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Abstract

In this paper we present a spatial nonparametric analysis of local multipliers. Following
Moretti (2010), we estimate the effect of an exogenous shock to the employment of the
tradable sector on the employment in either the nontradable sector or the rest of the trad-
able sector using a nonparametric procedure that allows for spatial effects. In addition,
due to its nonparametric nature, the adopted procedure is robust not only to possibly
nonlinear functional forms but also to endogeneity in the regressors. Our analysis shows
that the inclusion of spatial effects reveals the presence of a nonlinear relationship between
tradable and nontradable.
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1 Introduction

State and local governments employ large amounts of public funds in economic develop-

ment policies aimed at attracting and fostering new economic activities or at retaining

existing ones. The outcomes of these efforts could be new or more stable jobs, higher

income and wealth and an improved tax base. Indeed, it appears that job creation has
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actually represented the primary goal sought after by policy makers (Eberts, 2005) possi-

bly because this may also lead to fiscal benefits in the form of an increase of tax revenue

net of public expenditure. In fact, due to multiplier effects, the total increase in local

jobs can be greater than the increase in jobs in assisted businesses when these businesses

produce tradable goods. For this reason, most of local development interventions are

actually targeted to the tradable sector.

In the US, a precise account of the total amount of resources involved in these activities

is almost an impossible task given the large number of agencies involved and the even

larger number of policies being implemented. However, a survey of state-funded programs

conducted in 1998 (Poole et al., 1999), calculated that the states allocated approximately

$4.6 billion in tax incentive programs and $6.3 billion in non-tax incentives. This figure

excludes tax and other financial incentives, as well as job training and infrastructure

incentives provided by local (substate) governments; it also excludes local development

efforts carried out under the leadership of non-governmental organizations. Eberts (2005)

reports an overall estimate of $30 billion a year devoted to local development initiatives

through direct and indirect funds which implies more than $2,000 per targeted job.

In a very recent paper, Moretti (2010a) proposes a simple methodology to assess the

effectiveness of local development interventions in creating new jobs. The theoretical

framework that underlies the empirical analysis builds on the traditional general equi-

librium setting by Rosen (1979) and Roback (1982). The main difference is that here

local shocks to local labor markets are not necessarily fully capitalized in the price of

land as the local supply of labor is not necessarily infinitely elastic and the local housing

supply in not necessarily perfectly inelastic (see also Moretti, 2010b). Inside a city, a

positive shock to the labor demand of an industry within the tradable sector, possibly

induced by a local development initiative, has positive indirect effects on employment in

the nontradable sector as well as in other industries within the tradable sector. There are

however offsetting general equilibrium effects that pass through local labor and housing
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markets. In particular, if the elasticity of the local supply of labor is not elastic (which,

in turn, depends on the degree of geographical mobility of workers and on the elasticity

of housing supply), the initial increase in employment crowds out employment in other

industries due to a local increase in real wages. Local multipliers are thus the net effect

of indirect and general equilibrium effects.

To establish the magnitude of local multipliers, Moretti estimates variants of a very

simple model

y = α + βx+ ε (1)

in which, when estimating the size of the local multiplier for the nontradable sector, y

and x are the change in the log number of jobs in the nontradable and tradable sectors

respectively; conversely, when focusing on the local multiplier for the tradable sector,

x is the change in the log number of jobs in part of the tradable sector and y is the

corresponding change in the rest of the tradable sector. Estimates of β, can thus be

interpreted as elasticities from which it also possible to derive, for each new job in the

tradable sector, the number of additional jobs created either in the nontradable sector or

in the rest of the tradable sector. These estimates are obtained either via OLS or, in order

to deal with endogeneity concerns, via instrumental variables estimation (IV) where the

instrument is the weighted average of nationwide employment growth in manufacturing

industries, the weights being defined locally using the employment shares of the industries.

According to these IV estimates, approximately 1.6 additional jobs are created in the

nontradable sector of a city for each new job in the tradable sector of the same city.

In contrast, additional jobs created in parts of the tradable sector appear to have no

statistically significant effects on the rest of the tradable sector1.

