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Abstract: The present contribution develops on the analysis of clusters in terms of 
proximities by exploring the issue of distant inter-cluster collaborations. We 
mobilize different forms of proximity (geographic, cognitive, social) discussed in 
the literature in order to identify their respective influence on intercluster 
collaboration by taking the example of French Pôles de Compétitivité. Our results 
echo previous results applied to intra-cluster collaborations since inter-cluster 
collaboration mostly relies on a form of social capital due to the key roles played 
by relational and cognitive proximity. Finally, our results exhibit a negative 
influence of geographic distance on collaboration.
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Introduction
In an era of globalisation of markets, implying important waves of relocation of production to 
low-wage countries, a paramount issue for numerous policy makers lies in the capacity of 
national industries to retain or even attract investment from national and international firms. 
In this perspective, the virtues of activity localisation have been rediscovered (see Cooke, 
2008) in such a way that cluster policies have become a central theme of industrial 
organisation in last decades. Among the literature analysing the innovative performance of 
clusters or regions, several recent contributions pinpoint the major influence of the 
characteristics of the networks of actors on knowledge circulation and innovation: the 
network structure (Cantner et al., 2010) as well as the strength of ties (Fritsch and Kauffeld-
Monz, 2010) and knowledge roles and positions assumed by firms (Vicente et al., 2008; 
Steiner and Ploder, 2008) are hence presented as decisive. Progressively, the notions of 
gatekeepers, local knowledge brokers, external stars or isolated firms emerged, each of them
being characterized by different absorptive capacities and positions in the network of the 
cluster (Giuliani and Bell, 2005) and having different roles to play for territorial innovation
dynamics.

Most of those contributions focus on intra-region or intra-cluster networks of firms, 
neglecting the impact on innovation the social embeddedness of the region or the cluster itself 
may have. However, at the same time, the literature concludes that an important factor 
underlying the dominance and resilience of clusters lies in their respective capacity to build 
up ties with their environment (Bell and Albu, 1999; Coenen et al., 2004; Suire and Vicente, 
2009a and 2009b), to develop “global pipelines” (borrowing Bathelt et al. (2004)’s  



terminology) in order to benefit from knowledge transfers, and more precisely to access 
external knowledge  (Bathelt et al., 2004; Coenen et al., 2004; Giuliani and Bell, 2005). 
Unfortunately, nothing is said on the identity of the partner to build pipelines with. Should 
clusters tie up with other actors/organisations regardless of their characteristics or do/should 
they preferentially tie up with specific partners? Indeed, although extensive, the discussion on 
global pipelines has been restricted to the ecology of knowledge at the cluster level through a 
focus on knowledge internal circulation and knowledge provision from external sources. But, 
paradoxically, the idea that clusters themselves may be part of an ecology of knowledge at the 
national level, meaning that clusters themselves might provide knowledge to other 
organisations (and other clusters) has been poorly explored. This is all the more strange that
this  idea is at the core of numerous public policies around Europe (DTI, 1998; French 
Ministry of Economy, Employment and Finance, 2009). Hence, the French cluster policy (the 
so-called “Pôles de compétitivité” policy), which constitutes the empirical context of this 
paper, precisely goes in this direction, as since 2007 the government has strongly encouraged 
the development of collaborative research projects involving different clusters. If forging ties 
with external partners is decisive to stimulate the innovative dynamisms of clusters, it seems 
crucial to understand the way ties are formed and to identify the driving forces of this 
networking phenomenon. In turn, investigating the determinants of tie building among 
clusters is a first analytical step toward an explanation of the dynamics of inter-cluster 
network formation.

The literature on knowledge networks and inter-firm collaborations insists on the crucial role 
played by homophily and proximity in the selection process of partners for innovation. But 
this literature mostly analyses spontaneous, opportunistic collaborative network formation. In 
the present case, inter-cluster cooperation is strongly sponsored by the French Government, as 
clusters have been clearly notified that the likelihood of their innovative projects being 
financed significantly increases for collaborative projects involving several clusters. So what 
about network formation when ties are strongly government-supported? Do collaborative 
networks which are partially imposed emerge in similar conditions to spontaneous ones? Is tie 
formation driven by similar forces? Do proximities still play a role, or are other explanatory 
factors at stake? This question sounds even more accurate as France hosts a large number of 
appointed clusters (71 so-called Pôles de Compétitivité) characterized by various structural 
configurations (Hussler et al., 2010), spread on the whole national territory, some of them 
being involved in similar industries and playing therefore potentially competing roles at the 
national level. Agreeing to cooperate with other clusters might thus be seen for a given cluster 
as a strategy to share complementary assets, as a way to increase its probability to see its 
collaborative research program funded, but it also constitutes a threat by opening up its 
strategic knowledge bases to potential competitors. 

In such a context who collaborates with whom? Which are the clusters which decide to create 
collaborative links with one another? Do clusters tie up with other clusters regardless of their 
characteristics or do they preferentially tie up with others based on proximity criteria? If they 
do, what type of proximity is favoured ? The remainder of this paper aims to assess the 
relative importance of the different types of proximity (geographic, social, organizational and 
sectoral) on the capacity of clusters to bind with others, and to assess whether clusters 
replicate at the national scale behaviours adopted by firms at a regional scale in terms of 
partner selection process.



To do so, and contrary to most existing studies tackling the issue of the relationships between 
clusters and their environment which are limited to the simultaneous analysis of a few cases, 
we run an empirical study on the relational behaviours adopted by the exhaustive population 
of French Pôles de Compétitivité, and test whether sharing similar characteristics can be 
presented as a factor favouring inter-cluster link formation. Finally, the contribution of this 
paper is twofold. It investigates the determinants of technological network formation by 
focusing on a specific type of collaborations (namely sponsored formal collaborations) and by 
selecting an original level of analysis (namely the inter-cluster level). 

