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Abstract:

In this paper, we analyze new possibilities in predicting daily ranges, i.e. differences
between daily high and low prices. We empirically assess efficiency gains in
volatility estimation when using range-based estimators as opposed to simple daily
ranges and explore the use of these more efficient volatility measures as predictors of
daily ranges. The array of models used in this paper include the heterogeneous
autoregressive model, conditional autoregressive ranges model and a vector
error-correction model of daily highs and lows. Contrary to intuition, models based
on co-integration of daily highs and lows fail to produce good quality out of sample
forecasts of daily ranges. The best one-day-ahead daily ranges forecasts are produced
by a realized range based HAR model with a GARCH volatility-of-volatility
component.
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1. Introduction

Volatility of asset prices plays a critical role finance. Value-at-risk estimation,
option pricing and other activities common in theahcial industry rely on its correct
prediction. Recently, a huge body of research fedusn volatility emerged (e.g. the Nobel
Prize awarded ARCH type models and their genetaizsa (Engle 1982, Bollerslev 1986).

The work presented in this paper views volatifitpdeling from the standpoint of a
day-trader. A crucial question for such an invessohow large an intraday move is to be
expected once a position is open. For this purpasgood quality prediction of the day's
range (difference of highest and lowest daily prisevery useful, while predictions of other
volatility measures (e.g. standard deviation afimet) provide only limited help.

Contributions of this paper to the existing bodyvolatility related literature are
numerous. Firstly, we investigate the efficiencyseleral range-based volatility estimators
proposed in the second half of the 20th centurykiRson 1980, Garman & Klass 1980,
Rogers & Satchell 1990). In theory, these rangedbamlatility measures claim significant
efficiency gains compared to e.g. standard dewatibreturns. We test whether efficiency
gains reported in theory are observable in practice

Next, we focus on predicting daily ranges. We wsely ranges themselves
(Chou 2005) as well as range-based measures dilitplas predictors, driven by the idea
that more precise measurement of past volatiliyukh lead to superior forecasts. For this
purpose, already published models on linkages ltwedifferent volatility measures
(Engle & Gallo 2003) are adapted specifically tdydeanges’ prediction.

Lastly, we combine the results of our investigasiadescribed above with several
existing models used for daily volatility modelifgecasting. Additionally, we investigate
possible improvements of daily ranges modeling siynai lagged trading activity variables.
The work finishes by picking the best model for Ilglaranges prediction based on
out-of-sample forecasting performance.

The work is organized as follows. In Section 1, previde motivation for daily
ranges modeling. Section 2 describes our datasebettion 3, we compare various daily
variance estimators in terms of efficiency and ulsefss for daily ranges prediction. In
Section 4, we empirically investigate our hypotisese three different models designed for
daily ranges prediction. The best models are tloenpared in an out-of-sample forecasting
exercise in Section 5 and conclusion follows.



2. Motivation

For clarity of explanations, le, , denote the price of a financial asset measured at
time 0<t<T ondayD and let us assume that log-pripg, = Ioge(F{,D) evolves according
to a diffusion process

dp(,D :ﬂt,Ddt+0DdW,D +CDth,D (1)

where (4, ,,0,,C, correspond to drift, volatility and jump terms awd,,J, , are Wiener
and constant-intensity Poisson processes. The @@agyrange is then defined as

R, =supP,, —inf P, Rl[?g =supp,, —inf p, (2),(3)

o<t<T O<t<T o<t<T O<t<T

and the daily log-return, daily high, low, open ahalse prices are denoted

' = Prpo =~ Prpa (4)
o =suppp o =inf po 05 =Pip Co = Prpo (5),(6)

where f is a portion of a trading day during which tradagivity is minimal.
The most popular measures used for the inferehoecent (one-day) variance, i.e. of
the squared diffusion coefficieait,, are the squared daily return and the absolutg dsurn

5 =To To =[ro (7). (8)
Parkinson (1980) showed that assummg =0, o’ can be estimated by

(G5 F = [am 2 (R} 9)

along with a five times higher efficiency of var@m estimation compared to (7). The
efficiency gain can be intuitively attributed toetlfiact that an estimate which incorporates
extreme price values takes into account the whalgsdevolution of price. Keeping the

assumption ofy, , =0, Garman & Klass (1980) suggest an estimator

(65 ) = 012l _fCD_l] + 078250 o) +1(3 T 2 thcueo (10)

and claim that the efficiency gain compared toig@pproximately 7.4 regardless fof
As G5¢, 5™ become biased withy, , # 0, Rogers & Satchell (1990) relax this assumption
and propose

(558)2 = (lD ~0p )(lD _CD)+ (hD —0p )(hD _CD) (11)



which has only slightly lower efficiency comparemldc™. Hence, the inclusion of extreme

prices into variance estimates is capable of priogusignificant efficiency gains which is of
vital importance for all applications relying on latlity. At the same time, range-based
estimators (9) - (11) do not require tick by ticatal needed for the construction of finely
spaced intraday returns.

