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Abstract

The purpose of this paper is to illuminate the geographical diffusion of photovoltaics installations in
Germany quantitatively and to test if preexisting photovoltaic systems stimulate further installations
nearby; thus we investigate to which extent knowledge flows depend on geographic proximity. We
develop an econometric model, which is discrete in time and space, but the level of geographical
agglomeration is adjustable in arbitrarily small steps. We find that the probability to install a
photovoltaic system dependents on the geographic proximity to agents, who have previously installed
a photovoltaic system. In conclusion, our results confirm that knowledge exchange attenuates with
distance.
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1 Introduction

1 Introduction

According to Marshall (1890), knowledge exchange decreases with distance. In other words, spatial

proximity fosters knowledge diffusion between economic agents. Similarly, Audretsch and Feldman (1996)

argue that transferring information may not be affected by distance, but exchanging knowledge is. Never-

theless, scholars of innovation do have problems to find evidence when it comes to defining and assessing

the geographical dimension of knowledge externalities (Autant-Bernard, Mairesse and Massard, 2007).

Krugman (1991a, p.53) even stated “knowledge flows are [...] invisible; they leave no paper trail by

which they may be measured and tracked”. However, the localization of knowledge externalities has been

confirmed by using patent citations (Jaffe et. al., 1993) or spatially autocorrelated econometric models

(Anselin et. al., 1997). Still, to our best knowledge there is a lack of studies confirming localized knowledge

externalities by employing other data than patent citations.

In this paper, we study knowledge diffusion at the example of photovoltaics (PV) installations – i.e. solar

cell systems to produce electric power – in Germany. We argue that – due to a very lucrative legislation,

which assures a similar subsidy level all over the country – the diffusion of PV can be used as a proxy for

the diffusion of knowledge about an attractive investment opportunity.

Fig. 1, in which each gray dot marks a PV system, shows that the spatial distribution of PV systems is

inhomogeneous in Germany. Therefore, we study where PV systems are installed and which factors foster

or hamper their diffusion.

Figure 1: Distribution of PV systems within Germany until 2009; each gray dot points a PV system

The purpose of this paper is twofold: first, we aim at describing the heterogeneous geographical diffusion of

photovoltaics installations in Germany quantitatively; second, we intend to test if preexisting photovoltaic

systems stimulate further installations in their immediate vicinity, thus we investigate to which extent

knowledge flows (about a profitable investment opportunity in a PV installation) depend on the geographic

proximity of agents.
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2 Theoretical Background

In order to do so, we base our analysis on a data set covering the PV installations in Germany until 2009

(some 550, 000). We geocoded the data set and employed it in an econometric model, which describes

the geographical diffusion of PV installations. The model is discrete in time and space, but the level of

geographical agglomeration employed is adjustable in arbitrarily small steps. We study if the knowledge

and experience level regarding PV installations within a certain geographical unit, which we measure by

previously installed PV systems, determine the amount of new installations. We control for – inter alia –

the influence of spatial variations in global radiation, available installation space and the income level

on investments in photovoltaics installations. In general, applying our modeling approach enables us to

reach strongly detailed results in comparison to ordinary discrete spatial models since the usual boundary

problems are avoided. Therefore, our model is applicable to study overlapping spatial units and data of

very different levels of geographical agglomeration.

This paper is structured as follows. In chapter 2, we introduce the theoretical background. Thereafter,

the method of the analysis, i.e. the model, the data and the level of geographical agglomeration studied

are characterized in chapter 3. The following chapter 4 highlights and discusses the statistical results.

Finally, chapter 5 summarizes the paper and gives an outlook for further research.

2 Theoretical Background

Although some authors argue that progress in information and communication technologies has downgraded

the relevance of distance, Feldman (2002) and Redding and Venables (2004) find that physical distance is

still of major importance.

2.1 Localization

Several scholars suggest that knowledge – especially the so called tacit part (Polanyi, 1967) – is localized

since it builds on experience, which cannot be transferred easily as codification may not be possible

(Breschi and Lissoni, 2001). In contrast, information or codifiable knowledge is thought to be transmittable

over distance as it can easily be written down (Audretsch and Feldman, 1996). Similarly, Jaffe (1989)

and Ponds et. al. (2007) state that face-to-face contacts are necessary to share tacit forms of knowledge.

However, close interaction and daily contact are essential here. Geographical proximity only favors close

interaction (Baptista, 1999), which in turn stimulates the exchange of tacit knowledge parts.