The remainder of the paper is organized as follows. Section 1 is devoted to a literature review 
on proximities and their potential impact on tie formation. In a second section we specify the 
empirical setting and methodological choices adopted. Section 3 presents and discusses the 
results, while Section 4 concludes.

Proximities and inter-cluster network formation
According to Mc Pherson et al. (2001), “similarity breeds connection” (p.415) and homophily 
(ie homogeneity of actors) “strongly shapes networks by influencing the opportunity structure 
for contacts” (p.429). The recent literature on proximity (Boschma, 2005; Bouba-Olga and 
Grossetti, 2008; Hussler and Rondé, 2005, 2007) builds on similar ideas. Proximity explains 
the contexts in which individuals or organisations meet and get connected: a priori, a contact 
between proximate actors occurs at a higher rate than among distant ones, whatever the 
meaning of proximity. Indeed, proximity is not only a question of geography even if it might 
include and interact with it. This section precisely aims to scan and discuss the insights 
provided by this literature on the impact of proximities on collaborative ties building.

Geographic proximity and tie formation:
Geographic proximity corresponds to the physical distance separating two entities. It may be 
expressed in absolute terms by being quantified as the number of kilometres between them or 
in relative terms since it depends on various factors: the topography or the quality and density 
of transportation networks. It might be binary too since agents may consider being far from or 
close to specific agents or resources. An actor (individual or organization) is more likely to 
have contact with those who are geographically closer than those who are distant, as he is
more likely to meet them by accident, and also since building contacts with them is less 
expensive than collaborating at a distance (due to lower coordination and transportation 
costs). 

Asheim et al. (2007), Bathelt and Schuldt (2008b) and Wickham and Vecchi (2008) raise a 
first line of criticism towards those assumptions by underlining the fact that interactions may 
occur at a distance thanks to the possibility raised by low-cost transportation means, 
professional fairs or ICT. This argument is in line with the literature dealing with virtual 
communities of practice and for which the combination of different types of proximity 
(cognitive, social and, sometimes, organized) allow those communities to be freed from 
physical collocation (see the survey of Amin and Roberts, 2008). Going one step further, 
temporary geographic proximity might be created between permanently distant partners. 
Contrasting with permanent geographic proximity, temporary geographic proximity refers to 
finite periods during which partners share common places: professional fairs, meetings or 
visits (Bathelt and Schuldt, 2008a; Rychen and Zimmermann, 2008; Torre, 2008). It 
contributes to the construction of proximities by favouring face-to-face contacts and, in this 



sense, temporarily replicates the buzz to be found among geographically concentrated 
organisations (Bathelt and Schuldt, 2008b).

Finally the specific impact of permanent geographic proximity on collaborative tie building 
remains unclear. Applied to inter-cluster network formation, what sounds worth stressing is 
that clusters are spread on the whole national territory. Some of them are located within the 
same region (for instance, the Ile de France Region hosts 6 Pôles de compétitivité), meaning 
that permanent geographical proximity exists between them, whereas other clusters are 
located in different parts of the country but are active in the same industry (one counts four 
clusters in the automobile industry for instance), temporary proximity (during industrial fairs) 
being thus also observable among French clusters. In such a context, specifying the exact 
impact of permanent geographic proximity of inter-cluster cooperation sounds stimulating.

Organized proximity and innovative collaborations
Organized proximity was first introduced as a complement to geographic proximity. It reflects 
the capacity of individuals to interact (Rallet and Torre, 2005) by reference to the organized 
character of human activities (Torre, 2009). It relies on two distinct logics: the logic of 
belonging and the logic of similarity. The logic of belonging corresponds to the fact that 
belonging to the same organization or network of relationships leads entities to share common 
rules and routines, which facilitates their first interaction (Bogenrieder and Nooteboom, 2004; 
Dyer and Singh, 1998). This common belonging acts as a signal drawing a sharp distinction 
with the others since both parties know that they share common characteristics. Regarding the 
logic of similarity, it allows them to share a common set of material and cognitive resources 
(Bouba-Olga and Grossetti, 2008). All those factors make the interactions easier by saving on 
costs associated to negotiation of common objectives and to the building of a common 
language. In a comparative study of the Silicon Valley and of the French Silicon Sentier, 
Vicente (2002; 2005) points to the combination of both types of logics as a key for the success 
and resilience of a cluster. The Silicon Valley manages to combine both logics: the logic of 
belonging acts as a “brand”, thus signalling some characteristics of firms of the cluster, while 
the logic of similarity triggers network effects by favouring interactions among members. The 
French Silicon Sentier only relied on the logic of belonging. As a result, firms didn’t engage 
in interactions and the cluster did not survive the crash of the Internet Bubble in 2001. 
Globally, both logics sound useful to catalyse collaborative tie building.

Although providing useful insights for the explanation of the dynamics of innovation, this 
first distinction between the logics of belonging and of similarity might be considered as too 
rough and faces difficulties in accounting for the subtleties of their underlying factors. Thus, 
following Boschma (2005), we use another definition of organized proximity (by restricting it 
to the belonging to a common organizational arrangement) and introduce four additional 
forms of proximity. We specify hereafter their respective potential impact on collaboration 
building.

Institutional proximity and tie formation
Institutional proximity has been introduced by Kirat and Lung (1999) and accounts for the 
faculty of entities (firms, research institutions, individuals…) to comply to a common set of 
habits, rules and routines, representations and values (Edquist and Johnson, 1997; 
Carrincazeaux et al., 2008). Institutional proximity plays a key role in facilitating the 
circulation of tacit knowledge (Gertler, 2003). The construction of shared representations and 



values often requires frequent interactions and the embeddedness of actors in local networks 
that are facilitated by geographical closeness (Gertler et al., 2000; Gertler, 2001). This 
explains why institutions are hard to reproduce in distinct geographic locations and also why
institutional proximity is commonly deemed equivalent to geographic proximity, the position 
we also choose to follow in the present paper.