When intraday data are available, volatility o€ tprice generating process can be
estimated using finely spaced intraday returns.ekseh et al (2001) introduce the concept of
realized variance for the estimation of daily vaca as a sum of squared intraday returns.
Martens & van Dijk (2007) and Christensen & Podpl§R007) in independent studies build
upon the work Parkinson (1980) and apply it to tihygic of measuring daily variance on
intraday data. Specifically, they propose the regi@ent of squared intraday returns in
realized variance by squared intraday ranges t&teitbe so called realized range. According
to empirical studies, realized range provides ificy gains over realized variance.
Compared to range-based estimators of volatilioth realized variance and realized range
offer significant efficiency gains and are somesngensidered as measurements as opposed
to estimations of volatility.

In spite of high efficiency of aforementioned rargased/realized volatility measures

over R, the daily range offers a unique property whichois main motivation for its
prediction. While for long-term investment or optipricing a correct assessmenta@f is

crucial, day-traders are more likely to benefinfra precise prediction dR®° as the range is

directly related to profit-target and stop-losgiags. Other volatility estimates, including the
previously defined range-based ones and realized, @annot be used in such a manner.

To understand this, firstly notice that volatiligeasures built using close-close or
open-close returns (i.e. absolute/squared retstasdard deviation of returns) provide help
only to investors who close their positions at ¢nel of day. Investors exiting their positions
in any part of the day are much rather interestedvinole day volatility, hence realized
measures of volatility as well as range-based mieasaf volatility can be considered.
Realized measures of volatility, however, do naicdminate between days where price
moves without direction (sideways) and days whkeeprice trends — two days with similar
realized variance can have strikingly differentyleanges (high for a directional day, low for
a sideways day). As intraday traders care abouexkent or directional price move, realized
measures of volatility offer limited help for thmirpose. Range-based estimators, on the
other hand, offer information directly related be textent of directional price movement. The
inclusion of open/close prices/returns in some foffeanentioned range-based estimators
makes the connection between a volatility readimg) the extent of directional move hard to
assess. The daily range is thus left as the maftulusheasure of volatility for an intraday
investor as the relation of daily range to the eixt# directional intraday movement is clear.

For this purpose, we focus solely on daily rangesligtion. Using the above defined
range-based and realized estimators of volativy,will investigate whether it is possible to
benefit from higher precision of past volatility aseirement for creating better daily range
forecasts.

3. Initial data analysis

The data used in this paper relate to the EUR/B8Ex futures contract traded on
CME from Nov, 9 2007 to Nov, 9 2011. In this timgas, different delivery months were
traded from which a continuous contract was creéi@sed on the maximum volume rule.
Trade prices were used, hence the effect marketostiacture was not removed. Timing



conventions used in this paper follow Electroniading Hours (ETH) used by CME. Lastly,
SO as not to contaminate our dataset with outlgingervations, we omitted all days for which
the total trading volume was below 80,000 contrérisstly U.S. national holidays).

Basic statistical analysis of data at hand couplgth persistence of volatility is
summarized in Table 1.

Mean St. Dev Skew Kurt GHE

o9 0.0121566 0.0055872  1.6842  4.1943 0.990
Table 1: Descriptive statistics of daily ranges sampledadlydrequencies.

Positive skew coupled with high kurtosis are tgpior volatility readings known for
their heavy-tailed behavior. The Hurst Exponentasaeed using Generalized Exponent
method is high indicating very strong persistefieening to distributional properties of daily
ranges, Locke's nonparametric test rejects the mydbthesis of gamma distributed daily
ranges at 99.9% confidence level (a frequencyidigion of daily ranges, coupled with the
best fitting gamma distribution p.d.f. is showrFigure 2).
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Figure 2: Distribution of daily ranges including the best gamma distribution fit

Alizadeh, Brandt & Diebold (2001) argue that logs ranges are approximately normally
distributed. Even though visually daily log-rangesrrespond to a normal distribution
(Figure 3), the Jarque-Bera test of normality rsjehe null hypothesis of daily ranges’
normal distribution

Test statistic for normality:

InRng
Chi-square(2) = 13.184 [0.0014] N(-4.4924,0.41475)

08

ensity

0.6

04

0.2

0

5.5 -5 -4.5 -4 35
InRng

Figure 3: Distribution of daily log-ranges including the best normal distribution fit



Hence, the distributional properties of daily ra;mge our dataset remain unknown.

When testing for stationarity of our main timeissy we find the following. Both
ADF and ADF-GLS testing rejects the null hypothesfisinit-root in daily ranges at 99.9%
confidence level. On the other hand KPSS test tréiecnull hypothesis of stationarity. We
conclude that daily ranges are borderline-statignahich is a common finding in volatility
related literature.

4. Comparing volatility measures

As previously mentioned, range-based volatilityinestors (9) - (11) differ in their
efficiency. In this section, we investigate whetlieis feature holds on real-world data or
whether the differing efficiency of range-basedatiity estimators is confined to simulated
processes. Moreover, as our dataset provides ayregturns, we assess the imprecision in
daily variance estimation when using daily rangesje-based estimators instead of realized
ranges/realized variance.