Despite its simplicity, this approach appears to be able to provide rather meaningful

estimates. One particularly appealing feature is that the exogenous variation is directly

1 De Blasio and Menon (2010) apply this same framework to data on Italian local labour markets
but find no significant effects on either nontradable or other tradable industries.
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attributed to the tradable sector which is the one that attracts most of the local develop-

ment initiatives (De Blasio and Menon, 2010). More generally, as emphasized by Moretti,

this approach represents a valid alternative to the traditional methodology, local Input-

Output analysis, which tends to overlook the employment effect for nontradables as well

as the offsetting general equilibrium effects.

There are nonetheless several critical aspects that must be considered when imple-

menting this approach. Firstly, it is essential to be able to deal with the endogeneity

concerns which are likely to arise. The most commonly adopted solution is represented

by instrumental variable methods, the difficulties of which are well know in the literature

(see, for instance, Angrist and Krueger, 2001).

Secondly, there might be concerns about the functional form since the linear one is not

necessarily the most appropriate to represent the underlying relation between exogenous

and induced variations in local employment. The literature on urban dynamics offers sev-

eral indications pointing in this direction. For example, due to agglomeration economies,

urban size and density affect productivity in a multiplicity of ways (Combes et al., 2010;

Duranton and Puga, 2004) and, therefore, the overall effect derived from an additional

job in the tradable sector might not be uniform. At the same time, agglomeration dis-

economies due to higher crimes, taxes, land prices, traffic congestion and environmental

pollution (see, for instance, Glaeser, 1998) may overcome benefits when city size surpasses

some specific threshold, and economic activity may be induced to locate elsewhere. Fi-

nally, from a rather static viewpoint, as the city gets larger additional demand derived

from the initial shock is more likely to be satisfied by local nontradable and tradable

industries (Bartik, 2003).

Finally, within the theoretical framework outlined above space clearly plays a key

role through trade and factor flows. This role, however, is completely neglected in the

empirical implementation and this suggests that the local multipliers might not be appro-

priately estimated. Two types of concerns arise here. From an econometric point of view,
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neglecting space might lead to omit spatially structured covariates thus running the risk

of obtaining biased estimates. Under these circumstances, identifying valid instrumen-

tal variables could be extremely difficult as the omitted factors are often unobservable.

From a more interpretative point of view, ignoring space in the empirical model means

overlooking that the exogenous variation that benefits one city does not necessarily come

exclusively from the tradable sector of the same city. Consider, for example, a city in

which there has been no local exogenous variation in the tradable sector. Implicit in

model (1), no changes in nontradable (or rest of tradable) sector employment should be

observed. However, such changes could be induced by exogenous variations in the trad-

able sectors of other cities, with an intensity that is possibly negatively correlated with

relative distance. To the extent in which this happens, the local multiplier estimated

through model (1) might be biased. In particular, a positive (negative) effect on nontrad-

able (or rest of tradable) sector employment from additional tradable jobs in neighboring

cities leads to overestimate (underestimate) the local multiplier.

As already mentioned, Moretti explicitly recognizes the importance of the first type

of concerns and adopts an IV estimator. In the present paper, we actually confront with

all three issues and we do this by resorting to a nonparametric framework.

2 Modelling spatial dependence

In the analysis of cross-section data quite often researchers have to face problems of mis-

specifications caused by dependence across spatially organized observational units. In-

deed, explanatory variables are often unable to capture unobservable spatial factors and

problems related to omitted variables can easily arise. In such instances, usual methods,

like IV estimation, fall short from representing a viable solution because spatial depen-

dence is due to latent, although relevant, influences.

The spatial econometric literature offers a number of models (Le Sage and Pace, 2006).
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Instances are the Spatial Error Model

Y = βX + u
u = λWu + ε

(2)

the Spatial Lag Model

Y = ρWY + βX + ε (3)

and the Spatial Durbin Model

Y = ρWY + βX− λWXβ + ε (4)

where Y is an n × 1 vector, X is an n × p matrix2, ε ∼ N(0, σ2In) is a n × 1 vector of

innovations, −1 < ρ < 1, −1 < λ < 1, β is a p × 1 vector of parameters and W is a

n × n spatial weights matrix whose wij elements are non negative when i 6= j and zero

otherwise.

