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Abstract

This paper sets out a comprehensive framework to identify regional
business cycles within Spain and analyses their stylised features and
the degree of synchronization present among them and the Spanish
economy. We show that the regional cycles are quite heterogeneous
although they display some degree of synchronization that can be par-
tially explained using macroeconomic variables. We also propose a
dynamic factor model to cluster the regional comovements and find
out if the country cycle is simply the aggregation of the regional ones.
We find that the Spanish business cycle is not shared by the seventeen
regions, but is the sum of the different regional behaviours. The impli-
cations derived from our results are useful both for policy makers and
analysts.
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“Aggregative analysis . . . not only does not tell the whole tale but neces-
sarily obliterates the main. . . point of the tale”

(J. A. Schumpeter, Business Cycles, New York, McGraw-Hill, 1939, Vol.
I, p.134)

1 1. Introduction

In a context of growing economic and monetary integration such as the re-
cent creation of the EMU in Europe (1999), there is still controversy as to
whether comovements within economies are high enough for these processes
to be carried out successfully. This paper focuses on a previous step, employ-
ing a lower aggregation level, to find the way in which comovements within
a country determine its business cycle, that is, the cycles inside the cycles
usually considered in the literature. We employ two different approaches.
Firstly, we set out a framework to identify the regional business cycles and
their stylized features, compare them to the national cycle and analyze their
synchronization. Secondly, we estimate a Dynamic Factor Model to detect
common and idiosyncratic factors in the regional cycles and to determine
whether the country cycle is shared by all the regional business cycles or
whether, on the contrary and as we suspect, it is the consequence of aggre-
gating different regional business cycles.

The usual practice of considering a country’s business cycle as an aggre-
gation of the regional ones may mask very different activity rhythms. The
loss of regional detail would be negligible if the divergence between regional
and national cycles were small. If, on the other hand, the divergence were
large, it would make it difficult to apply policies satisfactorily in all parts
of the country and would have important implications, not considered up
to now, for integration processes. In short, knowing the regional cycle path
should be a key question in the design of the economic policy.

This paper aims to determine the pattern of regional business cycles
within Spain, to check which peculiarities are shared by the regions that
are more synchronized or coordinated with the rest, to provide empirical
evidence for the existence of different common regional business cycles and
to analyze their synchronization with the Spanish aggregate cycle. This
approach makes sense in industrialized countries where lower aggregation
levels are significant (regions or counties), and with federal fiscal systems
that allow differential economic policies to be implemented. We focus on
Spain –a country divided into seventeen NUTS-2 regions with a high degree
of fiscal federalism- and we test if the Spanish cycle is really unique and its
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path is shared by the seventeen regional business cycles. If not, a central-
ized economic policy may not be the most suitable alternative and would
contribute to intensifying regional inequalities. So, it would be important
to establish a comprehensive framework of the regional cycles in the Span-
ish economy in order to design policies for the less coordinated regions to
improve the specific factors that create the differences.

The studies that identify cyclical patterns have mainly been applied to
countries and there are few concerning a lower level mostly because of the
absence of adequate data1. Nevertheless, recently, two papers have stud-
ied similarities and differences across US states during the different phases
of their business cycles. The first, by Hamilton and Owyang (2009), uses
common Markov-switching components in a panel data set. The second, by
Owyang et al. (2005), applies a regime-switching model to state-level coin-
cident indices2. On the whole, when GDP was not available, the attempts
to investigate regional business cycles have used employment variables as a
proxy for economic indicators of activity and hardly any of them use indus-
trial production indexes as we do in this paper3.

In spite of having suitable characteristics for this type of analysis, the
previous literature on Spain is scarce. The Spanish cycles have been studied
without going into regional behaviours and using GDP or employment vari-
ables, the latter being a less accurate indicator of economic activity than
the industrial production index (Dolado et al. (1993), Dolado and Maŕıa-
Dolores (2001) and Doménech and Gómez (2005))4. The only papers that
try to characterize Spanish regional business cycles are Cancelo and Uriz
(2003) and Cancelo (2004). They use employment data and analyze turning
points, comovements and bidirectional causality.

1However, the study of cyclical patterns for countries has a long tradition, as is detailed
in Section 3.1.

2Three other main lines in the field of regional cycles have received attention from
economists and mainly focus on eight major US regions. The first one considers the
regional transmission of cyclical impulses (see Metzler (1950), Airov (1963), Carlino and
Defina (1995), Carlino and Sill (1997) and Kouparitsas (2002)). The second focuses on
the effect of determined shocks or policies on the economy (see Carlino and Defina (1998),
Kozlowski (1995) and Garrison and Chang (1979)). The last tries to explain the regional
cycles relating them to their growth patterns (see Borts (1960) and Carlino and Sill (2001)).

3We use the series of industrial production indexes that better (than employment
variables) fit the economic fluctuations in the Spanish regions. As far as we know, the
only paper applied to regions to use this index is Rodŕıguez and Villemaire (2004) for
Canada.

4There are also the papers that analyse the European business cycles and, so, include
Spain (see Camacho et. al (2008 and 2006), Artis et. al (2004) and Croux et. al (2001),
amongst others).
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Never before has such a comprehensive study of the regional business
cycles in Spain been carried out. Our analysis can be divided into two large
blocks. In the first block, we first identify Spanish regional business cycles
through the Bry-Boschan non-parametric technique (1971), defining turning
points in a way quite close to the one used by the National Bureau of Eco-
nomic Research (NBER), which allows us to determine the different phases
of the business cycle that, in most cases, closely follow the general path of
the Spanish economy during the same period. Following Harding and Pa-
gan (2002a), we also present some key features for describing the business
cycles, such as their amplitude, cumulation and excess of recessions and ex-
pansions. Second, we explore their synchronization using different measures
that consider the degree of comovement between each region and the others
and with Spain as a whole. Third, the role of some macroeconomic variables
that could explain the synchronization across regional economies is analyzed.
These variables are the industrial composition, the per capita income level,
human capital and the unemployment rate. The results obtained allow us to
define some key lines for the future implementation of any measure of eco-
nomic policy that tries to increase intracountry synchronization. We also
consider another dimension that may influence the explanation of the simi-
larities and differences in regional comovements, namely, neighbourhood.

In the second block, we first carry out a preliminary analysis of comove-
ments by using the coherence and cohesion measures that allow us to know
the degree of synchronization at different frequencies. Secondly, although
there is a wide variety of clustering techniques that could have been applied
to the basic features of the cycle to form clusters of regions, we complement
our study with the use of Dynamic Factor Models to investigate whether
some common factors could be driving the regional business cycles. Then,
we compare these results with the Spanish cycle and identify the national
component. Based on the results obtained, we carry out the cluster analysis
using the idiosyncratic regional components.