Several studies confirm this view by using patent data. Jaffe et. al. (1993) studied the state level and

found a relevant effect of university research on corporate patents nearby. Eaton and Kortum (1996)

examine the country level. Their analysis reveals that distance hampers the exchange of ideas; there

seems to be a tendency for ideas to remain at home. Likewise, Audretsch and Feldman (1996) identify

that industries where knowledge spillovers are of high importance are more likely to cluster than industries

where knowledge externalities are uncommon, which are industries where research and development (R&D)

efforts and highly skilled employees are less relevant. In addition, Keller (2002) approves that technological

spillovers mainly happen on a local and not on a global scale since the benefits from spillovers would fade

with distance.
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2 Theoretical Background

Although it may even be possible to exchange the tacit part of knowledge over a long spatial distance, we

expect that the likelihood of such an exchange increases with spatial proximity. In order to find out, we

want to test if knowledge flows significantly fade with distance.

In summary, there is evidence that geographic or physical proximity is beneficial for transmitting knowl-

edge, especially when tacit parts of knowledge should be transferred. It is just easier to share knowledge

through a floor or corridor than between continents (Glaeser et. al., 1992) since distance at least enters by

transportation costs (Krugman, 1991b). However, most studies confirming this theory rely upon patent

data. That is why we believe there is a lack of research confirming the decreasing character of knowledge

exchange with distance for different indicators of knowledge diffusion than patent citations.

We therefore employ a dataset of PV installations in Germany. But how to approach the analysis of

spatial processes?

2.2 Approaches to spatial processes

Several possibilities exist when modeling spatial interactions. One option is employing usual regression

models, which regard for spatial dependence by including a spatially lagged, thus autocorrelated variable.

The lag arises from multiplying the variable with a spatial weights matrix (Anselin, 1988). However,

this and similar approaches usually make sense for analyzing a data set where the level of geographical

agglomeration has been predefined. Our data set consists of point data, which we can directly analyze or

aggregate to a chosen level. This gives us the possibility to reach more detailed results.

A possibility to study point data is a spatial point pattern analysis (Bivand et. al., 2008; Ripley, 1977).

However, these approaches are usually employed to find out whether a data set is homogeneously distributed

in space or not, thus to draw conclusions to which extent the point data is clustered. This question is not

in our focus since Fig. 1 directly shows the inhomogeneous distribution of PV systems in Germany. We

therefore chose to develop our own approach, which is described in the following.

2.3 Knowledge diffusion function

Economic scholars use the concept of a production function to describe the output of a firm or even a

region, which is reached by combining and processing several inputs. Traditionally, inputs as capital

K, labor L and physical resources are assumed to lead to a physical output Y . Similarly, a knowledge

production function can be assessed by assuming that human capital and efforts in R&D are combined to

innovative output, e.g. measured by patents (Griliches, 1979; Jaffe, 1986).

In our analysis we lean on this concept and suggest that the amount of new PV installations is “produced”

by the amount of previously installed PV systems, which we perceive as a proxy for localized knowledge

exchange effects. Thus, we study if ∆PVt (x, y) – reflecting the count of new PV installations within a

certain radius around the spatial point (x, y) at time t – is positively affected by the amount of previously

installed PV systems – PVt−1 (x, y) – within the same geographical unit. Further, we have to control for

characteristics of the local environment where – inter alia – the global radiation intensity may be influential.
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3 Building the Model

As we take PV installations as a proxy for knowledge about a highly profitable investment possibility, we

specify a knowledge diffusion function as follows:

∆PVt (x, y) = f (PVt−1 (x, y) , CONTROL1 (x, y) , CONTROL2 (x, y) ...) . (1)

3 Building the Model

To analyze the evolution of PV installations, we define an additive spatial aggregation function to measure

the installation density for a given point (x0, y0). For simplicity, we chose to count all installations at a

given time point t in the radius r:3

PVt (x0, y0) = # PV installations, which are within a distance of d ≤ r to (x0, y0). (2)

However, our hypothesis is that the likelihood of installing a PV system increases with the amount of

previously installed PV systems. Thus, we study the annex of PV installations at time t at (x0, y0):

∆PVt (x0, y0) = PVt (x0, y0) − PVt−1 (x0, y0) . (3)

Fig. 2 illustrates schematically the relation between PVt−1 and ∆PVt we want to test. In the figure gray

dots are new events – PV systems – in the period specified above and black dots are old events. To clarify,

we aim to explore if the probability to install a PV system increases with the density of previously installed

PV systems nearby. According to our assumption that the installation of a PV system can be regarded as

acquired knowledge about a profitable investment opportunity, we study to which extent knowledge flows

depend on the geographic proximity of agents. Our hypothesis is as follows: The higher the density of

installed PV systems at point in time t− 1, the more PV systems are going to be installed at t since the

costs of exchanging ideas tend to increase with spatial distance. Certainly, there may be situations where

this is not true. As Autant-Bernard, Billand, Frachisse and Billand (2007) point out: if two persons are

socially close, the exchange of ideas may be intense over long distances. However, we assume that the

most interaction takes place at the local level and that tacit knowledge – including experience and trust –

is mainly transmitted face-to-face, which implies interaction at the local level. Hence, we expect a spatial

clustering of PV systems, which is already confirmed by Fig. 1, and a strong positive relationship between

∆PVt and PVt−1.

