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Abstract
In this paper an attempt is made to assess the hypothesis of re-

gional club-convergence, using a spatial panel analysis combined with
B-Splines. In this context, a ‘convergence-club’ is conceived as a group
of regions that in the long-run move towards steady-state equilib-
rium, approximated in terms of the average per-capita income. Using
data for the US states over the period 1929-2005, a pattern of club-
convergence is detected. The ’cluster’ of converging states is rather
limited and a strong spatial component is detected.

JEL Classification: R11, R12
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1 Introduction

Recent years have seen an increasing interest in testing for ‘club-convergence’,
across the regions of individual countries (e.g. the UK, Chatterji and De-
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whurst, 1996; Finland, Kangasharju, 1999). This interest is motivated by the
need to identify areas that will be supported when regional policy is focused
on the promotion of regional convergence. Drawing a dividing line between
converging and lagging regions is not an easy task. This is mainly due to the
lack of knowledge of the point at which regions are converging in the long-
run. It is a primary aim of this paper to offer a methodology to detect groups
of regions that follow common patterns in their convergence behaviour.

The central apparatus of our methodology derives from Nahar and Inder
(2002), who implement time-series analysis to identify groups of economies
moving towards a common steady-state. Although originally developed for
national economies, Alexiadis and Tomkins (2004) demonstrated that it is
equally suited to regional economies, although spatial dependency across ob-
servational units is not taken into account. This paper extends this method-
ology further by considering three major aspects. To be more precise, first,
the hypothesis of spatial interaction across regional units is introduced ex-
plicitly. Second, a panel setting is implemented to control for fixed effects
reflecting time and state shocks. Third, instead of simple polynomials orders,
as Nahar and Inder (2002) utilize, we apply the so called Basic Splines as a
functional base in order to approximate the behaviour of a region’s per-capita
income with respect the average per-capita income of all the observational
units over time.

The empirical application of our methodology refers to the US States
over the period 1929-2005. In the case of the US States and despite a con-
siderable literature on regional convergence (e.g. Nissan and Carter, 1998;
2001; Lall and Yilmaz, 2001; Johnson and Takeyama, 2001; Fousekis, 2007)
‘club-convergence’ remains a relatively unexplored area. We find for exam-
ple, that a club convergence pattern is evident across the 49 US States with
a significant spatial dimension.

The rest of this paper is structured as follows. Section 2 reviews alterna-
tive tests for convergence. Section 3 presents our econometrical framework
and Section 4 presents our results. In order to highlight the difference in
our econometrical approach we also present the results using Nahar and In-
der’s (2002) methodology. The last section summarises the arguments and
considers possible lessons for policy-making.
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2 Regional Convergence: Cross-section and

Time-Series Tests

A useful starting point is the neoclassical model, since the assumptions of
this model actually carry implications for the regional convergence debate.
This model offers both a theoretical explanation and testable predictions
concerning the possibility of convergence in per-capita incomes across regions.
Indeed, most of the conceptual definitions of regional convergence used in
empirical studies derive directly from the neoclassical model1. According to
this model, absolute convergence requires that regions with low per-capita
income grow faster than those with high per-capita income, indicating that
poor regions catching up with rich regions.

Assuming that income per-capita (Yi,T ) grows as Yi,T = egi,TYi,0 and gi,T =
f(Yi,0), then it is possible to express the argument of absolute convergence
in terms of the following regression equation:

gi,T = c+ byi,0 (1)

where gi,T = yi,t− yi,0 and c is the constant term. Absolute or β-convergence
requires that f

′
gi,T yi,0

and b ∈ [−1 0].
However, this approach is too ‘aggregative’ for policy-making, given that

it does not make clear if all regions are driven towards ‘steady-state’ equilib-
rium with equalised per-capita income. It is quite possible that the property
of convergence applies only to a set of regions, or a ‘convergence-club’, while
regions outside this club do not necessarily experience convergence vis-à-vis
those in the club.

2.1 Convergence Clubs

A ‘convergence-club’ implies the existence of a set of economies that in the
long-run are driven towards ‘steady-state’ equilibrium with equalised per-
capita income. Encapsulated in this definition are two fundamental issues.
First, there is the question of how to identify those economies which belong

1See, for example, Kılıçaslan and Özataǧan (2007), Benos and Karagiannis (2008),
Gezici and Hewings (2004), among others.
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to a ‘club’, and second there is the question of what is the ‘steady-state’
equilibrium towards which club-members are progressing.