Cultural proximity and tie formation
Cultural proximity is understood as the existence of similarities in the patterns of thought, 
feelings, behaviours and symbols and allows entities to share common routines and 
interpretations of given situations (Wilkof et al., 1995; Knoben and Oerlemans, 2006). The 
existence of cultural similarities contributes to the diffusion of knowledge (Hussler, 2004) by 
facilitating interactions (Lundvall, 1988), to prevent opportunistic behaviours due to the 
existence of common norms and values (Harrison, 1992). Cultural proximity works at 
different levels (Gertler, 1995). At an aggregate level, the existence of cultural similarities is 
critical for actors (mostly multinational ones) to understand the characteristics and needs of a 
target market in order to address it in the best way. At a microlevel, it constitutes an important 
factor affecting the quality and effectiveness of collaborations between partners as well as the 
success of mergers and acquisitions. As our data are restricted to the French case, we do not 
include cultural proximity in our analysis of inter-cluster network formation.

Cognitive proximity and tie formation
Cognitive proximity corresponds to the existence of overlaps in mental categories and in 
cognitive frames (Wuyts et al. 2005). It constitutes a key factor for the diffusion of knowledge 
since cognitively proximate entities are more likely to exploit a given piece of information 
and of knowledge. It follows a positive relationship between cognitive proximity and 
absorptive capacity (Nooteboom, 2000). It contributes to solving coordination issues in 
collaborations since entities enjoy a higher capacity to foresee their partners’ behaviour. From 
an industrial point of view, cognitive proximity has often been proxied by measures of 
technological or sectoral proximity (see Wuyts et al., 2005; Rondé and Hussler, 2005). By 
and large, it corresponds to cognitive proximity except that technological or sectoral 
proximity refers to the extent to which entities can learn from each other while the former 
refers to the extent to which they can efficiently communicate (Knoben and Oerlemans, 
2006).

If cognitive proximity might catalyse mutual learning and should therefore be decisive when 
selecting an innovative partner, excessive cognitive proximity might also be detrimental in 
two respects. First, it might contribute to prevent partners from innovating by keeping them 
from undergoing a process of creative abrasion propitious for knowledge creation (Leonard 
Barton, 1995). Hence, several contributions highlight the positive effect of complementarities 
in cognitive bases for the success of a cluster (Boschma and Iammarino, 2009; Suire and 
Vicente, 2009a). Second, it raises knowledge appropriability issues by increasing risks of 
unplanned and undesired knowledge spillovers. In the specific case of clusters, excessive 
cognitive proximity combined with geographical promiscuity may paradoxically give rise to a 
climate of mistrust since they increase risks of uncontrolled knowledge outflows (Suire and 
Vicente, 2009a). Lastly, cognitively proximate clusters might consider themselves as potential 
direct competitors, which might limit their willingness to collaborate with similar partners 
from the industrial viewpoint.



Social proximity and tie formation
Social proximity corresponds to the capacity of actors to belong to the same relational space. 
It refers to the specific literature and tools designed for social network analysis. Social 
proximity has to be considered as a consequence of other forms of proximity since tying with 
similar partners involves lower costs than with dissimilar ones (McPherson et al., 2001). 
Central to this literature is the concept of embeddedness (Granovetter, 1985) in two respects: 
structural and relational (cf. Powell et al., 1996; Moran, 2005). Structural embeddedness 
corresponds to the capacity of actors to build up a complex network of relationships 
depending not only on the amount of personal ties but also on the relational characteristics of 
their acquaintances (Nahapiet and Ghoshal, 1998). The level of an actor’s structural 
embeddedness is related to measures of centrality (eg. degree) and of connectivity (eg. same 
cohesive subgroup in the network). Relational embeddedness rather accounts for an entity’s 
capacity to build up a network of acquaintances he can trust for providing access to high 
quality, fine grained information and knowledge (Gulati, 1998). This often entails the building 
up of strong ties characterized by high levels of trust between both partners. In this last 
respect, the notion of social proximity overlaps with at least one of the other aforementioned 
forms of proximity: institutional, cultural and cognitive. Even though closely related, they 
entail differentiated impact on the innovation capacity of firms: while structural 
embeddedness has a stronger positive impact in explaining performance for routine tasks, 
relational embeddedness plays a stronger role for performance in innovation-oriented tasks 
(Moran, 2005). But, at the same time, structural and relational over-embeddedness may be 
detrimental to firm performance due to risks of lock-in in suboptimal trajectories (Rowley et 
al., 2000).

Applied to inter-cluster collaboration, those arguments suggest that once it is connected to any 
other cluster, a given cluster becomes part of an inter-cluster network offering the opportunity 
to collaborate with other members of the network. Indeed, according to the Social Capital 
theory, sharing a mutual acquaintance increases the probability of an unconnected couple of 
clusters to form a tie as it favours trust. Conversely, Burt (1992) argues that filling a structural 
hole (ie bridging two unconnected communities) is of greater interest, as it allows an actor to 
access new and more diversified knowledge sources. As French clusters might be competitors 
(several clusters being active in the same industries), one might find a limited effect of 
relational proximity in our specific case of inter-cluster networks, some clusters choosing not 
to share their strategic acquaintances with other (competing) clusters.

Based on those theoretical arguments, the next section specifies the empirical setting adopted 
to assess the respective influence of the different forms of proximity (cognitive, social and 
geographical) on inter-cluster collaborative behaviours.