Our reasons for such a comparison are severdatlyFipractitioners working in
illiquid markets cannot reliably estimate volatiliusing realized measures of volatility
(infrequent trading poses an obstacle). HoweveQldkC data are readily available even for
illiquid instruments, range-based estimators camded for volatility assessment. Thus, we
want to generally infer how precisely volatilityrcde estimated when data is restricted to
OHLC readings. Secondly, moving to liquid marketseve realized volatility measures can
be calculated, we are interested in the forecastaogiracy gains stemming from using more
precise lagged volatility measurements as predicbbrdaily ranges. Instead of estimating
each daily range model in numerous variants (eath afferent measure of volatility as
predictor of daily range), we firstly assess thepeital existence of efficiency gains of
various volatility estimators. In case range-basexhsures of volatility are found to be of
equal efficiency, regressing daily ranges on GaménKlass and Rogers & Satchell
measures does not yield anything. Similarly, baseduperior empirical efficiency, we can
decide whether to use realized variance or realiaede in the forecasting part of the paper.

A time plot mutually comparing range-based measafevolatility is presented in
Figure 3, a comparison of Parkinson’s measure keifized measures of volatility is
presented in Figure'4When comparing range-based measures of volaffligure 3), we
observe some differences. Most notably, ParkinsantsRogers & Satchell’s estimators
sometimes report a high volatility reading not neéed by the remaining two volatility
estimators. When comparing realized measures atilitf to the Parkinson’s measure
(Figure 4), we observe a significant differencé’afkinson’s measure from the realizes ones.
Owing to similarity of realized range/realized \@arte construction, we observe a near
identical development of these measures.

Y In our work, we chose to sample returns at 5-neiniervals for the construction of realized vaciaand
realized range, as this sampling frequency wasyfippoposed by Andersen & Bollerslev (1998). Athes
sampling frequency was originally used in Anderseal (2001)
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Figure 4: Time plots of Parkinson’s measure of variance jzedlvariance and realized range

Next, we firstly investigate the general relatioipsbetween daily ranges and realized
variance/realized ranges. We are interested irsasgpthe inefficiency of daily ranges over
realized estimators. Secondly, we empirically assles efficiencies of different range-based
estimators presented in Section 1. Theoreticalinge-based estimators herein considered
differ significantly in efficiency. We assess whethdifferent efficiencies are observable on
empirical data.



For comparative quality assessment of daily ramies-vis realized ranges/realized
variance, i.e. for information on the level of reisontained in daily ranges, we use
Mincer-Zarnowitz regressiofsSpecifically, we estimate

RR, =a+ (65" f +e. RV, =a+p@r) +e. (12)

with estimation results of (12) shown in TabldfSssquared daily ranges and realized
ranges/variance were comparable in terms of esomaiccuracy, residuals would show no
heteroskedasticityg would be close to zero and@ would be close to unity. Our results
suggest that squared daily ranges cannot replatieaeg measures of variance, as residuals
exhibit strong heteroskedasticity. Intuitively, shtan be attributed to the fact that daily
ranges neglect a large part of intraday information

LHS Variable a B AdjR?
RRp 0.000028 0.5681 0.58
RVpb 0.000026 0.5888 0.60

Table 5: OLS results of VolMeasure = a + S x (Rgg )2 14In(2) + &

To assess the efficiency of Parkinson's, Garm#ida&s' and Rogers & Satchell's
range-based volatility measures, equations resambli2) were estimated with HAC
standard errorsf( = 1/24 was used to represent the non-trading sessior&k @easure of

volatility). Specifically, we estimated

Ee ) car Ry, +e, ) =a+mR,+e,
(6<F  =a+mv, +e, (6F  =a+mR +e, (13)
(S T Y. VS 6f  =a+mR +e,
RV, _a+ﬂ(apark)2 £, RR, —a+,8( Park) £,
RV, =a+,8(JD ) +&p RR, —a+,8( GK) +e, (14)
RV, =a+ ,8(&55)2 +£, RR, =a+ ,B(JD ) +

with results presented in Table 6 and Table 7alAf$ive variables are measures of
the same variance and &R,,R\, estimates border on the true value of volatilitg @an
loosely interpret the results as follows:=0L 8= il Table 6 imply thatRR,,R\, are

best predictors of all range-based variance estisnahd can explain all variance related
information captured in these range-based estimates

2 Mincer, J. A., Zarnowitz, V. (1969) The EvaluatiohEconomic Forecasts: Analysis of Forecastinga®er
and Performance, NBER Books, National Bureau ofneotic Research



Regressor Dependent variable
(Rlog)2/4|n(2) (Rlog)2/4|n(2) (O_GK)Z (O_GK)Z (O'RS)Z (O'RS)Z
c -0.0000009 -0.0000003 -0.0000036 -0.0000035 -0.0000041 -0.0000045
0.0000027 0.0000020 0.0000024 0.0000021 0.0000037 0.0000037
RR 1.0155 0.9837 1.0640
D
0.0566 0.0517 0.0744
RV, 1.0165 0.9918 1.0640
D
0.0399 0.0453 0.0744
AdjR? 0.5765 0.5981 0.5453 0.5740 0.5991 0.5991

Table 6: Regressing range-based measures on realized measwueziance. Bold estimates are significant ovh98vel.

