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Abstract: 

 

In this paper, we analyze new possibilities in predicting daily ranges, i.e. differences 

between daily high and low prices. We empirically assess efficiency gains in 

volatility estimation when using range-based estimators as opposed to simple daily 

ranges and explore the use of these more efficient volatility measures as predictors of 

daily ranges. The array of models used in this paper include the heterogeneous 

autoregressive model, conditional autoregressive ranges model and a vector 

error-correction model of daily highs and lows. Contrary to intuition, models based 

on co-integration of daily highs and lows fail to produce good quality out of sample 

forecasts of daily ranges. The best one-day-ahead daily ranges forecasts are produced 

by a realized range based HAR model with a GARCH volatility-of-volatility 

component. 
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1. Introduction 
 

 Volatility of asset prices plays a critical role in finance. Value-at-risk estimation, 
option pricing and other activities common in the financial industry rely on its correct 
prediction. Recently, a huge body of research focused on volatility emerged (e.g. the Nobel 
Prize awarded ARCH type models and their generalizations (Engle 1982, Bollerslev 1986). 
 The work presented in this paper views volatility modeling from the standpoint of a 
day-trader. A crucial question for such an investor is how large an intraday move is to be 
expected once a position is open. For this purpose, a good quality prediction of the day's 
range (difference of highest and lowest daily price) is very useful, while predictions of other 
volatility measures (e.g. standard deviation of returns) provide only limited help. 
 Contributions of this paper to the existing body of volatility related literature are 
numerous. Firstly, we investigate the efficiency of several range-based volatility estimators 
proposed in the second half of the 20th century (Parkinson 1980, Garman & Klass 1980, 
Rogers & Satchell 1990). In theory, these range-based volatility measures claim significant 
efficiency gains compared to e.g. standard deviation of returns. We test whether efficiency 
gains reported in theory are observable in practice. 

Next, we focus on predicting daily ranges.  We use daily ranges themselves 
(Chou 2005) as well as range-based measures of volatility as predictors, driven by the idea 
that more precise measurement of past volatility should lead to superior forecasts. For this 
purpose, already published models on linkages between different volatility measures 
(Engle & Gallo 2003) are adapted specifically to daily ranges’ prediction. 
 Lastly, we combine the results of our investigations described above with several 
existing models used for daily volatility modeling/forecasting. Additionally, we investigate 
possible improvements of daily ranges modeling by using lagged trading activity variables. 
The work finishes by picking the best model for daily ranges prediction based on 
out-of-sample forecasting performance. 
 The work is organized as follows. In Section 1, we provide motivation for daily 
ranges modeling. Section 2 describes our dataset. In Section 3, we compare various daily 
variance estimators in terms of efficiency and usefulness for daily ranges prediction. In 
Section 4, we empirically investigate our hypotheses on three different models designed for 
daily ranges prediction. The best models are then compared in an out-of-sample forecasting 
exercise in Section 5 and conclusion follows. 
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2. Motivation 
  
 For clarity of explanations, let DtP,  

denote the price of a financial asset measured at 

time Tt ≤≤0  on day D  and let us assume that log-price ( )DteDt Pp ,, log=
 
evolves according 

to a diffusion process 
 

DtDDtDDtDt dJcdWdtdp ,,,, ++= σµ  (1) 
 
where DDDt c,,, σµ  correspond to drift, volatility and jump terms and DtDt JW ,, ,  are Wiener 

and constant-intensity Poisson processes. The daily (log)range is then defined as  
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and the daily log-return, daily high, low, open and close prices are denoted 
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where f  is a portion of a trading day during which trading activity is minimal.  
 The most popular measures used for the inference of recent (one-day) variance, i.e. of 
the squared diffusion coefficientDσ , are the squared daily return and the absolute daily return 
 

   2
D

S
D rr =    D

A
D rr =  (7), (8) 

 
Parkinson (1980) showed that assuming 0, =Dtµ , 2

Dσ  can be estimated by  

 

( ) [ ] ( )2log12
2ln4ˆ D

Park
D R−=σ  (9) 

 
along with a five times higher efficiency of variance estimation compared to (7). The 
efficiency gain can be intuitively attributed to the fact that an estimate which incorporates 
extreme price values takes into account the whole day's evolution of price. Keeping the 
assumption of 0, =Dtµ , Garman & Klass (1980) suggest an estimator  
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and claim that the efficiency gain compared to (7) is approximately 7.4 regardless off . 

As GK
Dσ̂ , Park

Dσ̂  become biased with 0, ≠Dtµ , Rogers & Satchell (1990) relax this assumption 

and propose  
 

( ) ( )( ) ( )( )DDDDDDDD
RS
D chohclol −−+−−=2σ̂  (11) 
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which has only slightly lower efficiency compared to GK
Dσ̂ . Hence, the inclusion of extreme 

prices into variance estimates is capable of producing significant efficiency gains which is of 
vital importance for all applications relying on volatility. At the same time, range-based 
estimators (9) - (11) do not require tick by tick data needed for the construction of finely 
spaced intraday returns.  
 When intraday data are available, volatility of the price generating process can be 
estimated using finely spaced intraday returns. Andersen et al (2001) introduce the concept of 
realized variance for the estimation of daily variance as a sum of squared intraday returns. 
Martens & van Dijk (2007) and Christensen & Podolskij (2007) in independent studies build 
upon the work Parkinson (1980) and apply it to the topic of measuring daily variance on 
intraday data. Specifically, they propose the replacement of squared intraday returns in 
realized variance by squared intraday ranges to create the so called realized range. According 
to empirical studies, realized range provides efficiency gains over realized variance. 
Compared to range-based estimators of volatility, both realized variance and realized range 
offer significant efficiency gains and are sometimes considered as measurements as opposed 
to estimations of volatility. 
 In spite of high efficiency of aforementioned range-based/realized volatility measures 
over log

DR , the daily range offers a unique property which is our main motivation for its 

prediction. While for long-term investment or option pricing a correct assessment of Dσ  is 

crucial, day-traders are more likely to benefit from a precise prediction of log
DR  as the range is 

directly related to profit-target and stop-loss settings. Other volatility estimates, including the 
previously defined range-based ones and realized ones, cannot be used in such a manner.  

