
Yegorov, Yuri

Conference Paper

Potential and Spatial Structure of Population

51st Congress of the European Regional Science Association: "New Challenges for European
Regions and Urban Areas in a Globalised World", 30 August - 3 September 2011, Barcelona,
Spain
Provided in Cooperation with:
European Regional Science Association (ERSA)

Suggested Citation: Yegorov, Yuri (2011) : Potential and Spatial Structure of Population, 51st
Congress of the European Regional Science Association: "New Challenges for European Regions
and Urban Areas in a Globalised World", 30 August - 3 September 2011, Barcelona, Spain, European
Regional Science Association (ERSA), Louvain-la-Neuve

This Version is available at:
https://hdl.handle.net/10419/119912

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/119912
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Potential and Spatial Structures of Population

Yuri Yegorov, University of Vienna

Started: 29 August 2009 This draft: 16 February 2011

Abstract
The goal of this work is to suggest a mechanism explaining different

spatial patterns of residential locations. The basic idea is counterbal-
ance of centripetal and centrifugal forces. This paper complements
the previous author’s works in this area. It is possible to find the
optimal city size assuming some scale economies in production coun-
terbalanced by commuting costs. The rural community of farmers is
also considered. Here the average distance to neighbor (as a proxy
to market access) is balanced with the benefits from land ownership.
Finally, the spatial equilibrium is constructed. It consists of discrete
cities of optimal size attracting certain fraction of the population and
the continuous farmland between them.

1 Introduction

This article has the objective to further understand the mechanism of emer-
gence of spatial equilibrium in the pattern of residential locations. Like in
the majority of economic studies, it is assumed that all agents are identical
a priori, and get the same utility in different locations and different occupa-
tions.

The goal of this work is to suggest a mechanism explaining different spa-
tial patterns of residential locations. The basic idea is counterbalance of
centripetal and centrifugal forces. This paper complements the previous au-
thor’s works in this area. This article addresses the following questions: a)
agglomeration potential, b) optimal city size, c) equilibrium agricultural den-
sity, d) influence of agglomeration on land rent.
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Why do we observe quite different pattern of residential location? It may
be dispersed (both regularly, like Cristaller’s hexagons and irregularly) or
form clusters. The spatial location of household and business represents a
complex and evolving pattern. Both relative location and size distribution of
cities and residential patterns in agricultural areas represent interesting ob-
jects of study. Here we can divide the overall complexity into several issues:
a) differences across countries in average population density (studied in Yegorov,
2009b),
b) structural change between rural and urban density (studied in Yegorov,
2005),
c) explanation of particular patterns,
c) share of urban and rural population.

While there are many models explaining agglomeration and asymmetric
locations, they typically do not take into account for land as productive fac-
tor. Here it is shown that land-intensive production (like agriculture) drives
the dispersion of population in space. Spatial equilibrium with relatively low
population density is reached through the balance from benefits of having
more land per capita and the costs of market access. The necessary assump-
tions are quite realistic and are based on 2-dimensional continuous Euclidean
space, that is decomposed into agricultural land slots. Such an approach is
typical for physics, where density determines equilibrium state of condensed
matter. The role of density in economics have not been studied until recently
(see, for example, Yegorov, 2009b).

The mechanism of balance between attracting and repelling forces is used
in many models of formation of urban clusters. Two main forces, centripetal
(agglomeration) and centrifugal (congestion) shape this urban pattern. The
origin of agglomeration forces is in scale economies, while congestion forces
represent a cumulative negative externality from such agglomeration. It is
likely that the deterministic component of location pattern can be explained
by balance of these forces.

The first article in regional science (von Thünen, 1826) have already used
the spatial structure of 2-dimensional continuous space, which was developed
in the models of 1930s (by Hotelling, Cristaller, Lösch and others - a good
survey is provided in Handbook of Regional Economics) has been largely
abandoned in the modern literature, including new economic geography, de-
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veloped by Krugman. However, Beckmann and Puu (1991) use continuous
space and consider flows of goods in it.