Empirical setting

Measuring collaborations: the inter-cluster collaborative network
The dependent variable is the existence of links between pairs of clusters within the network 
of cooperation of French clusters. To build this network a link is assigned between any two 
clusters that have developed together a collaborative project labelled and funded by the 
French FUI (“Fonds Unique Interministeriel »). The FUI is a governmental fund dedicated to
financing the most promising R&D collaborative projects  that entail firms and research 
institutions from at least one French clusteri. If collaborative projects might involve actors 
from a single cluster exclusively, it is worth noticing that since 2007, the DIACT -the State 
institution in charge of the management of the Pôles de compétitivité program- provides 
tendering parties with strong incentives for designing inter-cluster collaborative projects, by 



underlining for instance the positive impact of an involvement of several clusters on the 
probability for a given project to become labelled and financed by the FUI. Again, we 
concentrate here on a specific type of network formation, in the sense that developing ties 
through FUI-funded cooperative innovative projects is a government-sponsored behaviour 
and not necessarily a spontaneous decision driven by firms or clusters, which motivates our 
idea to test for their (specific?) determinants.

Data on FUI projects are publicly available on the institutional website presenting the Pôles 
de compétitivité program (www.competitivite.gouv.fr, accessed on March 22, 2010). They 
gather information on nine rounds of invitations to tender covering the April 2006- October 
2009 period. Data consist in the names of the awarded projects and their associated cluster(s). 
Thus, the network consists of nodes representing clusters and of ties accounting for inter-
cluster cooperations on FUI projects. The inter-cluster network includes 68 clustersii involved 
in the 794 collaborative projects awarded by the FUI. Globally, those 794 projects gave rise to 
448 bilateral interactions between clusters, while the number of different ties is 312
(accounting for the fact that some clusters have collaborated more than once with one 
another). The network displays moderately low average distance (3,29), for an average 
clustering coefficient of 0,35. Thus, the small world status of the network, evidenced in many 
cases (Watts, 1999; Cole, 2008; Vicente et al., 2008), does not seem to be valid in the specific 
case of inter-cluster network. This finding is in line with Bathelt et al. (2004) according to 
whom the construction and the maintaining of inter-cluster pipelines are costly and require the 
building up of trusted relationships between partners, which in turn necessitates to be 
selective when forming collaborative ties. The collaboration network (Figure 1) is rather 
sparse: its density, corresponding to the share of activated links over all potential links, is of 
only 6,28%. To put it differently, inter-cluster collaboration may still not be considered as a 
natural and distributed phenomenon among clusters. This limited connectivity might be 
explained by the fact that formal inter-cluster cooperations, as promoted in the frame of the 
FUI financing system, may require a drastic shift in the collaboration culture of numerous 
clusters. Indeed, in an attempt to formalize their dynamics, Amisse and Muller (2010) have 
shown that clusters tend to alternate phases of dominant formal cooperation and periods 
during which informal collaborations preferentially occur. The mastering of this strategic tool 
may require more time for clusters characterized by dominating informal collaborations than 
for clusters more used to formal cooperations, for instance, within European Framework 
programs. However, the small gap between the total number of bilateral interactions and the 
total number of different ties indicates that once involved in collaborations, clusters tend not 
to interact with exclusively one cluster but do seem to diversify their relationships with 
several clusters.



Figure 1: Network of inter-cluster cooperations (thickness of ties is proportional to the number of 

common projects)

Based on this intercluster network, we build two dependent variables:

- Exist-Linkij, scoring 1 if clusters i and j have collaborated at least once on an FUI 
funded project during the period, and scores 0 otherwise.

- Streng-Linkij, accounting for the strength or intensity of the collaborative link between 
clusters i and j. It corresponds to the total number of collaborative projects clusters i
and j have developed together on the period. Looking at Table 1, we find that some 
pairs of clusters have collaborated up to 8 times on FUI funded projects during the 
2006-2009 period, the average number of common projects being however limited as 
suggested by the descriptive statistics of this variable.

Those two variables allow us to investigate the determinants of the likelihood for a tie to be 
formed on the one hand, and to highlight the explanatory factors of the likelihood for a tie to 
be exploited several times (at least more than once) on the other.

Measuring proximities

Geographic distance
The geographic distance (in kilometres) between two clusters is calculated based on the great-
circle distance (ie the shortest distance over the earth surface) between the addresses of those 
clusters headquarters. Concretely, Lati being the latitude and Longi the longitude of the 
headquarters of cluster i, the geographic distance between any two clusters i and j is computed 
as followed:

Geog-Dist(i,j)=6366 * arcos( cos(Lati)*cos(Latj)*cos(Longj - Longi) + sin(Lati) * sin(Latj) )

If we look at the descriptive statistics of the geographic distance index, one can see that 
French clusters are geographically spread over the whole French territory (average distance of 



680 kilometers), even in the French overseas regions (the maximum distance reaches 9724 
kms, since the Qualitropic cluster, focusing on tropical agricultural products, is located in 
Réunion Island, in the Indian Ocean). In order to have comparable scales for all our 
explanatory variables, we use the logarithmic value of the kilometric distance in our 
regressions.

Sectoral (cognitive) proximity

We rely on data provided in the French clusters’ scoreboards and published by the public 
institution in charge of the management of the Pôles de Compétitivité policy for building our 
indicator of sectoral proximity. Indeed, those scoreboards provide information on the main 
industries firms of a given cluster are active in. For each cluster we have access to the 5 
industriesiii involving the highest proportion of the cluster’s workforce. We compute the 
sectoral proximity index between all pairs of clusters by counting the number of industries 
both have in common among their respective 5 major industries. For instance, Advancity and 
Axelera have a sectoral proximity of 2 since they have two main sectors in common: 
“engineering and technical studies” and “water catchment, treatment and supply”, whereas the 
couple Advancity-Aerospace Valley only scores 1 on the sectoral proximity index since those 
clusters only have one sector of main activity in common: “engineering and technical 
studies”. Finally, Sect-Proxi,j ranges from 0 (clusters i and j do not share any common 
industry), to 5 (clusters i and j workforce being involved in 5 out of the the 5 main industries).