Usually, tests of club-convergence implement cross-section data (e.g. Chat-
terji and Dewhurst, 1996; Kangasharju, 1999; Fischer and Stirböck, 2006).
Such tests, however, while useful in some contexts, generally provide a rather
incomplete picture of the composition of the convergence-club. This has led
to tests based on the concept of stochastic convergence 2. Advocates of this
approach (e.g. Bernard and Jones, 1996, 1996a; Bernard and Durlauf, 1995)
claim that convergence is, by definition, a dynamic concept that cannot be
captured by cross-sectional studies.

The associated tests are based on whether the dispersion in per-capita
income between two regions has narrowed during a time period, and all ob-
servations from that time period are used. Thus, convergence is identified,
not as a property of the relationship between initial income per-capita and
growth over a fixed sample period, but instead is defined by the relation-
ship between long-run forecasts of the time-series in per-capita income. It
follows, then, that this approach takes into account all the relevant informa-
tion available throughout the given time period, although it might be argued
that the issue of choice of time period remains. By definition, the impacts of
random shocks to national and regional economies are taken into account, in
predicting long-run trends. More specifically, following Bernard and Durlauf
(1995), stochastic convergence between two regions i and j occurs if the
long-run forecasts of per-capita income for both regions are equal. Thus,

lim
k→∞

E(y1,t+k − yi,t+k |It) = 0 ∀i 6= 1(2)

where E stands for the mathematical expectation, yi is the logarithm of
income per-capita in region i(i = 1, . . . , n) and It describes the information
set available at time t.

Equation (2) represents the conditions required for convergence to exist
between all the regions included in the test. However, a critical issue is the
determination of specific econometric tests for stochastic convergence. One
of the most widely used such tests, is the Augmented Dickey Fuller (ADF)
test and is discussed next.

2Empirical studies concentrate to a large extent on the US states (e.g. 1995; Carlino
and Mills, 1996; Strauss, 2000), while some studies have also been conducted for the
regions of the UK (McGuinness and Sheehan, 1998), Austria (Hofer and Wörgötter, 1997)
and Italy (Proietti, 2005).
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The bivariate ADF test may be used to test for convergence between two
regions, and takes the following form:

∆(yi,t − yj,t) = µ+ α(yi,t−1 − yj,t−1) + γt+
n∑
k=1

δk∆(yi,t−k − yj,t−k) + εt (3)

where µ is the constant term, t denotes the time trend and εt is the
error-term of the regression.

Of critical importance is the coefficient α = (ρ − 1), where ρ is the unit
root. If ρ = 1, which implies that α = 0, then income per-capita in the
two regions will not converge while the absence of a unit root (α < 0) is an
indication of convergence between the two regions. It might be argued that
stochastic convergence in the long run implies two properties; firstly that the
disparity in income per-capita between the two regions is disappearing and
secondly that movement towards long run equilibrium is occurring. However,
the unit root test detects ‘catching-up’ convergence only, i.e. the first of the
two properties. In order to assess for convergence towards long-run equilib-
rium also, then it must be the case that the coefficient on the time trend is
equal to zero (γ = 0). Thus, long run convergence between two regions is
occurring if α < 0 and γ = 0 (Oxley and Greasley, 1995).

The test for stochastic convergence described thus far essentially exam-
ines the convergence possibilities between ‘pairs’ of economies only, with the
presumption of convergence towards the same steady-state. Using simple
ADF tests, it is therefore difficult to identify whether particular groups of
economies follow a common convergence path. It comes as no surprise, there-
fore, that the ability of ADF tests to help policy-makers is limited. Neverthe-
less, a technique developed by Nahar and Inder (2002) allows such groups to
be detected, using time-series data. Therefore, the remainder of this section
articulates the methodology proposed by Nahar and Inder (2002).

2.2 Convergence Clubs and the approach of Nahar and
Inder

Nahar and Inder (2002) point out that the test proposed by Bernard and
Durlauf (1995) suffers from a number of weaknesses. Firstly, there is the
possibility of an incorrect conclusion, as follows. The definition of conver-
gence encapsulated in equation (2), rests on the long-run forecasts of income
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per-capita differences tending to zero as the forecasting horizon approaches
infinity. Thus, convergence is detected if the difference yi− yj is a mean zero
stationary process. However, it is also possible, that certain non-stationary
processes can be convergent even though the unit root hypothesis (α = 0)
is accepted. The underlying process is convergent, but the ADF test sug-
gests otherwise3. Secondly, an ADF test is able to identify convergence only
between pairs of regions, as noted above. It can therefore be difficult to iden-
tify groups of regions that follow a common convergence pattern towards the
same steady-state, and as a consequence the ability of ADF test to detect
convergence clubs is limited.

