annualized returns.

Similar to the results from GMVP evaluation model with the best risk-return tradeoff is
model proposed in this paper, GHAR. The second best performing model is VARFIMA, followed
by HAR. From the Figure 1 we can see that for estimates at 1 minutes RCOV and 5 minutes
RCOV score of DCC-GARCH is better than all covariance based models, which is not in line
with results presented in Chiriac and Voev (2011) where DCC-GARCH ended penultimate. We
can address this difference to different dataset and period that include financial crisis during
which periods of high intraday volatility are observable. For Sub-Sampled RCOV we observe
decreasing risk and increasing returns with increasing frequency of realized measure.

As a robustness check to the economic evaluation, we provide also results from statistical
comparison of forecasting performance of the competing models. In the Table 3 comparison
based on the RMSE loss function is presented.

From the RMSE perspective lowest error has HAR model followed by VARFIMA and
GHAR. These models always belong to 5% MCS irrespective of realized measure used for
comparison. The worst performance has RiskMetrics which does not belong to 5% MCS in two
cases and it has the highest RMSE in 5 out of 7 cases.

7In case the short-selling is allowed the ranking of the models is unchanged only the magnitude differ.
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Table 3: RMSE – portfolio of 5 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 1.593 1.730 1.914 1.707 1.547 1.481 1.474
RiskMetrics 1.668 1.728 1.866 1.709 1.646 1.636 1.633
VARFIMA 1.406 1.537 1.682 1.473 1.363 1.331 1.328
GHAR 1.490 1.401 1.740 1.509 1.438 1.430 1.445
HAR 1.190 1.100 1.380 1.162 1.125 1.144 1.158

Note: Values are scaled by 10−3; highlighted cells belongs to 5% MCS

5.1 Robustness check

Having discussed the results of 1-step ahead forecasts for portfolio consisting of 5 stocks we now
turn to evaluation of 1-step ahead forecasts for portfolio consisting of 10 (AAPL, XOM, GOOG,
WMT, MSFT, GE, IBM, JNJ, CVX, PG), and 15 (AAPL, XOM, GOOG, WMT, MSFT, GE,
IBM, JNJ, CVX, PG, PFE, T, WFC, JPM, KO) stocks and 5 and 10-step ahead forecasts for
portfolios consisting of 5,10 and 15 stocks. We will concentrate on main differences compared
to smaller portfolio, as we use these results as a robustness check. We also relegate the Tables
and Figures to Appendix A: 1 step ahead forecasts, Appendix B: 5 step ahead forecasts and
Appendix C: 10 step ahead forecasts.

5.1.1 Portfolio of 10 and 15 stocks

According to GMVP criteria for portfolio consisting of 10 stocks, results do not differ from
results obtained in portfolio of 5 stocks. Model with the lowest cumulative and annualized
risk is GHAR estimated on 20 min. Sub-Sampled RCOV. In case of the portfolio consisting of
15 stocks only difference is that GHAR estimated on MRK covariance matrices outperformed
DCC-GARCH.

From the risk-return tradeoff point of view there is notable difference for portfolio consisting
of 10 stocks when the data of higher frequencies (1,5 and 10 minutes) are used. In case of these
frequencies, model with the best risk-return tradeoff is DCC-GARCH. Remaining order of the
models is identical to portfolio of 5 stocks – GHAR followed by VARFIMA and HAR. If the 15
minute data are used for optimization, GHAR share the first place with DCC-GARCH. These
two models are closely followed by VARFIMA and HAR. For the 20 minutes data ordering of
the models is similar to portfolio consisting of 5 stocks.