Our contribution is twofold. Firstly, we find a high degree of hetero-
geneity in the basic features of the regions’ cycle dating. When we test
for synchronization, we obtain that, although the results are not symmetri-
cal across regions, the regional cycles are sufficiently correlated to consider
the possibility of the existence of common cycles. The most synchronized
regions are characterised by an important industrial weight, per capita in-
come and human capital and a low unemployment rate. One outstanding
result is that there is an inverse relationship between economic growth and
regional comovements or synchronization. Furthermore, most regions have
a high coherence/cohesion in the long run that decreases dramatically in
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the short run and they do not show signs of convergence. Secondly, we find
a common dynamic factor associated with Spain. After removing this fac-
tor, we use regional idyosincratic components to cluster regions and we can
confirm the idea that the Spanish business cycle is a result of aggregating
regional ones that do not share identical patterns. This finding should be
taken into account either to study and forecast the Spanish business cycle
or to implement economic policy.

The paper is organized as follows. Section 2 describes the data, pre-
senting the stylized facts in Spain as a whole and in its regions. Section 3
defines the regional cycles and the basic features that characterize them as
well as their mutual synchronization and their synchronization with Spain.
It also proposes some variables that may have a role in explaining these
results. Section 4 presents a preliminary analysis of comovements and then
investigates whether common driving forces appear in the regional business
cycles. From these results, we identify clusters of regions. Finally, Section
5 concludes.

2 2. Stylized facts about Spain and Spanish re-
gions.

In this paper, we consider the 17 Spanish Autonomous Communities that
correspond to NUTS-2 in the EUROSTAT nomenclature. Each region is de-
noted by its acronym: Andalucia (AND), Aragón (ARA), Asturias (AST),
Baleares (BAL), Canarias (CAN), Cantabria (CANT), Castilla y León (CYL),
Castilla-La Mancha (CLM), Cataluña (CAT), Comunidad Valenciana (CVAL),
Extremadura (EXT), Galicia (GAL), Madrid (MAD), Murcia (MUR), Navarra
(NAV), Páıs Vasco (PVAS) and La Rioja (LAR).

We concentrate on the analysis of the monthly industrial production
index (IPI), extracted from the Instituto Nacional de Estad́ıstica (Spanish
Statistical Institute, INE), for Spain as a whole and for its 17 regions. Our
working sample spans from 1991:10 to 2009:09, and we have linked two
different series. With base year 1990, we have data from 1991:10 to 2002:12
while, with base year 2005, the available data are from 2002:01 to 2009:09.
Thereby, we obtain 216 observations for each region and for Spain as a whole.

This is the first time this index has been used to measure regional busi-
ness cycles in Spain and it could be controversial but we can not use the
regional accounts series, such as the GDP, which are more comprehensive
measures of aggregate activity, because they are not sufficiently long and
only have an annual frequency. The IPI is monthly, better than the annual
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or quarterly frequency of other variables (production or employment). Fur-
thermore, the IPI is one of the main series when estimating regional GDP
so, the manufacturing sector reflects the rhythm of the business cycle more
accurately than employment data, which are those most commonly used in
regional studies. The GDP shows a cyclical path similar to the industrial
sector, but smoothed by the more stable behaviour of the tertiary sector.

In fact, a glance at the growth rates of GDP and industrial production
since the 90s shows that they have similar profiles, although they are more
pronounced in the case of the industrial sector because it is more affected by
business cycle fluctuations. In the period analyzed, we can distinguish four
main phases in the Spanish economic cycle5: the end of the expansion of
the 80s, the profound crisis of 1992-1993, the dilated recovery that began in
1994 and included years of high growth and periods of slower growth, more
marked in industrial activity and, finally, the current recession that started
in 20086.

The degree of heterogeneity between sectors in the Spanish regions is
high. In the almost twenty years considered in this study, the services sector,
followed by construction, are the ones that have increased their weight in
the total production at the expense of the industrial, energy and agricultural
sectors, in that order. In 2008, the last year with available regional accounts
data, 69% of the total Spanish GDP is generated by the services sector as
in the most developed economies; 14.3% is industrial, 11.4% comes from
construction and the remaining 2.6% and 2.7% belong to the agriculture
and energy sectors.

The most industrialised regions in the whole period (those with an indus-
trial weight clearly above the Spanish average, which is 17.18%) are NAV,
LAR, PVAS, CAT, ARA CVAL and CANT. There are two groups with
an industrial average similar to the Spanish one: AST and CYL (a little
higher) and CLM and GAL (slightly below). Finally, the less industrialised
regions are MUR, MAD, AND, EXT, BAL and CAN, although the distance
between the first two and the last two is of almost 10 pp.

The IPI series have previously been seasonally adjusted. A preliminary
analysis is carried out by applying the MZt-GLS unit root tests proposed by
Ng and Perron (2001), which are modified forms of the Phillips-Perron test
[Phillips and Perron (1988)] and based on the detrended GLS data. We also

5Although our data source begins in October 1991, we capture the end of the expansion
of the 80s.

6Taking quarterly data for both Spanish GDP and IPI from 1991.4 onwards, the cor-
relation between the two variables is really high: 0.81 with annual growth rates and 0.66
with quarterly growth rates.
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use the KPSS of Kwiatkowski et al. (1992) that tests for the null hypothesis
of stationarity. Both have been applied to two different specifications, one
that includes an intercept and one that has an intercept and a trend. The
results lead us to a very robust conclusion: we cannot reject the presence
of a unit root in the series, whilst we can reject the null of stationarity7.
Consequently, in the rest of the analysis, we have to take these properties
of the series into account. Figures 1 and 2 show the levels of seasonally
adjusted series and the first difference of their logs, respectively.

3 3. Business cycle dating and synchronization

This section provides a complete framework for the analysis of the Spanish
regional business cycles. Firstly, we select an appropriate turning points
dating method to identify regional business cycles. Secondly, we illustrate
the key features that describe these business cycles. Thirdly, we examine
the degree of similarity among the business cycles identified in Spain and
its regions. Finally, we study both the role of different macroeconomic vari-
ables in explaining the degree of business cycle synchronization and whether
neighborhood presents any effects.

3.1 3.1 Cycle dating and basic features

The seminal work of Burns and Mitchell (1946) paved the way for methods
to measure the business cycle. These authors define the cycle as a pattern
in the level of aggregate economic activity, and describe it through a two-
stage methodology. First, turning points are located in the series by using
graphical methods, thereby defining specific cycles. Second, the specific
cycle information is distilled into a single set of turning points that identify
the reference cycle. These authors also define concepts such as peak (the
high point of an expansion) and trough (the worst moment in a recession
period) to determine the cycle length. These terms became standard in any
work about business cycles undertaken after the publication of that work.

Their approach has important advantages for academics and politicians
because of the ease of computing algorithms to establish the dates at which
there were turning points in the business cycle, and because of the intuitive
interpretation of the results. Their aggregate cycle was called the business
cycle, and their tools were immediately used by the NBER to study US
business cycles in greater depth and, afterwards, became a reference for the

7Detailed results of these tests are available from the authors upon request.
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study of business cycles in other economies. Nowadays, NBER continues to
publish a single set of turning points for the US economy.

