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Abstract

The maximum entropy methodology is applied to the Schelling model of urban
segregation in order to obtain a reliable prediction of the stable configuration of the
system without resorting to numerical simulations. We show that this approach also
provides an implicit equation describing the distribution of agents over a city which
allows for directly assessing the effect of model parameters on the solution. Finally,
we discuss the information theoretic motivation for applying this methodology to
the Schelling model, and show that it effectively rests on the presence of a potential
function, suggesting a broader applicability of the methodology.

JEL classification: C11, C63, D80, J15.
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1 Introduction

The Maximum Entropy (MaxEnt) approach developed by Jaynes (1957a,b) is a generic

methodology that can be applied to predicting probability distributions in situations

where very little information is available. This is possible because the objective function

used is the ignorance or uncertainty of an external observer as to the exact state of a

system, measured by the Shannon entropy of a message revealing this unobserved state.

This was initially integrated in economics through Theil (1967), but more recently Foley

∗The author wishes to thank seminar participants at GREQAM for suggesting this application of the
MaxEnt methodology and is grateful in particular to Jagjit Chadha for helpful suggestions, and to Sonia
Moulet for allowing me to bounce my ideas off her head. Any remaining errors are the author’s.
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(1994) and Toda (2010) have used the approach to prove the existence of a statistical

market equilibrium when agents have “offer sets” of transactions they are willing to accept

and interact in a random fashion.

Barde (2011) further investigates the economic applications of this methodology using

a simple allocation problem where the preferences of agents are unobservable. Information-

theoretic analysis shows this approach provides the only consistent prediction the observer

can make of the endowment distributions, as any other prediction violates the endowment

constraint. A central economic aspect the fact that under the standard economic assump-

tions of monotonic and convex preferences, the allocation problem is in fact equivalent a

congestion game and therefore possess a potential function.1 This implies that if these as-

sumptions are satisfied the allocation problem possesses the finite improvement property

(FIP), and all myopic improvement paths end in an equilibrium. This allows the ignorant

observer to be sure that the predicted aggregate endowment distribution corresponds to

an underlying optimal equilibrium.

This paper serves a double purpose, centered around exploring the usefulness of this

methodology in obtaining both analytical and empirical results for simulation-based mod-

els. The first is to provide an example of a practical application of the MaxEnt prediction

approach in economics, by showing how it can be used to predict the outcome of simula-

tions of a simple agent-based model. The second deeper purpose is to illustrate the key

role of the potential function as the link between the optimal behaviour at the agent level

and the aggregate description provided by the information-theoretic methodology.

These two objectives motivate the use of the model of urban segregation developed by

Schelling (1969, 1971). As pointed out by Blume (1997) and Durlauf (1997) the Schelling

model is the earliest and simplest example of an agent based model with local interaction.

Furthermore, recent work on the Schelling model strongly suggests the existence a po-

tential function. For example, in the physical analog to the Schelling model proposed by

Vinkovic and Kirman (2006) particles on a lattice systematically rearrange themselves to

1This is defined by Monderer and Shapely (1996) as a unique function defined such that changes in
the potential function across states of the system correspond to changes in the objective functions of
individual agents in the system.
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reduce the internal energy of their configuration. This provides a setting in which a sin-

gle aggregate function, the overall energy of the system, provides the potential function.

Further analysis of the model by Grauwin, Goffette-Nagot, and Jensen (2009) shows that

it possess a potential function when bounded neighbourhoods are used. The simplicity of

the framework and the presence of a potential function for the model make the Schelling

model ideally suited as a test bed for the methodology.

The remainder of the paper is organised as follows. Section 2 presents the version

of the Schelling model used in the paper, while section 3 presents the information theo-

retic methodology and the results obtained. Finally, section 4 discusses the findings and

concludes.

2 The Schelling model of segregation

In the standard setting of the Schelling model two types of agents live in a city made up

of discrete locations, and each type has a slight preference for living in a neighbourhood

composed of agents of the same type. When agents are allowed to move, segregated neigh-

borhoods will emerge from an integrated initial condition as agents relocate to unoccupied

locations in the city that are more attractive. In practice this is shown by simulation,

using a random initial distribution of agents and where opportunities to move arrive as a

Poisson process for each location.