In addition to the question of how to identify those regions which belong
to a club, there is the further question of what is the steady-state equilibrium
towards which club members are progressing in the long-run. In recognition
of this second issue, Nahar and Inder (2002) propose a test that explicitly
acknowledges a steady-state level of income per-capita and convergence is
assessed with reference to this long-run equilibrium point. In doing so, it
also becomes possible to identify members of a convergence-club.

In an empirical setting, convergence is said to occur when the distance
of a region’s per-capita income from the average approaches zero over time4.
Nahar and Inder (2002), employ the following econometric test:

φi,t = f(t) + ui,t = θ0 + θ1t+ θ2t
2 + . . .+ +θk−1t

k−1 + ui,t (4)

where φi,t is the ith economy’s squared deviation from the average and θi’s
are parameters. According to equation (4) an estimate of the slope function,

i.e. ∂φi,t

∂t
f

′(t), provides an indication of stochastic convergence, which requires
that the squared deviations decline through time, that is to say, the average

slope of the function (4) is negative, i.e. 1
T

T∑
t=1

∂φi,t

∂t
< 0 and given by:

1

T

T∑
t=1

∂φi,t
∂t

= θ1 + θ2r2 + . . .+ θk−1rk−1 + θkrk = θr′ (5)

3Nahar and Inder (2002) use the following example. Suppose that the difference in
income between two economies, yi,t − yj,t, is a non-stationary process and is represented
by yi,t − yj,t = θ

t + ut in which E(ut) = 0 and ui is a stationary process. As t→∞, then
θ
t → 0 and yi,t − yj,t is also converging since lim

k→∞
E(y1,t+k − yi,t+k |It) = 0.

4Alternatively, absolute convergence occurs when lim
n→∞

Et(y1,t+n − yi,t+n) = 0.
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where r2 = 2
T

T∑
t=1

t, . . . , rk−1 = (k−1)
T

T∑
t=1

tk−2, rk = k
T

T∑
t=1

tk−1

r′ = [0 1 r2 · · · rk−1 rk] and θ = [θ0 θ1 · · · θk−1 θk].
Application of this test involves three steps. First, equation (4) is esti-

mated using ordinary least squares (hereafter OLS) and, secondly the average
slope (i.e. the θr′ vector) is estimated for each region. Finally, the null hy-
pothesis of non-convergence, i.e. H0 : θr′ ≥ 0, is tested against the alternative
Ha : θr′ < 0. This technique implies that in the long-run regions with a posi-
tive (negative) initial deviation from average, i.e. ( yi,0−y > 0(yi,0−y < 0)),
move towards steady-state equilibrium, expressed in terms of a zero deviation
from the average, i.e. (yi − y)t → 0 as t→∞, as shown in Figure 1.

The proposed technique by Nahar and Inder (2002) has a major advan-
tage over the simple bivariate ADF tests discussed previously. A problem
with these tests is their limited ability to distinguish groups of regions which
are converging with each other because the tests are restricted to pair-wise
comparisons. The advantage of a test based on deviations from a steady-
state is that it identifies those regions that are converging towards a com-
mon steady-state from those which are not, thereby recognising also the
concept of club-convergence. Furthermore, to analyse the composition of
the convergence-club further by detecting which regions follow a faster (i.e.
above the average rate) or a slower (below the average rate) path towards
the steady-state equilibrium.

3 Estimation Method

3.1 Econometrical problems of the Nahar and Inder

approach

Althoug the approach of Nahar and Inder (2002) has considerable advantages
for detecting clubs it suffers basically from three econometrical problems if
it is apllied for regions:

First, it fails to take spatial autocorrelation of the dependent variable
into account. If growth data on regional level is analyzed, it is quite common
to find spatial depencies. Hence it seems plausible to assume that the the
convergence patterns also inhibt spaital dependence. It can be shown that
ignoring spatial depence in the dependent variable will cause biased estima-
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tions in the case of OLS. In our data we find a hihgly significant spatial lag
in the dependent variable.

Second, the convergence data has a panel structure and is covering shocks
like the Great depression. Since not all regions will be influeneced the same
way from these shocks, they might act as level effects. Ignoring these level
effects like we motivated for time, or generally state levels might also result
in biased esimtates.