Urban economics (see, for example, Fujita, 1989) present the theory of
spatial structure of a city in microeconomic terms. The typical core assump-
tion is in existence of Central Business District (CBD), located in geometrical
center of radially symmetric city, with which agents have to commute on daily
basis. There are two types of commuting costs (leisure loss, that was in the
focus of Henderson, 1985), and transport cost. Interestingly, the interplay
between both of them can lead to mapping of agents with different wealth
into locations (see Yegorov, 1999), but this type of heterogeneity in wealth
will be outside of the models of this article.

Paper structure. The paper addresses several related issues and presents
a sequence of simple analytical results. Section 2 studies the optimal city
size. Section 3 studies agricultural density. Section 4 studies agro-industrial
cluster. Section 5 addresses applications. Section 6 concludes.

2 Model of Optimal City

There are many factors that influence agglomeration and dispersion of the
population in space: pollution, commuting, housing prices, etc. Here we will
focus on those forces that are linked to main production activities. Following
the stylized facts about different production technologies, it is assumed that
agricultural technology creates dispersion force, while industrial technology
creates agglomeration force. The basic reason is as follows. Agriculture re-
quires intensive land use. In order to save on commuting between residential
location and land to work, farmers have dispersed settlement in space. Still it
is not fully dispersed (although we observe isolated farms in some countries),
but are often clustered in villages. Village, or rural settlement, represents
an optimal balance between saving on commuting with land slots and enjoy-
ing some scale effects from residential clustering, like access to market and
service centers.
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2.1 Optimal City

There are many models of optimal city size. The objective of present model
is to give a simple presentation, that is consistent with urban economics and
also contains the link between optimal city size and some external parame-
ters, like transport cost, that can vary across time and countries.

Industrial city. Let N denotes population of a city, which is assumed to
occupy the interior of a circle r ∈ [0, R] with CBD in its center. Suppose
that all flats are equal in size b, but standard mechanism of balancing land
rent with commuting cost is used to make agents indifferent across locations.
It means that every citizen located at distance r from the CBD has to pay
housing services, equal to construction costs H and land rent L(r), plus com-
muting costs, τr, where τ denotes exogenously given unit distance transport
cost. Consider an industrial city with scale economies. It is assumed that
benefits from living in a city are equal for each citizen independently on
location and are proportional to city’s population in some power, N ε. This
benefit can include wage and saving on costs (through cheaper cost per capita
on infrastructure). There exist empirical studies showing presence of scale
economies in cities. Assuming rent at the city edge equal to zero (typically it
equals to agricultural land rent, that can be neglected in this model), we can
define potential (that has the meaning similar to utility) through its value
on city edge:

U = AN ε − τR−H. (1)

Since all citizens have identical utility by an assumption, we have the same
value of potential for all of them, although its components (land rent and
commuting costs) are different for each agent. The equilibrium land rent ex-
actly compensates commuting cost. Considering this potential as parametric
function on ε, we can find an optimal size of city cluster. First we use the
geometric link between R and b (assuming 1-story buildings with land b used
for living):

πR2 = Nb ⇒ R =
√

Nb/π. (2)

This gives the following expression for potential and optimal cluster size:

U(N) = AN ε − τ
√

Nb/π,

dU/dN = 0 ⇒ N∗ = (
Aε

τ

√
π/b)1/(1/2−ε). (3)
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Since

d2U/dN2 = Aε(ε− 1)N ε−2 +
τ

2N3/2

√
b/π,

at the point N = N∗, the second derivative is negative (condition for max-
imum) only iff ε < 1/2. Thus, for ε ∈ (0, 1/2) we have the finite optimal
city size. For ε > 1/2 the critical point is minimum, and the city reaches its
optimum for infinite radius.

Proposition 1 The optimal city size is finite only for reasonably small scale
economies, ε ∈ (0, 1/2).

Applications. This urban model shows that centripetal and centrifugal
forces are not always balanced. Only for relatively small scale economies in
a city (ε < 1/2) its growth is limited. For high scale economies its growth is
unbounded, since optimality is reached for infinite size. Since we never can
observe infinite population, we see unbounded dynamics of growth for some
cities. Such cities as Mexico, Cairo, Bombay, Shanghay already exceed 10
mln. of population, but demographers predicts their growth to 20 mln. or
more. In some countries we observe super-giant capital that absorbs high
fraction of the total population, even when total urban population share is
still modest (the case of developing countries).