Regressor Dependent variable
RRD RVD
c 0.0000277 0.0000313 0.0000281 0.0000258 0.0000292 0.0000256
0.0000024 0.0000032 0.0000027 0.0000024 0.0000032 0.0000032
(Rlog)2/4l n(2) 0.5680 0.5888
0.0368 0.0391
(O_GK)Z 0.5547 0.5791
0.0551 0.0588
(G752 0.5634 0.5791
0.0387 0.0588
Adez 0.5765 0.5453 0.5991 0.5981 0.5740 0.5740

Table 7: Regressing realized measures of variance on faaged measures. Bold estimates are significan®@niével.

On the other handf estimates in Table 7 indicate a decompositionaofje-based
volatility measures into information on variancedamoise. These3 estimates as well as

AdjR? of all models indicate that approximately 57% mfbrmation in range-based variance
estimates is related to variance of the underlyimgcess and the remaining share of
information is noise. From this we could roughlyeinefficiency gains of using realized
ranges/variance instead of range-based estimate#e W theory, Garman & Klass as well
as Rogers & Satchell estimators promise efficieincyeases over Parkinson's measure, our
results do not confirm this. We thus do not have meason to use the Garman & Klass or
Rogers & Satchell measure as predictors in daihgea modeling instead of daily ranges
themselves.

5. Modeling daily ranges

Unlike many variables in economics with usuallyeopredominant approach to
modeling, volatility can be modeled using varioyppr@aches. Focusing on models that do
not assume long-memory, simple AR (ARCH type, segl&1982) or more refined GARCH
models can be used for volatility modeling. Recdatvelopments in volatility modeling
applicable to daily ranges are, for example, mesuof long, medium and short-term
volatilities (HAR of Corsi 2004), vector error-ceation models (Cheung et al 2007) or
models incorporating data sampled at differentdesgies (Ghysels 2003).

In this paper, we specifically focus on models thhatnot incorporate long memory
(e.g. ARFIMA, FIVECM). This choice is motivated Isgveral drawbacks of long-memory
models (estimation issues, dubious interpretatbmojpled with questionable improvement of



fit/forecasting accuracy. For example, Corsi (20€dmpares the fit/forecasting performance
of a pseudo long-memory HAR model and a long-memdRFIMA model applied to
realized volatility. He finds that both in-sampledaout-of-sample ARFIMA is dominated by
HAR. Moreover, with ARFIMA there is no possibilitp forecast daily ranges using more
precise measures of volatility as predictors, whecbne of the main ideas presented in this
paper. Except for the last argument, similar logagply to the choice of VECM over
fractionally integrated VECM, strengthened by thet$ that VECM is merely a restricted
FIVECM.

In the next sections, we discuss and estimate tiels chosen for this paper.

5.1 ARMA-GARCH

In order to have a benchmark in daily ranges nmodgWwe chose an ARMA-GARCH
model (see e.g. Pong et al (2003), Ahoniemi (2009)ARMA modeled volatility). For
brevity purposes, we limit ourselves to stating ra ARMA(7,0)-GARCH(1,1) model with
Student-distributed residuals was the model oftebest in-sample fit.

5.2 Heterogeneous autoregressive model

Dacorogna et al (1997) propose, as an extensiagheoGARCH model, to combine
volatility views of market participants with difielg investment horizons. Corsi (2003)
follows up to this idea by proposing his own modetl argues that short-term, medium-term
and long-term volatilities should be used for modgl Specifically, Corsi proposes a model
of the following specification

RV, =a, +a,RV,, +a, thgs—)l ta, RVD(E? té& (15)

where RV(® is a simple average of realized variances oversdép -a;D].
Corsi & Reno (2009) assess the leverage effecsbyating

= (5) (22) @O @ ®) ¢ 53 (22 (22)
RVD =4, * alRVD—l +ta, RVD—l + asRVD—l + ﬁll p-alpa + ﬁzl p-1fpa + /le palo1 Tép (16)

where | & is an indicator variable equal to one in caseatrerage daily return!¥ measured
over days(D -a; D] is negative. According to Corsi & Reno this neWHAR - Leveraged

HAR) model performs better than the original sgeatfon (15).

Here, we estimate a battery of HAR models withlydaanges as the explained
variable. All models discussed here were estimawdg HAC standard errors. Lastly, as
realized variance and realized ranges provide nédehtical estimates of variance, we chose
to work with realized ranges only from here on.

In light of borderline stationarity of daily ranges our dataset, consistency of OLS
used in HAR estimation might be questionable. Ideorto satisfy OLS assumptions, the
cointegration of daily ranges and their weekly/nmbyntaverages was investigated. Using the
Engle-Granger test, daily ranges were found to bmtegrated with their weekly and
monthly averages, which makes OLS estimates in ldiyser-consistent

The base HAR specification for daily ranges maougls

® The same exercise was performed for averagestifed ranges in R-HAR modeling withe same reséits.
brevity reasons, we do not report details of sfatitesting, but we kindly provide them upon resfu
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th?g =a, a1RIL(>)g1 +ta, Rg)gi(S) +a, Rgf’i(zz) +t&p 17)
Including the leverage effect leads to the LHARc#jpeation given by

log — log log(5) log,(22)
RD - ao + alRD—l + az RD—l + 0'3 RD—1

18)
@ (5) (5 (22) . (22) (
+ ﬂll D—er—l + ﬂZI D—er—l + ﬁSl D-1 r.D—l + ED

In order to infer modeling performance gains stengrirom using more precise information
on volatility, we regress daily ranges on realizadges solely in the R-HAR specification,
i.e.