This pioneering work generated a great deal of literature in which the
level of sophistication of the statistical tools evolves more than the definition
of the business cycles. Bry and Boschan (1971) (BB) developed the most
popular non-parametric method to determine when the peaks and troughs,
which frame economic recessions or expansions, appear. In the last few
decades, many alternative procedures have been suggested. Among them,
the Markov-switching (MS) approach proposed by Hamilton (1989) stands
out8. Unlike to the BB method, the MS first fits a statistical model to
the data and then uses the estimated parameters to determine the turning
points. Since the well-known paper of Hamilton (1989), there has been a
rebirth of interest in this method as an alternative to classical business cycle
measures9. The MS models try to characterize the evolution of a variable
through a process of conditioned mean to a state of a specific nature. The
changes in value in this dynamic process will allow us to differentiate periods
of expansions and contractions. Regime shifts are governed by a stochastic
and unobservable variable which follows a Markov chain.

Except for the US, for which the NBER Business Cycle Dating Com-
mittee establishes the official chronology or turning points, there are no
widely accepted reference chronologies of the classical business cycle for
other countries. So, the examination of the synchronization of Spain and
the 17 Spanish regions will have to rely on dating algorithms that can be
either non-parametric (Bry-Boschan type methods) or parametric (Markov-
switching models).

The selection of the most suitable cycle dating algorithm for Spain and its
regions is very conditioned by the data and its sample size. In contrast to BB
type methods, which are valid for the sample size used in this analysis, the
Markov-switching method requires a longer sequence of business cycle states
to estimate the transition probability matrix coefficients with a reasonable
degree of confidence. We only have monthly observations from 1991:10 to
2009:9 and a glance at the growth rates of GDP and industrial added value
shows that we can distinguish four large phases in the Spanish economic
cycle. So, we have reasonable doubts about the ability of the Markov-
switching procedure to adequately estimate the probability of staying in

8See Harding and Pagan (2002b and 2003) and Hamilton (2001) for a debate about
the two business cycle dating methods.

9Krolzig (1997), Artis et al. (2004) and Krolzig and Toro (2005), amongst others,
have highlighted the ability of this parametric approach to capture stylized business cycle
features. MS-VAR models offer more robust statistical tools.
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recession or in expansion or the transition probabilities between regimes.
Although non-parametric procedures are based on some assumptions about
the duration of business cycles and about the detection of false signals, they
can be much more appropriate for short samples and for a small number of
changes in regime transitions10.

Furthermore, an eye-ball examination of Figures 1 and 2 suggests that
the series in levels would create important problems in computing turning
points with BB techniques. On the contrary, the growth rates of the series
seem too noisy and the algorithm could produce false signals. Figure 3
shows the original level series together with the recessions (represented by
bars) identified with the BB methods11. They clearly coincide with periods
of falls in industrial production and reproduce the ”known-knowns” recent
aggregate Spanish business cycle. Consequently, we can trust BB techniques
to find the chronology of turning points at regional level. With respect to
the regional cycles, in most cases, the BB method locates four recession
periods which coincide with two well-known crises, the beginning of the
90’s and the current one, and two deceleration episodes during the long
expansion. Nevertheless, some regions present a more turbulent chronology.
AST very frequently alternates expansion and recession periods throughout
the sample; CVAL has spent almost all the noughties in recession; and,
in AND and EXT, the algorithm does not yet detect the deep recession
that started in 2008. So, we should analyze the basic characteristics of the
regional cycles in greater detail.

Following Harding and Pagan (2002a), we dissect the business cycle and
calculate some outcomes, such as the probability of recessions measured
as the number of months in recession over the total, the mean duration,
amplitude, cumulation and excess of recessions and expansions12. All these
results appear in Figure 4. The probability of recessions is 0.38 for Spain
(0.39, on average for the regions), the mean duration of the recessions is 17
months (14) and the mean duration of the expansions is 45 months (35)13.

10An aplicacion of the MS method to Spanish regional cycles can be found in Gadea et
al. (2006).

11We have used the code written by Watson and Denson in Watson (1994).
12Harding and Pagan (2002a) propose a graphical representation of the cyclical phase

as a triangle whose height is the amplitude and whose base is the duration. The area
of triangle is an approximation to the cumulated gains or losses in output from trough
to peak and peak to trough, respectively. In these calculations, we have used logs of the
series to obtain more representative figures, such as growth rates.

13Just to put these figures in context, they closely agree with the estimated duration of
business cycle phases proposed by the NBER for the 32 cycles in the recent history of the
US (1854-2001), which is 17 and 38 months for recessions and expansions, respectively.
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These results are plausible and agree with the stylized fact that expansion
periods are longer than recessions14. It is noteworthy that, while recessions
last a similar number of months to those in Europe, expansions last more
than two years in Spain and half a year for the regions, on average, which
could explain the convergence process attained during the sample period.

However, we find some heterogeneity in the probability of recession and
the duration of the cycles across regions. As we said previously, in the
seventeen regions (and in Spain), the average probability of a recession is
nearly 40% but only seven of these eighteen geographical units are above the
mean. CVAL and AST are the regions with the highest probability, more
than 50%, and the lowest probabilities, around 30%, are found in MUR,
MAD and ARA. With respect to the duration, MUR, MAD and ARA stand
out as the regions with the longest expansions (around 50 months) and
the shortest-lived recessions (only a fifth of the cycle duration is spent in
a recession). Nevertheless, CLM and CVAL present long-lasting recessions
(more than 20 months). Furthermore, we can appreciate big asymmetries in
duration in the cases of MUR and ARA; while, on average, expansions last
2.5 times as long as recessions, in these two regions, the ratio is around 5
times. On the contrary, the highly symmetrical cycles found in CVAL (and,
to a lesser extent, in AST and CLM) are noticeable, as the time spent in
expansion is 23 months while recessions last 21.

Clear asymmetries between the amplitude of the phases of the cycle
are also observed. This measure, expressed in percentage, shows the gains
or losses in industrial production as a result of expansions or recessions.
It is clear that, on the whole, expansions are wider than recessions; on
average, there is a difference between the two phases of about ten percentage
points and, in all regions, the amplitude of expansions is bigger than that of
recessions. Of special interest is the case of EXT, where the amplitude across
the two phases is almost identical because the region presents the highest
loss during recessions, and the cases of NAV and ARA, two regions that
show very pronounced asymmetries between the amplitude of their business
cycle phases, the expansions being more than four times greater than the
recessions.

MAD, ARA, LAR and NAV have the clearest cumulative gains during
expansions, and CLM and EXT, stand out for the severity of their reces-

According to Camacho et al. (2006), European expansions last about 30 months, while
recessions last 15 months. This means that a cycle spends 67% of its duration in expansion.

14However, if we work with growth rates, the algorithm identifies more turning points
and the duration of recessions and expansions are 22 and 27 months, respectively, for the
case of Spain, and 24 and 23 for the regions on average.
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sions. Cumulation is a measure used to identify the cumulated gain or loss,
calculated as the sum of the amplitudes for each period of the phase. It
is very useful as it can be interpreted as the gain or loss in wealth in the
economy, and sums up the previous ones by combining the duration, am-
plitude and shape of the business cycle. However, it is normally calculated
by the triangle approximation and differs from the actual cumulation be-
cause the path through the phase may not be well estimated by a triangle.
Harding and Pagan (2002a) propose adding up the area of rectangles and
removing the bias as a more accurate measure of the area. Nevertheless, we
have calculated the area associated with the phase exactly by using methods
of numerical integration. The difference between the actual shape and its
triangle approximation is known as excess.