To explain different amounts of newly installed PV systems at different coordinates (x0, y0) and points in

time t, we employ a pooled linear regression model:

∆PVt(x, y) =β0 + β1PVt−1(x, y) + β2GR(x, y) + β3INCt−1(x, y) + β4PDt−1(x, y)

+ β5HOUSt−1(x, y) + β6−21DUMMY1994−2009 + ε, with E(ε) = 0,V(ε) > 0.
(4)

GR, INCt, PDt, HOUSt are control variables for global solar radiation, household income, population den-

sity and the share of single and double family homes, respectively. They are all specific for a point (x0, y0)

3Incorporating the capacity (the nominal power in MWp) of a PV system would allow us to regard for different relevance
levels of PV systems, assuming that larger (more powerful) installations have a stronger impact on our aggregation function
as they attract more attention. However, we suppose that differences between the installations, which can easily be about 10
to the power of 4, are not justifiable. Therefore, we included all PV installations without regarding for different capacities.
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3 Building the Model

t− 1 t t+ 1

b b

b

b

b b

b

b

Figure 2: Causal relationship of events (installations of PV systems) at different points
in time, which should be tested; gray (black) dots are new (old) in the shown period

and – except for global radiation – represent a specific point in time. All of these are calculated as weighted

averages of the intersection of their spatial shape and the radius r around the point (x0, y0). This is

illustrated in Fig. 3: The intersection area between the circle of the spatial aggregation function and

the administrative districts (DEDnn) is taken to weight its value (e.g. INCt−1).4 We used the NUTS3

classification of 2006 where Germany was divided into 429 districts as most of the data was available for

that classification.

DED19

DED33

DED36

DED25

DED27

DED35

Figure 3: Spatial aggregation of data defined for arbitrary areas

The variables represent different factors possibly having an impact on the erection of photovoltaics

installations: PVt−1 considers local knowledge spillover effects. GR directly influences earnings from the

investment in a PV system. INCt−1 limits financing and risk-bearing possibilities. PDt−1 corrects for

weaker effects of the other variables in sparsely populated areas and covers intensified knowledge exchange

possibilities in densely populated areas. Finally, HOUSt−1 is a proxy for available roofs for PV systems.5

Regarding causality, we assume a time lag of one year. Thus, PVt−1, INCt−1, PDt−1 and HOUSt−1

4In Fig. 3, DED19 stands for the rural district of Mittweida, DED25 for the rural district of Meißen, DED27 for the rural
district of Riesa-Großenhain, DED33 for the rural district of Döbeln, DED35 for the rural district of Muldentalkreis and
DED36 for the rural district of Torgau-Oschatz.

5More than 80% of the PV systems in Germany are installed on a roof since open-space systems receive a lower
remuneration (Bundesverband Solarwirtschaft, 2011). We suppose that the probability to install a PV system may be higher
in single and double family homes as the owner structure of these may encourage PV installations since only few parties
have to agree upon the investment.
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3 Building the Model

explain the new PV installations at time t. Our analysis includes the years from 1992 to 2009, allowing for

17 regression data points at each point (x, y). GR is the yearly average of 1981 until 2000 and is therefore

constant over the whole period of study.

In Germany, a generous feed-in tariff makes investments in photovoltaic systems very profitable. Although

the global radiation is low when compared with other countries in the south, the PV capacity installed

per capita is by far the highest world wide in 2011. The feed-in tariff forces the electricity grid operators

to accept the electricity produced by renewable energy to be fed into the grid and guarantees a fixed

remuneration for electricity produced by PV for 20 years (Altrock et. al., 2006). Most importantly, the

remuneration is financed through an apportionment by all consumers of electricity; thus the costs are

born by all consumers.6 The feed-in tariff for electricity produced by PV was changed yearly until 2009.

Furthermore, PV installations became cheaper in this time period as production costs decreased due to

learning effects. In order to cover these shifts in the incentive level to install a PV system, we include year

dummies into our regression model. Further, the year dummies account for global effects of increasing

PV installations in our panel data setting and prevent that a positive coefficient for PVt−1 is induced

implicitly by our model specification. In other words, the time dummies enable us to study how the

amount of previously installed PV systems affect new installations. They permit both the verification and

the falsification of our hypothesis as positive and negative coefficients become possible for PVt−1.7

See Table 1 for an overview of the variables including their description, our interpretation as a proxy,

their source and their level of geographical agglomeration. Since the amendment of the Renewable Energy

Sources Act on the 25th of October 2008, address data and the date of grid connection of all the PV

installations in Germany are by law publicly available from the German transmission system operators

(TSOs).8 In order to conduct our analysis, we geocoded the data set of PV installations (some 550, 000).