Concentrating on statistical evaluation, results of RMSE model comparison for portfolio
consisting of 10 stocks are almost identical to results in portfolio of 5 stocks – only difference is
that RiskMetrics does not belong to 5% MCS in any of the cases. On the other hand notable
difference occurs in comparison of portfolio consisting of 15 stocks where GHAR belongs to 5%
MCS only in one case (estimated at 5 min RCOV) and DCC-GARCH and RiskMetrics do not
belong to 5% MCS at all. We address unambiguous results of statistical evaluation to problem
with selecting “correct” proxy. These results are also consistent with findings in Kyj et al.
(2010), who show that for large portfolios, the pure high frequency based covariance forecasts
need to be conditioned in order to achieve the benefits of the high frequency data.

This points us to the result, that unmodelled dependence from HAR and VARFIMA models
is increasing with increasing dimension of the portfolio. Hence GHAR model delivers significant
economic gains with increasing dimension of portfolio.
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5.1.2 5-step & 10-step ahead forecasts 8

Extension of forecasting horizon from one to five/ten days does not substantially change results
of our analysis. Only notable difference is absence of GHAR in 5% MCS in case of 10-step
ahead forecasts of portfolio consisting of 15 stocks. Remaining results supports our previous
findings that application of seemingly unrelated regression for HAR estimation delivers signifi-
cant economic gains regardless the size of the portfolio and/or forecasting horizon.

6 Conclusion

In this paper we propose to employ seemingly unrelated regression of Zellner (1962) to estimate
multivariate extension of heterogeneous autoregression model in order to improve the variance
matrix forecasts. Resulting model, generalized HAR (GHAR), inherit all the favourable prop-
erties of HAR, and provides us with more efficient estimator that accounts for otherwise hidden
dependencies among variables.

In our setup we closely follow Chiriac and Voev (2011) and model elements of Cholesky
decomposed covariance matrices to test the economic and statistical value of the proposed
modelling strategy. Moreover, we perform our analysis on portfolios consisting of 5, 10 and 15
assets, we include three covariance matrix estimators (realized covariation, sub-sampled realized
covariation and multivariate realized kernels), and we obtain covariance matrix estimates using
high-frequency data of five different frequencies (1,5,10,15 and 20 minutes). Overall we test
performance of GHAR estimator on 15 different high-frequency datasets. Resulting forecasts
of GHAR prove to perform significantly better than benchmark models according to Global
Minimum Variance Portfolio and Mean-Variance evaluation criteria irrespective of frequency or
size of the portfolio. If the statistical evaluations are used for models comparison, we find that
GHAR is not systematically dominated by any benchmark model.
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Appendix A: 1 step ahead forecasts

Table 4: GMVP - portfolio of 10 stocks

Cumulative

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 22,14 22,14 22,14 22,14 22,14 22,14 22,14
RiskMetrics 42,15 42,15 42,15 42,15 42,15 42,15 42,15
VARFIMA 23,34 27,70 24,75 25,64 23,82 22,52 21,85
GHAR 22,50 26,71 23,90 24,79 22,98 21,66 20,98
HAR 24,28 28,30 25,66 26,40 24,63 23,39 22,79

Annualized

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 13,12 13,12 13,12 13,12 13,12 13,12 13,12
RiskMetrics 24,32 24,32 24,32 24,32 24,32 24,32 24,32
VARFIMA 13,74 15,76 14,40 14,84 13,90 13,21 12,88
GHAR 12,82 15,00 13,53 14,04 13,03 12,30 11,91
HAR 14,31 16,14 14,96 15,31 14,40 13,74 13,43

Note: Model with the lowest risk for given frequency is highlighted

Table 5: RMSE – portfolio of 10 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 3.242 3.624 3.896 3.600 3.162 3.044 3.085
RiskMetrics 3.808 4.006 4.167 3.949 3.803 3.822 3.846
VARFIMA 2.592 3.028 3.228 2.903 2.551 2.494 2.539
GHAR 3.101 3.109 3.639 3.237 2.988 2.965 3.057
HAR 2.295 2.271 2.837 2.405 2.181 2.213 2.307

Note: Values are scaled by 10−3; highlighted cells belongs to 5% MCS
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Figure 1: Efficient frontiers - portfolio of 5 stocks
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Table 6: GMVP - portfolio of 15 stocks

