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Abstract

Mur et al (2008a) show that it is relatively simple to obtain symptoms of instability
from a model with problems of heterogeneity in cross-sectional spatial model. In this
sense, Lopez et al. (2009) propose the use of the local estimation for detecting such
situation of instabilities. In the line of previous works, in this paper we try to analyse the
capacity of spatial panel data models to deal with the problem of heterogeneity in spatial
data. Furthermore, we try to asset whether or not the local estimation technique can be
of help for the case of panel data models. We pay special attention to the forecast
performance of several alternatives models. The empirical application refers to the
explanation of employment in European Regional at NUTS Il administrative level in
terms of Eurostat. Panel data models are estimated on the basis of annual data (1980-
2004) and data for 2005-2008 are gathered for evaluating the forecasting performance
of the alternative models. The obtained results show that although panel data models are
indeed designed for capturing the unobservable heterogeneity of data, the local
estimation technique can also be of great help in the context of panel data models. From
a forecasting point of view, the best model is the dynamic fixed effect with a spatial lag
structure in the equation estimated through local estimation techniques.

Keywords: Dynamic spatial panel data models, Local estimation, European
employment, forecast.

JEL Classification: C21; C22; C23; C53; R15



1. Introduction

The field of panel data models has received considerable attention during the last
decade. Static panel data literature offers the opportunity of allowing for unobservable
cross-sectional and time-period specific effects. In addition, dynamic panel data models
also offer the possibility of considering the serial dependence between observations on
each cross-sectional unit over time. Other advantages of panel data are that they are
generally more informative and contain more variation and less collinearity between
variables. The use of panel data leads to a greater availability of degrees of freedom
and, hence, increases the efficiency of the estimation. Panel data also allow for the
specification of more complicated behavioural hypotheses, including effects that cannot
be addressed using pure cross-sectional or time-series data (Wooldridge, 2002;
Arellano, 2003; Hsiao, 2003; Baltagi, 2005).

When cross-sectional data refers to spatial units (municipalities, provinces,
regions or countries) the spatial dependence between cross-sectional units at each point
in time is also important. Spatial dependence implies that, due to spillover effects (e.g.,
commuter labour and trade flows), neighbouring regions may have similar economic
performance. Hence, we expect to improve traditional panel data models by paying
attention to the location of the spatial units. There has been growing interest in the
estimation of static panel data models with spatial dependence: see Kelejian and Prucha
(2002), Elhorst (2003), Yang et al. (2006), Baltagi et al. (2006), Kapoor et al. (2006),
Kelejian et al. (2006) or Pesaran (2006). Prediction with these types of models is
analysed in Baltagi and Li (2004, 2006) for predicting per-capita cigarette and liquor
consumption in the United States, respectively, and in Longhi and Nijkamp (2007) for
forecasting the regional labour market in West German regions. The extension of the
traditional dynamic panel data model to include spatial effects has been worked on by
Elhorst (2005) and Su and Yang (2007), who have derived the ML estimator of a
dynamic panel data model extended to include cross-sectionally correlated error terms;
Elhorst (2008), who derived the ML estimator for a spatially lagged dependent variable
model (endogenous interaction effects); and Korniotis (2005) and Yu et al. (2007), who
considered a dynamic panel data model extended to include both endogenous and
lagged endogenous interaction effects.

The main objective of this paper is to evaluate the performance of the dynamic

spatial panel data models in the forecasting of regional series. In our application, we use



data on employment for 267 European regions (NUTS Il administrative spatial unit in
terms of Eurostat) from 1980 to 2008. The period 1980-2004 will allow us to estimate
and check the models which, in a second step, will be used to forecast the series of
employment by regions for the years 2005-2008. In this sense, our objective is similar
to that of Kholodilin et al. (2008) when forecasting the GDP of German Lander
although, in our paper, we use more efficient estimation techniques. Furthermore, a
novelty in our paper is that we evaluate the capacity of local estimation techniques for
capturing any type of heterogeneity still present after estimating any type of panel data
models.

The structure of the present paper is as follows. In Section 2, we provide a
description of the panel data models we consider in our application. Section 3 is devoted
to the presentation of the data and the main estimation results. In Section 4, we present
the forecast performance of the dynamic panel data models. Finally, the paper finishes

with a section of concluding remarks.