Finally, the approximation of an unknown function via polynomials can
cause numerical problems. To isslustrate this problem consider the following:
In the OLS estimation the X matrix (the matrix containing the explanatory
variables) contains the different points in time, like for example in our case
the numbers zero to 75 (if we set 1929 to zero). If we want to incorporate
a polynomial of order 7 then the smallest number in our last X coulomn is
zero while the largest value will be approximatly 10ˆ13. Hence our X- martix
might no longer have a good conditioning and therefore finding the inverse
of X′X can cause numerical problems. Addtionally this time modelling is
not taranslation invariant, e.g. we may get different estimates if set 1929 to
zero or to one and not all polynomials of power one to k are incorporated.
This numerical problem and the absence of translation invariance might also
cause biased or inefficient OLS estimates.

Since biased estimatations of θ can result in biased club convergence
patterns, we present in the next section an econometrical framework that
is able to deal with all of these presented problems.

3.2 A spatial panel approach with B-Splines to Re-
gional Convergence

In order to tackle the first two problems regarding the Nahar and Inder
(2002)- approach we use the model given in 6:

φi,t =
ρ

w

n∑
j=1

wi,jφi,t + γt + ηi + fi(t) + ui,t where ui,t ∼ N(0, σ2) (6)

φi,t is in (6) not only a function of the different fixed effects and the un-
known function fi(t) but also spatially autocollrelated with the neigbouring
φj,t. It is assumed that the innovations ui,t are independently and identically
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normal distributed with zero mean and finite variance σ2. The weigths wi,j
are asummed to be deterministic and reflect the neighbouring structure in
the US. If two states i and j share a common border, wi,j is set to one and
zero otherwhise. Addtionally, we set wi,i to zero. Hence no state can be its
own neigbour. w is the normalizing factor for the spatail lag and has follow-
ing definition: w := max1≤i≤n{

∑n
j=1wi,j}. In (6) γt and ηi represent the fixed

effects for time and the states respectively. ρ is the spatial autocorrelation
parameter an asumed to be in the set (−1, 1). If we ignore the term fi(t)
equation 6 represents a pannel data model with fixed effects and a spatial
lag in the dependent variable. For more details regarding models like 6 see
LeSage and Pace (2009). If we set ρ and γt equal to zero and model fi(t)
via polynomials then 6 can be seen as the Nahar and Inder (2002) where a
pooled regression is used.

The model interpretation stays the same as in Nahar and Inder: We solve
Eq. 6 for PHI and calculate the average derivative to time for each region.
In order to find standard deviations and the distribution of these effects we
use Monte Carlo Simulations.

In order to avoid the third problem of the Nahar and Inder (2002)- ap-
proach we model the unknown function fi(t) in 6 via so called Basic Splines5.
Splines are are piecewise polynomials that are continuous and differentiable
to a certain degree, like in our case: one. Addtionally, B-Splines, like the
powers of a polynomial can be seen as basis in a functional vector space (Les-
besgue space). To approximate a unknown function with B-Splines a certain
amount of given spline knots ζl,i are needed. If these are given fi(t) can be
approximated by (7)

fi(t) ≈
m∑
l=0

Bl,i(t)θi where Bl,i(t) =

{
tl if l ≤ 2
(t− ζl,i)2

+ if l > 2
(7)

and (t− ζl,i)2
+ =

{
(t− ζl,i)2 if t ≥ ζl,i
0 otherwise

In our case the splineknots ζl,i can be elements of the set {1, 2, ..., T},
where T = 76 is the number of time observations. Like Nahar and Inder
(2002) we consider

∑m
l=0Bl,i(t)θi a good approximation for fi(t) if the AIC of

the model is (at least locally) minimized. Hence finding suitable ζl,i poses a
combinatorial otimization problem, which can be solved by using the Genetic

5For details regarding B-Splines see Fahrmyr et al. (2007).
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algorithm developed in Koch and Krisztin (2011). If given the spline knotes,
B-Splines are nothing else then shifted polynomials and hence can be written
in a linead fahsion:

∑m
l=0Bl,i(t)θi = ziθ. Note that B-Splines are by their very

constructoin invariant against translations in time.

3.3 Computational Issues

This subsection briefly discusses some computational issues resulting from an
estimation of (6). First we will discuss the Maximum Likelihood (ML) esti-
mator for equation (6) and then the Genetic Algorithm for the approximation
of fi(t) given in (7).