Data upon the global radiation intensity was provided by the German Weather Service as 1-km raster

data (DWD, 2010). Further data, INCt−1(x, y), PDt−1(x, y) and HOUSt−1(x, y), was taken from 2010’s

INKAR database (INKAR, 2010) and the German Statistical Office (DESTATIS, 2010a,b). This data

was available at the district level.

Table 1: Overview of the variables employed

Variable Description Proxy Source Geogr. agglom. level

Explained variable

∆PVt(x, y) New PV installations dur-
ing t

– TSOs Geocoded point data

Explanatory variables

PVt−1(x, y) Amount of PV installa-
tions until t − 1

Knowledge and experience level re-
garding PV investments

TSOs Geocoded point data

INCt−1(x, y) Household income at t−1 Economic wealth INKAR (2010) District level

GR(x, y) Global solar radiation (av-
erage of 1981 − 2000)

Earnings from PV DWD (2010) 1-km raster data

PDt−1(x, y) Population density at t−1 Correct for sparsely populated areas DESTATIS (2010a,b) District level

HOUSt−1(x, y) Share of single and double
family homes at t − 1

Roof availability INKAR (2010) District level

6The more electricity one consumes, the more he or she has to subsidize renewable energy. However, the state is not
directly involved in this subsidy, only by setting the legal framework.

7A positive coefficient would mean that a high PV density increases the amount of new PV installations whereas a
negative coefficient describes a situation where areas with a sparse PV density catch up.

8The German TSOs are 50Hertz Transmission, Amprion, EnBW Transportnetze and Tennet.
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4 Statistical Results and Discussion

To test our hypothesis, we created data sets by defining two different scanning rasters for spatial data

aggregation with radius r. The scanning rasters provide points (x, y) to evaluate the respective spatial

values of the regression model. The radius r defines the size of the area of study and was chosen to be

sufficiently large that all points in-between several scanning points were covered. We generated:

Name s [km] r [km] Resulting scanning points

Coarse raster 20 30 632

Fine raster 10 15 2974.

The 20 km raster is displayed in Fig. 4. The pattern was generated by latitudinal lines each having a

shortest distance of step width s to its adjacent line. On these lines, we determined points with a step

width of s again. However, for the spatial density aggregation to be comparable with other regions, all

points having a shortest distance less than the radius of r to the nearest border of Germany were deleted.

This is also shown in Fig. 4 with r = 30 km.

The spatial data was modeled, analysed and stored in a PostgreSQL database with the PostGIS extension.

Interfacing to the spatial database was done via self-made C# programs, the rendering of maps with

QuantumGIS and the final statistical analysis with R (R Development Core Team, 2010). All distance

calculations were done on the WGS 84 ellipsoid.

Figure 4: Scanning raster with step width of 20 km; each black dot marks a scanning point

4 Statistical Results and Discussion

We ran our regression model for the different raster setups, including modified versions were some variables

were omitted. The descriptive statistics and the results for the 10 km raster with a radius of 15 km are

given in Table 2 and in Table 3.

We used 4 methods to estimate our regression coefficients: ordinary least squares (OLS), maximum

likelihood (ML) Poisson, quasi ML Poisson and ML negative binomial. Breusch-Pagan tests heav-

ily suggested using heteroscedasticity- and autocorrelation-consistent standard errors for the OLS run
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4 Statistical Results and Discussion

Table 2: Descriptive statistics (step: 10 km, radius: 15 km)

Min. 1st Qu. Median Mean 3rd Qu. Max. Missing Values

∆PV 0 0 8 64.92 72 1476 0

PVt−1 0 2 14 180.4 155 4243 0

INCt−1 634.4 1143 1259 1271 1414 2109 0

GR 940.5 988.6 1016 1030 1066 1164 0

PDt−1 38.29 105.1 150 238.5 246.1 3438 0

HOUSt−1 55.41 84.1 87.91 87.04 91.37 97.08 0

(Breusch and Pagan, 1979). Therefore, we state Newey-West standard errors, which are consistent to

heteroscedasticity and autocorrelation, in the OLS regression tables (Newey and West, 1987). We also

performed the rainbow test for the OLS regression, which indicates the probability of an specification

error in the model (Utts, 1982). In general, the rainbow test confirms that a reasonable linear fit can be

obtained for our model specification.