th?g :0'0+01RR3_1+02RR<35_)1+03RR§2_21) +t&p (19)

To investigate the added benefit of using varsblepresenting trading activity
(average trade size/transaction c8uand their possible long-term influence on voigtjlwe
define models with -S/-C suffixes as

log — log log,(5) log,(22)
RD - ao + alRD—l + az RD—l + 0'3 RD—l

(20)
VTS, VTS +1TSE + &,

log — log log,(5) log,(22)
RD - 0'0 + alRD—:L + az RD—l + 0'3 RD—l

21
+8TC, , +5TCO, +STCH +é, ()

For example, R-LHAR-SC model is a HAR model ugiaglized ranges as regressors.
On top of that, the specification is enriched bipimation on leverage effect, average trade
size and transaction count as described in (18), (20) and (21).

Firstly, we focus on HAR and R-HAR specificatioriBhe estimated results are
presented in Table 8 and indicate that neitherydaihges nor realized ranges are strictly
superior in terms of goodness-of-fit when modelitagly ranges. For this reason, all further
models are evaluated with either daily or realimatges being the RHS measure of (average)
volatility.

HAR R-HAR
c 0.0000 0.0000
RY(-1) 0.0482
R®(-1) 0.4356
R®(-1) 0.3884
RRW(-1) 0.7952
RR®(-1) 1.3463
RR®(-1) 0.4086
AdjR? 0.3346 0.3684

Table 8: Investigation of relationships between daily ranged realized ranges from HAR perspective.

* Logarithms (not levels) of average trade size madsaction count were used in all regressionsaioed in
this thesis.
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Parameter estimates significant on 95% criticadlleve printed in bold.

In-sample estimation results of all specificaticar® shown in Table A.1 in the
Appendix. In these results, we do not observe agificant increase in AdjRfor either
model. Contrary to Corsi, the "bad-news" effechat significant in all models. Moreover,
only in LHAR-S model were all three "bad-news" terfound to be significant at least on a
95% critical level. In general, however, only thestflag "bad-news" effect seems to be
present in the data. Next, when comparing HAR vBIAR and LHAR vs. R-LHAR (i.e. we
compare the benefit of using realized ranges fedigting daily ranges), we see that R-HAR
and R-LHAR have a higher count of significant pagéen estimates. Most notably, in
HAR/LHAR models the lack of autoregressive depewgiast order one is rather surprising.
Since this anomaly is not present in R-HAR/R-LHARdu=ls, where realized ranges are used
as regressors, this can only be caused by the mukeled in daily ranges. Focusing on the
added benefit of including transaction count anerage trade size (-S/-C specifications), we
cannot observe any significant effects stemminmftbese variables.

5.3 CARR

For modeling daily ranges, Chou (2005) proposesadoption of a MEM model
originally developed in Engle & Russell (1998). ddis conditional autoregressive range
(CARR) model of ordem,q is specified by

q p
Ry’ = A6y A =+ aR% +D By (22)
= i

where €, is assumed to follow a positive-valued distribatiavith unity mean. More
specifically, in MLE estimates of the model Choswases either Weibull or Exponentially
distributed £, . Investigations carried out on the S&P 500 futureatract reveal superior
volatility forecasts of CARR models as compareds8RCH models, presence of a strong
leverage effect in the volatility-of-volatility eqtion as well as a benefit of adding absolute
returns (as a complementary measure of volatilityp A, equation. The assumption of

Weibull distributed £, seems plausible, as estimated residugls= R,';’g//iD are near-
Weibull distributed.

Estimations on our dataset were carried out usiyst standard error estimation
techniques (QML covariance matrix). The resultsdaily ranges prediction are presented in
Table 9 fore, = Expls) and Table 10 foe, =Weibull(d,) respectively. Optimal values of
lags p = g =1 were determined based on parameter significandevarfind strong evidence

for £, =Weibull(8,)".

coefficient std. error z-value p-value Signif
c 0.000237 0.000109 2.172 0.0299 *x
(&;a’k )2 0.125382 0.019581 6.403 0.0000 Hohk
A 0.855489 0.024893 34.37 0.0000 Fkk
Log-lik 3358.603 AlIC -6711.21
SchC -6696.54 HQC -6705.63

Table 9: Estimation results of a CARR model with Exponefidistributed residuals.

® The estimated) is significantly different from 1.0 in which ca®éeibull distribution collapses into an
Exponential.
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coefficient std. error z-value p-value Signif
c 0.000239 0.000142 1.679 0.0931 *
(o) 0.120257 0.024412 4.926 0.0000 i
A 0.860145 0.032996 26.07 0.0000
6 2.91085 0.081051 35.91 1.86E-28
Log-lik 3972.282 AIC -7936.56
SchC -7917.02 HQC -7929.13

Table 10: Estimation results of a CARR model with Weibulltdisuted residuals.