Relational (social) proximity

Our measure of relational proximity relies on cohesive groups that we identify within the 
network of inter-cluster collaborations. Cohesive groups gather nodes (ie clusters) into groups 
so that nodes within a group have comparatively more direct and indirect links with one 
another than with nodes that are not members of the cohesive group. Applied to our precise 
case, the density of ties among clusters of a single cohesive group is significantly higher than 
among clusters of different cohesive groups. This does not necessarily mean that all clusters 
of a cohesive group do have relationships with each other. The identification of cohesive 
groups is made by resorting to a method derived from the Newman Girvan procedure 
(Newman and Girvan, 2004). This method allows us not only to iteratively partition the 
network into distinct groups but it also allows us to identify the most relevant cut from a 
structural point of view. More precisely, it consists in the iteration of a two-step process:

- In a first step, the network is partitioned into mutually exclusive cohesive groups. In 
so doing we apply the method of hierarchical clustering developed by social networks 
analysts (Wasserman and Faust, 1994) and grouping together nodes similar from a 
structural standing point. Similarity can be proxied in several, alternative, ways, but 
the most commonly used proxies are based on geodesic distance between nodes 
(Borghatti et al. 2002) or on betweeness (Newman and Girvan, 2004). Here we rely on 
geodesic distance to build our groups, which means that two clusters of the same 
cohesive group are at equivalent social distance to any other French cluster. Finally, 
relational similarity corresponds to the capacity of entities of a given group to have 
equivalent access to any other entity of the network (Wasserman and Faust, 1994).

- In a second step, the quality of the partition is measured through the computation of a 
modularity index comparing the fraction of edges connecting nodes of the same 
cohesive group in the network with the expected fraction of edges in the same 
partition but random connections between nodes.



Applying this partitioning procedure to the network allows us to extract 9 groups of various
sizes, gathering from 1 up to 25 clusters. French clusters are hence organised around 3 
cohesive groups involving most clusters (groups 1 to 3), while the other clusters belong to 
more peripheral cohesive groups (groups 4 to 9). Annex 2 details the results of the 
decomposition of the network, by sorting out clusters according to their cohesive group. As 
shown in Figure 2, some clusters develop only ties with their cohesive group members, 
whereas others do collaborate with clusters from other cohesive groups: all red diamond-
shaped clusters are not exhaustively and exclusively connected to one another. Taking an 
even more concrete illustrative example, Axelera or Véhicule du Futur (cohesive group 1) are 
more densely connected with one another than with clusters which do not belong to cohesive 
group 1. Moreover, if those clusters are interested in collaborating with Aerospace Valley 
(which is not in the first cohesive group), both of them should go through the same path - the 
same number of intermediaries clusters - before reaching Aerospace Valley.

Finally, we consider that two clusters belonging to the same cohesive group do benefit from a 
strong relational proximity (Rel-Proxi,j= 1) whereas clusters in different cohesive groups are 
considered as having low relational proximity (Rel-Proxi,j scoring 0 in that case).

Figure 2: Cohesive-groups within the inter-cluster network (nodes with similar shapes and colours belong 

to the same cohesive group)

Control variables

Degree centrality
We choose to control the effect of the degree of clusters on their relational behaviours. Degree 
centrality corresponds to the number of acquaintances an entity enjoys. In our case, it 
corresponds to the number of different clusters any cluster has collaborated with in the frame 
of FUI labelled projects.

What we expect is that the more numerous the links formed by a given cluster i, the higher its 
probability to form a collaborative tie with another cluster j. In that case, cluster i’s degree 
might proxy i’s collaborative capacity and experience, its ability to share knowledge with its 
environment. On the other hand, we also believe that a cluster i looking for collaborative 



partners is more likely to select a cluster j with numerous existing partners. In that case, a 
cluster j with a high centrality degree might be considered as a cluster having strategic 
knowledge (since everybody wants to collaborate with this specific cluster). Indeed, several 
contributions have highlighted the complementarity between network position and absorptive 
capacity (Powell, 1998; Reagans and McEvily, 2003). Lastly, following the argument 
developed in the social network literature, we also test the assumption according to which 
central nodes of a network (here highly connected clusters) tend to tie among themselves.

Variable Min max average standard 
deviation

Exist-Link 0 1 0,07 0,25

Streng-Link 0 8 0,10 0,46

Geog-Dist 0,2 9724 679,97 1494,18

Sect-Prox 0 4 0,38 0,64

Rel-Prox 0 1 0,22 0,49

Degree 1 14 4,62 3,26

Intern-Struct 1 4 - -

Table 1: Descriptive statistics of the variables

Table 1 shows that the degree of French clusters ranges from 1 to 14 (the most connected 
cluster collaborating thus with approximately 1/5 of the total population of French clusters), 
with an average of less than 5 different ties.

The internal structure of clusters

We also choose to control the effect of the structural configuration of clusters on their 
relational behaviours. Indeed, we assume that the nature, number and dynamism of actors 
belonging to a given cluster may explain the more or less open nature of the cluster itself. To 
account for the internal structures of clusters, we also use data from the French cluster 
scoreboards. More precisely, we select, out of those scoreboards, 14 variables describing the 
clusters in terms of actors involved (SMEs, establishments of foreign firms, independent 
firms…), industry at stake, qualification level of the cluster’s workforce, size of the cluster 
(number of employees and of firms), and concentration degree of the cluster (in geographic 
and sectoral terms). We run a factor analysis on those variables in order to build a typology of 
the French clusters according to their internal structures. This factor analysis allows us to 
identify four categories of clusters depending on their respective size, corporate set-up and 
geographic anchoring Aannex 1 provides detailed classification of clusters). Finally, the 
Intern-Struct variable is a dummy scoring 1, 2, 3 or 4 depending on the category each cluster 
belongs to. 