However, although the signs of the coefficients found do not differ in the different fitting models (except

for some year dummies), we generally consider OLS as unsuitable since we model count data. Count

data means: values cannot become negative and have no natural upper bound (Cameron and Trivedi,

1998). Count data is often modeled via a Poisson distribution. Under a Poisson distribution E = V, which

does not hold for our data set, as our variance is higher than the expectation value. Therefore, we have

an “overdispersed” data set, which leads to distorted coefficient errors under the ML Poisson model. To

correct for this, we can use the quasi maximum likelihood method. Nevertheless, the coefficients are

then still estimated under the Poisson assumption, which does obviously not hold, at least not in a strict

sense. This problem can be resolved by choosing a negative binomial linear model, which represents an

generalization of Poisson linear models. Comparing the ML Poisson and the ML negative binomial results

by both the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) suggest

that the ML Negative Binomial fits the data better.9

When interpreting our regression results, the most striking observation is that all the explainable variables

show – as expected – a positive coefficient for the scanning raster with step width 10 km. Further, the

impact of all variables is found to be significant. According to our results, we approve that previously

installed PV systems stimulate further installations nearby. Therefore, we conclude that knowledge flows

about a highly profitable investment opportunity in PV installations depend on the geographic proximity

of agents. Concerning the other variables, Table 5 in the Appendix shows that the income level has the

highest explanatory power. After income level, global radiation contributes some explanation, which is

consistent with our expectations. However, we find it striking that the effect of income is larger than

the one of global radiation, which suggests that the feed-in tariff is high enough to make investments

in PV even in less sunny parts of Germany profitable. We expected that sparsely populated areas also

have less PV installations since the other factors cannot be utilized by as many individuals as in more

densely populated areas. Further, we supposed that knowledge exchange would be facilitated in densely

populated areas since interaction possibilities increase there. As we find a positive coefficient for PDt−1

we consider our hypothesis as confirmed. The “available roofs” information we intended to capture by

HOUSt−1 also has some explanatory power. We therefore see the assumption as confirmed that the

9Similarly, the AIC and the BIC values suggest that the full model with all the explanatory variables suites best as shown
in Table 6, Table 7 and Table 8 of the Appendix.
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4 Statistical Results and Discussion

Table 3: Regression results (step: 10 km, radius: 15 km)

Model 1 OLS Model 1 ML Poisson Model 1 quasi ML Poisson Model 1 ML negbin

Constant −323.608∗∗∗ −11.102∗∗∗ −11.102∗∗∗ −12.163∗∗∗

(9.910) (0.027) (0.151) (0.143)

PVt−1 0.233∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.001∗∗∗

(0.005) (0.000) (0.000) (0.000)

INCt−1 0.013∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.003∗∗∗

(0.003) (0.000) (0.000) (0.000)

GR 0.155∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.006) (0.000) (0.000) (0.000)

PDt−1 0.025∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.002∗∗∗

(0.002) (0.000) (0.000) (0.000)

HOUSt−1 1.675∗∗∗ 0.059∗∗∗ 0.059∗∗∗ 0.045∗∗∗

(0.077) (0.000) (0.001) (0.001)

Dummy1994 −0.659† −0.263∗∗∗ −0.263 −0.272∗∗∗

(0.377) (0.030) (0.168) (0.040)

Dummy1995 −1.109∗∗ −0.317∗∗∗ −0.317† −0.585∗∗∗

(0.393) (0.030) (0.169) (0.042)

Dummy1996 −0.351 0.673∗∗∗ 0.673∗∗∗ 0.241∗∗∗

(0.431) (0.024) (0.135) (0.037)

Dummy1997 −0.151 1.041∗∗∗ 1.041∗∗∗ 0.505∗∗∗

(0.351) (0.023) (0.128) (0.036)

Dummy1998 −0.398 1.213∗∗∗ 1.213∗∗∗ 0.625∗∗∗

(0.405) (0.022) (0.125) (0.036)

Dummy1999 −0.581 1.424∗∗∗ 1.424∗∗∗ 0.885∗∗∗

(0.550) (0.022) (0.123) (0.035)

Dummy2000 14.015∗∗∗ 2.929∗∗∗ 2.929∗∗∗ 2.501∗∗∗

(0.730) (0.020) (0.114) (0.033)

Dummy2001 35.733∗∗∗ 3.707∗∗∗ 3.707∗∗∗ 3.204∗∗∗

(1.004) (0.020) (0.113) (0.033)

Dummy2002 13.160∗∗∗ 3.341∗∗∗ 3.341∗∗∗ 2.693∗∗∗

(0.851) (0.020) (0.113) (0.034)

Dummy2003 7.561∗∗∗ 3.386∗∗∗ 3.386∗∗∗ 2.691∗∗∗

(0.962) (0.020) (0.113) (0.034)

Dummy2004 46.772∗∗∗ 4.116∗∗∗ 4.116∗∗∗ 3.458∗∗∗

(1.320) (0.020) (0.112) (0.034)

Dummy2005 62.177∗∗∗ 4.362∗∗∗ 4.362∗∗∗ 3.709∗∗∗

(1.801) (0.020) (0.112) (0.034)

Dummy2006 26.229∗∗∗ 4.176∗∗∗ 4.176∗∗∗ 3.517∗∗∗

(1.676) (0.020) (0.112) (0.035)

Dummy2007 26.001∗∗∗ 4.251∗∗∗ 4.251∗∗∗ 3.577∗∗∗

(2.084) (0.020) (0.112) (0.035)

