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Parameter spaces for stationary
DGPs in spatial econometric
modelling

Matthias Koch
Institute for Economic Geography and GIScience, Vienna
University of Economics and Business, Nordbergstrasse
15/4/A, 1090 Vienna, Austria

Abstract

Unlike the time series literature the spatial econometric liter-
ature has not really dealt with the issue of the parameter space.
This paper shows that current parameter space concepts for spa-
tial econometric DGPs are inadequate. It proves that the para-
meter space proposed by Kelejian and Prucha 2008 can result in
nonstationary DGPs, while the parameter space proposed by Lee
and Liu 2010 can be too restrictive in applied cases. Further-
more it is discussed that the practice of row standardizing lacks
a mathematical foundation.
Due to these problems concerning the current parameter space

consepts, this paper provides a new de�nition for the spatial
econometric parameter space. It is able to show which assump-
tions are necessary to give row standardizing the needed math-
ematical foundation. Finally two additional applications for the
new parameter space de�nition concerning models with group
interaction and panels with �xed cross section sample size are
provided. Both applications result in parameter spaces that are
substantially larger than the ones the literature would so far con-
sidered to be stationary.

1 Introduction

Spatial econometric models are widely used for empirical problems con-
taining spatial autocorrelation. The key element to deal with spatial
autocorrelation is to incorporate spatial lags into the regression model.
This is similar to the case of time series where time lags are added. For
the instance of linear problems in time series it is well known which pa-
rameter space con�gurations yield stationary data generating processes
(DGPs) [see for example Hamilton 1996, chapter 1]. There is no doubt
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that the (admissible) parameter space for the time lag given a station-
ary �rst order autoregressive process is (�1; 1). The spatial econometric
literature, so far, has not dealt with the issue of the spatial parameter
space. That is even re�ected by the nomenclature like, in the time series
literature it is common to distinguish between admissible, stationary...
parameter spaces, while in spatial econometrics virtually no distinction
takes place. Due to this disregard of the spatial parameter space by the
literature one might not be surprised that this paper can address the fol-
lowing three central issues: First it shows that common parameter space
concepts are inadequate. Second it proposes a new mathematical para-
meter space de�nition and third shows some applications for this new
parameter space de�nition. In order to keep the nomenclature simple
this paper will refer to sets containing the spatial autocorrelation para-
meters which result into stationary DGPs simply as spatial parameter
spaces, or if it is clear form the context parameter space.
In applied spatial econometrics the following spatial parameter space

concept is quiet common and this paper will refer to it as the "practi-
tioners" approach: The approach is characterized by normalizing the
spatial structure represented by the spatial weight matrix Wn either
by dividing Wn with it�s maximum absolute row sum (maximum row
standardizing) or dividing each row ofWn by its absolute row sum (row
standardizing) and then, assumes that the process will be stationary for
spatial lag parameters in the set (�1; 1). This procedure seems plausible
due to the similarity to the time series approach. The "practitioners"
approach of row standardizing can be seen as an approximation of the
Kelejian and Prucha 2008 parameter space. Kelejian and Prucha ar-
gue that a parameter space for stationary DGPs must be in a subset of
(�1= j�minj ; 1= j�maxj), where �max and �min represent the maximum and
minimum eigenvalue1 of the spatial weight matrix Wn. On the other
hand Lee and Liu 2010 motivate their spatial parameter space concept
an other way. Theirs is based on the Neumannseries, which states that
if a matrixnorm of �Wn is smaller one that the inverse of (In � �Wn)
exists, where In is a identity matrix of size n. Additionally if the Man-
hattan and In�nity norms of �Wn are assumed to be smaller one, due to
the Neumannseries and the subadditivity of matrix norms, the inverse
of (In � �Wn) will be bounded in row and column sums in absolute
value2. These concepts and their background will be introduced in the

1Since the simple normalzing procedures like maximum row standardizing can
be seen as approximation for the biggest absolute eigenvalue, some authors [ref,ref]
correctly pointed out that this may result in a too restrictive parameterspace, since

(�1; 1) may only a subset of 1=maxi
nPn

j=1 jwi;j j
o
(�1= j�minj ; 1= j�maxj)

2For a mathmatical proof, see Lemma YY in the appendix
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next sections in more detail.
This paper shows basically three problems are existing concerning the

previous mentioned parameter spaces. First the parameter space con-
cept of Kelejian and Prucha 2008, which is only considering the eigenval-
ues can result in nonstationary DGPs. Second applying the Lee and Liu
2010 parameter space and the "practitioners" approach of row standard-
izing on the sameWn can result in di¤erent parameter spaces3. While
Lee and Liu 2010, given a spatial one forward on behind structure of
Wn would only consider the spatial parameters to be in (�2=3; 2=3),
the "practitioners" approach of row standardizing would consider the
spatial parameters to be in (�1; 1). Since neither the Lee and Liu 2010
nor the Kelejian and Prucha 2008 parameter space concept cover or are
useful to deduce the "practitioners" approach of row standardizing, it
lacks a mathematically foundation. Third, this paper shows that in many
applied cases the Lee and Liu 2010 parameter space is too restrictive.
These three problems of current parameter space concepts are the

