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Abstract— Classical spatial autoregressive models share the 
same weakness as the classical linear regression models, namely 
it is not possible to estimate non-linear relationships between 
the dependent and independent variables. In the case of 
classical linear regression a semi-parametric approach can be 
used to address this issue. Therefore an advanced semi-
parametric modelling approach for spatial autoregressive 
models is introduced. Advanced semi-parametric modelling 
requires determining the best configuration of independent 
variable vectors, number of spline-knots and their positions. To 
solve this combinatorial optimization problem an asynchronous 
multi-agent system based on genetic-algorithms is utilized. 
Three teams of agents work each on a subset of the problem 
and cooperate through sharing their most optimal solutions. 
Through this system more complex relationships between the 
dependent and independent variables can be derived. These 
could be better suited for the possibly non-linear real-world 
problems faced by applied spatial econometricians. 

 

I. INTRODUCTION 
PATIAL autoregressive (SAR) models are widely used 
for empirical problems, caused by spatial 

autocorrelation. The key element of these techniques is to 
incorporate a spatial lag into the regression model. Both the 
classical regression and the SAR model assume that the 
impact of the independent variables on the depended 
variable can be modelled in a linear fashion. This might not 
be true for real world data generating processes, which 
easily could be non-linear in fashion. Consider for example 
the housing market: Houses next to each other have 
autocorrelated prices, since they can be seen as substitutes. 
In a linear housing price model one would assume that, 
leaving aside other influences, the marginal ceteris paribus 
effect of an increase in the net dwelling area on one house 
price is constant. If for example fixed costs are associated 
with housing transactions and considered to be significant 
for housing prices, a linear model is no longer valid. 

Since non-linearity is assumed to be a factor in real-world 
data generating processes, semi-parametric models were 
introduced into the linear regression framework to address 
this issue. These semi-parametric regression models are able 
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to cope with most kind of nonlinearity (see for example [2]). 
Therefore the aim of this paper is to extend the SAR models 
with semi-parametric modelling techniques. This results in 
an optimization problem, which, as is argued through the 
paper, might be suitable to be handled by a team of 
asynchronous agents, using genetic algorithms. 

The suggested semi-parametric spatial autoregressive 
(SPSAR) estimation-method is based on so called truncated-
splines [3] and Akaike Information Criteria (AIC) 
minimization. The truncated spline and the spatial 
autoregressive estimators will be calculated via a maximum 
likelihood (ML). In order to model complex nonlinear 
relationships between the dependent and independent 
variables a suitable combinations of the independent 
variables is chosen and then uses as an argument for the 
truncated splines. The truncated spline has an optimal 
selection and an optimized position of knots. Therefore, a 
combinatorial optimization algorithm is needed. 

The SPSAR optimization problem consists of two inter-
linked combinatorial tasks: finding the optimal selection and 
the optimized knots for these splines. If only the first part of 
this problem is considered in isolation, one would use the 
Markov-Monte Carlo chain (MCMC) method, like in model 
selection. Due to the nature of the optimization problem the 
MCMC approach cannot be used, since it relies on model 
similarity, which is not present due to the fact that the 
optimization problem is inter-linked. However an MCMC 
approach can be viewed as a very basic genetic algorithm. 
Hence it seems straightforward to use asynchronous agents 
with genetic algorithms, which can not only handle the non-
similarity of the models but also the inter-linked nature of 
the optimization problem. 

The first section details the nonlinear spatial 
autoregressive models, the SPSAR estimation method and 
the nature of the optimization problem. In the second section 
the paper introduces asynchronous multi-agent systems and 
discusses their characteristics. The third section outlines the 
asynchronous agent architecture, while the fourth section 
examines the precursory results of the SPSAR optimization 
approach. 