Before we derive the Loglikelihood of model (6) we rewrite it by using
matrix notation (see Eq. (8)). We embedd the ML- estimator in the Genetic
Algorithm which minimizes the AIC over possible spline knots. Hence for
the ML-estimation the spline knots are given.

φ|ζl,i =
ρ

w
(IT ⊗Wn)φ|ζl,i + Γγ + Hη+ Zθ+ u where u ∼ N(0, InTσ

2) (8)

The vectors in (8) are defined by φ = (φ1,1, φ1,2, ..., φn,T )′ and u =(u1,1, u1,2, ..., un,T )′.
The matrix Γ reflects the fixed effects for time and is given by (In ⊗ ιT ), where
⊗ denotes the kronecker produkt and ιT a T by 1 vector containing ones.
The matrix for the fixed effects of the sates H can for example be obtained
if we delete the last6 column of the matrix (ιn ⊗ IT ). Since the spline knots
are given, we can approximate the nonlinear function via the linearized form
where the matrix Z is given by: Z = (z1(1)′, z1(2)′, ..., , zn(T ))′. For nota-
tional convenience we will define Xβ = Γγ + Hη + Zθ, where X = [Γ,H,Z]
and β = (γ′, η′, θ). Since we assume that ρ ∈ (−1, 1) we can solve (8) for φ
and derive its Loglikelihood:

LL(ρ, σ2, β) ∼ −nT
2

log(σ2)+
T

2
log

(
det

(
In −

ρ

w
Wn

))
− 1

2σ2

(
φ−φ̂

) (
φ−φ̂

)
(9)

where det() denotes the determinant of a matrix and φ̂ are the fitted values
of φ given the values ρ̂, σ̂2, β̂.To simplify this likelihood we follow LeSage and
Pace 2009 and we concentrate out the parameters σ2 and β:

LL(ρ) ∼ T

2
log

(
det

(
In −

ρ

w
Wn

))
− nT

2
log(S(ρ)) (10)

6Note that it does not matter which column is deleted. We have to delete one column,
otherwise (In ⊗ ιT ) and (ιn ⊗ IT ) would perfectly colinear.
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where S(ρ) = e(ρ)′e(ρ), e(ρ) = e0−ρed, e0 = φ−Xδ0, ed = 1
w

(IT ⊗Wn)φ−Xδd,

δ0 = (X′X)−1X′φ and δ0 = (X′X)−1X′ 1
w

(IT ⊗Wn)φ. Since the weigth ma-
trix is not affected by a change of the spline knots we follow Griffith (1988)
for the calculation of the logderterminant:

det
(
In −

ρ

w
Wn

)
=
∏n

i=1

(
1− ρ

w
ωi

)
. (11)

In (11) ωi denotes the i-th eigenvalue of Wn. With these simplifications
one AIC calculation given the spline knots basically reduces to two ordenary
least squares regressions and the simple minimizazion of LL(ρ). Note that we
have to calculate the eigenvalues of Wn only once for the whole optimization
process.

The second part of the overall optimization problem stems from choos-
ing suitable spline knots. This is done via a combined asynchronous agents
and genetic algorithm approach, outlined in Koch and Krisztin (2011). This
method uses two types of asynchronous agents, which employ genetic algo-
rithms to respectively solve the selection of splines. Based on the AIC of
these results, each team of agents attempts to improve upon the solution.
Each cycle the worst performing agents are deleted from the population.

4 Empirical Results

Regional growth may be convergent or divergent. Convergence may also
be an exclusive property of a specific set of regional economies. It is the
purpose of this section to provide an assessment of whether or not absolute
convergence is apparent across the 49 states of the US7, and whether this
applies only to a selected club.

The simplest approach to testing for convergence is to examine changes
in the coefficient-of-variation for regional per-capita income over the period
1929-20058. This test of convergence, when carried out for the 49 states,
produces the outcome shown in Figure 2.

Over the examined period the long-run trend in the coefficient-of-variation
suggests σ-convergence, although at the beginning of the period some in-
creases are observed. The conclusion to be drawn, therefore, on the basis of

7Alaska and Hawaii are excluded, since the available data for these states begin at 1950.
8The source for our data is the US Bureau of Economic Analysis.
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the σ-convergence test alone is that the states of the US have moved closer
together as a group in that the dispersion of income per-capita at the end of
the period is narrower than at the beginning.

However, the coefficient-of-variation is only a simple descriptive tool and
is not based on a model of regional convergence. There is no underlying
explanation of a catching up process implicit in the measure. The concept of
β-convergence is derived from an underlying model, however and is examined
next.