main motivation to de�ne the spatial parameter space indirectly via de-
sired mathematical properties. The properties are chosen so that the new
spatial parameter space can be applied to draw inferences for example
with mean distance estimators, like Generalized Method of Moments or
Maximum Likelihood.
Due to this new parameter space de�nition the paper provides exam-

ples where accounting for the inner structure of the spatial weight ma-
trix results in spatial parameter spaces that the literature would have
treated as nonstationary. Additionally it is possible to show that the
(�1; 1) parameter space for a spatial lag after applying the "practition-
ers" approach of row standardizing, will result in almost all applied cases
stationary DPGs.
The outline of the paper is the following: The next section brie�y

describes some spatial econometric DGPs, introduces the spatial para-
meter spaces of Kelejian and Prucha 2008 and Lee and Liu 2010 and then
shows some fundamental problems of them. The problems of Section 2
motivate a di¤erent de�nition for spatial parameter spaces which is pre-
sented in Section 3. Section 4 uses the de�nitions to show the power
of the new parameter space concept. The last section brie�y concludes
and summarizes this work. The appendix provides some useful theorems,
lemmas and proofs like the Neumannseries and Gerschgorintheorem.

3The second practitioners approach, namely maximum row standardizing is cov-
ered by the parameterspace defnition of Lee and Liu 2010.
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2 Important spatial DGPs and problems of the Kele-
jian & Prucha and the Lee & Liu parameter space

This section provides two general spatial econometric data generating
processes, introduces the spatial parameter spaces of Kelejian and Prucha
2008 and Lee and Liu 2010 and describes their problems. For further
details regarding the di¤erent DGPs see the references.
Notation: Let Yn;Sn2 Rn�1. One can write Yn also as Y = (y1; y2;

:::; yn)
0. j�j denotes the determinant of the matrix � or the absolute value

of the scalar �, while kk1 denotes the maximum absolute row sum and
kk1 the maximum absolute column sum of a matrix4. Due to notational
convenience, not all indices will always be written. It should be clear
from the context. Sp (Wn) denotes the set containing the eigenvalues of
the matrixWn.

2.1 The Manski Model and the problems of Kele-
jian & Prucha parameter space

One general formulation for a spatial econometric DGP is represented
by the Manski model (1).

Yn = �WnYn +Xn� +WnXn� + un
where un=�Wnun+�n, �i � i:i:d(0; �2)

(1)

In (1) Xn represents the matrix of explanatory variables, �, �, �
and � are the parameters to be estimated and the �i are independently
and identically distributed with zero mean and �nite variance �2. Wn

represents the n by n spatial weights matrix of known constants. The di-
agonal entries ofWn are assumed to be zero5. The Manski model incor-
porates various representations of spatial DGPs like the Spatial Autore-
gressive Model, the Spatial Error Model and the Spatial Durbin Model6.
The DGP stated in (1) can be solved for Yn = (In � �Wn)

�1 (Xn�+
WnXn�+ (In � �Wn)

�1 �) if (In � �Wn)
�1 and (In � �Wn)

�1 exist.
The parameter space proposed by Kelejian and Prucha 2008 for

the Manski model stated in (1) can be sketched in the following man-
ner: They argue correctly that if Wn is not normalized (In � �Wn)

�1

might not be de�ned for some values of � 2 (�1; 1). Therefore they
4Note that these matrix norms satisfy the following useful inequality: kAnBnk# �

kAnk# kBnk# where # 2 f1;1g andAn and Bn are n by nmatrices. For more detais
see Bronstein et al 2000 page 268.

5Allthough it is possible to derive paramerter spaces for Wn matrices where the
diagonal elements are not zero, it is not common in applications...

6For more details to the assumptions and properties of the data generating process
stated in (1), see Elhorst [1]
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suggest that the parameter space of the spatial parameter should be
(�1=�n; 1=�n), where �n = max

1�i�n
fj�ij where �i 2 Sp(Wn)g. Since evalu-

ating the eigenvalues ofWn can be numerically di¢ cult, they suggest to
use the Gershgorin theorem to get an upper bound for �n; what they call

� �n = min

(
max
1�i�n

(
nP
j=1

jwij;nj
)
; max
1�i�n

(
nP
j=1

jwji;nj
))

where j�nj � j� �nj.