2. Spatial data models
In this section, we describe a battery of models for panel data. We denote by R
the number of spatial units (in our case, provinces) we observe as cross-sectional data
(i=1,2, ...,R) and T denotes the total number of observations in the time dimension
(t=1,2,...,T). Let’s start with the simple model, a pooled panel model:
Yi=xdB+n,
n.~N [O,G,ﬁlR]}

1)
_ylt_ 1 X221t " Xklt_ _Bl_
Yot 1 x22t =+ Xkot B
with y, =Yg [iX¢=|1 X3t - Xkst|:B=]|Bs
RA _1 X2Rt * XkRt | _Bk_

which imposes the homogeneity restriction on both the intercept and slope coefficients
across all the regions.

However, model (1) does not consider the probably presence of cross-sectional
dependence among the observations at each point in time. To this respect, recently
Anselin et al. (2006) developed, in the context of panel data, the Lagrange Multiplier

tests for a spatially lagged dependent variable, for spatial error correlation and their



counterparts robustified versions. When considering the spatial interaction among
observations we obtain the so-called spatial panel data models, which mainly adopt two
forms: 1) if we introduce the spatially lagged dependent variable as an explicative
variable, we obtain the Spatial Lag Model (SLM) version defined as:

Yi=pPWYHXB+n,

n~N [O,G%hq] }
And, ii) if a spatially autorregresive process is incorporated into the error term, we
obtain the Spatial Error Model (SEM), defined as:

()

Y= XtB"' €t
gr=pWegi+n, ®3)

n.~N [010%|R]
where W in equations (2) and (3) is the spatial weight matrix. As is well known, this
matrix is pre-specified, nonnegative and of order RxR and describes the arrangement of
the cross-sectional units in the sample (Anselin, 1988, 2007).
Models (2) and (3) consider the spatial interactions effects. However, they could

also be improved when also considering the spatial specific effects, u; (i=1,2...,R), in

order to account for the heterogeneity among spatial units. In fact, these terms represent
the effect of omitted variables that are space-specific time-invariant variables that affect
the dependent variable but are difficult to measure or hard to obtain, obtaining the

following specifications:

SLM + Spatial specific SEM + Spatial specific

effects effects
=pWY +XB+p+ Ye=xBrpte
Yt t2 Al er=pWer+m,
~N| 0,
N [ Gn|R] n{"N[OaG%'R] ( (4)

TR [T |

TE [T

The spatial specific effects may be treated as fixed effects or as random effects.
In the fixed effects model, a dummy variable is introduced for each spatial unit, while in

the random effect model, v, is treated as a random variable that is independently and
identically distributed with zero mean and variance Gﬁ. Furthermore, it is assumed that

the random variable p and ¢, are independent of each other. The random effects model



can be tested against the fixed effects model using Hausman’s specification test
(Baltagi, 2005). If the hypothesis is rejected, the random effects models must be
rejected in favour of the fixed effects model. However, discussion about random or
fixed effects goes further than the only use of the Hausman’s specification test. In the
context of spatial data, the situation may be summarized according to two different
positions.

On the one hand, models including a spatial structure need a very large sample
(a large R, number of regions, in our case), because the convergence results are obtained
with R tending to infinite. But, on the other hand, if the omitted effects are non-random,
a problem of incidental parameters appears (the number of parameters grows at the
same rate as the number of observations); in that case, a large T and small R are
preferable. The last observation leads Anselin et al. (2006) to discard the use of fixed
effects in mechanisms of spatial dependence: ‘Since spatial models rely on asymptotics
in the cross-sectional dimension (...), this would preclude the fixed effects model from
being extended with a spatial lag or spatial error term’. These authors prefer the
random effect framework, where the inference is conditional and we only need a very
large R (the improvements with T are of minor importance).

Elhorst (2003) does not share that view when he states that: “The spatial units of
observation should be representative of a larger population, and the number of units
should potentially be able to go to infinity in a regular fashion. Moreover, the
assumption of zero correlation between 4 and the explanatory variables is particularly
restrictive. Hence, the fixed effects model is compelling, even when R is large and T is
small’.