Modelling
To investigate the determinants of French inter-cluster network tie formation, we first 
estimate the likelihood for a couple of clusters to bind as a function of proximities between 
those clusters and as a function of their respective internal structures and collaborative 
dynamisms. Concretely, we use the following model (model 1):

Pr(Exist-Linki,j)=f(Geog-Distij, Sect-Proxij, Rel-Proxij, Degreei, Degreej, Intern-Structi, j)



Where Pr(Exist-Linkij) is the probability for cluster i and cluster j to collaborate with one 
another, Geog-Dist is the geographic distance, Secto-Prox the sectoral proximity, Rel-Prox, 
the relational proximity, Degree the degree of each cluster, and Intern-Struct, a dichotomous 
variable representing the structural configuration of each cluster. More precisely, we 
introduce four dummy variables representing each type of structural configuration.

Our sample of analysis is constituted of 2278 observations corresponding to 2278 pairs of 
clusters. We consider a non-directed network, as we do not have any information on the 
history of collaborations (which cluster is at the root of the collaboration and the lead partner). 
Thus Exist-Linkij= Exist-Linkj i, and the number of pairs= 68*67/2=2278.

As our variable Exist-Linkij only scores 1 if a link exists or 0 if it does not, we choose to use a 
logit regression to estimate this first model.

The estimation procedure is the following. In a first econometric step, we estimate a Logit 
model in which we introduce our explanatory variables step by step. The results (see Annex 
3) show that all proximity variables significantly contribute to explain inter-cluster linkage 
formation. On the contrary and surprisingly, the internal structure of clusters does not impact 
the likelihood of link formation. Indeed, whatever the structure we consider (types 1, 2, 3 or 
4), the likelihood ratio test does not prove significant, suggesting that the four organisational 
forms of clusters we built do not play any significant role in inter-cluster network building. 
This result sounds even more interesting as our empirically-based typology of internal 
structures clearly opposes local clusters - of limited size and being geographically 
concentrated- of type 4, to major clusters (type 1) or open ones (type 2). Indeed, one could 
have expected that either type 4 –because of their limited size and therefore limited 
knowledge bases- or type 1 and 2 – because of their internal openness and larger size 
increasing the variety of their knowledge bases- would have adopted specific, more or less 
dynamic, relational behaviours. On the contrary, our findings suggest that the way clusters 
develop relationships with other clusters is not univocally influenced by the way intracluster 
linkages are built, size and similarity among clusters’ members explaining only the latter 
relations.

Since the internal structure of clusters is not decisive, the second step of our econometric 
study consists in investigating whether sharing similar internal characteristics might trigger 
inter-cluster connections. Thus we build a new dummy variable, Orga-Dist, scoring 0 when 
two clusters have the same internal structure, and 1 otherwise. The likelihood ratio test 
validates the introduction of this new similarity variable in the analysis of the likelihood for a 
pair of clusters to get connected. Concretely, we estimate a new version of model 1:

Pr(Exist-Linki,j)=f(Geog-Distij, Org-Distij, Sect-Proxij, Rel-Proxij, Degreei, Degreej,)

In a second step, we try and identify the determinants of the intensity of collaboration 
between each pair of clusters, depending on the same variables according to the following 
(second) model:

Streng-Linkij= f(Geog-Distij, Org-Distij, Sect-Proxij, Rel-Proxij, Degreei, Degreej)



This second model is estimated using several econometric specifications (negative binomial, 
truncated Tobit, OLS).

The next section provides details on the results.

Results
MODEL 1 MODEL 2

Dependent 

variable
Exist-linkij Streng-Linkij

Estimation 

method
Logit OLS Truncated Tobit Neg bin

Geog-Distij

-0,464***

(0,071)

-0,059***

(0,019)

-0,424***

(0,086)

-0,298***

(0,063)

Sect-Proxij

0,746***

(0,113)

0,158***

(0,02)

0,813***

(0,137)

0,617***

(0,094)

Org-Distij

-0,372*

(0,201)

-0,013

(0,019)

-0,473**

(0,226)

-0,337*

(0,179)

Rel-Proxij

2,089***

(0,203)

0,186***

(0,02)

2,265***

(0,226)

1,728***

(0,177)

Degreei

0,196***

(0,031)

0,121***

(0,02)

0,227***

(0,037)

0,181***

(0,026)

Degreej

0,173***

(0,025)

0,147***

(0,02)

0,208***

(0,031)

0,179***

(0,022)

Constant
-3,161***

(0,462)

-4,461***

(0,634)

-3,74***

(0,431)

Nb of 

observation
2211 2211 2211 2211

Adj R2

Pseudo R2

LR chi2 350,99***

0,13 0,23

345,44***

0,24

326,84***

Table 2: results of regressions - * 10% significance level, ** 5% significance level, *** 1% significance 
level

The results of the Logit estimation of model 1 show that all the explanatory variables matter 
at the 1% level, except the Orga-Dist. To put it differently, the probability for a pair of 
clusters to knit a tie positively depends on their relational, sectoral and geographical 
proximities. On the contrary, organisational similarity, accounting for the similarity logics 
among clusters (in terms of size, qualification level of their workforce, geographical and 
sectoral concentration of their members) does not explain inter-cluster tie formation.

Looking at the control variables ie. the degree centrality of clusters, we find that it positively 
and significantly influences the probability for a tie to emerge. The more numerous the 
acquaintances of a given cluster, the higher the probability for this cluster to be connected to 
any other cluster. Thus, building a first tie by launching a collaborative project with at least 
one other cluster is positively correlated with developing other collaborative projects (with the 
same cluster(s) or other(s)), indicating the development of a collaborative ability. Hence, 



relational skills and abilities in sharing knowledge with a cluster do not seem to be cluster 
specific: as soon as a cluster has a minimal collaborative experience, it can expand its 
portfolio of inter-cluster collaborations without too many efforts. 