To understand this, firstly notice that volatility measures built using close-close or 
open-close returns (i.e. absolute/squared returns, standard deviation of returns) provide help 
only to investors who close their positions at the end of day. Investors exiting their positions 
in any part of the day are much rather interested in whole day volatility, hence realized 
measures of volatility as well as range-based measures of volatility can be considered. 
Realized measures of volatility, however, do not discriminate between days where price 
moves without direction (sideways) and days where the price trends – two days with similar 
realized variance can have strikingly different daily ranges (high for a directional day, low for 
a sideways day). As intraday traders care about the extent or directional price move, realized 
measures of volatility offer limited help for this purpose.  Range-based estimators, on the 
other hand, offer information directly related to the extent of directional price movement. The 
inclusion of open/close prices/returns in some of aforementioned range-based estimators 
makes the connection between a volatility reading and the extent of directional move hard to 
assess. The daily range is thus left as the most useful measure of volatility for an intraday 
investor as the relation of daily range to the extent of directional intraday movement is clear.  

For this purpose, we focus solely on daily ranges prediction. Using the above defined 
range-based and realized estimators of volatility, we will investigate whether it is possible to 
benefit from higher precision of past volatility measurement for creating better daily range 
forecasts. 

 
3. Initial data analysis 
 
 The data used in this paper relate to the EUR/USD Forex futures contract traded on 
CME from Nov, 9 2007 to Nov, 9 2011. In this time span, different delivery months were 
traded from which a continuous contract was created based on the maximum volume rule. 
Trade prices were used, hence the effect market microstructure was not removed. Timing 
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conventions used in this paper follow Electronic Trading Hours (ETH) used by CME. Lastly, 
so as not to contaminate our dataset with outlying observations, we omitted all days for which 
the total trading volume was below 80,000 contracts (mostly U.S. national holidays). 
 Basic statistical analysis of data at hand coupled with persistence of volatility is 
summarized in Table 1.  
 

 Mean St. Dev Skew Kurt GHE 
log
1DR  0.0121566 0.0055872 1.6842 4.1943 0.990 

Table 1: Descriptive statistics of daily ranges sampled at daily frequencies. 
 
 Positive skew coupled with high kurtosis are typical for volatility readings known for 
their heavy-tailed behavior.  The Hurst Exponent measured using Generalized Exponent 
method is high indicating very strong persistence. Turning to distributional properties of daily 
ranges, Locke's nonparametric test rejects the null hypothesis of gamma distributed daily 
ranges at 99.9% confidence level (a frequency distribution of daily ranges, coupled with the 
best fitting gamma distribution p.d.f. is shown in Figure 2).  
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Figure 2: Distribution of daily ranges including the best gamma distribution fit 

 
Alizadeh, Brandt & Diebold (2001) argue that logs of ranges are approximately normally 
distributed. Even though visually daily log-ranges correspond to a normal distribution 
(Figure 3), the Jarque-Bera test of normality rejects the null hypothesis of daily ranges’ 
normal distribution 
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Figure 3: Distribution of daily log-ranges including the best normal distribution fit 
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Hence, the distributional properties of daily ranges on our dataset remain unknown.  
 When testing for stationarity of our main time series, we find the following. Both 
ADF and ADF-GLS testing rejects the null hypothesis of unit-root in daily ranges at 99.9% 
confidence level. On the other hand KPSS test reject the null hypothesis of stationarity. We 
conclude that daily ranges are borderline-stationary, which is a common finding in volatility 
related literature.  
 
  

4. Comparing volatility measures 
 
 As previously mentioned, range-based volatility estimators (9) - (11) differ in their 
efficiency. In this section, we investigate whether this feature holds on real-world data or 
whether the differing efficiency of range-based volatility estimators is confined to simulated 
processes. Moreover, as our dataset provides intraday returns, we assess the imprecision in 
daily variance estimation when using daily ranges/range-based estimators instead of realized 
ranges/realized variance.  
 Our reasons for such a comparison are several. Firstly, practitioners working in 
illiquid markets cannot reliably estimate volatility using realized measures of volatility 
(infrequent trading poses an obstacle). However, as OHLC data are readily available even for 
illiquid instruments, range-based estimators can be used for volatility assessment. Thus, we 
want to generally infer how precisely volatility can be estimated when data is restricted to 
OHLC readings. Secondly, moving to liquid markets where realized volatility measures can 
be calculated, we are interested in the forecasting accuracy gains stemming from using more 
precise lagged volatility measurements as predictors of daily ranges. Instead of estimating 
each daily range model in numerous variants (each with different measure of volatility as 
predictor of daily range), we firstly assess the empirical existence of efficiency gains of 
various volatility estimators. In case range-based measures of volatility are found to be of 
equal efficiency, regressing daily ranges on Garmann & Klass and Rogers & Satchell 
measures does not yield anything. Similarly, based on superior empirical efficiency, we can 
decide whether to use realized variance or realized range in the forecasting part of the paper. 
 A time plot mutually comparing range-based measures of volatility is presented in 
Figure 3, a comparison of Parkinson’s measure with realized measures of volatility is 
presented in Figure 41. When comparing range-based measures of volatility (Figure 3), we 
observe some differences. Most notably, Parkinson’s and Rogers & Satchell’s estimators 
sometimes report a high volatility reading not reported by the remaining two volatility 
estimators. When comparing realized measures of volatility to the Parkinson’s measure 
(Figure 4), we observe a significant difference of Parkinson’s measure from the realizes ones. 
Owing to similarity of realized range/realized variance construction, we observe a near 
identical development of these measures. 
 