Cumulative

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 20,72 20,72 20,72 20,72 20,72 20,72 20,72
RiskMetrics 56,67 56,67 56,67 56,67 56,67 56,67 56,67
VARFIMA 21,34 25,63 22,71 23,71 21,91 20,62 19,93
GHAR 20,37 24,46 21,75 22,59 20,90 19,66 18,97
HAR 22,25 26,21 23,52 24,42 22,69 21,47 20,83

Annualized

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 12,64 12,64 12,64 12,64 12,64 12,64 12,64
RiskMetrics 32,19 32,19 32,19 32,19 32,19 32,19 32,19
VARFIMA 12,88 14,80 13,52 13,99 13,06 12,40 12,07
GHAR 11,64 13,82 12,39 12,86 11,91 11,22 10,83
HAR 13,43 15,21 14,06 14,45 13,56 12,92 12,62

Note: Model with the lowest risk for given frequency is highlighted

Table 7: RMSE – portfolio of 15 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 5.323 5.601 6.064 5.793 5.158 5.023 5.058
RiskMetrics 11.905 11.881 12.030 11.902 11.952 12.044 12.030
VARFIMA 4.555 4.809 5.207 4.900 4.374 4.276 4.323
GHAR 5.881 5.352 6.342 5.918 5.565 5.521 5.677
HAR 4.285 3.599 4.832 4.226 3.948 4.005 4.150

Note: Values are scaled by 10−3; highlighted cells belongs to 5% MCS
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Figure 2: Efficient frontiers - portfolio of 10 stocks
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Figure 3: Efficient frontiers - portfolio of 15 stocks
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Appendix B: 5 step ahead forecasts

Table 8: GMVP - portfolio of 5 stocks

Cumulative

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 30.50 30.50 30.50 30.50 30.50 30.50 30.50
RiskMetrics 40.61 40.61 40.61 40.61 40.61 40.61 40.61
VARFIMA 30.53 34.06 32.09 32.49 30.78 29.64 29.10
GHAR 30.49 33.88 32.07 32.36 30.72 29.54 28.96
HAR 31.30 34.62 32.86 33.19 31.47 30.38 29.87

Annualized

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 17.38 17.38 17.38 17.38 17.38 17.38 17.38
RiskMetrics 23.17 23.17 23.17 23.17 23.17 23.17 23.17
VARFIMA 17.28 19.02 18.06 18.24 17.35 16.73 16.73
GHAR 17.18 18.87 17.93 18.12 17.23 16.57 16.57
HAR 17.85 19.45 18.63 18.75 17.86 17.25 17.25

Note: Model with the lowest risk for given frequency is highlighted; values are scaled by
forecasting horizon

Table 9: RMSE – portfolio of 5 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 1.193 1.293 1.376 1.288 1.152 1.081 1.079
RiskMetrics 1.296 1.317 1.330 1.314 1.290 1.288 1.285
VARFIMA 1.043 1.023 1.153 1.055 0.993 0.968 0.978
GHAR 1.261 1.195 1.382 1.273 1.206 1.174 1.189
HAR 1.024 0.980 1.100 1.028 0.968 0.951 0.966

Note: Values are scaled by 10−3 and by forecasting horizon; highlighted cells belongs to
5% MCS
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Table 10: GMVP - portfolio of 10 stocks

Cumulative

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 22.10 22.10 22.10 22.10 22.10 22.10 22.10
RiskMetrics 42.12 42.12 42.12 42.12 42.12 42.12 42.12
VARFIMA 23.11 27.25 24.44 25.27 23.55 22.30 21.65
GHAR 22.33 26.45 23.72 24.59 22.80 21.50 20.82
HAR 24.25 28.14 25.56 26.30 24.57 23.35 22.75