As a result they recommend to use (�1=� �n; 1=� �n) as a parameter space
for the spatial parameter7.
Although there are Wn-matrices like the one forward one behind

pattern8, where guaranteeing that _n 2 N [ f1g : 1=� =2 Sp(Wn)
results in a well de�ned parameter space, this is generally not the case.
Consider for exampleWn =Wn where the typical element wij is de�ned
by (2)

wi;j =

�
1 if i = j + 1 and j 2 f1; 2; :::; n� 1g
0 otherwise

(2)

One could interpret the lagWnYn in a model likeYn = �WnYn+"n
as the time lag of a �rst order autoregressive process form the time series
literature. Obviously the (admissible) parameter space for this "time"
lag is (�1; 1) given the DPG has to be stationary. As the appendix shows
Sp
�
Wn

�
= f0g. Therefore, the parameter space in Kelejian and Prucha

2008 would be (�1=�n; 1=�n) = (�1;1) = R and hence can result in
nonstationary DGPs. This is not surprising, since there is a di¤erence
between the solvability and the boundedness of a spatial DGP. For the
Wn stated in (2), one can write down an analytical solution for the
inverse:9 _n 2 N :

�
In � �Wn

��1
=
Pn

k=0 �
kW

k

n. Note that the seriesPn
k=0 �

kW
k

n converges for every n 2 N. This example shows if the DGP
stated in (1) is not solvable for a n 2 N, it is also not stable, but if the
DGP is solvable it does not mean that it is stable as n!1. Therefore,
one has to use additional assumptions for the parameter space like the
boundedness10 of

�
In � �Wn

��1
in absolute row and column sums as

n ! 1. Since
P1

k=0 �
kW

k

n converges only if j�j < 1, the boundedness
condition constrains the spatial parameter space in a useful manner.

7Please note that this parameter space is not the same Lee and Liu 2010 proposed.
8see Koch 2010
9Note that in this case

�
Wn

�n+1
= 0n�n, where 0n�n denotes a matrix of size n

by n only containing zeros.
10This is a standard assumption for drawing inferences on spatial econometric

models, see for example ....
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2.2 High order spatial models and the problems of

Lee & Liu parameter space

Another general spatial econometric DGP11 is represented by the high
order spatial autoregressive models with autoregressive disturbances12.

Yn =
pP
j=1

�jWjnYn +Xn� + un

where un=
qP
j=1

�kMknun+�n, �i � i:i:d(0; �2)
(3)

In (3) �1; :::; �p and �1; :::; �q represent the di¤erent spatial lag pa-
rameters, W1n; :::;Wpn and M1n; :::;Mqn are n by n dimensional spa-
tial weights matrices. Like in (1) it is assumed that the diagonal ele-
ments ofWjn and Mkn are set to zero. The DGP stated in (3) can be
solved for Yn = (In �

Pp
j=1 �jWjn)

�1 (Xn�+ (In �
Pq

k=1 �kMkn)
�1�)

if In �
Pp

j=1 �jWjn and In �
Pq

k=1 �kMkn are invertible.

While Kelejian and Prucha 2008 motivate their parameter space via
the eigenvalues of Wn Lee and Liu 2010 on the other hand motivate
the spatial parameter space for the DGP stated in (3) via the follow-

ing reasoning: They argue correctly if
pP
j=1

���j�� < 1=maxj=1:::p fkWjnk1 ;

kWjnk1g and
qP
k=1

j�kj < 1=maxk=1:::q fkMknk1 ; kMknk1g that the in-

verses of In �
pP
j=1

�jWjn and In �
qP
j=1

�kMkn exist due to the existence

of the Neumannseries and both are bounded in row and column sums in
absolute value. This condition represents their spatial parameter space.
Although it can be applied on neighboring patterns like (2) the parame-
ter space can be restrictive if p = 1; q = 0 andWn is row normalized.
As an example to show the constraints of the Lee and Liu 2010 spatial

parameter space, the spatial one forward one behind pattern represented
byWn is used where the typical element wi;j is de�ned by (4)

wi;j =

�
wj;i = 1 if j = i+ 1 and i 2 f1; 2; :::; n� 1g
0 otherwise

(4)

11 [see Lee and Liu 2010 for model details]
12Lee and Liu [2010] have suggested to use either a ML or a B-IV estimator for

this DGP. Badinger and XXX [] have suggested to use an IV- estimator.
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Row-normalizingWn yields fWn. Obviously
fWn


1
= 1 holds, butfWn


1
= 1:5. Therefore, it is not clear, whether

�In � �fWn

��1
1

=P1
k=0 �

k
n
fWk

n


1
converges, because

fWn


1
> 1 . Hence, the parameter

space stated in Lee and Liu 2010 for fWn would be � 2
�
� 1
1:5
; 1
1:5

�
=�

�2
3
; 2
3

�
in order to ensure convergence of

P1
k=0 �

k
n
fWk

n


1
.

The previous reasoning does not imply that the spatial parameter
space of (4) has to be

�
�2
3
; 2
3

�
. As Theorem 1 in section 4.1 in shows

that for row standardized Wn-matrices like fWn given in (4) the para-
meter space is still (�1; 1). Therefore, the Lee and Liu 2010 parameter
space results into too restrictive parameter spaces for all Wn where a
row standardization was applied and the row sums ofWn before the nor-
malization were di¤erent and the original weight matrix was symmetric.