                                                 
1 In our work, we chose to sample returns at 5-minute intervals for the construction of realized variance and 
realized range, as this sampling frequency was firstly proposed by Andersen & Bollerslev (1998). Also this 
sampling frequency was originally used in Andersen et al (2001) 
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Figure 3: Time plots of Parkinson’s, Rogers & Satchell’s and Garmann & Klass’ measure of variance 
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Figure 4: Time plots of Parkinson’s measure of variance, realized variance and realized range 

 
 Next, we firstly investigate the general relationship between daily ranges and realized 
variance/realized ranges. We are interested in assessing the inefficiency of daily ranges over 
realized estimators. Secondly, we empirically assess the efficiencies of different range-based 
estimators presented in Section 1. Theoretically, range-based estimators herein considered 
differ significantly in efficiency. We assess whether different efficiencies are observable on 
empirical data.  
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 For comparative quality assessment of daily ranges vis-à-vis realized ranges/realized 
variance, i.e. for information on the level of noise contained in daily ranges, we use 
Mincer-Zarnowitz regressions2. Specifically, we estimate  
 

( ) E
Park
DDRR εσβα ++= 2

ˆ       ( ) E
Park
DDRV εσβα ++= 2

ˆ  (12) 

 
 with estimation results of (12) shown in Table 5. If squared daily ranges and realized 
ranges/variance were comparable in terms of estimation accuracy, residuals would show no 
heteroskedasticity, α  would be close to zero and β  would be close to unity. Our results 
suggest that squared daily ranges cannot replace realized measures of variance, as residuals 
exhibit strong heteroskedasticity. Intuitively, this can be attributed to the fact that daily 
ranges neglect a large part of intraday information. 
 

LHS Variable α β AdjR2 
RRD 0.000028 0.5681 0.58 
RVD 0.000026 0.5888 0.60 

Table 5: OLS results of  ( ) ( ) εβα +×+= 2ln4/
2log

DRVolMeasure .  

 
 To assess the efficiency of Parkinson's, Garman & Klass' and Rogers & Satchell's 
range-based volatility measures, equations resembling (12) were estimated with HAC 
standard errors ( 24/1=f  was used to represent the non-trading session in G&K measure of 
volatility). Specifically, we estimated 
 

         ( )2
ˆ Park

Dσ         DDRV εβα ++=         

          ( )2
ˆ GK

Dσ          DDRV εβα ++=   

          ( )2
ˆ RS

Dσ          DDRV εβα ++=  

         ( )2
ˆ Park

Dσ         DDRR εβα ++=         

          ( )2
ˆ GK

Dσ          DDRR εβα ++=   

          ( )2
ˆ RS

Dσ          DDRR εβα ++=  

(13) 

  

           DRV         ( ) D
Park
D εσβα ++= 2

ˆ               DRR        ( ) D
Park
D εσβα ++= 2

ˆ   

           DRV         ( ) D
GK
D εσβα ++= 2

ˆ               DRR         ( ) D
GK
D εσβα ++= 2

ˆ  (14) 

           DRV         ( ) D
RS
D εσβα ++= 2

ˆ               DRR        ( ) D
RS
D εσβα ++= 2

ˆ   

 
 with  results presented in Table 6 and Table 7. As all five variables are measures of 
the same variance and as DD RVRR ,  estimates border on the true value of volatility, we can 

loosely interpret the results as follows: 10 =∧= βα  in Table 6 imply that DD RVRR ,  are 
best predictors of all range-based variance estimates and can explain all variance related 
information captured in these range-based estimates.  
 
 
 
 
 
 

                                                 
2 Mincer, J. A., Zarnowitz, V. (1969) The Evaluation of Economic Forecasts: Analysis of Forecasting Behavior 
and Performance, NBER Books, National Bureau of Economic Research 
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Regressor Dependent variable 

 (Rlog)2/4ln(2) (Rlog)2/4ln(2) (σGK)2 (σGK)2 (σRS)2 (σRS)2 

c -0.0000009 -0.0000003 -0.0000036 -0.0000035 -0.0000041 -0.0000045 

0.0000027 0.0000020 0.0000024 0.0000021 0.0000037 0.0000037 
       

RRD 1.0155  0.9837  1.0640  

0.0566  0.0517  0.0744  
       

RVD  1.0165  0.9918  1.0640 

 0.0399  0.0453  0.0744 
       

AdjR2 0.5765 0.5981 0.5453 0.5740 0.5991 0.5991 
Table 6: Regressing range-based measures on realized measures of variance. Bold estimates are significant on 99% level.  

  
Regressor Dependent variable 

 RRD RVD 

C 
0.0000277 0.0000313 0.0000281 0.0000258 0.0000292 0.0000256 

0.0000024 0.0000032 0.0000027 0.0000024 0.0000032 0.0000032 
       

(Rlog)2/4ln(2) 0.5680   0.5888   

0.0368   0.0391   
       

(σGK)2  0.5547   0.5791  

 0.0551   0.0588  
       

(σRS)2   0.5634   0.5791 

  0.0387   0.0588 
       

AdjR2 0.5765 0.5453 0.5991 0.5981 0.5740 0.5740 
Table 7: Regressing realized measures of variance  on range-based measures. Bold estimates are significant on 99% level.  