The potential or otherwise for such β-convergence is indicated in Fig-
ure 3, which shows a scatterplot of the average annual growth rate against
the initial level of per-capita income. Prior to the formal convergence test,
casual inspection of the data in Figure 3 provides a clear indication of an
inverse relationship between the average annual growth rate and initial level
of income per-capita. The presence of β-convergence, however, cannot be
confirmed by visual inspection alone. Therefore, the cross-section test, based
on estimation of equation (1) for the 49 US States, is applied to the whole
period 1929-2005.

The results, presented in Table 1, show the convergence coefficient (b)
to be negative and significant at the 95% level. The presence of absolute
convergence in the form of a negative relationship between the rate of growth
and initial per-capita income is suggested by this evidence, and US states
have, on average, shown a strong tendency to converge over the period 1929
to 2005, at a rate of 1.4% per annum.

Nevertheless, it is possible (and necessary given the concerns of this pa-
per) to reconstruct a more precise account of the nature of regional conver-
gence in the US, especially in regard to the relevance of a notion of conver-
gence, as encapsulated in equation (4).

Equation (4) is estimated by OLS for various values of k. The spe-
cific choice of the polynomial order is then made using the Akaike and the
Schwartz-Bayesian information criteria. They are used extensively as se-
lection criteria, and are generally considered as reliable, especially in the
analysis of time-series data.

Estimation of equation (4) leads to the average slope estimates for each
state shown in Table 2. The interpretation of these results is as follows. A
state is deemed to be converging to the common steady-state, which is the av-
erage level of per-capita income, when the slope estimate is both statistically
significant and negative in sign.

Thus, significant convergence towards average per-capita income is iden-
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tified for 38 states9. These areas, thus, constitute a convergence-club mov-
ing towards average per-capita income at an average rate of about 0.25%
per annum, with the convergence rates for individual members varying from
0.0027% per annum in the case of West Virginia to 1.4% in the case of
District-of-Columbia. About 45% of the club-members exhibit an annual
rate of convergence above the average rate. For six states, the average slope
estimates are statistically significant but positive in sign to indicate diver-
gence, although the rate of divergence varies somewhat from case to case
with South Carolina exhibiting the highest rate of divergence from the aver-
age (0.84%).

A closer examination of the evolution of per-capita income in the club
suggests that states with an initial deviation above (below) the average per-
capita income move towards zero. This is in accordance with the predictions
of the neoclassical model and is shown on Figure 4. The location of the
convergence-club is shown on Figure 5, together with the diverging regions.
A tendency for clustering of the states with similar convergence pattern is
apparent. This suggests that regional location is a significant factor in the
growth process.

The hypothesis of club convergence and spatial interaction is examined
more formally, using the framework introduced in section 3. The relevant
results are reported in Table 3. Using the extended framework, the conver-
gence club includes fewer states, as shown in Figure 6. A further distinction
of the club can be identified in Figure 6. To be more precise, the convergence
club includes two distinct geographical clusters. The first is located in the
West Coast while the second in the north-east areas. Given that the spatial
results are based on a more robust methodology, it might be argued that the
results using the methodology by Nahar and Inder (2002) might be biased,
since spatial interaction is omitted.

9It should be mentioned that the size of the states might cause some problems, given
the differential performance among areas within the states. For example, estimation of
equation (4) using data for metropolitan areas or cities might reveal a different picture.
Such a case is quite obvious in European NUTS-2 and NUTS-3 regions. However, in the
case of the US states the size of states seems to be appropriate for examining convergence
tendencies, since their size allows a relatively detailed decomposition of the pattern of
regional convergence.
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5 Conclusion