3 A formal Parameter space de�nition

In order to derive estimator properties for DGPs like (1) or (3), station-
arity is required. The stationarity assumption is re�ected via bound-
edness conditions of the DGP. Hence, this paper proposes to use these
conditions to construct the spatial parameter space. Consequently the
proposed spatial parameter space has to satisfy the following properties
1, 2, and 3:

De�nition 1 Let �i 2 �i � R, 	n;p =
pP
j=1

�jWjn if p > 1, 	n;1 = �Wn

and the diagonal entries of Wn be zero. �i where i 2 f1; :::; pg is a well
de�ned spatial parameter space, if the following properties are met:

1. 8�i 2 �i; n 2 N [ f1g : jIn �	n;pj 6= 0

2. 8�i 2 �i; n 2 N[f1g :
(In �	n;p)

�1
1
<1^

(In �	n;p)
�1

1 <
1^ k	n;pk1 <1^ k	n;pk1 <1

3. �i = [
j2N
Aj; Aj is an interval of R.

The �rst property simply states that for every sample size, even if
it approaches in�nity, there must always exist the inverse of In � �Wn

or In �
Pp

j=1 �jWjn. If one would only use the the �rst condition in
order to �nd parameter spaces, one would use the Kelejian Prucha 2008
parameter space. The �rst condition simply ensures that the spatial
DPG exists for every n 2 N [ f1g.
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The second property ensures the boundedness of the inverse in ab-
solute row and column sums. In an econometric this property ensures
�nite moments of Yn. This property guarantees for Wn as de�ned in
equation (2) that the parameter space is only (�1; 1). The properties
k	n;pk1 <1^ k	n;pk1 <1 imply that the spatial spillover has to be
bounded as well.
The third property re�ects the idea that only intervals are used as a

parameter space and not a countable set of points. This is for example
necessary if mean value theorems for deriving estimator properties are
used.
Properties 1 and 2 clearly show the di¤erence between solvability and

stationarity of a spatial DGP. Although there exist examples, like the
spatial one forward one behind pattern, where property 1 is su¢ cient
for property 2, this is not generally the case.

Equipped with the properties 1- 3 the parameter space proposed by
Lee and Liu 2010 becomes clearer. If there is no additional knowledge
about Wjn and an explicit spatial parameter space for �i is desired
one could use the following reasoning: If any matrix norm of 	n;p is
smaller than one the Neumann series can be applied to �nd the inverse
of In�	n;p. Additionally Lemma 1 shows for % 2 f1;1g if k	n;pk% < 1
that

(In �	n;p)
�1

%
� 1

1�k	n;pk%
< 1. This equivalent to the spatial

parameter space suggested by Lee and Liu 2010.
The next section shows, how these properties 1-3 can help to con-

struct spatial parameter spaces that are larger than the ones currently
considered by the literature. Additionally the next section shows which
conditions are necessary in order for the "practitioners" approach of row
normalizing to ful�ll the properties 1-3.

4 Power of the new parameter space concept

This section provides three applications of the new parameter space con-
cept in order to show its power. Since the concept is de�ned indirectly
via mathematical properties it is possible to use the inner structure of
the spatial lag(s) to derive the corresponding spatial parameter spaces.
The examples of this section suggest that the more inner structure of the
spatial lag(s) is present the more precise and in these examples larger
the spatial parameter space gets. First subsection 4.1 delivers the math-
ematical foundation for the "practitioners" approach of row standardiz-
ing. The key assumption for this proof is that the Wn was symmetric
before the row standardization took place. A second application is a
group interaction model where the within and between group interac-
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tion is modelled with partitioned W- matrices. This particular inner
structure of the spatial lags results in a signi�cantly larger spatial pa-
rameter space than the one proposed by Lee and Liu 2010. Subsection
4.3 provides the third application, where it turns out that in some panel
settings it is possible to use almost the whole real line as the spatial
parameter space. Additionally this section suggests one possible inter-
pretation for the inevitable cross section sample size dependence of the
parameter space. In the context of repeated sampling it can be seen for
example as a consequence of the geographic scale.

4.1 Row standardizing and Stability

This subsection shows that the "practitioners" approach of row stan-
dardizing yields stationary parameter spaces. Let Wn be the spatial
weight matrix with the typical element wi;j and wi;i = 0. The row
standardization for Wn is represented by the diagonal matrix �n with
the typical element13 �i;i = 1=

Pn
j=1 jwi;jj. Hence the normalized weight

matrix is given by fWn = �nWn. The aim is to �nd weather � 2 (�1; 1)
ful�lls the parameter space properties 1-3. Property 3 is obviously ful-
�lled. In order to �nd the inverse of In � �fWn a Numannseries can be

applied (In��fWn)
�1 =

1P
k=0

�kfWk
n and hence, property (1) is ful�lled. To

show property (2) via Theorem 1 additional assumptions are necessary:
Wn has to be symmetric and kWnk1 < � 2 R.
The �rst assumption of a symmetric Wn is generally ful�lled if for

example,Wn represents a spatial neighboring structure. If observation
A is neighbor of observation B, the reverse must also be true. The
second assumption requests that Wn has bounded absolute row sums.
In the context of a neighboring structure that is equivalent to limiting
the number of neighbors for each observation to a �nite constant.