Further improvement of the models could be obtained by introducing the serially
lagged dependent variable for capturing the inertia present in the temporal data or, in
other words, for taking into account the serial dependence between observations on each
cross-sectional unit over time. By doing this we obtain the following dynamic

specifications:

Dynamic SLM + Spatial Dynamic SEM + Spatial

specific effects specific effects




V=i gtPWY X Bt Y=Yt xB+utey]
T]t"'N I:O’GTZ'IIR] Et= prt + Ny > -
| n~N[0.c3lr | (5)
“=[“1’“2'---'HR] |
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Estimation of static panel data models are explained by Elhorst (2003) and
dynamic spatial panel data models can be estimated as explained by Elhorst (2005,
2008).

3. Data and estimation

For our estimation and forecasting we use data on employment for each of the
217 European regions (NUTS Il administrative spatial unit in terms of Eurostat).
Employment will be explained by investment and remuneration. The three variables are
gathered for the period 1980 to 2008 from the Cambridge Database. The spatial
distribution of the employment in the total economy in four different years appears in
Figure 1.

(Insert Figure 1)

In order to define the proper specification for the models described in Section 2,
we start by analyzing the statistical properties of data for each region, in logarithms (to
reduce heterogeneity). The evolution of the log of employment in level and in its first
differences, for each region, is displayed in Figures 2 and 3, respectively.

(Insert Figures 2 and 3)

The non-stationarity of the variables is confirmed by the applications of the
common tests for unit roots in panel data. From the results obtained, shown in Table 1,
we can conclude that the series are integrated of order one. As a consequence, the
dependent variable for all panel data models will be the first differences of the logarithm
of employment; that is, we will explain the growth rate of employment. The similar
approach applied to the explicative variables reaches us to consider as explicative
variables the growth rates of both variables, investment and remuneration. Furthermore,
a temporal lag of such explicative variables will be included in order to avoid
simultaneity problems.

(Insert Table 1)



In order to estimate spatial models, we must specify one or several weight
matrices to reflect the network of cross-sectional relationships in the system of regions.
To this respect, we have decided to develop a mixed neighbourhood criterion, which
consists of the following. In the first place, we have used a criterion of neighbourhood
based on the distance between the centroids of the regions. Furthermore, to avoid
situations of excessive imbalance, we have opted to qualify the distance criterion by
also incorporating the r nearest neighbours. Thus, we define the binary matrix W® as:
LR M
witk,) = ©
wik,r)=1 if d, <k

) —

if min{d,}<k
if min{d,} j{wﬁ(k,r):o if d, >k

where d; is the distance in kilometres between the centroids of regions i and j, k the
interaction radii and N,(i) the set of the r regions closest to region i. As usual, w;=0 for
all i. In the paper we offer the results obtained for k=600 andd r =2 but we have checked
that results are very consistent with other values.

Firstly, we confirm the present of instability in the spatial cross-sectional model
specified for several years. Results for the robust instability tests defined in Angulo et al
(2008) derived from their counterpart non-robust versions obtained in Mur et. al (2008)
are shown in Table 2. As expected, there are clear symptoms of instability in the three
considered dimension: regression parameters, dispersion parameter and spatial
dependence parameter. These results show that it is likely to improve specification of
cross-sectional s with the use of panel data models that introduce spatial specific effect
to consider the unobservable heterogeneity of the data.

(Insert Table 2)

The proper specification of spatial panel data model is derived through the
estimation of alternative models. Results are gathered in Table 3.
(Insert Table 3)
Firstly, we estimate the pool model. However, according to the LM test for
testing the null of no spatial effects (Anselin et al., 2006), the model suffers from
misspecification, being a Spatial Lag Model the spatial structure that underline the data.

The pooled SLM model (second column of results) outperform previous model, but



either the FE-SLM or the RE-SLM are better specifications. From Hausman’s test the
RE-SLM model cannot be rejected. However, we support Elhorst’ s point of view, since
we believe that the unobservable effects (or the omitted variables they are representing)
are probably correlated with our explanatory variables. Moreover, FE-SLM model
present a higher R* value and therefore a higher goodness of fit. Nevertheless, we will
also compare the forecast performance of both models in next section.