Dummy2008 62.523∗∗∗ 4.496∗∗∗ 4.496∗∗∗ 3.804∗∗∗

(2.961) (0.020) (0.112) (0.036)

Dummy2009 40.279∗∗∗ 4.413∗∗∗ 4.413∗∗∗ 3.769∗∗∗

(2.456) (0.020) (0.113) (0.038)

Dispersion parameter 1.169∗∗∗

(0.009)

N 50558 50558 50558 50558

R2 0.726

adj. R2 0.726

Resid. sd 65.335

Rainbow test (p-val.) 0.9784

AIC 1687978.771 364094.527

BIC 1688755.888 364906.967

log L −843901.385 −181955.263

Standard errors in parentheses (Newey-West for OLS)
† significant at p < .10; ∗p < .05; ∗∗p < .01; ∗∗∗p < .001

ownership structure implies energy efficiency considerations, which foster investment decisions towards

PV installations. The year dummies were included to cover strong shifts in the feed-in tariff and were

mainly found to be significant.

A test on variance inflation suggests not to discard any variable: Table 4 exemplarily shows the variance

inflation factor (VIF) for our fine scanning raster and indicates that multicollinearity should be no problem

in our analysis since all the values are close to 3 or well below (Marquardt, 1970; O’brien, 2007). Similarly

low values for VIF were found for all the model specifications tested.

9



5 Summary and Outlook

Table 4: VIF (step: 10 km, radius: 15 km)

Model 1

PVt−1 2.40

INCt−1 3.03

GR 1.20

PDt−1 2.50

HOUSt−1 2.11

Dummy1994 1.89

Dummy1995 1.89

Dummy1996 1.91

Dummy1997 1.93

Dummy1998 1.95

Dummy1999 1.97

Dummy2000 2.01

Dummy2001 2.06

Dummy2002 2.14

Dummy2003 2.15

Dummy2004 2.21

Dummy2005 2.26

Dummy2006 2.36

Dummy2007 2.49

Dummy2008 2.66

Dummy2009 2.95

Additionally, we tested other proxies for the economic wealth, the population density and the newly

available roof space of a given spatial unit. However, they were less influential as the factors shown above.10

The regression runs under the raster with step width 20 km are not shown, but were roughly the same

and found a lower influence of PVt−1. Our interpretation is that a scanning raster of 20 km and a radius

of 30 km are to coarse: according to our results, knowledge exchange seems to be localized as suggested by

the correctly specified regression models with a fine raster of 10 km and radius 15 km.

To sum up, the analysis of PV data suggests that spatial proximity facilitates knowledge exchange. In

line with the theoretic background introduced in chapter 2, we argue that interactions that favor the

exchange of tacit knowledge thanks to face-to-face contact stimulate trust between people and a fast

diffusion of knowledge. We interpret that proximity is – according to our findings – vital since investment

opportunities are only shared, diffused and finally made when trust in the investment has been built.

Indeed, knowledge about investments in PV systems seems to be localized – and therefore tacit – to some

degree. Observing a PV system at work and talking about it with a person of trust, seems to increase the

likelihood of installing PV.

5 Summary and Outlook

We set out to study the spatial diffusion of photovoltaics installations in Germany with an econometric

model and to test if pre-existing photovoltaic systems stimulate further installations nearby, which we

took as a proxy for knowledge diffusion about a highly profitable investment opportunity. Our model

accounts for spatial variations in global radiation, available installation space, the income level and the

population density of the spatial units studied. Further, we analyze if the knowledge and experience

10The proxies tested were the income tax payments, the GDP per capita and GDP per employee instead of household
income. Further, we replaced the population density by a proxy for rural and urban areas. Finally, the single and double
family homes were substituted by a measure of new built flats per capita, the share of flats in single and double family homes
and the amount of multi-family home.

10



5 Summary and Outlook

level regarding PV installations within a certain geographical unit, which we assume to be measured by

previously installed PV systems, determine the amount of new PV installations.

Our study is based on a dataset of some 550, 000 PV systems installed in Germany until 2009. We geocoded

the dataset and developed an econometric model to describe the heterogeneous geographical diffusion

of PV installations. The model is discrete in time. The level of geographical agglomeration is discrete,

but adjustable in arbitrarily small steps. Our model may be used to study the diffusion of geographical

point processes in general. Applying our modeling approach allows us to reach more detailed results in

comparison to ordinary discrete spatial models since the usual boundary problems are evaded. Besides, our

model can be used to study overlapping spatial units and very different levels of geographical agglomeration.

We find that the installation process of PV systems is highly dependent on previously installed PV systems

nearby. Thus, the likelihood of installing a PV system increases with the amount of installations that

can be found in the neighborhood. In conclusion, our results are in line with the theory that knowledge

exchange decreases with distance.