Negative excess dominates during expansions, so the shape of the wealth
gain is mainly concave. This means that the path of this phase begins with
steep changes and ends smoothly. That is, an expansion is more commonly
characterized by a high growth period that ends in normal growth period.
During recessions, the concave shape of the phase dominates even more than
during expansions. Consequently, the paths exhibit gradual changes at the
beginning of the phase that become sharp at the end. Both features are
positive because they mean that the wealth losses in recessions are lower
and the gains in expansions higher than in a linear behaviour. So, regions
with convex expansions (GAL, CAN, CYL, LAR, EXT, PVAS) and SP do
not benefit as much as the others from an expansion, while regions with
convex recessions (MUR, CYL, ARA, LAR and AST) have a bigger wealth
loss than the others when they are in recession.

Summing up, the BB method has allowed us to obtain the cycle dating
and a first picture of the Spanish and regional business cycles, showing that
they seem to have important disparities. We can affirm the existence of 17
non-identical regional business cycles in Spain. Nevertheless, it is possible
that these cycles exhibit some synchronization, which could be interpreted
as a sign that regional economies move together.

3.2 3.2 Measures of synchronization

We have proved the existence of different patterns in the regional business
cycles. However, they could be coordinated between them so, in this sec-
tion, we focus on the study of the possible relationships between the cyclical
patterns of industrial activity in the different regions. In particular, we want
to explore their possible synchronization in depth. To that end, we use dif-
ferent measures of the synchronization of cycles such as Pearson’s coefficient
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and its independence test, both based on a contingency table, and the index
and test statistic of concordance proposed by Harding and Pagan (2006),
both in their bivariate and multivariate forms. Finally, if we find some de-
gree of synchronization, we will apply multidimensional scaling techniques
to represent the different regions on a map, looking for groups of regions
with similarities in their cyclical path. In addition, we explore the evolution
of synchronization over time and its relationship with important regional
characteristics such as, industrial weight, unemployment rate, income level,
human capital and geographical position.

The well-known independence test for regions i and j, is based on a con-
tingency table where the frequencies of expansion and recession observations
are shown for the two regions. This statistic has the following expression:

Qij =

s∑
u=1

s∑
v=1

(nuv − m̂uv)
2

m̂uv
,

where s is the number of regimes, n denotes the joint observed frequencies
and m the estimated marginal frequencies . The statistic is distributed
under the null of independence as a χ2 with (s-1)x(s-1) degrees of freedom.
We can also compute the contingency coefficient which lies within the range
[0,1] from lower to higher cycle commonality.

Cij =
1√
2

√
Q2
ij

Q2
ij + T

,

According to Harding and Pagan (2004), for each i−region we can build
a binary random variable Sit, taking value 1 when the i−region is in an
expansion phase and zero when it is in a recession phase. The concordance
index for two regions i, j is defined as follows:

Iij = T−1[

T∑
t=1

(SitSjt) +

T∑
t=1

(1− Sit)(1− Sjt)],

where T is the sample size. Iij measures the proportion of time that the
two regions are in the same phase. Notice that this index only shows simi-
larities in the periodicity of regional cycles, independently of the length of
the expansion and recession phases. Although this measure is very easy to
interpret and offers a first picture of synchronization in regional cycles, it
has the disadvantage that it does not provide a statistical way of knowing
whether the comovements are significant or not. To solve this problem,
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Harding and Pagan (2004) suggest an alternative method based on the cor-
relation between Sjt and Sit. They recommend estimating the coefficient
which reflects the correlation between Sitand Sjt by using the generalized
method of moments.

Starting with the following moment condition:

E[σ−1
Sit

(Sit − µSit)σ
−1
Sjt

(Sjt − µSjt)− ρSij ],

where µSt and σ−1
St

are, respectively, the mean and standard deviation of the
time series St, we can estimate the value of ρSij and test if ρSij = 0 using
the t-test in its implicit estimator equation:

T−1
T∑
t=1

σ̂−1
Sit

(Sit − µSit)σ̂
−1
Sjt

(Sjt − µSjt)− ρ̂Sij = 0,

As Harding and Pagan (2006) recognize, ρ̂Sij can be found from this
regression:

σ−1
Sit
σ−1
Sjt
Sit = α+ ρSijσ

−1
Sit
σ−1
Sjt
Sjt + εt,

The interpretation of the regression has advantages over the method
of moments estimator because it allows us to analyze whether the degree
of synchronization has changed over time. However, our inference has to
be robust to the serial correlation as well as to any heteroskedasticity in
the errors. We use the Newey-West autocorrelation-consistent covariance
with Barlett weights and we also build confidence intervals following the
stationary bootstrap techniques proposed by Politis and Romano (1994).
This procedure is based on resampling blocks of random length, where the
length of each block has a geometric distribution15.

The multivariate version for n regions of this test is based on the following
n(n+ 1)/2 moment conditions:

E[
(Sjt − µSj )(Sit − µSi)√
µSj (1− µSj )µSi(1− µSi)

− ρSij ] = 0, j = 1, ..., n, i > j

and the test has this expression:

W =
√
Tg(θ̂−1

0 , {S}Tt=1)′V̂ −1
√
Tg(θ̂−1

0 , {S}Tt=1)

15Following Camacho et al. (2006), we select the probability of the geometric distribu-
tion so its expected value is equal to the average duration of expansions.
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where V̂ is a consistent estimate of the covariance matrix for g(θ̂−1
0 , {S}Tt=1)

and

g(θ̂−1
0 , {S}Tt=1) =

1

T

T∑
t=1

ht(θ, St)

ht(θ, St) =



S1t − µS1

...
Snt − µSn

(S1t−µS1
)(S2t−µS2

)√
µS1

(1−µS1
)µS2

(1−µS2
)
− ρS12

...
(S(n−1)−µS(n−1)

)(Snt−µSn )√
µS(n−1)

(1−µS(n−1)
)µSn (1−µSn )

− ρS(n−1)n


The vector θ̂′ = [µ̂S1

, ..., µ̂Sn
, ρ̂S12

, ..., ρ̂S(n−1)n
] contains sample means

and sample pairwise correlations and, under the null, has different expres-
sions depending on the hypothesis. In the case of SMNS (strong multi-
variate non-synchronization), it is [µ̂S1

, ..., µ̂Sn
, 0, ...0] or, if we want to test

the hypothesis of SMS (strong multivariate synchronization), for instance
ρS12

= ρ, ∀i 6= j with ρ ∈ (0, 1), it is [µ̂S1
, ..., µ̂Sn

, ρ, ..., ρ]. The W statis-

tic has an asymptotic χ2
n(n−1)/2 distribution for ρ ∈ [0, 1). However, under

the null of PS (perfect synchronization) the distribution is more complex,
being a Brownian motion, or applying the Cramer-VonMises equivalent, a
weighted average of χ2 densities. In this case, Harding and Pagan (2006)
propose an alternative statistic whose asymptotic density is a χ2