Regarding the factors underlying the intensity and redundancy of inter-cluster linkages (model 
2), they remain the same whatever the econometric model selected (Negative Binomial, 
truncated Tobit and OLS). More precisely we find quite similar results to the ones obtained 
for the Logit model (model 1). Indeed, the redundancy of a collaborative link between a pair 
of clusters positively depends on the relational and sectoral proximities of the two clusters and 
on their degrees. The geographic distance between the clusters at stake also plays a negative 
role. This last result might be explained by the fact that French “pôles de compétitivité” are 
not used to collaborating with one another. They need to spend plenty of time to build a 
common knowledge basis, to delineate common research goals and to establish coordination 
rules. Geographical proximity may precisely facilitate this coordination step, and also limit 
the risk of free riding behaviours (which is rather high in first collaborations). 

Finally, the determinants of inter-cluster collaborations seem to echo those explaining 
intracluster partnerships (see Suire and Vicente, 2009a): clusters appear to favour 
complementarities in the knowledge bases. But such a behaviour might hamper 
innovativeness due to possibly large overlaps in the bases (Nooteboom, 2000). Lastly the 
impact of organisational similarity is not straightforward: indeed, this variable does not prove 
significant when we use negative binomial and OLS regressions, but becomes determinant in 
the truncated Tobit.

Going one step further and scanning the respective power of the explanatory variables, what is 
worth pointing out is that relational proximity is the key factor in explaining the intensity of 
inter-cluster relationships. Indeed if we concentrate on the OLS results for instance, one can 
see that the estimation coefficient associated to the relational proximity (0,2) is far more 
important than the one associated to sectoral proximity (0,11) geographical distance (0,00013) 
or even clusters’ degrees. This finding suggests that belonging to the same cohesive group, ie 
adopting similar relational behaviours strongly influences the likelihood for a given pair of 
clusters to get connected and to develop repeated connections

It is the not the cluster’s effective relational ability (measured by this cluster’s degree) which 
matters more, but the relational similarity it develops with other clusters within the network. 
In other words, if the degree increases the likelihood to collaborate with any other cluster, the 
final partner with whom the collaboration is undertaken is not randomly selected. The one 
privileged, is the cluster with similar relational competences (being involved in similar 
technologies or located in the geographical vicinity are less important). Hence, sponsored 
relationships do not lead to the development of go-between behaviours (ie collaborations 
mixing socially distant clusters), but rather favour intra-cohesive group partnerships. This 
suggests that sponsored relationships are governed by a specific pattern. It seems to be that 
clusters use their networks of relations to test collaborative opportunities: they first select their 
potential partners among their relational neighbours and then think about the type of 
collaboration that may be undertaken with them in order to benefit from FUI funds. In this 
context, the major motive to select a given cluster to collaborate with, seem to be the ease to 
collaborate with this cluster rather than the intrinsic technological competences or 
knowledge/or access to market this cluster might bring into the collaborative project. This 
finding is in line with Granovetter’s (1985) perception of social capital (see also Rowley et 
al., 2000; Inkpen and Tsang, 2005; Moran, 2005) according to whom individuals tend to bind 
relationships with relationally close individuals.



What is also worth stressing is that the determinants of tie formation remain the same whether 
we try and explain the existence of any given tie between two clusters or the repetition of this 
tie. There seems to be no specific logic in tie repetition as compared to the logic of first tie 
formation: clusters do not become more or differently selective once they have to choose, 
among their collaborative partners, the clusters with which to collaborate again. The major 
determinant is still the relational proximity between clusters.

Finally, what seems to lead a given cluster to select another cluster to collaborate with, are not 
the intrinsic knowledge and competences this second cluster holds, but rather the potential 
access to other pools of competences this second cluster allows. 

Conclusion
In this paper we aimed at understanding the determinants of tie building among French 
clusters. We investigated the relative impact of different types of proximity (geographic, 
social, organizational and sectoral) on inter-cluster tie formation and tie repetition, running 
our empirically study on sponsored formal collaborations measured at the cluster level. 

We found that relational skills and abilities in sharing knowledge with a cluster do not seem 
to be cluster specific: as soon as a cluster has a minimal collaborative experience, it can 
expand its portfolio of inter-cluster collaborations without too many efforts. Moreover, our 
results show that the existence and the intensity of a collaborative link between a pair of 
clusters positively depends on the relational proximity and sectoral proximity of the two 
clusters and on their centrality degrees. It is also negatively influenced by the geographical 
distance between the clusters at stake. Thus the determinants of inter-cluster collaborations 
seem to echo those explaining intracluster partnerships. 

Going one step further and scanning the respective power of the explanatory variables, we 
concluded that relational proximity is the key factor in explaining the intensity of inter-cluster 
relationships: what seems to lead a given cluster to select another cluster to collaborate with, 
is not the intrinsic knowledge and competences this second cluster holds, but rather the 
potential access to other pools of competences (ie other clusters) this second cluster allows.

Before providing a definite picture of the French pattern of inter-cluster collaborations much 
remains to be done. First, we have to bear in mind that the present paper does not assess all 
the relations developed by clusters. For instance, informal and international relationships are 
not covered by our relational indicator. However, cooperation might be effective out of the 
"pôles de compétitivité" system: with non-cluster-member firms, with foreign clusters, etc.
Second, our study does not include any dynamics, as we do not analyse inter-cluster 
collaborations through time but only consider the picture at one given point in time. Scanning 
data on additional FUI invitations to tender would pave the way for a more evolutionary 
perspective of the question.  
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Annexes

Annex 1

Type Main characteristics Cluster names

1
Clusters involving a large number of 

members of worldwide origins

Aerospace valley, System@tic

2

Clusters of medium size involving a large 
proportion of SMEs, a highly qualified 

manpower which is rather locally implanted

Astech, Axelera, Cancer bio-santé, Cap digital, 
Capénergies,  Finance innovation, Images et 

réseaux, I-trans, Industries du commerce, 
Medicen, Mer bretagne, Minalogic, Mobilité, 
Mov'eo, Solutions communicantes sécurisées, 