Further, our analysis shows a positive relation between economic wealth and global radiation and the

amount of PV systems installed within a spatial unit. The algebraic sign of the relation between available

roof space – measured by single and double family homes – and the population density is also found to be

positive.

Our analysis leaves room for improvements: A lower level of geographical agglomeration for the proxies of

the economic wealth, the population density and the share of single and double family homes should be

beneficial. Using a spatial aggregation function, which values spatial point process nearby higher than

those far away should also be a promising step.
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Table 5: Regression results OLS (step: 10 km, radius: 15 km)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11

Constant −323.608∗∗∗−867.997∗∗∗ 0.512∗∗∗−232.870∗∗∗−643.879∗∗∗−13.527∗∗∗−112.868∗∗∗−170.544∗∗∗−44.770∗∗∗ 0.353 −100.265∗∗∗

(9.910) (16.896) (0.023) (3.888) (12.584) (0.676) (10.138) (6.833) (2.950) (0.331) (4.590)

PVt−1 0.233∗∗∗ 0.252∗∗∗ 0.241∗∗∗ 0.242∗∗∗ 0.252∗∗∗ 0.252∗∗∗

(0.005) (0.004) (0.004) (0.005) (0.004) (0.004)

INCt−1 0.013∗∗∗ 0.126∗∗∗ 0.222∗∗∗ 0.043∗∗∗

(0.003) (0.004) (0.004) (0.003)

GR 0.155∗∗∗ 0.518∗∗∗ 0.626∗∗∗ 0.166∗∗∗

(0.006) (0.011) (0.012) (0.007)

PDt−1 0.025∗∗∗ 0.064∗∗∗ 0.060∗∗∗ 0.001

(0.002) (0.003) (0.003) (0.001)

HOUSt−1 1.675∗∗∗ 2.147∗∗∗ 1.308∗∗∗ 1.159∗∗∗

(0.077) (0.125) (0.116) (0.053)

Dummy1994 −0.659† −3.548∗∗ −0.405∗∗∗ −6.266∗∗∗ −0.184 −0.199 −0.119 −0.395† −1.574∗∗∗ −0.405∗∗∗ −0.347†

(0.377) (1.243) (0.032) (1.068) (0.872) (0.432) (0.232) (0.234) (0.221) (0.032) (0.199)

Dummy1995 −1.109∗∗ −6.932∗∗∗ −0.598∗∗∗ −12.366∗∗∗ −0.203 −0.233 −0.074 −0.580∗ −2.939∗∗∗ −0.598∗∗∗ −0.483∗

(0.393) (1.233) (0.040) (1.037) (0.875) (0.426) (0.234) (0.237) (0.242) (0.039) (0.199)

Dummy1996 −0.351 −9.110∗∗∗ 0.419∗∗∗ −17.262∗∗∗ 0.983 0.938∗ 1.177∗∗∗ 0.444† −3.094∗∗∗ 0.419∗∗∗ 0.591∗∗

(0.431) (1.229) (0.100) (1.014) (0.882) (0.413) (0.262) (0.254) (0.289) (0.099) (0.226)

Dummy1997 −0.151 −11.572∗∗∗ 0.853∗∗∗ −22.441∗∗∗ 1.886∗∗∗ 1.826∗∗∗ 2.144∗∗∗ 0.898∗∗∗ −3.820∗∗∗ 0.853∗∗∗ 1.083∗∗∗

(0.351) (0.520) (0.139) (0.524) (0.165) (0.166) (0.166) (0.140) (0.327) (0.139) (0.141)

Dummy1998 −0.398 −13.393∗∗∗ 0.764∗∗∗ −26.229∗∗∗ 2.493∗∗∗ 2.464∗∗∗ 2.773∗∗∗ 0.840∗∗∗ −4.734∗∗∗ 0.765∗∗∗ 1.013∗∗∗

(0.405) (0.605) (0.138) (0.599) (0.193) (0.195) (0.195) (0.150) (0.372) (0.137) (0.149)

Dummy1999 −0.581 −15.173∗∗∗ 0.854∗∗∗ −29.922∗∗∗ 3.433∗∗∗ 3.414∗∗∗ 3.652∗∗∗ 0.967∗∗∗ −5.508∗∗∗ 0.855∗∗∗ 1.051∗∗∗

(0.550) (1.305) (0.124) (1.089) (0.897) (0.397) (0.322) (0.258) (0.427) (0.123) (0.230)

Dummy2000 14.015∗∗∗ −3.393∗ 15.855∗∗∗ −21.363∗∗∗ 19.522∗∗∗ 19.585∗∗∗ 19.667∗∗∗ 16.016∗∗∗ 8.077∗∗∗ 15.858∗∗∗ 15.989∗∗∗

(0.730) (1.337) (0.513) (1.182) (0.925) (0.607) (0.608) (0.508) (0.666) (0.513) (0.538)