The attractiveness of a location to an agent is a function of the number of similar agents

in the vicinity, usually determined by a convolution between the city and a neighbourhood

of given width. If B is a N ×N binary matrix which identifies the neighbours for all N

locations, and pcj is the probability of a c-type agent living in location j this similarity is

given by:

(B × pc)i =
∑

j
Bi,jp

c
j . (1)

Because movement opportunities arrive randomly, simulation is usually the method of
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choice for investigating this model. Grauwin, Goffette-Nagot, and Jensen (2009) them-

selves point out that most analyses of this model rely on agent-based simulations and

lack analytical solutions. A simulation is therefore provided as a point of reference for the

prediction methodology presented below.

The parameters for the benchmark simulation are as follows: the city is 200 pixels

across and each coloured pixel represents a location, so there are N = 2002 = 40000

locations. There are 16000 red and green agents and 8000 free spaces. 2 The neighborhood

agents consider when assessing the desirability of a given location is a 7× 7 square area

centered on that location. As a simplification here, the utility of an agent is directly

given by the number of similar neighbors.3 The random initial condition is represented

in Figure 1 (a), while Figure 1 (b) represents the state of the city after 44841 individual

moves have occurred. The final state in 1 (b), which exhibits the segregated outcomes

typical of the Schelling model, is stable as no further utility-improving relocations exist.

(a) initial state (b) final state

Figure 1: Initial and final state

A breakdown of this process is shown in Figure 2. The sequence of images (a)→(i)

shows the gradual emergence of the segregated equilibrium following migration away from

the initial condition.

2As is the case with the work of Grauwin, Goffette-Nagot, and Jensen (2009), the space occupied by
the city is toroidal, so that the top/bottom and left/right edges are in contact. This simplification allows
the neighbourhood matrix B to be encoded as a Toeplitz matrix.

3This simplification does not change the general properties of the methodology presented here, as
Grauwin, Goffette-Nagot, and Jensen (2009) show that the existence of the potential function does not
depend on the specification of the utility function.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Emergence in the Schelling model
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3 Information-theoretic prediction

The Schelling model provides a setting where an observer with knowledge of the the initial

condition is ignorant of the final state of the system. As discussed in Barde (2011), such a

setting motivates the use of MaxEnt as an information-theoretic prediction methodology.

More specifically, running the sequence of images in Figure 2 backwards, (i)→(a), one has

a situation where a well defined and coherent image gradually becomes more and more

noisy and decays until most of the information content has disappeared.4 An observer

receiving the decayed image (a) will be practically ignorant of the original image (i), and

the extent of this ignorance can be modeled using the Shannon (1948) entropy as an

information measure.

The use of MaxEnt in addressing the problem of reconstructing a “clean” underlying

image from initially noisy and distorted data has a long history in image processing and

astronomy, where the noise process involved in measurement is similar to the (i)→(a)

sequence of Figure 2.5 In fact, the specific algorithm used to obtain the predictions is

adapted from an application for astronomic data suggested in Cornwell and Evans (1985).

Within the setting described in section 2, pci is the probability that the ith location is

occupied by and agent of the cth colour, with c ∈ {R,G,W}. Given this, the information

content of a message revealing the state of the ith location is given by the Shannon (1948)

information measure:

H (i) = −
∑

c
pci ln p

c
i

The image processing literature mentioned above prefers relative entropy, as this allows

the integration of prior information in the form of a model mc
i . In practice, one can see

below that this results in subtracting the expected information content provided by the

model from the overall information content of the message.

4This is in fact analogous to the framework of Foley (1994) and Toda (2010) where agent preferences
are known and the ignorance relates to sequence of trades made by agents.

5Narayan and Nityananda (1986) and Skilling and Gull (1991) provide good introductions of the use
of this methodology
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H (i∥mi) = −
∑

c
pci ln

(
pci
mc

i

)
= −

∑
c
pci ln p

c
i +
∑

c
pci lnm

c
i (2)

As pointed out in Barde (2011), the attractiveness of the maximum entropy method-

ology as developed by Jaynes (1957a) is that the ignorance of the observer concerning the

distribution of agents over the city can be constrained by integrating available information

into the problem. Equation (2) shows that the first piece of information to be included is

the underlying model, encoding the prior knowledge that the observer has of the location

of agents in the city. The Schelling model, however, does not provide any prior informa-

tion regarding the probability of a location being occupied by a particular type of agent,

therefore the model mc
i in expression (2) is not particularly useful. This is dealt with

by following Skilling and Gull (1987) and considering the expected information content

of a message revealing the state {c, d} of two randomly picked locations {i, j}.6 Using

expression (3) enables the integration of a two-dimensional model mc,d
i,j which can contain

knowledge of correlations across locations.7 This is better suited to the prior information

provided by the Schelling model, in which one expects neighbouring locations to have a

relatively high probability of being occupied by similar agents.