Discussion about country types. Why it might happen that develop-
ing and not developed countries reveal this phenomenon of unbounded city
growth? In other words, in what parameters are they different for our model?
First, we will exclude the case ε > 1/2 and assume this parameter equal
for both cases1. Let us denote µ ≡ 1/0.5 − ε. For ε ∈ (0, 1/2), we have
µ ∈ (2, +∞). Consider comparative statics of N∗ with respect to parameters
b and τ . Since

dN∗/db = −µ

2
(
Aε

τ

√
π)µb−1−µ/2 < 0, (4)

dN∗/dτ = −µ(Aε
√

π/b)µb−1−µ < 0, (5)

the growth of parameters b and τ leads to a decline of optimal city size.
Developed countries are richer, and thus people want to have more living

1There are no possible equilibria and these countries are not likely to have higher
technology.
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space per capita. This leads to higher b, and thus lower N . Thus, cities
of smaller size are optimal in developed countries. The commuting costs in
richer countries are also higher, at least in real terms. This happens because
the quality (and price) of both vehicles and roads are higher. This, this factor
also works in the same direction, and the model explains the puzzle about
faster growth of cities in developing countries.

Proposition 2 The optimal city size (population) depends negatively on
transport cost, τ , and average size of land slot per capita, b. Technologi-
cal development in transportation leads to an increase of city size. At the
same time, more wealthy economies tend to have smaller cities (through the
positive effect of wealth on b).

3 Equilibrium Agricultural Density

Here we focus only on the case ε < 1/2. Assume that space is occupied with
agricultural population (density ρa) and urban clusters. Let γ be the fraction
of rural population. Asymptotically neglecting the area occupied by cities,
we can write ρa = γρ.

The simplest way to define agricultural potential is to subtract commuting
cost (market access) from the value of land, proportional to its size. However,
this will be bad example (see Appendix.2). Good example assumes decreasing
returns to scale in the value of land for potential of a farmer.

Good example. Consider the case of decreasing returns to land in produc-
tion : V1 = Sν − τr, for ν < 1. We can think about agricultural production
function for an individual farmer as Cobb-Douglas for land and labour, where
labour unit is supplied inelastically. If we add the cost of going around land,
it will be proportional to r, the distance to neighbour, and thus will add
nothing new. Consider the total land size normalized to one, and agricul-
tural population to N . Since land slot S = r2, density ρ = N , while r = ρ1/2.
Thus,

V1(ρa) = Sν − τr = ρ−ν − τρ−1/2. (6)

Now we also consider the social planner problem (individual cannot ra-
tionally consider the problems with variable number of agents), where land is
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divided into N equal slots. Then overall utility of all agricultural population
is given by:

VN(ρ) = N(Sν − τr) = ρ1−ν − τρ1/2. (7)

Differentiation gives the socially optimal population density of farmers:

ρ∗a = [
2(1− ν)

τ
]1/(ν−0.5) (8)

Since powers are positive now, we have internal maximum (see Appendix.1)
for 1− ν < 1/2, or taking limitation for ν into account, for 1/2 < ν < 1.

Proposition 3 There exists an optimal rural population density for ν ∈
(0.5, 1), for moderate decreasing returns to scale from land size slot per
farmer. In this case farmers keep optimal dispersion (density) in space, that
is based on interplay between returns to land slot size in production and cost
of market access.

4 Interaction between City and Rural Area

4.1 Agro-Industrial Cluster

Agricultural density. Let S denotes land endowment per farmer (all
agents involved in agriculture are assumed to be independent farmers), r
- average distance between agents and ρ population density. Assuming that
all land is used for agriculture, we have the following relationships between
these variables:

ρ = 1/S = 1/r2. ⇒ r = ρ−1/2. (9)

Scale technology in industry. However, it is more important to explain
clustering in urban areas. Consider scale economies, with productivity in
industrial (and service production) area growing with the number of agents
N who work there. Let industrial production function be

Y = AN1+ε, ε > 0. (10)

Then production per capita is y = Y/N = AN ε.
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Potential for agro-industrial cluster. Let commuting cost for agent i
be given by τri, with distance ri from CBD being different across agents.
Consider an agent who has access both to industrial and agricultural tech-
nologies. Let us introduce his potential as a proxy for wealth. The potential
is defined as value from land endowment and industrial technology minus
commuting cost:

Φ = S(r) + AN ε − τr. (11)

Here we assumed that agent i is located at distance r from CBD, has land
endowment S(r) for farming there and also works in industry located in
CBD. Such hypothetical agro-industrial cluster is heterogeneous. To make
all agents indifferent across locations (like this is done in urban economic
models), potential should be constant: Φ(r) = const. From this condition
we can determine S(r), and then population density ρ(r) (persons per sq.km)
at distance r. Let ρ2(r) denotes radial population density (number of people
living in circle [r, r+dr]), and r̄ is the radius of cluster. Then we can close the
model by linking total population with the integral from density (π = 3.14...):

N = 2π
∫ r̄

0
ρ2(r)dr. (12)

4.2 Accounting for rural and urban population

In order to make agents indifferent between agricultural and industrial ac-
tivities, potentials U(N∗) and V1 (not VN !) are equated:

V1 = U(N∗) ⇒ 1

(γρ)ν
− τ√

γρ
= AN∗ε − τ

√
N∗b/π, (13)

where N∗ is given by the equation (7). Since ρ is exogenous parameter for
a country, fraction of rural population γ can be varied to reach equality.
Country will be decomposed into city clusters of optimal size (they depend
on scale economies, flat size, commuting cost) and agricultural population
with certain density.

This is transcendental equation for γ. Denoting U(N∗) ≡ U∗, we get it
in a form:

U∗γν +
τ

ρ1/2
γν−1/2 − ρ−ν = 0. (14)
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Consider a special case ν = 3/4. Then we can denote new variable y ≡ γ1/3,
and get cubic equation for it:

U∗y3 +
τ

ρ1/2
y − ρ−ν = 0. (15)

This equation has a unique positive root, which under certain conditions lies
in the feasible range y ∈ (0, 1).

Let the total territory is normalized to one, while the total agricultural
population is N . We think about the model of ”raisins in a cake”, where cities
add population to homogeneously spread agricultural population, but occupy
negligible territory. This gives ρa = N , and we remember that ρa = γρ. If we
have M cities of optimal size N∗, then the average (urban and rural) density
ρ = MN∗ + N . Thus, the number of cities is:

M =
N(1− γ)

γN∗ . (16)

Proposition 4 The equilibrium location location structure includes ”raisins”
of optimal cities in a ”cake” of uniformly dispersed agricultural population.
For a given total population of a country, population density in cities, trans-
port costs, coefficient of increasing returns in city and decreasing returns on
agricultural land, there exists optimal number and size of cities and optimal
agricultural density.

5 Applications

5.1 Oil Peak Influence

The paper of Robert and Lennert (2010) analyses the impact of oil peaking
for Europe. One of their results says that oil peaking will increase prices and
reduce transportation, and this will restructure the whole urban system. In
particular, sub-urbanization will be reversed and people will move to more
compact cities.

How this model of optimal city can be extended? Simple comparative
analysis with respect to transport cost will not do all job. It is also impor-
tant to account for other scarce resources in a city, like limited fresh air,
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distance to forest, time in internal commuting, etc. All these factors work
for additional congestion.

The model should predict not only unbounded growth of metropolitan
areas (observed in the last decade) but a possibility of reverse process: moving
to smaller cities if transport cost increase substantially.

5.2 Agglomeration and the Dynamics of Land Rent

Suppose that agglomeration force emerges at some moment and leads to
growth of a city (see section 2). Urban and housing economics (see CBD
model) suggests that the equilibrium price of housing consists of construction
price and location rent. However, these theories are essentially static. Ur-
ban dynamics is driven by temporal imbalance of centrifugal and centripetal
forces. The cause of such disequilibrium may be some social innovation mak-
ing city more attractive. For example, after 1991 Moscow has gained more
attraction in comparison to other Russian cities due to new distribution of
financial capital and political power. Huge financial flows to Moscow (includ-
ing practically all FDI) caused higher wages (via positive jump in coefficient
A in (5)), and thus attraction for migration. This caused a shift from old
equilibrium city size N* to a larger one, N**. The new border of the city
expanded, and land rent in its center has grown. This caused the price of
all existing real estate to rise, and also has created the demand for building
new real estate between old and new city borders2. First of all, the prices
of old housing went up, and the owners were satisfied. Second, there was a
substantial construction boom. Third, the process of transition to new equi-
librium caused a positive trend in housing price (via the change of land rent)
and some speculators took their position. The result was price overshooting
with substantial price crash after the world financial crisis of 2008.