This paper offers an empirical assessment of the predictions of the neoclas-
sical model regarding regional convergence. Using two standard measures of
regional convergence, namely σ and β-convergence, it is established that the
states of the US exhibit strong tendencies towards convergence. This hy-
pothesis is tested further using an alternative method using time series data
set. Application of this method has shown that most of the US states exhibit
a similar tendency of convergence towards a steady-state level of per-capita
income, approximated in terms of the average per-capita income, providing
considerable support to the predictions of the neoclassical model across the
US states. Nevertheless, the process of convergence revealed in this paper
is more complicated. Introducing spatial interaction in a time series context
leads to different conclusions, regarding the composition of the convergence
club. As the results indicate, the cluster of converging states is limited and
includes states located in certain geographical areas. This suggests an intra-
club variation. The contribution of this paper’s empirical findings, however,
is not just limited to adding to the list of tests for regional club-convergence,
but most importantly to provide a methodology that will allow policy-makers
to detect different groups of regions, introducing a spatial dimension in a time
series context, overcoming thus a shortcoming of the standard cross-section
and time-series tests. From a policy perspective, this evidence is useful at
two levels. Firstly, given a general focus at national and regional level upon
support for lagging regions and the promotion of convergence, the identifica-
tion of a convergence-club clearly assists in drawing a dividing line between
regions which might be deemed eligible for assistance and those which are
not. Regional assistance should, to a substantial extent, be diverted to-
wards those regions that do not belong to the convergence-club. Secondly,
the greater part of effort and assistance should be directed to improve the
underlying conditions of lagging regions and thereby generate an economic
environment that more closely resembles the combination of characteristics
found in the convergence-club.

While the empirical results are serious in their own right, they must be
placed in perspective. There is a little pretence that the forgoing analysis
provides an exhaustive account of all factors that affect the process of re-
gional club convergence. For example, additional complications arise from
the multidimensional nature of the institutional structure of each region; a
factor that, indubitably, has important spatial implications. Considerably
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more research, therefore, is required before the issue of regional convergence
in agricultural productivity can be discussed with confidence. What then is
the purpose of this paper? Perhaps the main purpose of this paper should be
to provoke interest in further work on the underlying mechanisms of regional
club convergence.
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Figure 1: Convergence towards Steady-state Equilibrium  

 

 

Figure 2: Coefficient of Variation: 49 US States: 1929-2005 
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Figure 3: Absolute Convergence, 49 US States: 1929-2005 
 

 

 

Figure 4: Movements towards Average per-capita Income    
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Figure 5: The ‘Convergence-club’    

 

Figure 6: The ‘Convergence-club’, extended spatial specification  
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Table 1: Absolute β-convergence and the speed of convergence: US States, 1929-2005 
OLS, Estimated equation: 0,ii bycg +=

c    8.3217* (34.702) 
b  -0.6714* (-18.356) 

Implied β  1.4456* (18.022) 
Notes: Figures in brackets are t-ratios. An asterisk (*) indicates statistical significance at 95% 

level of confidence. The rate of convergence is defined as 
( )
T

b 1ln +−=β . 
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Table 2: Convergence towards the Average per-capita Income, US States 
State Polynomial Order           Slope t-ratio  

Alabama (ALB) 5 -0.0050118 -10.11 ** 
Arizona (ARZ) 4 0.0001950 8.707 ** 
Arkansas (ARK) 2 -0.0065412 -28.546 ** 
California (CLF) 5 -0.0040241 -14.433 ** 
Colorado (CLR) 2 0.0000686 2.149 ** 
Connecticut (CNT) 3 -0.0035808 -8.785 ** 
Delaware (DLW) 2 -0.0047440 -15.795 ** 
District of Columbia (DCL) 3 -0.0145569 -12.007 ** 
Florida (FLR) 5 -0.0002230 -5.482 ** 
Georgia (GRG) 3 -0.0039248 -22.34 ** 
Idaho (IDH) 3 -0.0000929 -0.787   
Illinois (ILL) 5 -0.0029664 -14.042 ** 
Indiana (IND) 4 0.0000517 1.695   
Iowa (IOW)  2 -0.0001636 -2.622 ** 
Kansas (KNS)  5 -0.0000846 -0.671   
Kentucky (KNT) 5 -0.0017234 -6.854 ** 
Louisiana (LUS) 2 -0.0013329 -14.600 ** 
Maine (MA) 4 -0.0001544 -2.244 ** 
Maryland (MRL) 3 -0.0017413 -8.758 ** 
Massachusetts (MSC) 4 -0.0036279 -10.132 ** 
Michigan (MCH) 2 -0.0010014 -12.062 ** 
Minnesota (MNN) 5 0.0002703 8.738 ** 
Mississippi (MSS) 2 -0.0093797 -23.459 ** 
Missouri (MSR) 5 -0.0001496 -5.425 ** 
Montana (MNT) 5 0.0004839 4.445 ** 
Nebraska (NBR) 2 -0.0002756 -3.775 ** 
Nevada (NV) 5 -0.0019381 -3.206 ** 
New Hampshire (NH) 3 -0.0006480 -5.585 ** 
New Jersey (NJ) 3 -0.0028700 -10.896 ** 
New Mexico (NM) 5 -0.0014699 -7.540 ** 
New York (NY) 4 -0.0072033 -22.982 ** 
North Carolina (NC) 4 -0.0043490 -19.069 ** 
North Dakota (ND) 3 -0.0067489 -8.414 ** 
Ohio (OH) 2 -0.0008952 -21.881 ** 
Oklahoma (OKL) 5 -0.0009309 -3.565 ** 
Oregon (ORG) 4 -0.0001874 -1.622   
Pennsylvania (PNN) 4 -0.0015209 -19.777 ** 
Rhode Island (RI) 5 -0.0031111 -6.953 ** 
South Carolina (SC) 5 0.0084863 -19.181 ** 
South Dakota (SD) 3 -0.0051511 -5.787 ** 
Tennessee (TNN) 2 -0.0028139 -26.77 ** 
Texas (TX) 3 -0.0007966 -13.807 ** 
Utah (UT) 4 0.0002896 5.201 ** 
Vermont (VRM) 2 -0.0001045 -2.949 ** 
Virginia (VRG) 5 -0.0009432 -6.248 ** 
Washington (WSH) 4 -0.0003804 -2.251 ** 
West Virginia (WV) 5 -0.0000279 -0.129   
Wisconsin (WSC) 5 -0.0002679 -7.522 ** 
Wyoming (WYM)  4 -0.0003295 -2.754 ** 