Theorem 2 Let Wn be a symmetric weigh matrix with �nite weights
wi;j 2 R. The dependence structure is limited such that kWnk1 < � 2
R. Let fWn be the row standardized version of Wn. If j�j < 1 it follows

that:

�In � �fWn

��1
1
^
�In � �fWn

��1
1

^
fWn


1
^
fWn


1
� c 2

R

Proof. 4 Properties have to be shown:
13It is assumed that

Pn
j=1 jwi;j j > 0. If wi;j represents a neigboring structur,Pn

j=1 jwi;j j > 0 is full�lled if each observation has at least one neigbor.
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(1)
fWn


1
<1: Due to the construction of�n :

fWn


1
= k�nWnk1

= 1 <1 .
(2)
fWn


1
< 1: Observe that

fWn


1
= k�nWnk1 = kW0

n�nk1
holds. SinceWn is symmetric and the property of the sub- multiplica-
tively of matrix norms kW0

n�nk1 = kWn�nk1 � kWnk1 k�nk1 <

��max <1 where �max = max16i6n
n
1=
Pn

j=1 jwi;jj
o
.

(3)

�In � �fWn

��1
1
< 1: Due to Lemma YYY (applying the

Neumannseries and using the subadditivity/submultiplicativity of ma-

trix norms) it follows that:

�In � �fWn

��1
1
= 1

1�j�j � c 2 R.

(4)

�In � �fWn

��1
1

<1: First a Neumannseries and the subaddi-

tivity of matrix norms is used:

�In � �fWn

��1
1

�
1P
k=0

j�jk
�fWn

�k
1

.

Note that if k > 2 :
fWk

n


1
=

�n�k�1Q
l=1

Wn�n

�
Wn


1

� k�nk1
k�1Q
l=1

Wn�n


1

kWnk1 = k�nk1
k�1Q
l=1

�nWn


1
kWnk1 = �max� holds. Hence

�In � �fWn

��1
1

� 1+
1P
k=1

j�jk ��max <1

4.2 Group- interactions and spatial econometric mod-

elling
This subsection considers the following empirical problem: The DGP not
only contains spatial autocorrelation but also has to account for di¤er-
ent spatial interaction parameters, namely within and between groups.
The DGP could for example model a housing market with two distinct
geographical markets, namely an east-market and a west-market. These
two groups (east and west) have the sample sizes n1 (west- market) and
n2 (east- market). The overall sample size is denoted by n = n1 + n2.
For simplicity it is assumed that the data is ordered by these partic-
ular groups. To account for the within and between group e¤ects the
following model speci�cation (5) could be used14.

Yn =
�
�11Ŵ11 + �12Ŵ12 + �21Ŵ21 + �22Ŵ22

�
Yn +Xn

e� + �n
where �i � i:i:d(0; �2)

(5)

14Of course in order to �nd asymptotic properties for the spatial parameters it has
to assumed that n1 and n2 !1
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Since the data is ordered, the spatial weight matrices have the follow-

ing simple form: Ŵ11 =

�
Wn1;n1 0n1;n2
0n2;n1 0n2;n2

�
, Ŵ12 =

�
0n1;n1Wn1;n2

0n2;n1 0n2;n2

�
,

Ŵ21 =

�
0n1;n1 0n1;n2
Wn2;n1 0n2;n2

�
, Ŵ22 =

�
0n1;n1 0n1;n2
0n2;n1Wn2;n2

�
. Note that Ŵ11,

Ŵ12,Ŵ21 and Ŵ22 are partitioned.
The within group e¤ects, given by the terms �11Ŵ11Y and �22Ŵ22Y

would answer the question of how are the western- (�11Ŵ11Y) and
eastern- market (�22Ŵ22Y) a¤ected by themselves. On the other hand
the between groups e¤ects, given by the terms �12Ŵ12Y and �21Ŵ21Y
would answer the question of how is the western market in�uenced by
the eastern (�12Ŵ12Y) market and vice versa (�21Ŵ21Y).
To �nd the spatial parameter space for (5) let 	n;4 be de�ned by

	n;4 := �11Ŵ11 + �12Ŵ12 + �21Ŵ21 + �22Ŵ22. Additionally it is as-
sumed15 that maxfjjŴi;jjj% where % 2 f1;1g and i; j 2 f1; 2gg � 1.
Although not necessary for the following proof, in most applied cases
Wn1;n1 andWn2;n2 will be symmetric andWn1;n2 = (Wn2;n1)

0.
The following paragraph will sketch the search and proof for the para-

meter space, the actual proof is given in the appendix: The �rst step is to
use the equation system y1 = �11Wn1;n1y1+�12Wn1;n2y2+s1 (West) and
y2 = �21Wn2;n1y1+�22Wn2;n2y2+s2 (East) and solve for y1 and y2. One
condition for solving these equations is that A1 := (In1 � �11Wn1;n1)