Finally, we introduce temporal dynamic into the FE-SLM model. Results show
that this model outperforms the previous one. However, a centre-periphery pattern can
still be observed in the residual terms of the model®. As a consequence, a more flexible
model is estimated by introducing a dummy variable (that takes the value of one for the
periphery regions and zero value, otherwise) interacting with the two explicative
variables. As deduced from results displayed in Table 3, this last model represent, till
now, the best specification for our data set.

The question that we try to answer now it is to what respect all heterogeneity
present initially in the data has been gathered with our flexible dynamic FE-SLM panel
data model with centre-periphery interacted dummy. In order to solve this question, we
propose a simple exercise consisting of using the local estimation technique with the
reference model Dynamic FE+SLM. If results from local estimation technique
outperform previous ones, we can conclude that spatial panel data models cannot
capture all heterogeneity inherent in spatial data and therefore, they can be benefit from
the use of local estimation techniques.

Briefly stated, the local estimation technique consists of fitting individual
regressions to selected points in the sample, with more weight assigned to observations
that are closer to the point of interest (McMillen 1996). Repeating this exercise for
every point in the sample, we can construct estimation surfaces in order to discuss the
nonstationarity of each parameter in the model. The concept of ‘closeness’ is flexible
and must be adapted to the objectives of the study. Moreover, the distribution of the
weights among the neighboring observations with respect to point r is determined by the
kernel function (Cressie 1991). In the case of the GWR, this is a decreasing function of
the distance between the points, and the bandwidth determines how rapidly the weights

decline with distance. We decided to use a rectangular or uniform kernel with a fixed

! Results are available from the authors.



bandwidth of m for every point. This means that the m nearest neighbors will receive a
weight of one, and the other points zero.

In our case we have to resolve the local estimation of an Dynamic FE+SLM for
which it is not advisable to use the OLS algorithm. Following the example of Brunsdon
et al. (1998) and of Pace and Lesage (2004), we will obtain the local estimators from the

ML estimation of the local model:
v =™y oWV D B 4 )
T]%T) ~N[O’Grz1,rm|m] > (7)

W™ =1y, 1o ]

The indexes r and m mean that the data correspond to the local system defined

by m elements around point r. Therefore, Y7 =(y, Y.,V Y., ) Where

i, € N(r), being N(r) the bundle of indexes of the m-1 neighbours nearest to the point r.

The same criterion is used to definex{. Matrix w(™ refers to the weighting matrix
obtained for this local system, defined with the same connectivity criteria that are used
to obtain the global W matrix, specified following standard criteria. Finally p$m),
p(m andcﬁm are the local parameters of interest. This is what we call the Zoom
estimation (different to the SALE algorithm of Pace and Lesage, 2004, in that, in each
local system, we use the matrix w(™ specific for the local network around point r).

We refer to m as the Zoom size (equivalent to window size in nonparametric literature).

Results for the estimated parameters through the Local estimation techniques is
shown in Figure 4. As can be observed, there exists important differences among
regions not only in magnitudes but also, in the cases of parameters associated to
remuneration and investment, even in sign.

(Insert Figure 4)

Finally, in the next section, we analyze the forecast performance of all the spatial
panel data models.
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4. Forecast performance of the different models

The purpose of this section is to obtain and evaluate the employment forecast for
all the regions for the period 2005-2008 derived from the different spatial panel data
models.

Godberger (1962) shows that the best linear unbiased predictor (BLUP) for the

cross-sectional units in a linear regression model Y = XB+nwith disturbance covariance
matrix Q at a future period T+C is given by:

v A '0O-1

Yric = Xyt P Qe (8)

where ¥ = E(nT +c11) is the covariance between the future disturbance n,cand the

sample disturbance n, X represents the independent variables of the model, ﬁis the
estimator of 3, and e denotes the residual vector of the model. Elhorst (2009) derived

the prediction formulas for the fixed effects and random effects model with a spatially
lagged dependent variable.

Formulas for the fixed effect models are straightforward as ¥ = 0 provided that
error terms are not serially correlated over time. Hence, predictions for the FE+SLM

model can be derived as:

_— ~ -1 A A

Yric =(IR —PW) (XT+CB+ H) (9)
and prediction for all variants of such model can be derived by defining the X matrix

accordingly.