Note: ** indicates that the average slope is statistically significant at 95% level. The final choice on 
the polynomial order is based on the Akaike and the Schwartz-Bayesian information criterion. 
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Table 3: Convergence Clubs and spatial interaction, US States, panel data 

State Average Slope Standard Deviation p-value 

Alabama (ALB) 0.511 0.041 0.000 

Arizona (ARZ) 0.063 0.025 0.005 

Arkansas (ARK) 0.502 0.041 0.000 

California (CLF) -0.247 0.029 0.000 

Colorado (CLR) 0.175 0.030 0.000 

Connecticut (CNT) -0.060 0.027 0.012 

Delaware (DLW) -0.339 0.032 0.000 

District of Columbia (DCL) -0.019 0.041 0.316 

Florida (FLR) 0.244 0.027 0.000 

Georgia (GRG) 0.597 0.028 0.000 

Idaho (IDH) 0.186 0.047 0.000 

Illinois (ILL) -0.247 0.031 0.000 

Indiana (IND) 0.022 0.034 0.263 

Iowa (IOW)  0.086 0.042 0.020 

Kansas (KNS)  0.224 0.044 0.000 

Kentucky (KNT) 0.379 0.033 0.000 

Louisiana (LUS) 0.266 0.025 0.000 

Maine (MA) 0.014 0.028 0.315 

Maryland (MRL) 0.071 0.030 0.009 

Massachusetts (MSC) 0.049 0.036 0.086 

Michigan (MCH) -0.201 0.036 0.000 

Minnesota (MNN) 0.265 0.043 0.000 

Mississippi (MSS) 0.448 0.042 0.000 

Missouri (MSR) -0.007 0.026 0.388 

Montana (MNT) -0.031 0.041 0.227 

Nebraska (NBR) 0.091 0.027 0.002 

Nevada (NV) -0.219 0.031 0.000 

New Hampshire (NH) 0.180 0.035 0.000 

New Jersey (NJ) -0.063 0.029 0.018 

New Mexico (NM) 0.278 0.042 0.000 

New York (NY) -0.397 0.030 0.000 

North Carolina (NC) 0.554 0.045 0.000 

North Dakota (ND) 0.357 0.041 0.000 

Ohio (OH) -0.155 0.032 0.000 

Oklahoma (OKL) 0.211 0.042 0.000 

Oregon (ORG) -0.032 0.030 0.150 

Pennsylvania (PNN) -0.127 0.027 0.000 

Rhode Island (RI) -0.181 0.031 0.000 

South Carolina (SC) 0.769 0.025 0.000 

South Dakota (SD) 0.338 0.045 0.000 

Tennessee (TNN) 0.498 0.041 0.000 

Texas (TX) 0.346 0.030 0.000 

Utah (UT) -0.005 0.041 0.458 

Vermont (VRM) 0.058 0.028 0.020 

Virginia (VRG) 0.645 0.036 0.000 
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Washington (WSH) -0.012 0.029 0.346 

West Virginia (WV) 0.120 0.041 0.002 

Wisconsin (WSC) -0.026 0.034 0.227 

Wyoming (WYM)  0.155 0.021 0.000 
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