II. NON-LINEAR AND SEMI-PARAMETRIC SPATIAL 
AUTOREGRESSIVE MODELS 

This section introduces nonlinear spatial econometric 
models and then suggests semi-parametric modelling to 
account for the nonlinearity. Since this paper focuses 
primarily on the asynchronous multi Agent systems, this 
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section should only be seen as a sketch for the actual 
SPSAR-econometric problem. 
Consider the following nonlinear spatial autoregressive 
model (1): 
 

𝐘𝑛 = 𝜌𝐖𝑛𝐘𝑛 + 𝑓�𝐗1,𝑛 , … ,𝐗𝑘,𝑛� + 𝛆𝑛 
where 𝛆𝑛~𝑖.𝑁(0, 𝑰𝑛𝜎2) (1) 

 
In (1) 𝐘𝑛 is a n by 1 vector containing the dependent 
variable. 𝐗𝑛 is a n by k matrix of observations on k 
independent variables, 𝐖𝑛 is a n by n spatial weighting 
matrix of known constants, ρ is the spatial autoregressive 
parameter and  𝛆𝑛 is an independently normal distributed 
random vector with zero mean and 𝜎2 variance. 
𝑓�𝐗1,𝑛 , … ,𝐗𝑘,𝑛� is a nonlinear continuous function with 
continuous derivatives form ℝ𝑛×𝑘 → ℝ𝑛×1. Additionally it 
is assumed that 𝐗𝑛 only contains metric variables. For 
notational simplicity the constant term of the spatial 
regression model is ignored in this section. 
Assume that 𝐖𝑛 is either row or maximum row standardized 
and that the true parameter of 𝜌 is smaller one in absolute 
value. Therefore, (1) can be solved for 𝐘𝑛 and this results in 
(2) 
 

𝐘𝑛 = (𝐈𝑛 − 𝜌𝐖𝑛)−1𝑓�𝐗1,𝑛, … ,𝐗𝑘,𝑛�
+ (𝐈𝑛 − 𝜌𝐖𝑛)−1𝛆𝑛 (2) 

 
Since the specific form 𝑓�𝐗1,𝑛, … ,𝐗𝑘,𝑛� is not known a 
finite truncated Taylorseries is used. Since this series is not 
practicable, a series of truncated splines  
𝑔𝑖
𝑘𝚤���(𝐗�𝑖 , 𝛾) of optimized length m, where 𝑘𝚤�  is the set 

containing the optimized knots for the truncated spline and 
𝐗�𝑖 ∈ �𝐗j,nl ⨀𝐗o,n

h |(j, o) ∈  Τk × Τk, (l, h)j≠o ∈  Τ3 × Τ3� ∪
�𝐗j,n1 , … ,𝐗j,n3 |j ∈  Τk� where  Τx = {1,2, … , x} is used. Hence 
𝑓�𝐗1,𝑛 , … ,𝐗𝑘,𝑛� will be approximated by ∑ 𝑔𝑖

𝑘𝚤���(𝐗�𝑖 , 𝛾)𝑚
𝑖=1 . 

Since 𝑔𝑖
𝑘𝚤���(𝐗�𝑖 , 𝛾) represents a truncated spline, 

∑ 𝑔𝑖
𝑘𝚤���(𝐗�𝑖 , 𝛾)𝑚

𝑖=1  must have a linear representation: 
∑ 𝑔𝑖

𝑘𝚤���(𝐗�𝑖 , 𝛾)𝑚
𝑖=1 = 𝐙n�̅� for given vectors 𝐗�𝑖, the set  𝑘𝚤�  and 

the length m.  If this approximation of 𝑓�𝐗1,𝑛, … ,𝐗𝑘,𝑛� is 
used (2) can be rewritten to (3) 
 

𝐘𝑛 ≈ 𝜌𝐖𝑛𝐘𝑛 + 𝐙n�̅� + 𝛆𝑛 (3) 
 
Estimators for 𝜌, �̅� and 𝜎2 (estimators are denoted with ^) in 
(3) can be found via ML. ML leads to the following 
maximization problem (4) (Le Sage and Pace, 2009): 
 

�
𝜌�
𝛾�
𝜎�2
� = 𝐦𝐚𝐱

𝜌,𝛾�,𝜎2
�

1

(2π)
n
2 det(𝐒(𝜌)−1𝜎)

�  

�exp �−
1

2σ2
(𝐒(𝜌)𝐘𝑛 − 𝐙n�̅�)′(𝐒(𝜌)𝐘𝑛 − 𝐙n�̅�)�� 

(4) 

 
where 𝐒(𝜌) = (𝐈𝑛 − 𝜌𝐖𝑛). With the estimators 𝜌�, 𝛾� and 

𝜎�2 the AIC can be calculated. 𝐙n𝛾� is considered a good 

estimator for 𝑓�𝐗1,𝑛 , … ,𝐗𝑘,𝑛� if a minimal AIC is found. 
Since most of the econometric issues like ML are already 
sufficiently solved, section four discusses the optimization 
procedure for finding optimal 𝐗�𝑖 and number and position of 
the truncated spline knots.  
 