Annualized

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 13.07 13.07 13.07 13.07 13.07 13.07 13.07
RiskMetrics 24.36 24.36 24.36 24.36 24.36 24.36 24.36
VARFIMA 13.38 15.36 14.03 14.44 13.54 12.88 12.54
GHAR 12.67 14.80 13.38 13.87 12.88 12.16 11.78
HAR 14.15 15.99 14.81 15.15 14.24 13.59 13.28

Note: Model with the lowest risk for given frequency is highlighted; values are scaled by
forecasting horizon

Table 11: RMSE – portfolio of 10 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 2.487 2.683 2.773 2.690 2.402 2.290 2.309
RiskMetrics 3.232 3.250 3.217 3.222 3.242 3.278 3.267
VARFIMA 1.952 1.966 2.166 2.024 1.867 1.833 1.872
GHAR 2.598 2.480 2.759 2.611 2.481 2.445 2.501
HAR 1.950 1.881 2.103 1.984 1.845 1.826 1.877

Note: Values are scaled by 10−3 and by forecasting horizon; highlighted cells belongs to
5% MCS
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Figure 4: Efficient frontiers - portfolio of 5 stocks
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Table 12: GMVP - portfolio of 15 stocks

Cumulative

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 20.70 20.70 20.70 20.70 20.70 20.70 20.70
RiskMetrics 56.64 56.64 56.64 56.64 56.64 56.64 56.64
VARFIMA 21.23 25.28 22.52 23.44 21.75 20.52 19.86
GHAR 20.31 24.30 21.65 22.45 20.83 19.62 18.92
HAR 22.31 26.13 23.51 24.40 22.72 21.51 20.89

Annualized

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 12.60 12.60 12.60 12.60 12.60 12.60 12.60
RiskMetrics 32.25 32.25 32.25 32.25 32.25 32.25 32.25
VARFIMA 12.53 14.43 13.17 13.60 12.72 12.07 11.74
GHAR 11.53 13.66 12.26 12.70 11.79 11.12 10.73
HAR 13.29 15.07 13.94 14.31 13.42 12.78 12.48

Note: Model with the lowest risk for given frequency is highlighted; values are scaled by
forecasting horizon

Table 13: RMSE – portfolio of 15 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 4.110 4.251 4.384 4.329 3.992 3.919 3.949
RiskMetrics 11.404 11.318 11.262 11.260 11.487 11.599 11.573
VARFIMA 3.453 3.223 3.596 3.422 3.239 3.201 3.283
GHAR 4.913 4.490 4.961 4.821 4.644 4.590 4.706
HAR 3.575 3.216 3.644 3.489 3.331 3.314 3.421

Note: Values are scaled by 10−3 and by forecasting horizon; highlighted cells belongs to 5%
MCS
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Figure 5: Efficient frontiers - portfolio of 10 stocks
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Figure 6: Efficient frontiers - portfolio of 15 stocks
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Appendix C: 10 step ahead forecasts

Table 14: GMVP - portfolio of 5 stocks

Cumulative

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 30.50 30.50 30.50 30.50 30.50 30.50 30.50
RiskMetrics 40.58 40.58 40.58 40.58 40.58 40.58 40.58
VARFIMA 30.30 33.75 31.80 32.20 30.53 29.41 28.88
GHAR 30.35 33.66 31.94 32.21 30.58 29.40 28.81
HAR 31.16 34.40 32.68 33.01 31.30 30.24 29.74

Annualized

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 17,39 17,39 17,39 17,39 17,39 17,39 17,39
RiskMetrics 23,22 23,22 23,22 23,22 23,22 23,22 23,22
VARFIMA 17,07 18,82 17,84 18,02 17,15 16,54 16,26
GHAR 17,11 18,74 17,86 18,04 17,15 16,49 16,16
HAR 17,72 19,32 18,49 18,62 17,73 17,13 16,86

Note: Model with the lowest risk for given frequency is highlighted; values are scaled by
forecasting horizon