(n−1):

W =
√
Tg({S}Tt=1)′V̂ −1

√
Tg({S}Tt=1)

where

g({S}Tt=1) =
1

T

T∑
t=1

ht(St)

and

ht(St) = [−in − 1In−1]

 S1t

...
Snt


where in−1 is an (n−1, 1) vector of ones and In−1 is an (n−1, n−1) identity
matrix.
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Candelon et al. (2009) show that this multivariate test performs badly
and has important size distortion when the number of individuals increases.
So, they propose a block bootstrapped version of the test, instead of the
asymptotic one, when the number of regions is sufficiently large (more than
5). However, the bootstrapped version can produce low power and the ap-
pearance of a trade-off between size and power that rises with the number
of regions. In addition, the estimated sample value of covariance matrix
V tends to be singular when n is big, even when the true covariance ma-
trix is known to be non-singular. To solve this problem, we have used the
shrinkage estimator proposed by Ledoit and Wolf (2003). The principle of
shrinkage is that by properly combining two extreme estimators, one, the
simple covariance matrix, unbiased but with a large estimation error, and
the other, with structure and a relatively small estimation error, we obtain
an estimator that performs better than either of the two extremes.

Figures 5 summarize all the synchronization measures, contingency, con-
cordance and correlation. Instead of showing the three 18x18 matrices, we
have calculated the regional averages of contingency, concordance and cor-
relation and have displayed each in a graph together with the measure of
each region with respect to Spain. In addition, we have included a mul-
tidimensional scaling map below the figures. This technique allows us to
visualize similarities or dissimilarities and to produce a representation of
the synchronization of the regions in a small number of dimensions. In
the three cases, the corresponding synchronization index is used as the dis-
tance matrix; then, we transform the similarity matrix into a dissimilarity
and reproduce its Euclidean distances16. A preliminary examination of the
eigenvalues of this matrix shows that two dimensions are not enough to rep-
resent the points suitably, and we need at least 3 or 4 dimensions. Because
of the impossibility of drawing graphs in four dimensions, we display them
in three.

Different measures obtain very different ranges of values but nearly the
same ranking of regions. We observe that the pair-wise correlations ρSij

(0.51, on average, for regions and 0.67 for Spain) are typically smaller than
those obtained with the concordance index, which are around 0.76 and 0.84,
suggesting that the stronger correlation between industrial regional cycles
detected with Iij is biased by the values of the mean. The pair-wise values
obtained with the contingency analysis are also relatively big (0.61 and 0.76,
respectively). Nonetheless, the evidence for rejecting the null hypothesis of
no association is very strong between regions, around 88% on average when

16A detailed explanation of this technique can been found in Timm (2002).
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we consider the Harding-Pagan t− test and 91% with the Pearson indepen-
dence test (see Table I). With both tests, most non-rejections correspond to
EXT, which is also the only region that is not synchronized with SP.

Contingency, concordance, and correlation are nearly identical with re-
spect to their classification of regions17. We can see that PVAS, MAD
and ARA are the regions most connected with the rest, while EXT, AND,
CVAL and AST arethe most isolated. Notice that both groups of regions
have atypical business cycle features. CVAL, AST and EXT are regions with
low asymmetry between the duration of expansions and recessions, present-
ing brief growth periods. On the contrary, the more synchronized regions
are characterized by a great asymmetry in favour of expansions and a high
cumulation of wealth gains during them. We also find another stylized fact:
the degree of regional synchronization is directly related with the degree of
synchronization with Spain.

The results of such a high correlation are confirmed by the bootstrap
exercise for ρSij because the zero is out of the confidence interval at 95%
in all cases18. Nevertheless, as we can see in Figure 6, where we present
the density of correlation coefficients, their variability is quite important
in several regions. The correlation coefficient has also been estimated re-
cursively throughout the sample to capture changes in synchronization over
time. Figure 7 shows the evolution of the regional average of ρSij and its
value for each region and SP. The business cycle similarity of EXT and
AND has gone down dramatically during the last decade both with respect
to other regions and SP, indicating a lack of convergence. Other regions,
such as CAT, NAV, MUR or CVAL also show a loss of synchronization dur-
ing the long expansion phase (more pronounced in the last two) and seem
to recover during the current recession. Finally, other regions, AST, ARA,
MAD, PVAS and LAR show a remarkable stability.

In spite of the differences, we can conclude that the regional cycles
are sufficiently correlated to explore the existence of some common cycles
across Spanish regions. Firstly, we test different degrees of multivariate
synchronization between the seventeen regions by using the statistic pre-
viously described. As we suspected, the test rejects all hypotheses from
non-synchronization to perfect synchronization, passing through intermedi-
ate degrees (ρ =0.1,0.2,...,0.9), and the matrix is nearly singular even when
there is a great intensity of shrinkage (see Table II) . However, if we ap-
ply the bootstraped version, we are not able to reject the null in any case,

17In all cases the rank test of Spearman is over 0.95.
18We do not include these results to save space.
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reflecting the loss of power.
As we can not obtain any conclusion from the multivariate synchroniza-

tion test when we apply it for all the regions, we will explore the possibility
of finding groups or clusters of regions with similar business cycle features.
The natural way, using clustering techniques, does not seem the best way
in this case. An eye-ball examination of the three multidimensional scaling
maps demostrates that, although some regions, such as EXT, CVAL, AND,
MUR and AST, appear isolated from the rest, it is not easy to establish a
clear pattern of clusterization. So, we will deal with the regional cluster-
ing using an alternative approach in Section 4 after trying to identify some
variables that could explain synchronization.

3.3 3.3 Some clues to explain similarities or discrepancies
among regions

Although there are a few regions that appear to be more isolated from the
rest, we have shown that there is a certain degree of regional synchroniza-
tion in terms of business cycle features. In this section, we will try to find
the sources of the similarities as well as the discrepancies among regions.
Disparities in regional business cycles have often been attributed either to
idiosyncratic shocks or to differences in characteristics such as their sec-
torial composition. In the literature, there are some attempts to explain
correlations across economies, countries or regions, and that, basically, use
macroeconomic variables19. We have selected four representative macroe-
conomic and structural variables, namely, industrial weight, unemployment
rate, per capita income level and human capital20.

The results found in the study of the correlation between the cycle co-
movements across regions and the variables selected are presented in Table
III. They show that all the selected variables are significantly related to
synchronization, measured in terms of contingency, concordance and corre-
lation. This relation is positive for industrial weight, per capita income and
human capital and negative for unemployment. The coefficients are espe-
cially high for unemployment rates and higher for regional than for national
synchronization21.

19Clark and van Wincoop (2001) introduce the importance of growth rates and Bordo
and Helbling (2003) try to measure the effect of the exchange rate regime; Camacho et al.
(2006) and Owyang et al. (2005) use a wide set of variables.