�1

and A2 := (In2 � �22Wn2;n2)
�1 are de�ned. Therefore, two conditions

for the parameter space are: j�11j < 1 and j�22j < 1. The second step is
to �nd the restrictions for �21 and �12. Since it is assumed that j�11j < 1
and j�22j < 1 one can solve the two equations y1 = (In1 � �11Wn1;n1)

�1

(�12Wn1;n2y2 + s1) and y2 = (In2 � �22Wn2;n2)
�1 (�21Wn2;n1y1 + s2). In-

serting y2 into y1 yields: y1 = A1 (�12Wn1;n2A2 (�21Wn2;n1y1 + s2) + s1).
It is possible to solve this equation for y1 if kA1�12Wn1;n2A2�21Wn2;n1k1 <
1. This inequality is satis�ed if j�12j

j1��22j
j�21j
j1��11j

< 1. Hence it is shown that
the following two conditions ful�ll the parameter space properties 1-3
for the DGP given in (5).

1. j�11j < 1 and j�22j < 1

2. j�12j
j1��22j

j�21j
j1��11j

< 1

15The appendix shows that if Wn1;n1, Wn2;n2, Wn2;n1 and Wn1;n2 are row
standardized, Wn1;n1 and Wn2;n2 can be written as Wn1;n1 = �n1Wn1;n1 and
Wn2;n2 = �n2Wn2;n2 where � represents the row- standardizing and both W are
symmetric and

W
1 ; kWn1;n2k1 ; kWn2;n1k1 < 1 hold the same spatial para-

meter space can be applied for the DGP given in (6)
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This parameter space is signi�cantly larger than the one proposed

by Lee and Liu 2010. For example if j�11j = j�22j = 1=3 the "" area in
�gure (1) represents the Lee and Liu parameter space and "" represents
the parameter space due to inequality j�12j

j1��22j
j�21j
j1��11j

< 1.

�gure 1:....

Figure (1) shows quite dramatically that one should take the inner
structure of the Wn- matrices into account in order to �nd parameter
spaces. This is to some extend similar to the "practitioners" approach
of row standardizing. The more knowledge is present about the inner
structure of the spatial lags, like in this example the weight matrices
are partitioned, the more precise and in this particular example larger is
the resulting spatial parameter space gets. This can also be seen in the
next application of the new parameter space de�nition.

4.3 Geographic scale and the spatial parameter space

This subsection explores panels where the number of observation units
(n) are �xed. Since n is �xed T the number of time periods has to
go to in�nity in order to derive the asymptotic properties of possible
estimators. Let N denote the overall sample size, namely N = nT . The
vector YN has the elements y1;1; y2;1; :::; yn;1; :::; yn;T . A possible spatial
DGP re�ecting these properties is given by (6)

12



YN = � (IT 
Wn)YN +XN� + �N where �i � i:i:d(0; �2) (6)

where 
 denotes the Kronecker product. Finding a spatial para-
meter space for (6) can be achieved by the following reasoning: Ob-
viously it has to be ensured that the inverse of IN � � (IT 
Wn) ex-
ists. Since Sp (IT 
Wn) = Sp (Wn) the condition 1=� =2 Sp(Wn)
follows directly. Note that the number of elements in Sp(Wn) is al-
ways smaller or equal n. Since n is �xed kWnk1 < 1, kWnk1 < 1
and

(In � �Wn)
�1

1;1 < 1 have to hold for 1=� =2 Sp(Wn). Re-

mark that (IN � � (IT 
Wn))
�1 = IT 
 (In � �Wn)

�1 and therefore(IN � � (IT 
Wn))
�1

1;1 < 1 for all T 2 N [ f1g as long 1=� =2
Sp(Wn). Thus the spatial parameter space for (6) is given by Rnf1=e�n
where e�n 2 Sp(Wn)g.
The previous paragraph showed above all two noteworthy character-

istics of the spatial parameter space for the DGP given in (6): First,
Rnf1=e�n where e�n 2 Sp(Wn)g is tremendously larger than the para-
meter spaces considered by the literature so far. Second, the spatial
parameter space is a function of the by assumption �xed n and thus
can o¤er an interesting interpretation: The implicit n dependence of the
DGP dynamics can for example be seen as a consequence of di¤erent
geographic scales. To illustrate this point let n = 27 represent the coun-
tries in the European Union and yi;t their corresponding GDP- growth
rate. If n (and henceWn) is now changed to en = 271 (en now represents
the NUTS-2 regions of the European Union) this simply would re�ect
a change in the geographical scale. Since a change in the geographical
scale is often associated with a change in the model dynamics a parame-
ter space as function dependent on n seems plausible and would simply
re�ect some in�uences of the geographical scale on the DGP.
It is important that the previous reasoning is not suggesting to

use Rnf1=e�n where e�n 2 Sp(Wn)g for every spatial panel data DGP.
Whether this makes sense, depends on what the DGP should describe.
Consider for example house prices in a real estate market. Economic the-
ory would suggest that the market prices are independent of the market
size n. As a result the DPG- dynamics should be independent of n as
well and consequently the parameter space must be independent of n
too, like for example the classical (�1; 1)- spatial parameter space, after
normalizing the weigth matrix.