The logic underpinning these models originates from an econometric approach that

aims at obtaining estimates possessing standard statistical properties. In other words,

within this approach a specific role is played by W , a term that tries to provide a syn-

optic representation of spatial relations with the fundamental aim of obtaining unbiased

estimates.

Some authors, for example Corrado and Fingleton (2011) and Fingleton and Lopez–

Bazo (2006) argue that the econometric approach follows a somewhat mechanical proce-

dure, i.e. it chooses one of the possible spatial specifications on the basis of the statistical

significance of the spatial term’s coefficient and on its contribution to the achievement

of more satisfactory residuals diagnostics. As a result, however, it runs the risk of losing

sight of the substantive meaning of the model. In addition, there might be a problem

of indeterminacy with respect to the model to choose: when more than one model is

acceptable in terms of its statistical properties, the econometric approach does not seem

2 For simplicity’s sake we assume p = 1. All that follows can be generalized to the multivariate case
p ≥ 2.
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to dwell on the issue of the correct specification in order to provide an explanation to the

economic phenomenon at hand.

This point, however, is a crucial one since different spacial model provide different

or even conflicting views on the nature of the relationship among the included variables.

More precisely, the implications derived from a Spatial Error Model, where the spatial

dependence has a nuisance nature leading to nonspherical residuals, tend to differ widely

from the implications arising from a Spatial Lag Model or a Spatial Durbin one, where the

spatial dependence is included as an explanatory variable in its own right and is justified

by the existence of spatial spillovers.

So, on the one hand stands the econometric approach characterized by a tendency

to comply with the theoretical requirements of the estimates which might lead to a sort

of indeterminacy about the economic interpretation of the phenomenon. On the other

hand stands an antithetic approach that considers this indeterminacy as a serious flaw.

In its more extreme examples it somehow avoids confronting with the spatial dependence

issue from a technical viewpoint and adopts ad hoc solutions without checking that the

resulting model possesses sound statistical properties.

In our view, therefore, there is scope for a method that focuses on a substantive expla-

nation of the economic phenomenon but, at the same time, allows for spatial dependence

in order to reach statistically sound estimates.

3 Nonparametric regression with spatially dependent

data

In this Section we describe a new procedure, hereafter SNP, for nonparametric regression

with spatially dependent data. The SNP procedure, whose details are in Gerolimetto and

Magrini (2009), is a two-step nonparametric regression that aims at incorporating the

information on spatial dependence by means of a nonparametric estimate of the spatial

covariance matrix.
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3.1 Nonparametric regression basics

Nonparametric regression has become quite a standard statistical tool when the functional

form is possibly neither linear nor nonlinear of a specific type. Indeed, given a model such

as

y = m(x) + ε

where ε is the i.i.d. error term and m(x) is a smooth function, linearity of m(x) is not

always straightforward. Under this circumstance, the parametric literature typically offers

Non Linear Least Squares Estimates that require the specification of a a functional form

with respect to which the minimization problem can be solved. When making assumptions

on the functional form of m is not possible or not recommended, the nonparametric

methods represent a preferable option.

In general, the estimate of a nonparametric regression can be obtained in correspon-

dence of some fixed points by means of some smoothing methods. Among the most com-

monly adopted estimation techniques is the local constant estimator (LCE, hereafter),

also known as Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964):

m̂(x) =

∑n
j=1K(x−Xj

h
)Yj∑n

j=1K(x−Xj

h
)

(5)

where h is the bandwidth, the parameter that controls the degree of smoothness. The

local linear estimator (LLE) is also rather well-known and it is often preferred to LCE for

its better mean bias properties:

m̂(x) =

∑n
j=1K(x−Xj

h
)Yj∑n

j=1K(x−Xj

h
)

+ (x− X̄w)

∑n
j=1K(x−Xj

h
)(Xj − X̄w)Yj∑n

j=1K(x−Xj

h
)(Xj − X̄w)2

(6)

where

X̄w =

∑n
j=1K(x−Xj

h
)Xj∑n

j=1K(x−Xj

h
)

Recently Phillips and Su (2009) claim that nonparametric regression has more robust-

ness advantages beyond robustness to specific functional form, for which it is commonly
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appreciated. The authors demonstrate that nonparametric regression can also display a

robustness to endogeneity since it concentrates on local information thus attenuating the

weight of tail information possibly suffering more heavily from endogeneity effects. In

addition, they provide Monte Carlo simulations showing that, in the presence of endoge-

nous variables, nonparametric kernel regression outperforms the parametric estimate even

when the functional form is known.