Dummy2001 35.733∗∗∗ 19.154∗∗∗ 37.737∗∗∗ −1.924 46.550∗∗∗ 46.600∗∗∗ 46.601∗∗∗ 38.124∗∗∗ 28.691∗∗∗ 37.743∗∗∗ 37.792∗∗∗

(1.004) (1.398) (0.967) (1.299) (1.061) (1.062) (1.110) (0.893) (0.960) (0.968) (0.974)

Dummy2002 13.160∗∗∗ 2.073 14.979∗∗∗ −23.477∗∗∗ 35.759∗∗∗ 35.777∗∗∗ 35.722∗∗∗ 15.891∗∗∗ 4.320∗∗∗ 14.992∗∗∗ 14.970∗∗∗

(0.851) (1.490) (0.672) (1.375) (0.864) (0.834) (0.827) (0.646) (0.713) (0.680) (0.676)

Dummy2003 7.561∗∗∗ 4.149∗∗ 8.880∗∗∗ −21.918∗∗∗ 38.903∗∗∗ 38.906∗∗∗ 38.775∗∗∗ 10.198∗∗∗ −1.722∗ 8.898∗∗∗ 8.801∗∗∗

(0.962) (1.513) (0.808) (1.352) (0.953) (0.974) (0.956) (0.826) (0.765) (0.825) (0.814)

Dummy2004 46.772∗∗∗ 49.391∗∗∗ 47.782∗∗∗ 20.730∗∗∗ 87.843∗∗∗ 87.869∗∗∗ 87.624∗∗∗ 49.542∗∗∗ 36.357∗∗∗ 47.807∗∗∗ 47.635∗∗∗

(1.320) (1.954) (1.266) (1.866) (1.481) (1.680) (1.665) (1.231) (1.174) (1.279) (1.242)

Dummy2005 62.177∗∗∗ 82.786∗∗∗ 61.905∗∗∗ 52.097∗∗∗ 124.353∗∗∗ 124.384∗∗∗ 124.013∗∗∗ 64.648∗∗∗ 50.367∗∗∗ 61.944∗∗∗ 61.676∗∗∗

(1.801) (2.487) (1.843) (2.450) (2.252) (2.501) (2.492) (1.859) (1.607) (1.872) (1.818)

Dummy2006 26.229∗∗∗ 72.806∗∗∗ 23.987∗∗∗ 39.587∗∗∗ 118.035∗∗∗ 118.076∗∗∗ 117.599∗∗∗ 28.117∗∗∗ 12.496∗∗∗ 24.045∗∗∗ 23.709∗∗∗

(1.676) (2.193) (1.756) (1.989) (1.927) (1.940) (1.992) (1.819) (1.341) (1.822) (1.741)

Dummy2007 26.001∗∗∗ 96.438∗∗∗ 21.969∗∗∗ 60.119∗∗∗ 146.022∗∗∗ 146.084∗∗∗ 145.499∗∗∗ 27.417∗∗∗ 10.217∗∗∗ 22.046∗∗∗ 21.649∗∗∗

(2.084) (2.541) (2.189) (2.336) (2.269) (2.318) (2.366) (2.266) (1.722) (2.275) (2.173)

Dummy2008 62.523∗∗∗ 163.877∗∗∗ 56.080∗∗∗ 124.895∗∗∗ 217.201∗∗∗ 217.281∗∗∗ 216.604∗∗∗ 63.156∗∗∗ 44.551∗∗∗ 56.180∗∗∗ 55.738∗∗∗

(2.961) (3.542) (2.950) (3.418) (3.190) (3.456) (3.492) (3.063) (2.532) (3.043) (2.941)

Dummy2009 40.279∗∗∗ 189.144∗∗∗ 29.995∗∗∗ 147.436∗∗∗ 246.145∗∗∗ 246.254∗∗∗ 245.504∗∗∗ 39.487∗∗∗ 19.396∗∗∗ 30.130∗∗∗ 29.677∗∗∗

(2.456) (4.949) (2.353) (4.682) (4.515) (4.622) (4.580) (2.486) (2.354) (2.332) (2.328)

N 50558 50558 50558 50558 50558 50558 50558 50558 50558 50558 50558

R2 0.726 0.516 0.717 0.465 0.456 0.403 0.388 0.721 0.719 0.717 0.720

adj. R2 0.726 0.516 0.717 0.465 0.456 0.403 0.388 0.721 0.719 0.717 0.720

Resid. sd 65.335 86.876 66.425 91.314 92.084 96.452 97.656 65.907 66.130 66.425 66.074

Rainb. (p-val) 0.9784 0.8835 0.9737 0.854 0.7357 0.6876 0.6991 0.9737 0.9774 0.974 0.9745

Newey-West standard errors in parentheses
† significant at p < .10; ∗p < .05; ∗∗p < .01; ∗∗∗p < .001
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