Before delving into augmentations of the CARR(1lrfipdel, we compared the
in-sample performance of CARR(1,1) model with =Weibull(8,) to the performance of a

base HAR specification (17). When neglecting théddop period of MLE estimation, we
observed a striking similarity of fitted values icating a near identity of both models. For
this reason, we did not delve into CARR model augatéons, as estimation results and
sessions' information significance would nearlytaiaty be the same as in case of a HAR
model.

5.4 Cointegration of high and low prices

Cheung (2007) investigates the usefulness of vettor-correction-models for daily
ranges modeling on several stock indices. Cheungigtion is that daily highs/lows are
integrated of order one while the daily range mtishary. Cheung's tests confirm these
hypotheses and a VECM model is adoptedAhg, Al :

P
XD = (AhD’AlD)T XD = a+zﬁixD—i + IOgl +ED +£D (23)
i=1

where the error correcting term (daily range) tuons significant. Generally the predictive
power of the model ranges from 8% to 17% in term&djR? depending on instrument.

In order to improve the model's predictive powehngung includes several exogenous
variables. Cheung adds changes of daily open ai dase prices as well as daily returns
into (23). In this augmented model, the vast mgjast added variables are significant and
the rgodel's predictive power rises dramatically l&eels of 37.6% to 48.9% in terms of
AdjR9).

In this section, we formally investigate the asptions of a VECM model, assess the
predictive power and proper specification of (23) our dataset, including Cheung's
augmentations. Lastly, we turn to improving the elogiith sessions-related variables.

For the identification of a co-integration relatship between daily highs and lows,
we follow the Engle-Granger test upon the resuitwlich we conclude that daily highs and
lows are co-integrated.

Estimation results of Chou's basic model presentedrable 11 have signs of
significant parameters in both equations accordingxpectations and speak in favor of an
mean-reverting process in daily ranges. Next, valhg Cheung's approach, we enrich the
base VECM byAo,_;,Ac,_;,cq,; which stand for the lagged changes in daily opehdaily

close prices and lagged daily returns, respectividlg model specification thus changes to

p

q r S
XD =a+ ZIBixD—i + yjAoD—j +25jACD—k +Z%COD—m + ¢ECD—1 + £D (24)
j=0 k=1 m=1

i=1
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The Ao, terms are taken froom=0 as we can utilize today's open price in our
predictions. Optimal parameters gjr,s were chosen based on parameter significance while
keeping p =6 as in the base specification. Estimation resukspaesented in Table 12 for
g =4,r = 2,s=1. Several points deserve mentioning:
. In both daily hi%h/daily low equations, significan®f parameters changes
strongly and AdjRrises noticeably.
. The significance of error-correction term remaingftected in both equations,
despite heavy changes in significance of othermaters. The null hypothesis

of no autocorrelations in residuals is not rejecfedt as in the base
specification, hence we consider the augmented hveglespecified.

A(h) A(l) A(h) A(l)
coeff coeff coeff coeff
c 0.0063 0.0013 c 0.0042 -0.0005
A(h(-1)) -0.0273 0.5955 A(h(-1)) -0.7441 -0.0973
A(h(-2)) -0.1253 * 0.3704 A(h(-2)) -0.5372 -0.0283
A(h(-3)) -0.0100 0.3332 A(h(-3)) -0.3606 -0.0661
A(h(-4)) -0.0061 0.2474 A(h(-4)) -0.2617 -0.0591
A(h(-5)) -0.0614 0.1550 o A(h(-5)) -0.2472 -0.0121
A(h(-6)) -0.0375 0.0830 * A(h(-6)) -0.1103 0.0259
A(I(-1)) 0.4229 -0.2431 A(I(-1)) -0.1451 o -0.7871  x**
A((-2)) -0.0748 -0.4959 A((-2) -0.2639 -0.6608  ***
A(I(-3)) 0.0588 -0.2935 A((-3) -0.1234 * -0.5160  ***
A(I(-4)) 0.0434 -0.2068 A(I(-4)) -0.0941 -0.3833  x
A(I(-5)) 0.0317 -0.1946 A(I(-5)) -0.0745 -0.2833  x
A(I(-6)) 0.0395 -0.0988 * A(I(-6)) 0.0406 -0.0920  **
EC(1) -0.2668 -0.0577 EC(1) -0.1892 0.0200
A(0) 0.7909 0.6558  ***
A(o(-1)) 1.1005 0.8642  ***
A(0(-2)) 0.6372 0.6485  ***
A(0(-3)) 0.4399 0.5545 %
A(0(-4)) 0.3518 0.3754 %
A(0(-5)) 0.2085 0.1681  ***
A(c(-1)) -0.2976 * -0.0914
A(c(-2)) -0.2572 o -0.0790
ret(-1) 0.4838 o 0.4043
AdjR? 0.2116 0.1465 AdjR? 0.5473 0.4947
LB(20) 5.6029 12.3733 LB(20) 11.9264 19.6827
p-value 0.9990 0.9030 p-value 0.9190 0.4780

Tables 11, 12Estimates of base VECM model, investigating theatfbf additional variables.
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6. Out-of-sample Forecasting Exercise

In this section, we assess the out of sample &stewy performance of the models so
far discussed. We focus solely on one-day-aheagcésts of daily ranges using a rolling
window for estimation. Window length was set to tihénimum number of observations
allowing for a MLE estimation of all models (400s&vations, yielding 599 one-step-ahead
forecasts). For assessing differences in forecaality RMSE and Q-LIKE loss functions

were used. These loss functions, for a differerexrées{q};‘:1 of target volatility seriesand

n

..., are defined as

volatility forecast seriegh }

MSE=n">" & QLKE=n"Y" (Inh+g,/h) (25)

In order to statistically compare the performan€ealifferent models a volatility forecast
comparison test based on Diebold & Mariano (199%) West (1996) was used.