Transactions électroniques sécurisées

3

Clusters of various sizes which are open to 
foreign firms and have a geographically 

spread manpower

Arve industries, Cosmetic valley, Elastopole, 
Emc2, Européen d'innovation  fruits et légumes, 
Fibres grand est, Innoviande, Materalia, Up-tex, 

Valorial, Véhicule du futur, Viameca

4
Clusters with a reduced size and a limited 

international dimension

Advancity, Agrimip innovation, Alsace biovalley, 
Aquimer, Atlantic biotherapies, Céramique, 

Céréales vallée, Derbi, Elopsys, Eurobiomed, 
Filière équine, Génie civil Ecoconstruction, 

Idforcar, Imaginove, Industries et agroressources, 
Lyon biopole, Lyon truck, MAUD, Mer PACA, 

Microtechniques, Novalog, Nucléaire bourgogne, 
Nutrition santé, Optitec, Parfums, Arômes, Pegase, 

Plastipolis, Prod'innov, Qualimed, Qualitropic, 
Risques, Route des lasers, S2E2, Sporaltec, 
Techtera, Tennerdis, Trimatec, Vegepolys, 

Vitagora, Xylofutur

Annex 1: Typology of clusters’ structural configurations.



Annex 2

Group n° Name of clusters Size

1

Advancity, Axelera, Capdigital, Cerealesvallee, Derbi, Elastopole, 
iDforCAR, I-Trans, Lyonbiopôle, Lyon Urban Truck & Bus , Mobilité et 
Transports Avancés, Mov’eo, Plastipolis, Techtera, Tenerrdis, Trimatec, 

Up-Tex, Véhicule du futur

18

2 EMC2, Génie civil Ecoconstruction, Mer Bretagne, Mer PACA 4

3

Aerospace Valley, Alsace Biovalley, Arve Industries, ASTech, 
Atlanpole Biotherapies, Cancer-Bio-Santé, Capenergies, Elopsys, 

Eurobiomed, Images & Réseaux, Imaginove, Materalia, Medicen Paris 
Region, Microtechniques, Minalogic, Nucléaire Bourgogne, Optitec, 

Pegase, Pôle Européen de la Céramique, Route des lasers, S2E2, 
Solutions Communicantes Sécurisées, System@tic Paris Région, 

Transactions Electroniques Sécurisées, Viaméca

25

4

Agrimip Innovation, Fibres Grand’Est, InnoViandes, Nutrition Santé 
Longévité, Pôle Européen d’Innovation Fruits et Légumes, Prod’Innov, 

Q@LI-MEDiterranée, Vitagora, Xylofutur
9

5 Aquimer, Industries du Commerce, MAUD, Nov@log 4

6 Finance Innovation 1

7 Cosmetic Valley, Industries et Agro-Ressources, PASS 3

8 Enfant, Valorial, Végépolys 3

9 Qualitropic, Risques 2

Annex 2: Cohesive groups of clusters

Annex 3

MODEL 1.0 MODEL 1.1 MODEL 1.2 MODEL 1.3 MODEL 1.4

Dependant 

variable
Exist-linkij Exist-linkij Exist-linkij Exist-linkij Exist-linkij

Estimation 

method
Logit Logit Logit Logit Logit

geog-distij

-0,464***

(0,07)

-0,468***

(0,071)

-0,466***

(0,071)

-0,47***

(0,071)

-0,47***

(0,071)

secto-proxij

0,746***

(0,114)

0,76***

(0,114)

0,762***

(0,113)

0,766***

(0,114)

0,765***

(0,114)

rel-proxij

2,089***

(0,203)

2,075***

(0,203)

2,083***

(0,203)

2,079***

(0,203)

2,076***

(0,203)

degreei

0,196***

(0,031)

0,187***

(0,031)

0,195***

(0,032)

0,188***

(0,031)

0,181***

(0,031)

degreej

0,173***

(0,025)

0,168***

(0,026)

0,174***

(0,026)

0,17***

(0,025)

0,162***

(0,026)



Type 1 /
0,064

(0,31)
/

/ /

Type 2 / /
-0,154

(0,209)
/ /

Type 3 / / /
0,063

(0,226)
/

Type 4 / / / /
-0,286

(0,223)

Cste.
-3,161

(0,461)

-3,289***

(0,461)

-3,3***

(0,459)

-3,318***

(0,464)

-2,99***

(0,512)

Nb of 

observation
2211 2211 2211 2211 2211

LR chi2 350,99*** 351,08*** 351,53*** 351,06*** 352,59***

-2 Log 761, 52 761, 37 760, 87 761, 34 759, 81

Annex 3: Results of regressions including the structural configurations of clusters - * 10% significance 
level, ** 5% significance level, *** 1% significance level

The likelihood ratio tests are never significant, suggesting that the introduction of variables 
describing the structural configuration of clusters (Type 1, 2, 3 and 4) does not improve the 
model’s explanatory power. 

                                                  
i Different financing sources of collaborative projects may be enumerated: Fonds Unique 
Interministeriel; OSEO, a network of regional innovation agencies; Regional and 
Departmental councils. A hierarchy of financing sources according to the economic 
significance and the scale of project has formed: the most significant projects are more likely
to be financed by the Fonds Unique Interministeriel, while smaller projects are financed by 
OSEO and Regional councils (Amisse and Muller, 2010). If rather targeted at large and 
significant projects, FUI funds however constitute the most important source of financing for 
all the French clusters (Amisse et al. 2010), which supports our idea to use them to build the 
intercluster collaborative network. 
ii Two clusters, Filière Equine and Sporaltec, are excluded from the network since they did not
collaborate with any other cluster on a FUI project; a third cluster (pôle Enfant) is withdrawn 
from our analysis since the cluster does not exhaustively fill its annual scoreboard, which 
impedes us to build its proximity indexes.
iii We have the 5 digit industrial class of those 5 industries.