E [H (i, j∥mi,j)] = − 2

N

∑
i

∑
c
pci ln p

c
i +

1

N2

∑
i,j

∑
c,d

pcip
d
j lnm

c,d
i,j (3)

The second element known to the observer is that number of agents of each type stays

constant, such that the average probability of a given colour must match the share of

locations sc that are of the cth colour. This expression serves to normalise the probabilities.

∀c,
∑

i

pci
N

= sc (4)

Finally, the most important piece of information available to the observer is the initial

condition of the system. Using the image-processing representation of a known state in

6The derivation of the double entropy specification is detailed in appendix A.
7This structure also allows correlations across agent types, for example if agents were to evaluate the

attractiveness of a location not only by the number of similar agents but also by the number of agents of
a different type. This is not the case here as in the basic Schelling model, agents only consider their own
type in their location decision. In other words, the model structure (8) will impose mc,d

i,j = 0 ∀d ̸= c.
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Figure 2 (i) decaying to a noisy state in Figure 2 (a), this represents the information

that has not been wiped out in the decayed image. Within the Schelling framework,

this represents the key stable locations that are initially most attractive and are not

modified as the segregated outcome emerges. This information is revealed by taking the

convolutions of the initial state in order to determine the initial attractiveness (1) for each

type of population. This is visible in Figure 3.

As is standard in the image processing literature, this information is integrated into the

problem by constraining the noise level, measured by the chi-squared deviation between

the initial data available and the prediction. While the historical literature on image

processing suggests constraining it to the number of locations N , expression (5) below

follows the suggestion of Skilling and Gull (1991) and constrains it to the number of

locations N minus Γc, the number of good locations in the initial data,8

∀c, (χ2)
c

N
=

(N − Γc)

N
. (5)

The chi-squared deviation itself is given by the following expression, where dci rep-

resents the initial attractiveness data obtained by taking the convolution of the initial

condition and (σc)2 the variance of this data,

(
χ2
)c

=
∑

i

((B ∗ pc)i − dci)
2

(σc)2
. (6)

The the information theoretic problem is therefore to maximise the ignorance of an

observer (3) subject to the known information provided by (4) and (5). The first order

condition of the problem directly provides the best prediction of the probability distribu-

tions over the locations,

pci =
µc
ie

αc
∂(χ2)

c

∂pc
i

Zc
. (7)

The effective model µc
i and the normalisation parameter Zc are given by:

8Equation (5) expresses this as a percentage of noisy locations. The calculation of Γc is explained in
appendix B.
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(a) initial green state (b) initial green convolu-
tion

(c) initial red state (d) initial red convolution

Figure 3: Initial condition information

µc
i = exp

(
1

N

∑
j

∑
c,d

pdj lnm
c,d
i,j

)
and Zc =

1

Nsc

∑
i
µc
ie

αc
∂(χ2)

c

∂pc
i .

One can see that the effective model for a location µc
i is simply the geometric mean

of the individual correlations mi,j, weighted by the probability vector. As pointed out by

Skilling and Gull (1987), this is effectively a convolution of the probability vector pc with

the logarithm of the N ×N model matrix, similar to (1). As for Skilling and Gull (1991),

however, the convolution used in the prediction algorithm is slightly different: instead of

taking the geometric mean of the model weighted by the probabilities, the algorithm uses

the geometric mean of the probabilities weighted by the normalised model,9

µc = exp (M c × ln pc) . (8)

9This is done for computational reasons. Most of the entries in the model M are very small as one
expects the correlations across locations to exist only over short distances. As a result they are truncated
out of the matrix, which can be stored as a sparse matrix with many zero elements. Taking the logarithm
of this N ×N matrix is cumbersome, therefore in practice it is easier to take the logarithm of the N × 1
vector of probabilities
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(a) Final green state (b) Green probability
density

(c) Predicted green loca-
tions

(d) Final red state (e) Red probability den-
sity

(f) Predicted red loca-
tions

Figure 4: Predictions

Figure 4 provides the result of the MaxEnt prediction, where (a) and (d) are the agent-

specific results of the simulation in Figure 1. It is important to point out that expression

(7) only provides an implicit solution for the probability distribution pci as both the model

term µc
i and noise term (χ2)c are themselves functions of pci . The predicted distributions

in Figure 4 (b) and (e) are therefore obtained using a gradient-based algorithm, outlined

in appendix B. Figures 4 (c) and (f) are the locations where pGi − pRi and pRi − pGi are

largest respectively, truncated to match the number of agents of each type. Crucially, even

though the initial information available in Figure 3 is limited and very noisy, comparing

Figures 4 (a),(c),(d) and (f) suggests that the MaxEnt approach nevertheless provides a

reliable prediction for the final location of both types of population.