5.3 Land rent as a collective phenomenon

Price appreciation due to the growth of land rent is a complex collective phe-
nomenon, where different groups of people are affected. The old city dwellers
get not only appreciation of their housing, but also utility loss from growing

2Here we ignore the development of some central areas, that give substantial premium
in land rent for developer
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congestion and higher competition with migrants on labour markets. But
the most interesting question is: to whom newly created rent should belong?
Note that in this process we have quite complicated accounting. It includes
utility loss of other Russian cities (sending migrants to Moscow). Thus, they
might have a right for some compensation. The additional land rent created
in Moscow city thus belongs not only to citizens but also to other Russian peo-
ple (via compensation for negative externality effect). And clearly it cannot
belong to politicians or construction companies. In an ”honest” framework
(that only can be created by corresponding laws) construction should take
place in a competitive framework, slots for construction should be sold at
open auctions, and the revenue should be distributed across citizens, after
payment of some tax to state budget (that later can be used for subsidies of
regions-lousers).

6 Conclusions

1. There are many effects discussed here. First is related to scale economies
in cities that act as attracting force to compensate congestion forces in a
city of optimal size. The comparative statics with respect to transport cost
explains the growth of average city size with technological development.

2. Next, we have a balance between urban and rural population, resulting
in equilibrium rural density. The analysis is based on agricultural potential,
that involves returns to land in production function of a representative farmer
as well as cost of his access to the market.

3. The model of agro-industrial cluster is also developed. It involves a
split of the total population into a set of cities of optimal size, surrounded
with agricultural area with optimal rural density.

4. External shocks can change optimal city size and lead to temporal
disequilibrium processes. In the case of oil peak sub-urbanization can be
reversed, people will leave too large cities and move to more compact. In the
case of positive shock (like one in Moscow after 1991) there will be a process
of further city growth.

5. Combination of city dynamics with the static theory of urban and
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housing economics makes it necessary to understand the issue of ownership
in land rent. This is a complex collective phenomenon with externalities,
and special laws have to be introduced to avoid power abuse and dishonest
profits.
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8 Appendix

8.1 About Potentials as Field Differences

The difference of two power potentials u(x) = xa−xb is often used in physics
(for example, Lienard-Wiechert) to describe some intermediate stable state.
When the forces of attraction and repelling between particles (atoms) de-
pend on some power of distance, there exists equilibrium distance, where
both forces are balanced. The origin of these forces may include electro-
magnetic fields of multipoles, but include also other interactions. If we set
φ = x−a − x−b, a > b > 0, then the field φ starts at +∞ at x = 0, then
declines to minimum x∗ at some finite x, and later grows to 0 at x → +∞.
In physics, minimum of energy means equilibrium, or stable state.

In economics, we typically seek for some maxima. Thus, we have to use
opposite function ψ(x) = −φ(x) = x−b − x−a, a > b > 0. Such functions of
(population density) were used in Yegorov’s ”Density” model (Chinese Busi-
ness Review, 2009).

If powers are positive, u(x) = xa−xb, then we get maximum for 0 < a < b.
Typical economic example is a = 1, b = 2 (linear-quadratic function).

8.2 Bad Example

First, let us introduce the potential for a farmer, V , as the difference of land
slot Sa and average distance to another farmer, and then use the relationship
(1):

V (ρ) = Sa − τr =
1

ρa

− τ√
ρa

. (17)

Differentiation of this potential with respect to agricultural density gives the
following:

dV/dρa = −(ρa)
−2 + (ρa)

−3/2τ/2 = 0 ⇒ ρ∗a = 4/τ 2, (18)

d2V/dρ2
a = 2ρ−3 − 3τ

4
ρ−5/2.

A problem emerges here since the second derivative on optimal solution is
positive (this is minimum, not maximum). Note that the maximum occurs
when he power with sign ” + ” has lower absolute power.
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