 
 On the other hand, β  estimates in Table 7 indicate a decomposition of range-based 
volatility measures into information on variance and noise. These β  estimates as well as 
AdjR2 of all models indicate that approximately 57% of information in range-based variance 
estimates is related to variance of the underlying process and the remaining share of 
information is noise. From this we could roughly infer efficiency gains of using realized 
ranges/variance instead of range-based estimates. While in theory, Garman & Klass as well 
as Rogers & Satchell estimators promise efficiency increases over Parkinson's measure, our 
results do not confirm this. We thus do not have any reason to use the Garman & Klass or 
Rogers & Satchell measure as predictors in daily ranges modeling instead of daily ranges 
themselves. 

 
5. Modeling daily ranges 
 
 Unlike many variables in economics with usually one predominant approach to 
modeling, volatility can be modeled using various approaches. Focusing on models that do 
not assume long-memory, simple AR (ARCH type, see Engle 1982) or more refined GARCH 
models can be used for volatility modeling. Recent developments in volatility modeling 
applicable to daily ranges are, for example, mixtures of long, medium and short-term 
volatilities (HAR of Corsi 2004), vector error-correction models (Cheung et al 2007) or 
models incorporating data sampled at different frequencies (Ghysels 2003).  

In this paper, we specifically focus on models that do not incorporate long memory 
(e.g. ARFIMA, FIVECM). This choice is motivated by several drawbacks of long-memory 
models (estimation issues, dubious interpretation) coupled with questionable improvement of 
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fit/forecasting accuracy. For example, Corsi (2004) compares the fit/forecasting performance 
of a pseudo long-memory HAR model and a long-memory ARFIMA model applied to 
realized volatility. He finds that both in-sample and out-of-sample ARFIMA is dominated by 
HAR. Moreover, with ARFIMA there is no possibility to forecast daily ranges using more 
precise measures of volatility as predictors, which is one of the main ideas presented in this 
paper. Except for the last argument, similar logics apply to the choice of VECM over 
fractionally integrated VECM, strengthened by the facts that VECM is merely a restricted 
FIVECM. 

In the next sections, we discuss and estimate the models chosen for this paper. 
 
5.1 ARMA-GARCH 
 
 In order to have a benchmark in daily ranges modeling, we chose an ARMA-GARCH 
model (see e.g. Pong et al (2003), Ahoniemi (2009) for ARMA modeled volatility). For 
brevity purposes, we limit ourselves to stating that an ARMA(7,0)-GARCH(1,1) model with 
Student-distributed residuals was the model offering best in-sample fit. 
 
5.2 Heterogeneous autoregressive model 
 
 Dacorogna et al (1997) propose, as an extension of the GARCH model, to combine 
volatility views of market participants with differing investment horizons. Corsi (2003) 
follows up to this idea by proposing his own model and argues that short-term, medium-term 
and long-term volatilities should be used for modeling. Specifically, Corsi proposes a model 
of the following specification 
 

tDDDD RVRVRVRV εαααα ++++= −−−
)22(

13
)5(
12110  (15) 

 
where )(a

DRV  is a simple average of realized variances over days ( ]DaD ;− . 
Corsi & Reno (2009) assess the leverage effect by estimating  
 

DDDDDDDDDDD rIrIrIRVRVRVRV εβββαααα +++++++= −−−−−−−−−
)22(

1
)22(

13
)5(
1

)5(
12

)1(
1

)1(
11

)22(
13

)5(
12110  (16) 

 
where )(a

DI  is an indicator variable equal to one in case the average daily return )(a
Dr  measured 

over days ( ]DaD ;−  is negative. According to Corsi & Reno this new (LHAR - Leveraged 
HAR) model performs better than the original specification (15). 
 Here, we estimate a battery of HAR models with daily ranges as the explained 
variable. All models discussed here were estimated using HAC standard errors. Lastly, as 
realized variance and realized ranges provide nearly identical estimates of variance, we chose 
to work with realized ranges only from here on.  

In light of borderline stationarity of daily ranges on our dataset, consistency of OLS 
used in HAR estimation might be questionable. In order to satisfy OLS assumptions, the 
cointegration of daily ranges and their weekly/monthly averages was investigated. Using the 
Engle-Granger test, daily ranges were found to be cointegrated with their weekly and 
monthly averages, which makes OLS estimates in HAR super-consistent3.  
 The base HAR specification for daily ranges modeling is  

                                                 
3 The same exercise was performed for averages of realized ranges in R-HAR modeling withe same results. For 
brevity reasons, we do not report details of statistical testing, but we kindly provide them upon request. 
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DDDDD RRRR εαααα ++++= −−−
)22(log,

13
)5(log,

12
log

110
log

 (17) 

 
Including the leverage effect leads to the LHAR specification given by  
 

)22(log,
13

)5log(
12

log
110

log
−−− +++= DDDD RRRR αααα  

                             DDDDDDD rIrIrI εβββ ++++ −−−−−−
)22(

1
)22(
13

)5(
1

)5(
121

)1(
11  

(18) 

 
In order to infer modeling performance gains stemming from using more precise information 
on volatility, we regress daily ranges on realized ranges solely in the R-HAR specification, 
i.e.  
 