Unlike the fixed effects model, the correction term ¥ Qe in the random effect
model is not zero. In the random effects spatial lag model, RE-SLM, predictions can be

calculated as follows:

L €1t
— ~ - N A2 1T
YT+C=(IR_pW) XT+CB+(1_9 ) ?Z (10)
t=1
Ent
~2 To?
where (1—6 )=2—“2
Tcsp+c7n

That is, for the RE-SLM model to calculate the correction term ¥ Q'e, the residual of

each spatial unit are first averaged over the sample period and then multiplied with

(1— éz) , a factor that can take values between 0 and 1.
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Forecast performance of each spatial paned data model is evaluated through the
Mean Absolute Percent Error (MAPE), which for each time period t (forecast horizon
equal to t-2004) is defined as:

N [employment, , —employment, ., (t —2004)
MAPE, = % 5 ! 1.2004
r=1

*100
employment (11)

t=2005-2008

Table 4 shows figures for the different MAPE quantitative magnitudes while Figure 5
shows the spatial distributions of the temporal mean of the absolute percent prediction
errors.

(Insert Table 4 and Figure 5)

Results from Table 4 shows that predictions from the FE+SLM model clearly
outperform that obtained from the RE+SLM model. Hence, these results confirm our
intuitive decision on the preference of fixed effects over random effects. As regards as
results of the other more ample FE+SLM models considered, we have conclude the
following. Both, the dynamic FE+SLM model and its extension (when we incorporate
the structural break associated to the centre-periphery situation of regions) offer better
results in terms of the MAPE. However, the local estimation dynamic FE+SLM referred
to spatial units outperforms previous results. Consequently, we can conclude that zoom-
estimation also can be of help in the context of panel data in order to capture the
remaining heterogeneity of models. Furthermore, we can observe that improvement is
especially important as the prediction horizon increases.

Finally, we analyse the possibility of further improvement in predictions with
the application of local estimation referred not only to the spatial unit but also to the
time dimension. That is, whether or not we can forecast better a region when using not
only its neighboring spatial units but only its most recent observations in time. The
obtained forecast results are shown in the last column of the Table (Dynamic
FE+SLM-+spatial and time zoom). From the obtained magnitudes we can conclude that
Mean Absolute Prediction Error are larger than for the previous model and hence, in
this particular case, the use of the zoom estimation associated to the cross-sectional

dimension of data is the best option.
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5. Concluding remarks

Econometric literature clearly accepts the good performance of panel data
models for being able to capture the unobservable heterogeneity of data. The empirical
application offered in this paper has shown clear evidence on the fact that forecast
results of flexible panel data models can still be improved by making use of the local
estimation techniques.

Further research will be directed towards the evaluation of the effect on results
of certain decision about the size of the spatial or time zoom, as well as the possible
effect of the selected functional form of the base model.
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Figure 1. Spatial distribution of the employment

1995

1980

2008

2005

In all cases:



15

Figure 2. Evolution of the log(employment) in each of the 217 cross-sectional units
(1980-2008)
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Figure 3. Evolution of the Alog(employment) in each of the 217 cross-sectional
units (1980-2008)
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Figure 4. Spatial distribution of zoom parameters
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Figure 5. Spatial distribution of the temporal mean of the absolute percent
predictions errors
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Table 1. Unit root test, under the assumption of specific mean and trend for each

province

Log
(employment)

Log
(investment)

Log
(remuneration)

Ho: |(1) Ho: |(2)
Hy: 100) Hy: I(1)

Ho: |(1) Ho: |(2)
Hy: 100) Hy: 1(1)

Ho: |(1) Ho: |(2)
Hy 100) Hy: I(1)

Statistic  Statistic

Statistic  Statistic

Statistic  Statistic

(Prob.)  (Prob.) | (Prob.) (Prob.) | (Prob.) (Prob.)
Ho: Unit root (equal for all cross-sections)
o . 0.33 -23.09 | -337 -27.67 | -3.38 -33.9
Levin, Lin & Chu (2002), t (0.63)  (0.00) | (0.00) (0.00) | (0.00) (0.00)
. 0.55 -17.39 | -530 -28.77 | -11.74 -24.36
Breitung
(0.71)  (0.00) | (0.00) (0.00) | (0.00)  (0.00)
Ho: Unit root (specific for each cross-sections)
. 7.83 -30.18 6.76 -37.42 2.76 -35.68
Im, Pesaran and Shin W-stat (1.00) (0.00) | (1.00) (0.00) | (0.99) (0.00)
. 2 360 1918 369 2403 492 2282
ADF - Fisher (100) (0.00) | (L.00) (0.00) | (0.90) (0.00)
PP - Fisher 72 245 2917 316 4038 546 3528
X (1.00) (0.00) | (1.00) (0.00) | (0.35) (0.00)
Conclusion 1(2) 1(2) 1(2)