III. ASYNCHRONOUS MULTI-AGENT SYTEMS 
This section provides a brief introduction to agents, multi-

agent systems (MAS) and a more specific overview of 
asynchronous MAS for solving large combinatorial 
optimization problems.  

The definition of agents is laid down by [7], namely an 
agent is defined by possessing one or more of the four 
characteristics: 

• Autonomy is the agent’s ability to work without human 
interaction and have a control of their own state and actions. 

• Social ability is the ability to communicate with other 
agents. 

• Reactivity denotes the ability to respond to actions and 
to perceive the environment. 

• Pro-Activeness is the agent’s ability to work towards a 
goal and take initiative in actions. 

A multi-agent system is a collection of loosely coupled 
agents, who cooperate to solve a problem [5]. In MAS each 
agent has only limited information and problem solving 
capacity, so that the posed problem can only be solved 
through cooperation. Furthermore there is no central entity 
that manages the system, instead data and problem-solving 
are decentralized and managed by individual agents. 

Asynchronous problem-solving teams (ATeams), have 
been proposed by [6]. They are a form of MAS, where the 
system-wide current best solutions of a problem are stored in 
a central memory. Problem-solving agents try to generate 
more optimal solutions, each agent with another problem-
solving algorithm, while destroyer agents are deleting sub-
optimal solutions from the central memory. The architecture 
of such an ATeam is asynchronous, agents act in an 
autonomous way and they exchange information through the 
shared memory.  

 

 
Fig. 1. Architecture of an ATeam 

Fig 1 illustrates this principle, where agents A1 through A6 
are working to solve the problem using algorithms a1 
through a6. They add their most optimal solutions to the 
solution population in the memory M. Other agents review 



 
 

 

these solutions periodically and try to come up with more 
optimal solutions. The destroyer agent D is checking the 
population of solutions and deletes any inferior solution 
which is below a threshold t.  

For more complicated problems, multiple ATeams can be 
employed, with each team of agents working on a subset of a 
problem. Communication between the teams depends on the 
organization of the problem and by what degree the subsets 
of the problem depend on each other. Fig. 2 shows two agent 
teams, the first team is A1 through A3 and the second team 
A4 through A6, cooperating in this way. The second team of 
agents builds on the population of the first and an 
coordinator agent C provides subproblems for the second 
team from the solutions of the first team. 

 

 
Fig. 2. Multiple ATeams cooperating on subsets of a problem 

In some sense ATeams are similar to blackboard systems, 
where problem-solvers cooperate by posting the results of 
their calculations on a blackboard. In ATeams though the 
agents operate independently and unlike in blackboard 
systems, there is no central instance of control and agents 
work independently from each other (Aydin et al., 2004). 

It is possible to combine ATeams with evolutionary 
methods, such as genetic algorithms. This can be done either 
with each agent as an instance of an algorithm or each agent 
performing the individual steps of the algorithm. In such a 
case one agent would implement the population selection, 
while others implement crossovers and genetic mutations. It 
is easy to implement hybrid methods, with different 
evolutionary algorithms, in an ATeam, since agents can be 
easily added or substracted from the system; this offers a 
flexible way of solving complex optimization problems 
through addition of different selection and crossover 
methods [1]. 

Talukdar et al. [6] used the well-known shortest path 
problem as a benchmark for ATeams. By applying this 
methodology to the problem they demonstrated that the 
solutions provided by ATeams offer more reachability and 
can solve the problem in a more efficient manner, than more 
conventional methods. Other applications of similarly 
structured asynchronous MAS can be found in the supply-
chain literature [4,1] where they are still popular. We are not 

aware of any other applications of ATeams in the field 
applied spatial econometrics. 