20Average industrial weight over total output (1991-2008) and average unemployment
rate (1991:III-2009:III) from the INE; average per capita income in PPP at current prices
(1991-2008) from Funcas and average years of education for employees from Ivie.

21Camacho et al. (2006) find that the specialization of the economy explains differences
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Therefore, a region with a high unemployment rate, on average, is ex-
pected to be more isolated from the rest, while a region with high industrial
weight and per capita income levels or where the labour force is more ed-
ucated will be more synchronized. So, economic policies that focus on the
improvement of these variables may enable a higher degree of regional con-
vergence, measured through the level of synchronization.

In addition, we also test the influence of the geographical situation,
namely, the border effect. Following Croux et al. (2001), this effect can
be easily measured through the following ratio:

bi =
1
nb

∑nb
j=1 ρSij

i
n

∑n
j=1 ρSij

,

where nb is the number of neighbouring regions and n the total number of
regions. A ratio above 1 indicates that regions have more cyclical similarities
with their neighbours than with the other regions. The non-parametric
Wilcoxon-rank test is used to check the statistical significance of this effect.

The results show that, in general, neighbourhood matters, which is con-
firmed by the rejection of the null hypothesis of the Wilcoxon test at 1% of
significance (Table IV). EXT, NAV, LAR and CANT are the regions with
the highest border effects, while MUR, CLM and BAL present values under
one22. Thus, for most regions, the political boundaries influence their degree
of synchronization.

4 4. Is there a common cycle? Dynamic factor
models

In the previous section, we have only used categorical variables which de-
scribe the path of the cycle. These categorical variables are obtained by
filtering the original data using non-parametric cycle dating techniques and
finding the turning points that represent the business cycle. These tech-
niques summarize all the characteristics of the series in a dichotomous vari-
able that represents the position of the unit (region or country) in the busi-
ness cycle. Although it is very intuitive and useful, it loses some information

across European and some other industrialised countries. Furthermore, Owyang et al.
(2005) find that the share of manufacturing, as well as some human capital variables, are
important to explain differences, in this case, between the cycle regimes.

22A similar approach is found in Croux et al. (2001) with a measure of dynamic cor-
relation. They conclude that, for most US states and, to a lesser extent, for European
countries, borders matter. Their ratios are higher than ours for the regions in both areas.

18



which could be taken into account for comparing the behaviour of the dif-
ferent regions. So, in this section, we are going to use original series that
contain different and complementary information.

As well as cycle dating approaches (parametric and non-parametric) to
characterize the business cycle, there are other techniques that analyze co-
movements of economic variables using original data and extracting common
factors23. One basic feature of the business cycle is, precisely, the presence of
comovements across economic variables. Comovement measures constructed
in the frequency domain, principal components and dynamic factor models
are the main branches of this approach that deals with the original infor-
mation. Of them, dynamic factor models (DFM henceforth) have recently
emerged as a powerful tool to analyze shocks in large databases. The idea
underlying DFM is simple: movements in a large number of economic series
can be modelled through a small number of reference series or common fac-
tors. The DFM allow us to ”let the data speak” without imposing a priori
restrictions as in other approaches. We explore the concept of comovements
in regional IPIs to assess to what extent the Spanish business cycle is shared
by the regional ones24.

In this section, we first carry out a preliminary analysis of comovements
by using some measures in the frequency domain, such as coherence and
cohesion. Second, we estimate the optimal number of factors, both static and
dynamic, present in the seventeen Spanish regions and identify the national
component. Then, we apply a DFM to test whether the seventeen Spanish
regions move according to common driving forces. Finally, we subtract the
common component associated with the Spanish cycle and form clusters
using the idiosyncratic regional components.

4.1 4.1 Some stylized comovements

In our preliminary analysis of comovements for regional output fluctuations,
we first calculate the index used by Stock and Watson (2010) which summa-
rizes the possible time-varying comovements among the regional IPIs and,
then, compute spectral measures such as the coherence index and the modifi-
cation proposed by Croux et al. (2001), which they call dynamic correlation.
From here to the end of the section, we use first logarithmic differences of

23As Harding and Pagan (2002a) point out, these ”can be thought of as a hybrid scheme”
when standard dating methods are applied to the common factor obtained by using dy-
namic principal components (Forni et al., 2000).

24There are also approaches in the literature that deal simultaneously with comomove-
ments and business cycle dating. For a summary, see Camacho et al. (2010).
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the regional IPI series yti with i = 1...17. They are equivalent to monthly
growth rates, which conserve business cycle signals better than other alter-
natives such as interannual growth rates. Figure 8 shows the evolution of
the regional industrial index (dashed lines) in levels (top figure) and growth
ratios (middle figure). It also shows (solid lines) the median and 25% and
75% percentiles. Both in levels and in growth rates, there is a considerable
dispersion of the regional business cycles, which increases dramatically after
1999, just after joining the EMU, when Spain underwent a long period of
prosperity before the current crisis.

The measure proposed by Stock and Watson (2010) is based on Moran’s
spatial correlation index and captures the comovements over time across
all regions through the rolling cross-correlation in differences. It has the
following expression:

Îi =

∑N
j=1

∑i−1
j=1

̂cov(∆yit,∆yjt)/N(N − 1)/2∑N
i=1

̂var(∆yit)/N
,

where,

̂cov(∆yit,∆yjt) =
1

25

t+10∑
s=t−12

(∆yis −∆yit)(∆yjs −∆yjt),

̂var(∆yit) =
1

25

t+10∑
s=t−12

(∆yis −∆yit)
2,

∆yit =
1

25

t+10∑
s=t−12

∆yis,

N = 17

The outcome, time series Ît, is plotted at the bottom of Figure 8. We
observe that the synchronization of comovements is 0.49, on average, during
all the period, reaching its minimum value (around 0.25) in 2007 and its
maximum at the end of 2008 (more than 0.8)25. So, it seems there is an
inverse relationship between economic growth and regional comovements.
This result is very similar to that obtained with the correlation index from
the BB cycle dating, whose regional average was 0.51. Furthermore, some

25Notice that the sample is not able to evaluate the comovements in the 90s crisis with
accuracy because the rolling procedure loses most of the observations in this period.
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regions showed a loss of synchronization during the expansion phase that
began to recover in the current recession.

Spectral measures are very useful for analyzing comovements in time
series and have several advantages over other binary concepts. Among them,
coherence is the most popular measure in the literature. The coherence index
between two processes, xt and yt is defined as:

Cxy(λ) =
|Sxy(λ)|2

Sx(λ)Sy(λ)
,

where Sxy is the cross-spectral density and Sx and Sy, the power spectral
densities for each frequency λ. The results in Figure 9 show this measure
between each region and Spain. In addition, in the bottom right-hand cor-
ner, we present the density functions of the regional coherence index for
three selected frequencies, long-run (frequency 0), medium-run (3 years)
and short-run (1 year). In general, most regions have a high coherence
in the very long run, with the outstanding exceptions of EXT and CAN
(the rest of the regions present very similar data at 0 frequency). However,
comovements among regions decrease dramatically in the low frequencies,
indicating that regional business cycles have great discrepancies in the short
run. This conclusion is confirmed by the density functions, which demon-
strate that the heterogeneity in comovements decreases with the frequency.
Considering higher frequencies (from 0 frequency to 3 years), the regions
that show the greatest comovements are CAT, PVAS, MAD, CANT and
ARA (their synchronization measures showed that most of these regions are
also the most connected with the rest). CVAL and CYL present more atyp-
ical patterns; the coherence begins to decrease at still high frequencies, then
falls more sharply at about 9 months and increases again afterwards. At
high frequencies, there also appear other regions with large values of coher-
ence, but their comovements decrease more sharply when the frequencies
begin to lower.