DDDDD RRRRRRR εαααα ++++= −−−
)22(
13

)5(
12110

log
 (19) 

 
 To investigate the added benefit of using variables representing trading activity 
(average trade size/transaction count4) and their possible long-term influence on volatility, we 
define models with -S/-C suffixes as  
 

)22(log,
13

)5(log,
12

log
110

log
−−− +++= DDDD RRRR αααα  

         DDDD TSTSTS εγγγ ++++ −−−
)22(

13
)5(
1211  

(20) 

 
)22(log,

13
)5(log,

12
log

110
log

−−− +++= DDDD RRRR αααα  

           DDDD TCTCTC εδδδ ++++ −−−
)22(
13

)5(
1211  

(21) 

 
 For example, R-LHAR-SC model is a HAR model using realized ranges as regressors. 
On top of that, the specification is enriched by information on leverage effect, average trade 
size and transaction count as described in (18), (19), (20) and (21). 
 Firstly, we focus on HAR and R-HAR specifications. The estimated results are 
presented in Table 8 and indicate that neither daily ranges nor realized ranges are strictly 
superior in terms of goodness-of-fit when modeling daily ranges. For this reason, all further 
models are evaluated with either daily or realized ranges being the RHS measure of (average) 
volatility.  
 

 HAR R-HAR 

c 0.0000 0.0000 

R(1)(-1)  0.0482  

R(5)(-1) 0.4356  

R(22)(-1) 0.3884  

RR(1)(-1)  0.7952 

RR(5)(-1)  1.3463 

RR(22)(-1)  0.4086 

AdjR2 0.3346 0.3684 
Table 8: Investigation of relationships between daily ranges and realized ranges from HAR perspective.  

                                                 
4 Logarithms (not levels) of average trade size and transaction count were used in all regressions contained in 
this thesis. 
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Parameter estimates significant on 95% critical level are printed in bold. 
 
 In-sample estimation results of all specifications are shown in Table A.1 in the 
Appendix. In these results, we do not observe any significant increase in AdjR2 for either 
model. Contrary to Corsi, the "bad-news" effect is not significant in all models. Moreover, 
only in LHAR-S model were all three "bad-news" terms found to be significant at least on a 
95% critical level. In general, however, only the first-lag "bad-news" effect seems to be 
present in the data. Next, when comparing HAR vs. R-HAR and  LHAR vs. R-LHAR (i.e. we 
compare the benefit of using realized ranges for predicting daily ranges), we see that R-HAR 
and R-LHAR have a higher count of significant parameter estimates. Most notably, in 
HAR/LHAR models the lack of autoregressive dependency of order one is rather surprising. 
Since this anomaly is not present in R-HAR/R-LHAR models, where realized ranges are used 
as regressors, this can only be caused by the noise included in daily ranges. Focusing on the 
added benefit of including transaction count and average trade size (-S/-C specifications), we 
cannot observe any significant effects stemming from these variables. 
 
5.3 CARR  
 
 For modeling daily ranges, Chou (2005) proposes an adoption of a MEM model 
originally developed in  Engle & Russell (1998). Chou's conditional autoregressive range 
(CARR) model of order qp,   is specified by  

DDDR ελ=log
                   iD

p

í
iiD

q

í
iD R −

=
−

=
∑∑ ++= λβαωλ

1

log

1

 (22) 

where Dε  is assumed to follow a positive-valued distribution with unity mean. More 
specifically, in MLE estimates of the model Chou assumes either Weibull or Exponentially 
distributed Dε . Investigations carried out on the S&P 500 futures contract reveal superior 
volatility forecasts of CARR models as compared to GARCH models, presence of a strong 
leverage effect in the volatility-of-volatility equation as well as a benefit of adding absolute 
returns (as a complementary measure of volatility) into Dλ  equation. The assumption of 

Weibull distributed Dε  seems plausible, as estimated residuals DDD R λε ˆ/ˆ log=  are near-
Weibull distributed.  
 Estimations on our dataset were carried out using robust standard error estimation 
techniques (QML covariance matrix). The results for daily ranges prediction are presented in 
Table 9 for ( )•≈ ExpDε  and Table 10 for ( )•≈ ,θε WeibullD  respectively. Optimal values of 
lags 1== qp  were determined based on parameter significance and we find strong evidence 

for ( )•≈ ,θε WeibullD
5. 

 
 coefficient std. error z-value p-value Signif 

     c  0.000237 0.000109 2.172 0.0299 ** 

      ( )2
ˆ Park

Dσ  0.125382 0.019581 6.403 0.0000 *** 

     
tλ  0.855489 0.024893 34.37 0.0000 *** 

 Log-lik 3358.603 AIC -6711.21  

 SchC -6696.54 HQC -6705.63  
Table 9: Estimation results of a CARR model with Exponentially distributed residuals. 

 
 
                                                 
5 The estimated  θ  is significantly different from 1.0  in which case Weibull distribution collapses into an 
Exponential. 
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 coefficient std. error z-value p-value Signif 

     c  0.000239 0.000142 1.679 0.0931 * 
      ( )2

ˆ Park
Dσ  0.120257 0.024412 4.926 0.0000 *** 

     
tλ  0.860145 0.032996 26.07 0.0000 *** 

     θ  2.91085 0.081051 35.91 1.86E-28 *** 

 Log-lik 3972.282 AIC -7936.56  

 SchC -7917.02 HQC -7929.13  
Table 10: Estimation results of a CARR model with Weibull distributed residuals. 

 
 Before delving into augmentations of the CARR(1,1) model, we compared the 
in-sample performance of CARR(1,1) model with ( )•≈ ,θε WeibullD  to the performance of a 
base HAR specification (17). When neglecting the buildup period of MLE estimation, we 
observed a striking similarity of fitted values indicating a near identity of both models. For 
this reason, we did not delve into CARR model augmentations, as estimation results and 
sessions' information significance would nearly certainly be the same as in case of a HAR 
model.  
 