IV. SOLUTION METHODOLOGY 
To optimize the problem of semi-parametric spatial 

autoregressive models, which we introduced in the previous 
section, we propose two types of asynchronous agents, each 
working on a subset of the optimization problem. The first 
type of agent attempts to optimize the selection of splines, 
while the second type of agent tries to find the optimal 
variable vectors for the selected number of splines and 
positions. Based on the AIC of these results, each team of 
agents attempts to improve upon the solution. Each cyle the 
worst performing splines are deleted from the population. 

 

 
Fig. 3. Architecture of the system 

The system starts with a pool of randomly selected 
population samples, with uniform distribution. For an 
overview of the system architecture, see Fig. 3. Each spline 
in the problem has an own population set. One or multiple 
agents are associated with each spline population. These 
agents attempt to improve the population by the following 
algorithm: 

1. Set t=0 
2. Initialize spline-knot population V 
3. Evaluate V using random Taylorseries-selections 
4. While (best AIC improvement<gAIC) 
4.1 Selection 
4.1.1  Select V1 random spline-knots from V (t) for 

tournament 
4.1.2  Select T1 random Taylorseries-selection from T 
4.1.3  Evaluate AIC of V1 using Taylorseries-selections T1 
4.2 Select best spline-knots,V2, and worst spline-knots, 

V3, from V1 for recombination 
4.3 Recombine spline-knots in V2, thus form V4 
4.4 Mutate V4, forming V5 
4.5 Modify Population  
4.5.1  Set V(t+1)=V 
4.5.2  Insert V5 into V(t+1) 
4.5.2  Remove V3 from V(t+1) 
4.6 Set t=t+1 

The Taylorseries selection agent uses the best AICs from 
each population and attempts to optimite each cycle. 
 The concept of ATeams is implemented by employing 
different types of spline-knot construction/destruction 



 
 

 

agents. There are three types of such agents in the system; 
each of them uses different crossover methods: 

• The first type of agent (g1) uses single-point crossover 
for creating new solutions, 

• the second agent type (g2) employs two-point crossover 
and 

• the third type of agents (g3) uses a random crossover 
method, whereby a binary random vector - corresponding to 
the length of the first parent - is created. Where the vector 
has a value of 1, the matching value of the first parent is 
chosen, else the equivalent value of the second parent is 
selected for the offspring. 

V. RESULTS 
So far the following process has been considered, as a test-
case for the SPSSR method:  

1 2

1
.4 sin  

10

n

i ij j i
j

x xy w y ε
=

 ≈ + + 
 

∑  (5) 

where x1 and x2 are uniformly distributed between 0 and 1, 
n=100, 𝐖𝑛 represents a spatial one forward one behind 
pattern and a noise level σ of 0.05. If (5) is simulated figure 
(Fig. 4) can be seen as representative and shows the 
difference between a SAR and SPSAR in-sample forecast. 
 

 
Fig. 4. SAR and SPSAR model forecasts 

 The SPSAR model gives a far better visual fit of the data 
than the SAR model. The AIC values of the best performing 
agent after 50 cycles are illustrated in Fig. 4. The trend in 
this figure clearly shows a fast convergence at the beginning 
cycles and then a gradual improvement of the AIC scores.  

 
Fig. 5. AIC improvement of the best performing agent after 50 cycles 

The same trend can be observed, when looking at the overall 
performance of thirty agents in the system (Fig. 6).  
 

 
Fig. 6. Overall AIC improvement of thirty agents 

  

VI. CONCLUSIONS 
This paper derives an optimization for semi-parametric 
spatial autoregressive models, through asynchronous multi-
agent teams. The agent teams employ genetic algorithms and 
cooperate to find the optimal solution for this large 
combinatorial optimization problem.  

This agent-based model offers an elegant method for 
applied spatial econometrics. Through combined agent 
teams the problem can be subdivided and solved on separate 
levels. In addition it is also possible to try other then 
evolutionary methods for the agents, even combining hybrid 
approaches. Due to the characteristics of ATeams such an 
extension can be implemented to utilise the proposed 
methodology for other spatial econometric problems.  
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