Following literature on volatility forecasting, waecided to compare the forecasting
power of models discussed in Sections 4.2 andodséveral benchmark models - specifically
the random-walk model, lagged average weekly, ldggeverage monthly volatility and a
more sophisticated AR(7)-GARCH(1,1)-t discussed Section 4.1. By adding these
benchmark models to our forecasting exercise, we firatly infer whether HAR/VECM
models outperform the simplest of models beforaihg to comparing these complicated
models one with another.

As the number of HAR models estimated in this pajge large, only base
specifications and specifications with a clear éase in explanatory power stemming from
additional variables were used for forecasting. Tisieof models chosen for out-of-sample
forecasting is listed in Table 13 with an overviefsorecasting performance as measured by
RMSE and Q-LIKE following in Table 14.

Model Description
RW Random walk - volatility forecast is equal to previous day's volatility.
SMA5 Average weekly volatility - forecast is a SMA of last five volatilities
SMA22 Average monthly volatility - forecast is a SMA of last 22 volatilities
AR7 AR(7)-GARCH(1,1)-t model derived forecasts
HARGARCH Forecasts of a HAR model with Ieverag(_-:‘ effect fro_n_1 the previous trading
day, GARCH modeling of residual volatility included
RHARGARCH Forecasts of a R-HAR model _thhout any Ieyerage effect, GARCH
modeling of residual volatility included
VECM Forecasts of VECM of Highs and Lows with 6 lags
VECMAUG Forecasts of VECM of Highs and Lows with 6 lags enriched by

information on changes of closing and opening prices
Table 13:List of models considered for out-of-sample foréicasevaluation.

Model RMSE Q-LIKE Model RMSE Q-LIKE
RW 0.000027 -3.452526 HARGARCH 0.000015 -3.500247
SMA5 0.000017 -3.496000 RHARGARCH 0.000015 -3.502932

SMA22 0.000016 -3.499393 VECM 0.000016 -3.498304
AR7 0.000015 -3.500018 VECMAUG 0.000016 -3.497844

Table 14: Average RMSE and Q-LIKE of one-step-ahead rollingdaw forecasts.



15

The most striking observation is that despite ekethincrease of in-sample AdjRn
modeling changes of high and lothe augmented VECM model does not generate smaller
errors (in modeling daily ranges) compared to theebdVECM model.

To assess differences in forecasting accuracyiststally, we performed
Diebold-Mariano-West test for both RMSE and Q-LIKiSs functions. The resulting matrix
is listed below as Table 15. A negative test diatis row A and columnB indicates that
modelB provides better forecasts than moéel

T I
oo S & < 8
e § & § § 3 =
% = < Q x u O
n T < > w
T T >
RW -641 -6.02 -721 -6.79 -7.31 -6.82 -6.51
692 -679 -7.68 -7.31 -7.76 -7.43 -7.15
-3.49  -2.99 -4.49
SMA5
-3.17 -3.07 -4.29
-2.68
SMA22 -2.33
-2.14
-2.17
AR7
-2.26
-3.29
HAR-GARCH
-3.23
237 264
R-HAR-GARCH
254 266
VECM

Table 15: Test statistics of Diebold Mariano West test (M@t Q-Like) applied onto ranges forecasts of difiéimodels.
Null hypothesis is of equal forecasting power aritical values corresponding to 95% confidence lleve -1.96, 1.96.
Insignificant values are printed in grey.

The observed data provide several conclusions. mdidels provide better than naive
forecasts. The clearly best model is RHARGARCH.nirrthis, we can conclude that for

proper out of sample forecasting of daily rangesng high quality volatility measures is

critical. Turning to VECM models we observe a digaipting bad quality of forecasts. Both

VECM models can beat only beat the random-walk madereover both are significantly

worse in terms of forecast quality than RHARGARMe puzzle of a three-fold increase in
AdjR? of VECMAUG over VECM in-sample not reflected in ancreased forecasting

performance is confirmed, as forecasts of both VEQSsnnot be distinguished. The root of
this puzzle can be investigated by analyzing infdammange predictions of both VECMs.

Apparently, both VECMs produce nearly identicalsample range predictions as illustrated
in Figure 4. The increase in separate equationfRtthus brings advantage when modeling
daily highs and daily lows, however there is norgagee that smaller errors in daily highs
and daily lows equations in VECMAUG do not add wpproduce larger errors in daily

ranges forecaSt

® Simply put, the difference of two large errorgiué same sign can be small, however the differehteo
small errors of opposing signs can be large.
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Figure 4: In-sample daily ranges predictions of VECM and WEQ\UG models

To conclude, models rooted in the co-integratidndaily high and low prices
dominate only the random-walk model. A general agsion is that models incorporating
realized ranges as opposed to daily ranges ascpoesiperform better out-of-sample. This
confirms the results of our in-sample investigagiofhe best model is an R-HAR model with
a GARCH(1,1) volatility-of-volatility component.