5.4 Cointegration of high and low prices 
 
 Cheung (2007) investigates the usefulness of vector error-correction-models for daily 
ranges modeling on several stock indices. Cheung's intuition is that daily highs/lows are 
integrated of order one while the daily range is stationary. Cheung's tests confirm these 
hypotheses and a VECM model is adopted for DD lh ∆∆ , : 
 

( )TDDD lhX ∆∆= ,         DD

p

i
iDiD DRXX εξγβα ++++= −

=
−∑

log
1

1

 (23) 

 
where the error correcting term (daily range) turns out significant. Generally the predictive 
power of the model ranges from 8% to 17% in terms of AdjR2 depending on instrument. 
 In order to improve the model's predictive power, Cheung includes several exogenous 
variables. Cheung adds changes of daily open and daily close prices as well as daily returns 
into (23). In this augmented model, the vast majority of added variables are significant and 
the model's predictive power rises dramatically (to levels of 37.6% to 48.9% in terms of 
AdjR2).  
 In this section, we formally investigate the assumptions of a VECM model, assess the 
predictive power and proper specification of (23) on our dataset, including Cheung's 
augmentations. Lastly, we turn to improving the model with sessions-related variables. 
 For the identification of a co-integration relationship between daily highs and lows, 
we follow the Engle-Granger test upon the results of which we conclude that daily highs and 
lows are co-integrated.  
 Estimation results of Chou's basic model presented in Table 11 have signs of 
significant parameters in both equations according to expectations and speak in favor of an 
mean-reverting process in daily ranges. Next, following Cheung's approach, we enrich the 
base VECM by iDiDiD coco −−− ∆∆ ,,  which stand for the lagged changes in daily open and daily 

close prices and lagged daily returns, respectively. The model specification thus changes to  
 

        DD

s

m
mDm

r

k
kDj

q

j
jDj

p

i
iDiD ECcocoXX εϕφδγβα +++∆+∆++= −

=
−

=
−

=
−

=
− ∑∑∑∑ 1

1101

 (24) 
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The mDo −∆  terms are taken from 0=m  as we can utilize today's open price in our 

predictions. Optimal parameters of srq ,,  were chosen based on parameter significance while 
keeping 6=p  as in the base specification. Estimation results are presented in Table 12 for 

1,2,4 === srq . Several points deserve mentioning: 

• In both daily high/daily low equations, significance of parameters changes 
strongly and AdjR2 rises noticeably. 

• The significance of error-correction term remains unaffected in both equations, 
despite heavy changes in significance of other parameters. The null hypothesis 
of no autocorrelations in residuals is not rejected just as in the base 
specification, hence we consider the augmented model well specified. 

 

 
∆(h)  ∆(l)  

 
∆(h)  ∆(l) 

coeff   coeff   coeff   coeff  

c 0.0063 ***  0.0013   c 0.0042 ***  -0.0005  

∆(h(-1)) -0.0273   0.5955 ***  ∆(h(-1)) -0.7441 ***  -0.0973  

∆(h(-2)) -0.1253 *  0.3704 ***  ∆(h(-2)) -0.5372 ***  -0.0283  

∆(h(-3)) -0.0100   0.3332 ***  ∆(h(-3)) -0.3606 ***  -0.0661  

∆(h(-4)) -0.0061   0.2474 ***  ∆(h(-4)) -0.2617 ***  -0.0591  

∆(h(-5)) -0.0614   0.1550 **  ∆(h(-5)) -0.2472 ***  -0.0121  

∆(h(-6)) -0.0375   0.0830 *  ∆(h(-6)) -0.1103 ***  0.0259  

∆(l(-1)) 0.4229 ***  -0.2431 ***  ∆(l(-1)) -0.1451 **  -0.7871 *** 

∆(l(-2)) -0.0748   -0.4959 ***  ∆(l(-2)) -0.2639 ***  -0.6608 *** 

∆(l(-3)) 0.0588   -0.2935 ***  ∆(l(-3)) -0.1234 *  -0.5160 *** 

∆(l(-4)) 0.0434   -0.2068 ***  ∆(l(-4)) -0.0941   -0.3833 *** 

∆(l(-5)) 0.0317   -0.1946 ***  ∆(l(-5)) -0.0745   -0.2833 *** 

∆(l(-6)) 0.0395   -0.0988 *  ∆(l(-6)) 0.0406   -0.0920 ** 

EC(1) -0.2668 ***  -0.0577   EC(1) -0.1892 ***  0.0200  

       ∆(o) 0.7909 ***  0.6558 *** 

       ∆(o(-1)) 1.1005 ***  0.8642 *** 

       ∆(o(-2)) 0.6372 ***  0.6485 *** 

       ∆(o(-3)) 0.4399 ***  0.5545 *** 

       ∆(o(-4)) 0.3518 ***  0.3754 *** 

       ∆(o(-5)) 0.2085 ***  0.1681 *** 

       ∆(c(-1)) -0.2976 *  -0.0914  

       ∆(c(-2)) -0.2572 **  -0.0790  

       ret(-1) 0.4838 **  0.4043 ** 

             

AdjR2 0.2116   0.1465   AdjR2 0.5473   0.4947  

LB(20) 5.6029   12.3733   LB(20) 11.9264   19.6827  

p-value 0.9990   0.9030   p-value 0.9190   0.4780  
Tables 11, 12: Estimates of base VECM model, investigating the effect of additional variables. 
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6. Out-of-sample Forecasting Exercise 
 