13



5 Conclusion and Summary

Unlike the time series literature, there has been not much e¤ort in the
spatial econometric literature to substantially examine the parameter
spaces for spatial econometric models. This paper raises three important
issues concerning spatial parameter spaces:
First, current parameter space concepts and practical approaches are

inadequate. This point is supported by the three following observations:

� Since the Kelejian and Prucha 2008 parameter space is only con-
sidering the eigenvalues of the spatial weight matrix, it is only
concerned about the existence of the DGP and not its stationarity.
Hence it can result in nonstationary DGPs if for example the spa-
tial weight matrix mimic a process from the time series literature.

� The Lee and Liu 2010 parameter space can result in too small pa-
rameter spaces, especially if it is confronted with row standardized
weight matrices. Although it will always result in stationary DGPs
it has to be seen as too restrictive.

� Since neither the Kelejian and Prucha 2008 nor the Lee and Liu
2010 parameter space can be used as a mathematical foundation for
the "practitioners" approach of row standardizing, this approach
lacks a theoretical basis.

Second, a useful spatial parameter space can be de�ned indirectly via
desired mathematical properties. These properties are showing clearly
the di¤erence between the necessary conditions for the existence of the
DGP and its stationarity. Additionally it shows that the Lee and Liu
2010 parameter space can be seen as a special case of this new parameter
space de�nition.

Third, the power of the new parameter space concept lies in its ability
to account for the inner structure of the spatial lag(s). Hence it is possible
to derive more precise and in some cases larger spatial parameter spaces.
This can be veri�ed with the help of three practical examples:

� Section 4.1 shows that the "practitioners" approach of row stan-
dardizing under the practical assumption that if the weight matrix
before row normalizing was symmetric, the approach always yields
stationary DGPs. Hence, it is possible to give the "practitioners"
approach of row standardizing a mathematical foundation.

14



� Section 4.2 handles models with di¤erent spatial interactions re-
�ecting the assumed group structure. It is possible to �nd sub-
stantially larger spatial parameter spaces than the ones previously
considered by the literature.

� Finally, the example of spatial panels with �xed n raises two inter-
esting issues: First it is showing that under certain assumptions
about the DGP, it is possible to use almost the whole real line as
the spatial parameter space. Second, it suggested that the implicit
n dependence of the DGP dynamics can for example be seen as a
consequence of di¤erent geographic scales.

These results highlight the importance of the spatial parameter space.
Therefore, applied reseachers should be encouraged to deal with their
parameter space in more detail since it could be larger and reveal some
dynamics of the spatial DGP.

A Appendix

Lemma 3 Let Wn a n by n matrix where the typical element wij;n is
de�ned by (2). It follows that: Sp(Wn) = f0g.

Proof. We proof this theorem by using the Jordan normal form: Wn =
zn�nz�1n . If the typical element fi;j of zn and i;j of �n are de�ned by
(7) and (8) it follows due to the Jordan normal form that the diagonal
elements of �n are the eigenvalues ofWn.

fi;j =

�
1 if i = n+ 1� j and j 2 f1; 2; :::; ng
0 otherwise

(7)

i;j =

�
1 if j = i+ 1 and i 2 f1; 2; :::; n� 1g
0 otherwise

(8)

Note that zn = z�1n and �n is a typical Jordan form. It can easily be
seen thatWn = zn�nz�1n = zn�nzn holds and hence Sp(Wn) = f0g.

Proof. for the group model -Part A: If we have a model like (5) the
following parameter space ful�lls all the 3 parameter space properties:
j�11j < 1, j�22j < 1 and

j�12j
j1��22j

j�21j
j1��11j

< 1. Let 	n;4 = �11Ŵ11+�12Ŵ12+

�21Ŵ21 + �22Ŵ22. Due to j�11j < 1 j�22j < 1 and maxfjjŴi;jjj% where
% 2 f1;1g and i; j 2 f1; 2gg � 1 the inverse of In1 � �11Wn1;n1 and
In2 � �22Wn2;n2 exist. We use the equation system y1 = �11Wn1;n1y1 +
�12Wn1;n2y2 + s1 and y2 = �21Wn2;n1y1 + �22Wn2;n2y2 + s2. We can
solve these equations and get:
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y1 = (In1 � �12�21A1Wn1;n2A2Wn2;n1)
�1A1 (�12Wn1;n2A2s2 + s1)

y2 = (In2 � �12�21A2Wn2;n1A1Wn1;n2)
�1A2 (�21Wn2;n1A1s1 + s2)

where A1 = (In1 � �11Wn1;n1)
�1 and A2 = (In2 � �22Wn2;n2)

�1.