Although coherence is the most popular comovement measure in the time
series literature, Croux et al. (2001) highlight that it is not appropriate as a
comovement index and propose a modification, namely, dynamic correlation.
Starting from the spectral decomposition of the processes xt and yt,

xt =

∫ π

−π
eiλtdZx(λ),

yt =

∫ π

−π
ieiλtdZy(λ),
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where dZx(λ) and dZy(λ) are (complex) orthogonal increment processes, we
can obtain the spectral and cross-spectral density functions as follows:

Sx(λ) = var(dZx(λ)),

Sy(λ) = var(dZx(λ)),

Sxy(λ) = var(dZx(λ), dZy(λ)),

Syx(λ) = var(dZy(λ), dZx(λ)),

The dynamic correlation is

ρxy(λ) =
cxy

Sx(λ)Sy(λ)
,

where

cxy(λ) =
Sxy(λ)√
Sx(λ)Sy(λ)

,

is the coherence index, which is complex and, in general, non-symmetrical
and cxy(λ) and cyx(λ) are conjugates. Nevertheless, coherence is real and
symmetrical and, as Croux et al. (2001) point out, it does not measure
dynamic correlation because it is invariant with respect to the lags of the
processes. In other words, these authors demonstrate that the coherence be-
tween xt and yt−k is equal to that between xt and yt, with the simple example
of two white noise processes. While coherence is equal to 1 at all frequencies,
dynamic correlation ranges from 1, at frequency 0, to -1 at frequency π .
Furthermore, dynamic correlation can be decomposed by frequency bands,
which can be very useful for studying business cycle comovements. Finally,
they propose a multivariate index of comovements, namely, cohesion, which
has the following expression for a set of units X=[x1t,...xnt]:

cohX(λ) =

∑
i 6=j wiwjρxy∑
i 6=j wiwj

The result of applying this cohesion index to the Spanish regions appears
in Figure 10 for different frequencies26. We have also used this measure
as a metric to construct a multivariate map at frequencies 0 and π. The
conclusions are similar to those obtained with the coherence index. While
regional comovements exhibit a high cohesion at frequency 0 (long-run),

26We have used the average GDP weight of each region over the total Spanish GDP
(1991-2009) for weighting.
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their dynamic correlation decreases greatly at lower frequencies. Indeed, an
eye-ball examination of the maps suggests a strong grouping of regions at
frequency 0, showing that their business cycles tend to converge in the long
run. We can clearly distinguish two outliers, EXT and CLM, and two big
clusters, one formed by CAN, AST, LAR and GAL and the other by the
remaining regions. Nevertheless, the map corresponding to a low frequency,
such as π, shows a high degree of dispersion and, consequently, indicates
strong dissimilarities in short-run regional business cycles. This difference
between the long and the short run has not been sufficiently emphasized in
the literature, but is important to take this asymmetry into account when
we analyze the comovements of business cycles. Although regions are very
cohesive at frequency 0, with a value of 0.71, in other more typical business
cycle frequencies of 1, 2 and 4 years (corresponding to π/6, π/12, π/24), the
cohesion index has values of 0.67, 0.51 and 0.25, respectively27.

4.2 4.2 Factor models

The seminal work of Geweke (1977) proposed a DFM as a time series ex-
tension of factor models previously developed for cross-sectional data. The
main empirical finding that a few factors are able to explain a large fraction
of the variance of many macroeconomic series was first reported by Sargent
and Sims (1977), and confirmed afterwards by Giannone et al. (2004) and
Watson (2004). The underlying idea of a DFM is that a few latent dynamic
factors, ft, drive the comovements of a high-dimensional vector of time series
variables, Xt, which is also affected by a vector of mean-zero idiosyncratic
disturbances, et. These idiosyncratic disturbances arise from measurement
error and from special features that are specific to an individual series. The
latent factors follow a time series process, which is commonly taken to be a
vector autoregression (VAR)28.

In this section, firstly, we estimate the minimum number of factors that
explain the maximum variation of the regional industrial production index.
Secondly, we identify the common factor as the national component and re-
move it. Finally, we look for idiosyncratic sources of variations that decrease
when aggregating the data and construct clusters with them.

27A similar pattern is found by Croux et al. (2009) for the EMU countries, while the
US regions and states are more cohesive at 1.5 frequencies (even more than in the longer
run).

28See Stock and Watson (2010) for a comprehensive survey of this literature.
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4.2.1 4.2a How many factors are there in the Spanish re-
gions?

Bai and Ng (2002) developed a formal statistical procedure that consistently
estimates the number of factors in a set of data with cross-sectional and
temporal dimensions, N and T, respectively. Let Yit be the observed data
for region i in time t. The factor model then has the following expression:

Yit = λ′iFt + εit,

where Ft is a vector of r common factors, λ′i is a vector of factor loadings
associated with Ft, and εit is the idiosyncratic component of Yit. The prod-
uct λ′iFt is called the common component of Xit. For all the units and using
matrix notation

Yt = ΛFt + εt

where the dimensions of Yt, Λ, Ft, and εt are Nx1, Nxr, rx1 and Nx1,
respectively. They propose estimating the common factors by minimizing
the following expression:

V (k, F k) = min
Λ

1

T

N∑
i=1

T∑
t=1

(Yit − λikF̂ kt )2

and consider the estimation of the number of factors r as a model selection
problem, constructing different information criteria. When this procedure
is applied to regional industrial index growth, all the criteria coincide in
estimating 4 factors29.

Having established the number of factors, we re-estimate the factor
model with 4 common factors in order to obtain the idiosyncratic compo-
nent of each region and we calculate the specific variance as Ψ = Σy −ΛΛ′.
We have also included SP in this exercise to study its behaviour and com-
pare it with the regional ones. Figure 11 shows these values. We observe
that AND has the largest idiosyncratic component and BAL, AST, CAN
and EXT also have large variances, while the lowest variances are found in
PVAS, CAT, MAD and CYL. These results confirm those obtained in Sec-
tion 3, where EXT, AND, AST and CVAL, in most cases, and the islands,
in some cases, presented very peculiar behaviours, while PVAS and MAD

29This result is obtained with a maximum value of 5 factors that explain 60% of the
variation in the data. If we increase the maximum, we can find up to 18 factors. This
result points to certain weaknesses in the estimation of the number of common factors.
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were the regions most connected with the rest (CAT and CYL were closer
to the first group than to the last two regions). However, the idiosyncratic
factor of SP is nearly zero. This result is not surprising because, if we de-
compose the error term of each region into two components εit = ut + ξit,
one common and the other idiosyncratic, and we calculate their mean, we
obtain εt = ut +

∑N
i=1 ξit/T and, applying the Law of Large Numbers, the

last term tends to zero. Furthermore, if we estimate the common factor, its
correlation with Spanish data is 0.93. So, we confirm that the Spanish IPI
is a good representation of the aggregated regional ones and, consequently,
suitably represents the common Spanish business cycle30. Nevertheless, al-
though the Spanish business cycle is the result of aggregating regional ones,
it does not mean that it is identical to any of the regional cycles, because
within this common cycle there are seventeen different behaviours.