 In this section, we assess the out of sample forecasting performance of the models so 
far discussed. We focus solely on one-day-ahead forecasts of daily ranges using a rolling 
window for estimation. Window length was set to the minimum number of observations 
allowing for a MLE estimation of all models (400 observations, yielding 599 one-step-ahead 
forecasts). For assessing differences in forecast quality RMSE and Q-LIKE loss functions 
were used. These loss functions, for a difference series { }n

tte 1=  of target volatility series̀ and 

volatility forecast series { }n

tth 1= , are defined as 

 

        ∑ =
−= n

i tenMSE
1

21
    ( )∑ =

− += n

i ttt hhnQLIKE
1

1 ln σ  (25) 

 
In order to statistically compare the performance of different models a volatility forecast 
comparison test based on Diebold & Mariano (1995) and West (1996) was used.  
 Following literature on volatility forecasting, we decided to compare the forecasting 
power of models discussed in Sections 4.2 and 4.4 to several benchmark models - specifically 
the random-walk model, lagged average weekly, lagged  average monthly volatility and a 
more sophisticated AR(7)-GARCH(1,1)-t discussed in Section 4.1. By adding these 
benchmark models to our forecasting exercise, we can firstly infer whether HAR/VECM 
models outperform the simplest of models before turning to comparing these complicated 
models one with another.  
 As the number of HAR models estimated in this paper is large, only base 
specifications and specifications with a clear increase in explanatory power stemming from 
additional variables were used for forecasting. The list of models chosen for out-of-sample 
forecasting is listed in Table 13 with an overview of forecasting performance as measured by 
RMSE and Q-LIKE following in Table 14. 
 

Model Description 

RW Random walk - volatility forecast is equal to previous day's volatility. 

SMA5 Average weekly volatility - forecast is a SMA of last five volatilities 

SMA22 Average monthly volatility - forecast is a SMA of last 22 volatilities 

 
AR7 AR(7)-GARCH(1,1)-t model derived forecasts 

HARGARCH Forecasts of a HAR model with leverage effect from the previous trading 
day, GARCH modeling of residual volatility included 

RHARGARCH 
Forecasts of a R-HAR model without any leverage effect, GARCH 

modeling of residual volatility included 

VECM Forecasts of VECM of Highs and Lows with 6 lags 

VECMAUG 
Forecasts of VECM of Highs and Lows with 6 lags enriched by 

information on changes of closing and opening prices 
Table 13: List of models considered for out-of-sample forecasting evaluation. 

 
 

Model RMSE Q-LIKE Model RMSE Q-LIKE 

RW 0.000027 -3.452526 HARGARCH 0.000015 -3.500247 

SMA5 0.000017 -3.496000 RHARGARCH 0.000015 -3.502932 

SMA22 0.000016 -3.499393 VECM 0.000016 -3.498304 

AR7 0.000015 -3.500018 VECMAUG 0.000016 -3.497844 
Table 14: Average RMSE and Q-LIKE of one-step-ahead rolling-window forecasts. 
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 The most striking observation is that despite a marked increase of in-sample AdjR2 (in 
modeling changes of high and low) the augmented VECM model does not generate smaller 
errors (in modeling daily ranges) compared to the base VECM model. 
  To assess differences in forecasting accuracy statistically, we performed 
Diebold-Mariano-West test for both RMSE and Q-LIKE loss functions. The resulting matrix 
is listed below as Table 15. A negative test statistic in row A and column B indicates that 
model B provides better forecasts than model A.   
 

 

S
M

A
5 
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M

A
22
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R
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H
A

R
G

A
R
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R
H

A
R
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R
C
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V
E

C
M

 

V
E

C
M

A
U

G
 

RW 
-6.41 -6.02 -7.21 -6.79 -7.31 -6.82 -6.51 
-6.92 -6.79 -7.68 -7.31 -7.76 -7.43 -7.15 

SMA5 
 -1.07 -3.49 -2.99 -4.49 -1.47 -1.00 
 -1.55 -3.17 -3.07 -4.29 -1.36 -0.95 

SMA22 

  -1.05 -1.41 -2.68 -0.06 0.20 
  -0.32 -0.65 -2.33 0.47 0.65 
  0.05 -0.11 -2.14 0.71 0.88 

AR7 
   0.12 -2.17 1.42 1.66 
   -0.20 -2.26 1.33 1.43 

HAR-GARCH 
    -3.29 0.97 1.27 
    -3.23 1.12 1.32 

R-HAR-GARCH 
     2.37 2.64 
     2.54 2.66 

VECM 
      0.81 
      0.52 

Table 15: Test statistics of Diebold Mariano West test  (MSE and Q-Like) applied onto ranges forecasts of different models. 
Null hypothesis is of equal forecasting power and critical values corresponding to 95% confidence level are -1.96, 1.96. 

Insignificant values are printed in grey. 

 
The observed data provide several conclusions. All models provide better than naive 
forecasts. The clearly best model is RHARGARCH. From this, we can conclude that for 
proper out of sample forecasting of daily ranges, using high quality volatility measures is 
critical. Turning to VECM models we observe a disappointing bad quality of forecasts. Both 
VECM models can beat only beat the random-walk model, moreover both are significantly 
worse in terms of forecast quality than RHARGARCH. The puzzle of a three-fold increase in 
AdjR2 of VECMAUG over VECM in-sample not reflected in an increased forecasting 
performance is confirmed, as forecasts of both VECMs cannot be distinguished. The root of 
this puzzle can be investigated by analyzing in-sample range predictions of both VECMs. 
Apparently, both VECMs produce nearly identical in-sample range predictions as illustrated 
in Figure 4. The increase in separate equations' AdjR2 thus brings advantage when modeling 
daily highs and daily lows, however there is no guarantee that smaller errors in daily highs 
and daily lows equations in VECMAUG do not add up to produce larger errors in daily 
ranges forecast6. 
 