4 Discussion and Conclusion

The effectiveness of the MaxEnt approach in obtaining a prediction for the Schelling model

provides a strong justification for its use. A further motivation is the fact that it also
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provides an analytical expression for the predicted probability of a location being occupied

by a given type of agent. While this provides only an implicit solution to the problem,

it can nevertheless be used to examine directly the impact of changing the parameters of

the model. Furthermore, by examining what it is that makes this methodology successful

it is possible to make a broader point justifying its extension to other economic models.

The MaxEnt methodology provides an information-theoretically consistent reconstruc-

tion of a signal that has been distorted and/or contaminated by noise. In the traditional

astronomy or image processing applications the typical sequence of events is one where

the phenomenon observed is well defined but because of problems during measurement

or transmission the information received subsequently is incomplete. Formally, however,

the methodology does not rest on the direction of time but on the direction of increasing

entropy. Its ability to successfully predict the outcomes of the Schelling model stems

directly from the link between Shannon entropy and the concept of a potential function

shown in Barde (2011). A core tenant of economic systems is that optimality increases as

time goes by because agents only carry out welfare-increasing transactions. The presence

of a potential function in a system is simply a strong statement of this fact, as Monderer

and Shapely (1996) show that this implies the FIP, where transitions on the path bring

systematic increments to the potential function as the system self-organises.

In a system with a potential function, reversing the sequence of steps on the improve-

ment path, i.e. starting at the optimal final solution and finishing at the initial condition,

provides a situation where each for step an agent shifts from an optimal to a random

sub-optimal situation. This is analogous to the concept of signal decay mentioned above

and is illustrated in the inverse sequence of the Schelling process in Figure 2, where one

can effectively treat the final state (i) as a hypothetical data file and the initial condition

(a) as the noisy/decayed version of (i). In this situation, the MaxEnt prediction of the

end point of the improvement path provides is in fact a reconstruction of the origin point

of the reversed improvement path.

As was discussed in Barde (2011) the concept of improvement paths is one that is

fundamental to economics, as simple allocation problems have a potential function under
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relatively innocuous assumptions on preferences. The broader suggestion stemming from

this result is therefore that the methodology outlined here should consistently predict the

aggregate properties of many economic systems.
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A Information-theoretic framework

There are two main differences between the standard relative information content (2)

typically used in the image processing literature and the specification (3) which is actually

used. The first is the use of an expectation operator E[...], which indicates that the

message reveals the colour of a random location picked with probability l = 1/N , rather

than that of a known location i, as is the case with specification (2). The rationale for

this is that this allows the entropy measure to build in variation of probabilities across

locations i as well as agent type c, which is required given that the constraints are all

expressed in terms of summation across locations,

E [H (i∥mi)] = −
∑

i

∑
c
lpci ln

(
lpci
lmc

i

)
= − 1

N

∑
i

∑
c
pci ln

(
pci
mc

i

)
.

The second difference is the use of the double space entropy suggested by Skilling

and Gull (1987) to integrate prior knowledge of relative rather than absolute positions

of agents. Formally, the relative entropy is the same as (2), except that it encodes the

information content of a message revealing the colour {c, d} of a randomly chosen pair of

locations {i, j}, relative to what would be expected given prior knowledge mc,d
i,j :

E [H (i, j∥mi,j)] = − 1

N2

∑
i,j

∑
c,d

pc,di,j ln

(
pc,di,j

mc,d
i,j

)
.

E [H (i, j∥mi,j)] = − 1

N2

∑
i,j

∑
c,d

pc,di,j ln p
c,d
i,j +

1

N2

∑
i,j

∑
c,d

pc,di,j lnm
c,d
i,j

Treating the joint probability as the product of the marginal probabilities pc,di,j = pcip
d
j ,

one obtains the following expression, which is the specification used in equation (3).

Although the existence correlations in the model mc,d
i,j means that the probabilities are

not in fact independent, this assumption allows the relative entropy to measure the extra

information required to treat probabilities pci and pdj as independent when they are in fact

related by the model,
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E [H (i, j∥mi,j)] = − 2

N

∑
i

∑
c
pci ln p

c
i +

1

N2

∑
i,j

∑
c,j

pcip
d
j lnm

c,d
i,j .