Summary

In this paper, we enrich the body of knowledgeuad on daily ranges modeling by
several new findings.

Regressing daily ranges on range-based volatilgyimates (Garman & Klass,
Rogers & Satchell) is not expected to yield bepefis we show that all considered
range-based estimators provide the same levelfioiegicy on real-world data. This is in
sharp contrast with theoretical results, where Gard& Klass and Rogers &Satchell
estimators show significant efficiency gains conegarto daily ranges. Specifically,
approximately 40% of information provided by heremmsidered range-based estimators as
well as squared daily ranges is noise, while ol6@f information is related to the variance
of the price generating process. Using realizedearior the prediction of daily ranges shows
small gains in terms of in-sample fit. Out-of-saengbrecasting performance, however,
shows advantages of regressing daily ranges ozedaklnges.

Comparison of models based on out-of-sample fstewp performance reveals
several points. A model utilizing realized ranges the prediction of daily ranges is the
model of choice, as it can statistically beat adidels considered in this paper. Models based
on the co-integration show good in-sample fits ggamg only to daily high and daily low
prices modeling. On out-of-sample daily rangesdasting, VECM models are only capable
of beating the random-walk specification.
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As our main motivation for modeling daily rangeasato provide for a way of money
management to intraday traders, a feasible follpweuour work would be to investigate the
possibility to update current day’s volatility ugimtraday data. Using such an approach,
traders active in the later parts of the trading daght obtain higher forecasting accuracy
compared to traders active early in the day. Nektawing upon the results of
Leitch & Tanner (1998), comparisons of models chdsg error-minimization as opposed to
profit-maximization might bring interesting resultds the occurrence of news releases
causes jumps in prices as well as sessions' ramgesealized ranges, including information
on news releases might bring additional insight$ iamprovements of cumulative volatility
forecast updates. Possible spillovers of news seke@to increased or decreased volatilities
of other sessions as well as whole days could bestigated. Lastly, a part of research
suggests that order imbalance (a measure of whiethyers or sellers are more aggressive in
the market at the moment) is a trading activity soea that needs to be taken into account,
complementing herein discussed trading activity suess. Hence, investigations of the order
imbalance might contribute to our understandingatime-volatility relationship and might
provide novel ways of volatility prediction.
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Appendix

O
0 ) 0 Q x @ Q )
o z @ Q ) x o s @ < @ x x
< T [a a4 x < < < x T < < <
T & 7 5 < & z z 7 z > S 5
T — — 5 x D': D': D':
c 0.0014  0.0010 0.0037 0.0035 0.0066 0.0017 0.0061  0.0061  0.0131  0.0011  0.0012  0.0107  0.0122
*% *% *% * *% *
R'°9M(-1) 0.0466 0.0623  0.0188  0.0325  0.0745 0.0892  0.0485  0.0616
*
R°%6)(-1) 0.3958 0.3201  0.3783  0.2911  0.3335  0.2668  0.3293  0.2568
*kk *kk *kk *% *kk *% *% *
R'°92)(.1) 0.4444 0.4495  0.4959  0.5103  0.4410 0.3970  0.4803  0.4313
*kk *kk *kk *kk *kk *kk *kk *kk
19¢-1) 0.0876  0.0878  0.0855 0.0853  0.0530 0.0546  0.0526  0.0533
*% *% *% *%
19)(-1) -0.1362 -0.1476 -0.1195 -0.1291 -0.0973 -0.1063 -0.1068  -0.1087
*
1®2(-1) -0.4054  -0.4092 -0.4293 -0.4454 -0.0584 -0.0509 -0.0383  -0.0601
* *
RRY(-1) 0.4807 0.4735  0.4972 04920 0.5174
*kk *kk *kk *% *%
RR®(-1) 0.6917 0.6587 05108 0.9664  0.8166
*kk *kk *% *%kk *
RR®(-1) 0.2972 0.3272  0.4368  0.0308  0.1066
* *k *k
size®(-1) -0.0023 -0.0025 -0.0019 -0.0022 0.0007 0.0005
size®(-1) -0.0061 -0.0065 -0.0066 -0.0068 -0.0065 -0.0039
size®(-1) 0.0071 0.0076 0.0060 0.0061 0.0058 0.0026
* *
count®(-1) 0.0010  0.0011 0.0009  0.0010 -0.0001  -0.0002
count®(-1) 0.0001  0.0002 -0.0002  -0.0001 -0.0029  -0.0023
count®(-1) -0.0013  -0.0016 -0.0012  -0.0014 0.0022  0.0016
AdjR? 0.3560 0.3910 0.3581  0.3556  0.3586  0.3648 0.3676  0.3646  0.3680  0.3913  0.3912  0.3939  0.3925

Table A.1: Estimation results of different HAR model spezatfions for daily ranges (volatility).
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