                                                 
6 Simply put, the difference of two large errors of the same sign can be small, however the difference of two 
small errors of opposing signs can be large.  
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Figure 4: In-sample daily ranges predictions of VECM and VECM_AUG models 

 

 
 
 To conclude, models rooted in the co-integration of daily high and low prices 
dominate only the random-walk model. A general conclusion is that models incorporating 
realized ranges as opposed to daily ranges as predictors perform better out-of-sample. This 
confirms the results of our in-sample investigations. The best model is an R-HAR model with 
a GARCH(1,1) volatility-of-volatility component.  

 
Summary 
 
 In this paper, we enrich the body of knowledge focused on daily ranges modeling by 
several new findings.  

Regressing daily ranges on range-based volatility estimates (Garman & Klass, 
Rogers & Satchell) is not expected to yield benefit, as we show that all considered 
range-based estimators provide the same level of efficiency on real-world data. This is in 
sharp contrast with theoretical results, where Garman & Klass and Rogers &Satchell 
estimators show significant efficiency gains compared to daily ranges. Specifically, 
approximately 40% of information provided by herein considered range-based estimators as 
well as squared daily ranges is noise, while only 60% of information is related to the variance 
of the price generating process. Using realized ranges for the prediction of daily ranges shows 
small gains in terms of in-sample fit. Out-of-sample forecasting performance, however, 
shows advantages of regressing daily ranges on realized ranges. 
 Comparison of models based on out-of-sample forecasting performance reveals 
several points. A model utilizing realized ranges for the prediction of daily ranges is the 
model of choice, as it can statistically beat all models considered in this paper. Models based 
on the co-integration show good in-sample fits pertaining only to daily high and daily low 
prices modeling. On out-of-sample daily ranges forecasting, VECM models are only capable 
of beating the random-walk specification.  
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 As our main motivation for modeling daily ranges was to provide for a way of money 
management to intraday traders, a feasible follow-up to our work would be to investigate the 
possibility to update current day’s volatility using intraday data. Using such an approach, 
traders active in the later parts of the trading day might obtain higher forecasting accuracy 
compared to traders active early in the day. Next, drawing upon the results of 
Leitch & Tanner (1998), comparisons of models chosen by error-minimization as opposed to 
profit-maximization might bring interesting results. As the occurrence of news releases 
causes jumps in prices as well as sessions' ranges and realized ranges, including information 
on news releases might bring additional insights and improvements of cumulative volatility 
forecast updates. Possible spillovers of news releases into increased or decreased volatilities 
of other sessions as well as whole days could be investigated. Lastly, a part of research 
suggests that order imbalance (a measure of whether buyers or sellers are more aggressive in 
the market at the moment) is a trading activity measure that needs to be taken into account, 
complementing herein discussed trading activity measures. Hence, investigations of the order 
imbalance might contribute to our understanding of volume-volatility relationship and might 
provide novel ways of volatility prediction. 
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c 0.0014 0.0010 0.0037 0.0035 0.0066 0.0017 0.0061 0.0061 0.0131 0.0011 0.0012 0.0107 0.0122 

 **     ** **  *   ** * 
Rlog,(1)(-1)  0.0466  0.0623 0.0188 0.0325 0.0745 0.0892 0.0485 0.0616     

       *       
Rlog,(5)(-1) 0.3958  0.3201 0.3783 0.2911 0.3335 0.2668 0.3293 0.2568     

 ***  *** *** ** *** ** ** *     
Rlog,(22)(-1) 0.4444  0.4495 0.4959 0.5103 0.4410 0.3970 0.4803 0.4313     

 ***  *** *** *** *** *** *** ***     
I(1)(-1)       0.0876 0.0878 0.0855 0.0853 0.0530 0.0546 0.0526 0.0533 

      ** ** ** **     
I(5)(-1)      -0.1362 -0.1476 -0.1195 -0.1291 -0.0973 -0.1063 -0.1068 -0.1087 

       *       
I(22)(-1)      -0.4054 -0.4092 -0.4293 -0.4454 -0.0584 -0.0509 -0.0383 -0.0601 

      * *       
RR(1)(-1)   0.4807        0.4735 0.4972 0.4920 0.5174 

  ***        *** *** ** ** 
RR(5)(-1)  0.6917        0.6587 0.5108 0.9664 0.8166 

  ***        *** ** *** * 
RR(22)(-1)  0.2972        0.3272 0.4368 0.0308 0.1066 

  *        ** **   
size(1)(-1)    -0.0023  -0.0025  -0.0019  -0.0022  0.0007  0.0005 

              
size(5)(-1)   -0.0061  -0.0065  -0.0066  -0.0068  -0.0065  -0.0039 

              
size(22)(-1)   0.0071  0.0076  0.0060  0.0061  0.0058  0.0026 

       *    *   
count(1)(-1)     0.0010 0.0011   0.0009 0.0010   -0.0001 -0.0002 

              
count(5)(-1)    0.0001 0.0002   -0.0002 -0.0001   -0.0029 -0.0023 

              
count(22)(-1)    -0.0013 -0.0016   -0.0012 -0.0014   0.0022 0.0016 

              
AdjR2 0.3560 0.3910 0.3581 0.3556 0.3586 0.3648 0.3676 0.3646 0.3680 0.3913 0.3912 0.3939 0.3925 

Table A.1: Estimation results of different HAR model specifications for daily ranges (volatility). 
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