This further form of robustness is a particularly appealing feature. Even in situations

in which the functional form is known (e.g., even in the linear case) nonparametric regres-

sion represents an appropriate alternative to instrumental variables estimation in order

to tackle endogeneity concerns with the additional advantage of simplicity as it does not

require the identification of the instruments.

3.2 The SNP procedure

As highlighted by Martins-Filho and Yao (2009), most asymptotic results for the LCE

estimator in case of dependent errors are unfortunately contingent on the assumptions

made on the covariance structure and it is not possible to generalize their application to

different parametric structures. Stimulated by this lack of generality, attention within the

nonparametric literature has focused on estimators that, by incorporating the informa-

tion contained in the error covariance structure, outperform, both asymptotically and in

finite samples, traditional nonparametric ones. Here, we specifically draw on the work by

Martins-Filho and Yao (2009) who establish a set of sufficient conditions for the asymp-

totic normality of the local linear estimator (LLE) when the error correlation structure is

as general as possible.

In short, SNP, whose details are in Gerolimetto and Magrini (2009), is a two-step pro-

cedure for nonparametric regression with spatially dependent data that does not require

a priori parametric assumptions on spatial dependence; information on its structure is

actually drawn from a nonparametric estimate of the errors spatial covariance matrix.
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The SNP procedure moves from a pilot estimate of the nonparametric regression with

the local linear estimator and consists of two steps: firstly, the covariance matrix is

estimated nonparametrically through a spline correlogram (Bjørnstad and Falk, 2001);

secondly, a modified regression is run exploiting the information on spatial dependence

just obtained.

The procedure consists of the following steps:

0. Pilot fit : estimate m(X) with a local polynomial smoother with fixed bandwidth3.

As for the degree of the polynomial, p = 1 is usually considered (local linear esti-

mator). The output is û = Y − m̂(X).

1. Nonparametric covariance matrix estimation: obtain V̂ , the estimated spatial co-

variance matrix of û, using the spline correlogram, a continuous nonparametric

positive semidefinite estimator of the covariance function developed by Bjørnstad

and Falk (2001).

2. Final fit : feed the procedure with the information obtained from the estimate of the

spatial covariance matrix V̂ by running a modified regression where Y is replaced

by Z = m̂(X) + L−1û and L is obtained by taking the Cholevsky decomposition

of V̂ . The nonparametric estimate m̌ resulting from this second fit is done by

choosing the bandwidth parameter with a modified version of the Residual Spatial

Autocorrelation criterion suggested by Ellner and Seifu (2002).

3.3 Estimating spatial models with SNP

To see how the SNP procedure can be utilized to estimate models like (2),(3) and (4)

consider their nonparametric counterparts moving from the following very general setting:

Y = M(X) + u
u = θWu + ε

(7)

3 As usual in two-step nonparametric regressions, undersmoothing in this first stage is required to
avoid bias piling up.
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where

• M(X) = m(X) and θ = λ for a nonparametric Spatial Error Model

• M(X) = (I − ρW )−1m(X) and θ = ρ for a nonparametric Spatial Lag Model

• M(X) = (I − ρW )−1(I − λW )m(X) and θ = ρ for a nonparametric Spatial Durbin

Model

In the functionM(X) in (7) actually has two components: the first is a general function

of the covariate matrix m(X) while the second is a spatial factor whose form depends on

the spatial data generating process4. Obviously, when m(X) = Xβ, these models simply

revert to (2),(3) and (4).

We must stress that the advantage of estimating function M via SNP is that no

assumption is required on its functional form and, consequently, neither on m(X) nor on

the spatial factor that combine into M(X).

Moreover, by estimating spatial models via SNP, spatial dependence is not filtered out

as if it was a nuisance element. On the contrary, SNP’s rationale is to include spatial

dependence as a substantive element with the objective of obtaining estimates that are

unbiased but, at the same time, retain a transparent interpretation from an economic

viewpoint.