Table 2. Cross-sectional spatial dependence and instability tests
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1982 1995 2000 2004

Moran 6.84* 4,76* 10.67* 9.75*
Lmerr 34.38* 17.12* 92.16* 76.99*
Lmlag 25.33* 20.08* 98.44* 84.39*
Robust Lmerr 10.03* 0.68 0.06 0.07
Robust Lmlag 0.98 4.64* 6.35* 7.47*
Sarma 35.36* 20.76* 98.51* 84.46*
L MSLM(SEM)

Break—Chow—Het 32.88* 90.69* 645.69* 628.12*
L MSLM(SEM)*

Break 8.48* 15.89* 27.51* 32.38*
L MSLM(SEM)*

Het 17.97* 67.71* 542.34* 532.04*
| MSLM(SEM)*

Chow 13.90* 22.76* 84.85* 82.03*
L MSLM(SEM)*

Break—Het 18.97* 67.93* 560.84* 546.09*
| MSLM(SEM)*

Break—Chow 22.39* 38.66* 112.37* 114.42*
L MSLM(SEM)*

Chow—Het 31.87* 90.47* 627.20* 614.07*




Table 3: Results obtained for the estimation of the different models
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Dynamic
D . FE+SLM
yname | with c-p
OLSQ SLM RE+SLM FE+SLM FE+SLM | . .
@) interacting
dummy
@)
0.002* 0.000 0.000 0.000 0.000 0.000
CONSTANT | 4 g9) (0.33) (0.15) (0.00) (0.00) (0.00)
ALOG(INVESTMENT),,
All 0.037* 0.016* 0.015 0.015* 0.018*
(10.60) (5.37) (5.09) (4.93) (2.92)
0.007
Centre (0.95)
Periphery- 0.043
Centre (3.02)
ALOG(REMUNERATION) 4
All 0.001 0.044 0.006 0.008* -0.004
(0.17) (1.18) (1.78) (2.32) (-0.54)
-0.008
Centre (-0.83)
Periphery- -0.001
Centre (-0.06)
SPATIAL 0.779* 0.755 0.731* 0.01* 0.01*
TERM: p (51.79) (46.61) (42.22) (11.53) (11.53)
TIME 0.282* 0.279*
DYNAMIC: t (11.03) (10.89)
R? 0.02 0.29 0.33 0.36 0.40 0.42
LM for no 3367.7*
spatial error
LM .for no 3500.4%
spatial lag
Robust_LM for 21 89*
no spatial error
Robust LM
test for no 154.64*
spatial lag
LR for testing
the null of no
specific 633.3*
regional
effects
Hausman Test 2.588

@ Dynamic panel data model must be estimated with a symmetric weight matrix, W. The range of p is in
this case of (-0.091;0.017)



Table 4. Forecast performance of the different models, Mean of the Absolute

Percent Error (MAPE), (%)

. . Dynamic
Dynamic | Dynamic FE+SLM
Dynamic FE+SLM | FE+SLM +
RE+SLM | FE+SLM FE+SLM Wlth + spatial
regional spatial .
- and time
dummies zoom
zoom
MAPE(2005) 1.791 1.638 1.480 1.482 1.263 1.556
MAPE (2006) 2.954 2.696 2.512 2.437 1.974 2.726
MAPE (2007) 4171 3.821 3.662 3.541 2.889 4.137
MAPE (2008) 4.937 4.323 4.155 4.006 3.356 5.126
MAPE 3.463 3.120 2.952 2.866 2.370 3.386

(@) EAPM(t) denote de mean of the absolute percent error for predicting the

i EAPM, ()

employment of period t in all the regions, EAPM(t) == . The term

EAPM denotes the mean over the four predictions.