Given this specification for the relative entropy and the constraints (4) and (6), the

lagrangian for the maximum entropy problem is:

Λ = E [H (i, j∥mi,j)]−
∑

c
βc

(∑
i

pci
N

− sc
)
−
∑

c
αc

(
(χ2)

c

N
− (N − Γc)

N

)
. (A-1)

This leads to the following first order condition with respect to pci :

∂Λ

∂pci
= − ln

(
pci
µc
i

)
− 1− βc − αc∂ (χ

2)
c
i

∂pci
= 0 ,

pci = µc
ie

−(1+βc)e
−αc

∂(χ2)
c

i
∂pc

i . (A-2)

Replacing this into the normalisation constraint (4) allows the derivation of partition

function, i.e. the 1 + βc exponential term:

∑
i
µc
ie

−(1+βc)e
−αc

∂(χ2)
c

i
∂pc

i = Nsc ⇒ e1+βc

=
1

Nsc

∑
i
µc
ie

αc
∂(χ2)

c

i
∂pc

i .

B Maximum entropy algorithm

The algorithm used to obtain the probability distribution (7) follows from Cornwell and

Evans (1985) and integrates a chi-squared constraint in the spirit of Skilling and Gull

(1991).10 The initial probability and model vectors are given by the uniform distribution

pci = mc
i = sc. Prior to running the algorithm, the initial conditions are processed in order

to extract the relevant data for calibrating the model constraints:

• The initial attractiveness data vector dc is calculated as a convolution of initial state

vector f c, i.e. dc = B × f c.

10The code for the Schelling simulation and the MaxEnt reconstruction algorithm is available from the
author on request, as well as the initial condition matrix required for replicating the figures shown here.

15



• The mean dc and standard deviation σc of the dc data are calculated.

• The number of good locations Γc is determined as the number of locations with

dci ≷ dc ± 2σc.

• Because the good locations Γc are clustered, the number of distinct clusters and

the mean radius b of a cluster are calculated. This is used to calibrate the model

M c, which is assumed to be a circulant matrix containing a gaussian convolution of

radius b.

The iterative algorithm is based on the Newton-Raphson method, with the Jacobian

vector and Hessian matrix of the lagrangian given by:

 ∇Λc = ∇Hc − βc − αc∇ (χ2)
c

∇∇Λc = ∇∇Hc − αc∇∇ (χ2)
c

. (A-3)

Each iteration starts with a calculation of the current entropy and chi-squared gradi-

ents ∇Hc and ∇(χ2)c. The step change in the probability vector at each iteration of the

Newton-Raphson method is then:

∆pc = − (∇∇Λc)−1 .∇Λc . (A-4)

Given the large size of N , inverting the N × N Hessian matrix is computationally

intensive. Cornwell and Evans (1985) show, however, that it is possible to use the structure

of the Hessian to produce a simplified estimate. Given the specification of the information

entropy, ∇∇Hc is simply a diagonal matrix with diagonal elements ∇∇Hc
i,i = 1/pci , and

the only off-diagonal elements in the Hessian come from the chi-squared term. Cornwell

& Evans suggest using assigning all the weight of the off diagonal terms to the diagonal

term using q, the number of pixels in the neighbourhood. This leads to the following

diagonal approximation to the Hessian, used to calculate (A-4):

∇̂∇Λ
c
= ∇∇Hc − αc 2q

(σc)2
I .
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The values of the αc and βc parameters need to be determined so that constraints (4)

and (6) are satisfied for each step of the iteration. The βc parameter is obtained simply

by calculating lnZc for each iteration, while αc is obtained by iterating the following

expression, based on the deviation of the χ2 term from its constrained level N − Γc:

∆αc = αc (∆χ2)
c − (N − Γc)

∥∇ (χ2)c∥
. (A-5)

∆(χ2)c is value of the chi-squared deviation calculated for the updated probability

vector pc +∆pc. In between iterations of (A-5) the value of ∆pc is recalculated using the

updated value of αc in A− 3, keeping other terms in the Jacobian and Hessian constant.

Once the value of αc satisfies the constraint (up to a tolerance ε), the current step

vector ∆pc is accepted and the probability vector is updated, pc + ∆pc. The model is

also updated at this point using the following expression, obtained by deriving the model

specification with respect to pci :

∆µc = [µc] [pc]−1 M c∆pc .

Finally, as in Cornwell and Evans (1985), the stopping condition for the iterations is

that the norm of the Jacobian must fall below a tolerance ε relative to the norm of the

unit vector:

∥∇Λc∥
∥1∥

< ε .
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