4 Empirical analysis

In the empirical analysis we use data from the Bureau of Economic Analysis on employ-

ment by NAICS 2-digit industry for 363 US metropolitan areas between 2001 and 2008.

Differently from Moretti’s analysis, therefore, the territorial unit is the metropolitan area

which can be argued to be appropriate than cities for this type of analysis because better

suited to capture the true boundaries of the local labor markets. Another element of

4 Clearly, in case of Spatial Error Model, the spatial factor is simply the identity matrix.
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departure from Moretti’s work is in the definition of tradable and nontradable sectors. In

particular, we have adopted the classification of internationally tradable and nontradable

activities derived by Jensen and Kletzer (2005, Table 4). It must be observed that, in

effect, these authors define tradable activities as those activities which are traded domes-

tically and identify them on on the basis of their geographic concentration within the

US. In other words, the definition of tradable activities obtained by Jensen and Kletzer

corresponds exactly to what is needed for the present analysis. On the other hand, the

common practice that restricts the tradable sector to manufacturing is likely to introduce

a bias by excluding industries which should clearly be considered as tradable within an

intra-national context.

We estimate the following regression models:

∆NNT = m(∆NT ) + ε (8)

∆NT1 = m(∆NT2) + ζ (9)

where ∆NNT and ∆NT are, respectively, the change in the log number of jobs in the

nontradable and tradable sectors while ∆NT1 and ∆NT2 are, respectively, the change in

the log number of jobs in part of the tradable sector and the corresponding change in the

rest of the tradable sector.

We use three different estimation methods. First, among the conventional parametric

methods, we run an OLS regression; then, among nonparametric methods, we employ

the local linear estimator (NP) as well as the spatial nonparametric regression estimator

(SNP) described in the previous session. Bandwidths for nonparametric estimates have

been selected using the (leave-one-out) cross validation method. The distance matrix

for the SNP procedure is obtained from Euclidean distances across metropolitan areas

centroids.

We start the analysis by considering the effect of tradable on nontradable. The OLS

elasticities are reported in Table 1. In particular, the elasticity that describes the effect
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is 0.53, a value which is in line with what reported by Moretti. However, since in our

data there are approximately 1.6 nontradable jobs for each tradable job, we obtain that

an additional job in the tradable sector of a city only leads to 0.84 jobs in the nontradable

sector of the same city. It is worth noting, however, that a the null hypothesis of spatial

independence in the residuals is strongly rejected by the Moran’s I test (based on an

inverse of distance weight matrix and 9999 permutations).

These results can be compared with those from the nonparametric methods in Fig-

ure 1 displaying the three estimated regression lines. In order to better appreciate the

differences among the estimates, in the next two figures we confront the OLS elasticity,

represented by a dotted line, with the elasticities estimated via the traditional nonpara-

metric procedure (Figure 2) and the spatial nonparametric counterpart (Figure 3). In

addition, 5% confidence bands around the elasticities derived from the nonparametric

estimates are reported in order to understand whether these are significantly different

from those derived from OLS. As we can see from Figure 2, the confidence bands al-

ways include the horizontal line corresponding to the OLS estimate thus suggesting the

absence of any significant difference with respect to the elasticity obtained through the

local linear estimator. In addition, this seems to suggest that the linear specification

might not be inappropriate. A totally different picture however emerges when we move

to Figure 3. Here, the 5% confidence intervals suggest that the elasticity obtained by

SNP is significantly different from that derived from OLS over a large part of the domain.

More in detail, we observe an inverted U-shaped elasticity: it starts from a significantly

lower value than the OLS counterparts; it then overtakes it, although for a rather limited

range of values; it finally declines although this feature does not appear to be significant

since the confidence bands now get wider due to boundary variability. Thus, the use of

an estimator that allows for spatial effects alters the results in quite a striking way. The

radical change in implications can be fully appreciated from Figure 4. Here, in analogy

with the interpretation of the elasticities offered by Moretti which considers the initial
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level of employment as given, we show the number of additional jobs in the nontradable

sector for each new job in the tradable sector at different tradable employment levels.

The additional effect is extremely small (less than 0.2) for low employment levels and

reaches approximately the value of one for an employment size of about 350,000. As

noted previously, the subsequent decline cannot be considered a significant feature.