Therefore, we �nd 	�1
n;4 =

 e	11 e	12e	21 e	22
!
where

e	11 = (In1 � �12�21A1Wn1;n2A2Wn2;n1)
�1A1,e	12 = (In1 � �12�21A1Wn1;n2A2Wn2;n1)
�1A1�12Wn1;n2A2,e	21 = (In2 � �12�21A2Wn2;n1A1Wn1;n2)
�1A2�21Wn2;n1A1 ande	22 = (In2 � �12�21A2Wn2;n1A1Wn1;n2)
�1A2. If we use a Neu-

mannseries we can show that 	�1
n;4 exists if k�12�21A1Wn2;n1A2Wn2;n1k1

_ k�12�21A1Wn2;n1A2Wn2;n1k1 < 1. k�12�21A1Wn2;n1A2Wn2;n1k1 _
k�12�21A1Wn1;n2A2Wn2;n1k1 < 1 is true if j�12j

j1��22j
j�21j
j1��11j

< 1, since
Lemma 6 shows kA1k1;1 < 1

j1��11j
and kA2k1;1 < 1

j1��22j
. Therefore,

the parameter space property 1 is ful�lled if j�11j < 1, j�22j < 1 and
j�12j
j1��22j

j�21j
j1��11j

< 1.
Since k�12�21A1Wn1;n2A2Wn2;n1k1 ^k�12�21A1Wn1;n2A2Wn2;n1k1 <

1 hold under the proposed parameter space it follows due to Lemma 1,
the boundedness of A1 and A2 and maxfjjWni;njjj% where % 2 f1;1g
and i; j 2 f1; 2gg � 1 that parameter space property 2 is also ful�lled.
The parameter space j�11j < 1, j�22j < 1 and

j�12j
j1��22j

j�21j
j1��11j

< 1 obvi-
ously ful�lls the parameter space property 3.
Part B: The following assumptions are being made: Wn1;n1,Wn2;n2,

Wn2;n1 and Wn1;n2 are row standardized, Wn1;n1 and Wn2;n2 can be
written as Wn1;n1 = �n1;n1Wn1;n1,Wn1;n2 = �n1;n2Wn1;n2,Wn2;n1 =
�n2;n1Wn2;n1 and Wn2;n2 = �n2;n2Wn2;n2 where � represents the row-
standardizing and bothWn1;n1 andWn2;n2 are symmetric,

W
1 ; kWn1;n2k1

W0
n2;n1 =Wn1;n2 and kWn2;n1k1 <1
It has be shown that kIn1 � �12�21A1Wn1;n2A2Wn2;n1k1 <1. Un-

der the assumptions, it holds: A1 = A2 =....

kIn1 � �12�21A1Wn1;n2A2Wn2;n1k1 =
1P
k=0

j�12�21j
k
(A1Wn1;n2A2Wn2;n1)

k

1
=In1 + �12�21A1Wn1;n2A2Wn2;n1 +

1P
k=2

j�12�21j
k
�
A1

�Qk�1
j=1Wn1;n2A2Wn2;n1A1

�
Wn1;n2A2Wn2;n1

�
1

�

1+ j�12�21j�11�22�12�21
j1��22jj1��11j

+
1P
k=2

j�12�21j�11�22�12�21
j1��22jj1��11j

(j�12�21j)
k�1
Qk�1

j=1Wn1;n2A2Wn2;n1A1


1

since
Qk�1

j=1Wn1;n2A2Wn2;n1A1


1
=
Qk�1

j=1 A
0
1Wn2;n1A

0
2W

0
n1;n2


1
=Qk�1

j=1 A1Wn1;n2A2Wn2;n1


1
�
�

1
j1��22jj1��11j

�k�1
it follows kIn1 � �12�21A1Wn1;n2A2Wn2;n1k1 �

(1 + �11�22�12�21)
1P
k=0

�
j�12�21j

j1��22jj1��11j

�k
<1
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Lemma 4 If % 2 f1;1g and k	n;pk% < 1 then
(In �	n;p)

�1
%
�

1
1�k	n;pk%

<1

Proof. Since k	n;pk% < 1 we apply the Neumannseries to write (In �	n;p)
�1 =

1P
k=0

	k
n;p. Therefore,

(In �	n;p)
�1

%
=

 1P
k=0

	k
n;p


%

�
1P
k=0

	k
n;p


%
�

1P
k=0

k	n;pkk% =
1

1�k	n;pk%
<1. The inequality follows due to the triangle

inequality (see Horn Johnson) and the second due to the sub- multiplica-
tivity of these matrix norms.

Neumannseries16: If k	nk < 1 for any matrix norm it follows17:

(In �	n;p)
�1 =

1P
k=0

	kn

Proof. First: Let k	nk < 1 then: lim
k!1

	k
n

 � lim
k!1

k	nkk = 0n;n

(for the �rst inequality we use the sub- multiplicativity of these matrix
norms). Therefore, lim

k!1
	k
n = 0n;n. Second, we show (In �	n;p)

�1 =
1P
k=0

	k
n: (In �	n;p)

1P
k=0

	k
n
?
= In , (In �	n;p)

1P
k=0

	k
n = lim

k!1
In�	k

n;p
?
=

In , In
?
= In
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