Table 15: RMSE – portfolio of 5 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 1.208 1.294 1.375 1.291 1.173 1.107 1.101
RiskMetrics 1.389 1.401 1.431 1.404 1.388 1.384 1.380
VARFIMA 1.153 1.147 1.266 1.173 1.106 1.072 1.078
GHAR 1.287 1.256 1.409 1.307 1.237 1.197 1.205
HAR 1.138 1.133 1.242 1.163 1.091 1.058 1.067

Note: Values are scaled by 10−3 and by forecasting horizon; highlighted cells belongs to
5% MCS
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Table 16: GMVP - portfolio of 10 stocks

Cumulative

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 22.05 22.05 22.05 22.05 22.05 22.05 22.05
RiskMetrics 42.08 42.08 42.08 42.08 42.08 42.08 42.08
VARFIMA 22.89 26.91 24.17 24.97 23.31 22.09 21.45
GHAR 22.16 26.23 23.55 24.40 22.61 21.33 20.66
HAR 24.15 27.94 25.42 26.14 24.45 23.25 22.66

Annualized

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 13.03 13.03 13.03 13.03 13.03 13.03 13.03
RiskMetrics 24.40 24.40 24.40 24.40 24.40 24.40 24.40
VARFIMA 13.16 15.13 13.80 14.20 13.32 12.67 12.33
GHAR 12.56 14.67 13.28 13.75 12.76 12.06 11.69
HAR 14.01 15.85 14.67 15.01 14.10 13.45 13.14

Note: Model with the lowest risk for given frequency is highlighted; values are scaled by
forecasting horizon

Table 17: RMSE – portfolio of 10 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 2.437 2.609 2.687 2.610 2.362 2.260 2.271
RiskMetrics 3.445 3.461 3.455 3.448 3.458 3.487 3.481
VARFIMA 2.139 2.165 2.327 2.208 2.057 2.011 2.041
GHAR 2.605 2.514 2.729 2.607 2.494 2.449 2.491
HAR 2.114 2.110 2.276 2.174 2.026 1.986 2.024

Note: Values are scaled by 10−3 and by forecasting horizon; highlighted cells belongs to
5% MCS
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Figure 7: Efficient frontiers - portfolio of 5 stocks
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Table 18: GMVP - portfolio of 15 stocks

Cumulative

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 20.67 20.67 20.67 20.67 20.67 20.67 20.67
RiskMetrics 56.60 56.60 56.60 56.60 56.60 56.60 56.60
VARFIMA 21.08 25.00 22.33 23.21 21.56 20.36 19.72
GHAR 20.21 24.13 21.54 22.30 20.72 19.53 18.83
HAR 22.31 26.00 23.46 24.32 22.68 21.49 20.88

Annualized

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 12,56 12,56 12,56 12,56 12,56 12,56 12,56
RiskMetrics 32,32 32,32 32,32 32,32 32,32 32,32 32,32
VARFIMA 12,32 14,21 12,95 13,38 12,50 11,86 11,53
GHAR 11,44 13,55 12,16 12,59 11,70 11,04 10,66
HAR 13,19 14,95 13,82 14,19 13,31 12,68 12,37

Note: Model with the lowest risk for given frequency is highlighted; values are scaled by
forecasting horizon

Table 19: RMSE – portfolio of 15 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 4.141 4.258 4.385 4.323 4.054 3.989 4.010
RiskMetrics 11.806 11.735 11.720 11.719 11.884 11.981 11.961
VARFIMA 3.690 3.542 3.821 3.680 3.496 3.439 3.509
GHAR 4.807 4.514 4.859 4.746 4.571 4.508 4.613
HAR 3.666 3.471 3.767 3.635 3.468 3.424 3.512

Note: Values are scaled by 10−3 and by forecasting horizon; highlighted cells belongs to 5%
MCS
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Figure 8: Efficient frontiers - portfolio of 10 stocks
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Figure 9: Efficient frontiers - portfolio of 15 stocks
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