We can now turn to the estimation of the effect of tradable on other parts of trad-

able. The analysis we carry out here differs once more from the one by Moretti. Given

that we have data on employment by NAICS 2-digit industry, we cannot randomly dis-

tinguish groups of manufacturing industries. However, in our case, the tradable sector is

not confined exclusively to the manufacturing industry so we focus on the 6 industries

which are predominantly attributable to the tradable sector (in the sense that the weight

reported by Jensen and Kletzer exceeds 0.6). Next, we consider all combinations of these

industries that lead to different groupings and repeat the analysis for each of them. Table

2 presents the estimation results obtained with OLS and SNP. In particular, the first

two columns reports the OLS elasticities and the corresponding standard errors. The

remaining columns report some summary statistics of the distribution of the elasticity

values obtained for each of the possible regressions. As we can see, OLS elasticities are

strongly significant and quite close to one; similarly, the distributions of SNP elasticities

are quite peaked around the same value. A typical example of this behavior is reported

in the last column of Table 1, as far as OLS is concerned, and in Figures 6 and 7 for the

nonparametric counterparts. Here, we note that the OLS elasticity is very close to the

value of one. In addition, contrary to what noted in Figures 2 and 3, now both the NP

and SNP estimated elasticities do not differ significantly from the OLS over the very large

majority of the domain. In sum, an additional job in part of the tradable sector generates

a response in the other part of the tradable sector that does not alter the ratio between

the number of jobs in the two parts.
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5 Conclusions

In this paper we estimated local multipliers and of the corresponding effect, in terms of

additional jobs in the rest of a local economy, deriving from an extra job in the tradable

sector. Specifically, we employed three different estimators: the OLS, the nonparametric

local linear estimator and a spatial nonparametric estimator (based on a local linear

smoother). Our results suggest that allowing for spatial dependence modifies the picture

arising from more conventional estimators. In particular, using SNP we find that the

relationship between the change in tradable jobs and the change in nontradable jobs is

nonlinear. In addition, tradable on nontradable has an inverted U-shaped effect that

starts from values which are significantly lower than those obtained from the other two

estimators. This confirms the supposition that space clearly plays a key role through

trade and factor flows.
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Figure 1: Tradable - Nontradable: fit
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Figure 2: Tradable - Nontradable: elasticity (NP)
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Figure 3: Tradable - Nontradable: elasticity (SNP)
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Figure 4: Tradable - Nontradable: additional jobs (SNP)
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Figure 5: Tradable1 - Tradable2: fit
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Figure 6: Tradable1 - Tradable2: elasticity (NP)
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Figure 7: Tradable1 - Tradable2: elasticity (SNP)
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Effect of tradable on
nontradable tradable

constant 0.076222 0.302038
s.e. 0.002965 0.014701

p-level 0 0
elasticity 0.527438 1.044434

s.e. 0.022292 0.024066
p-level 0 0

implied additional jobs 0.8392 0.980349
R2 0.6079 0.8392

Moran’s I 10.3592 5.3381
p-level 0 0

Table 1: OLS local multipliers

OLS SNP
b s.e. D10 median D90 mean s.e.

1 1.030218 0.018521 0.993362 1.037917 1.056904 1.034586 0.025945
2 1.046561 0.016461 1.016919 1.020367 1.036264 1.023869 0.007398
3 1.012747 0.0164 0.928523 1.045951 1.087402 1.023292 0.059529
4 1.049241 0.027855 1.000415 1.036434 1.054849 1.031804 0.020162
5 0.992998 0.014725 0.957929 0.985592 1.044046 0.993718 0.030815
6 1.068252 0.019093 1.012124 1.033642 1.130195 1.052855 0.043048
7 1.032465 0.025409 1.025131 1.028909 1.030585 1.028349 0.002058
8 1.044434 0.024066 1.012324 1.088044 1.128423 1.080475 0.042494
9 1.064682 0.021718 1.045275 1.066208 1.077721 1.063769 0.012018
10 0.95054 0.014213 0.939965 0.941793 0.945162 0.942324 0.002006

Table 2: Trade-Trade local multipliers
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