In the previous approach, we have only considered static common factors.
But, as Bai and Ng (2007) point out, these may be dynamically related and,
consequently, the spectrum of r has a reduced rank. The rank is actually q ,
the number of dynamic factors or primitive shocks. These authors propose a
method for estimating the minimum number of primitive shocks based on the
eigenvalues of the correlation or covariance matrix of a set of innovations
of dimension rxr. They define two statistics as a sequential sum of the
eigenvalues and estimate q̂3 and q̂4 as the minimum values that allow us to
bound this sum. The value of q is estimated using the correlation matrix
for r=4, which explain around 60% of the data variability, and we find that
q̂3 =1 and q̂4=2. If we increase the number of static factors to r=12 (which
explain 85% of the variation in the data), q̂3 maintains 1 dynamic estimated
factor and q̂4 is now 3. When the covariance matrix is used, both tests
estimate q=1 for r=1...7. Therefore, the results suggest that a common
dynamic factor or primitive shock is the most plausible conclusion of our
regional database and, consequently, that Spanish regions have a dynamic
common factor that can be identified with the national component. In the
next section, we will extract the common factor of the regions, which can
be associated with Spain, and we will construct clusters with the residuals
of the regional idiosyncratic factors.

30This result seems very robust against other methodologies. Taking the average of
regional cycle dating obtained previously with BB techniques, we find a correlation of
0.92 with respect to SP cycle dating.
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4.2.2 4.2b Cluster analysis

Up to this point, we have documented a certain degree of synchronization in
regional cycles but, also, a high heterogeneity. In this section, we focus on
this idiosyncratic component and look for clusters in the Spanish business
cycles. We follow the approach of Stock and Watson (2010) who suppose
that regional variations are independent of the national one. So, we remove
a single common factor associated with the national component to make the
comovements more visible between regions, using this model:

Yit = αi + λ′iFt + εit,

Ft = Ft−1 + ηt

εit =
k∑
j=1

ρijεit−j + uit

where εit are the idiosyncratic terms or the contribution of regional factors
to the total variation of the data and k=12 and (ηt, εit−j) are i.i.d. N(0,ση)
and N(0,σε), respectively. This model has been estimated by maximum
likelihood, using least-squares estimates of the coefficients as starting values
and the first principal component as an estimator of Ft. Then, we have
removed the common factors and obtain the residuals εit = Yit−αi−λ′iFt+
εit, which are used in the cluster analysis.

The goal of the cluster analysis is to identify groups of regions. Regions in
the same cluster will be more synchronized and share more similar business
cycle features than regions in other groups. Two types of clustering methods
have been used: the hierarchical and the partitioning algorithms. The first
starts by forming a group for each individual. New items are then added
employing some criterion of similarity, in our case minimizing the increase of
the Euclidean square distance within clusters. The process goes on until all
the individuals are in a single cluster. The sequence of clustering is displayed
in a typical plot called a tree diagram or dendrogram where we can see the
detailed process. Looking at these results, 3 or 4 clusters seems to be the
most suitable decision. This method offers us a first approximation of the
number of clusters present in our set of regional business cycles. In a second
step, we apply a non-hierarchical clustering method called k −means that
requires previously deciding the number of groups. Furthermore, through
the method of Bai and Ng (2002), 4 common factors have been indentified,
which gives us a clue about the number of regional clusters.

26



The k −means clustering creates a single level of clusters and assigns
each region to a specific cluster. The algorithm finds a partition in which
regions within each cluster are as close to each other as possible and as far
from the regions in other clusters as possible. Each cluster is defined by its
centroid, or centre, which is the point at which the sum of the distances from
all the objects in the cluster is minimized. The iterative algorithm minimizes
these distances within all the clusters, but its final results depend on the
first random assignation. To overcome the two disadvantages of the k −
means method (the selection of the number of clusters and the dependence
of initial partition), Stock and Watson (2010) propose a modified algorithm
that repeats the procedure for multiple starting values and analyzes the
value of the minimized objective function as a proxy of the most suitable
number of clusters.

We apply this method to the idiosyncratic regional factors31. Increasing
from 2 to 3 clusters reduces the value of the minimized objective function
by approximately 10%, and increasing from 3 to 4 and 4 to 5 reduces the
value by a 7 and 8%, respectively. After 5 clusters the value of the objective
function is not reduced. Therefore, taking these results into account along
with the findings from the hierarchical method and the optimal number of
common factors, we could select from 3 to 5 clusters. The result with k=4
groups determines that AND, BAL and GAL are included in the first cluster,
CLM, CVAL, EXT and MUR in the second, ARA, AST, CAN, CYL, NAV
and LAR in the third and the rest of the regions, CANT, CAT, MAD and
PVAS in the fourth. The results with k=3 basically join groups 1 and 2.
The new first group is formed by AND, CLM, CVAL, EXT and MUR, the
second by ARA, AST, BAL, CAN, CYL, GAL, NAV and LAR, and the
third by CANT, CAT, MAD and PVAS. Finally, if we select k=5, we obtain
the following clusters: group 1 AND, EXT, GAL; group 2 BAL, CLM; group
3 CVAL, MUR, LAR; group 4 ARA, AST, CAN, CANT, CYL, NAV and
group 5 CAT, MAD and PVAS. Figure 12 illustrates these results.

Any of these 3 sets of groups fits the regional features identified in the
previous sections of this paper quite well. On the one hand, there are the
regions most isolated from the rest and with the largest idiosyncratic com-
ponents (more or less, groups 1 and 2 when k=4, group 1 when k=3 and
groups 1, 2 and 3 when k=5) and, on the other hand, there are the most syn-
chronized regions where the patterns are more stable throughout the sample

31We have used an adapted version, both for the DFM and the cluster analysis, of
the original Gauss code of Stock and Watson (2010). The other procedures have been
computed with Matlab. Codes are available upon request.
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(the other groups of the three distributions)32.
Focusing on k=5 and analysing these groups in more depth, we can

observe that group 1 is made up of the Spanish regions with the lowest per
capita income levels ans with a low presence of industry in their productive
estructure. The characteristics of group 2 are very similar to the previous
group. In fact, and as we pointed out in Section 2, they form a group
in which the industrial average is just below the national one. Group 3
brings together two regions that have presented atypical behaviours in the
study (CVAL and, to a lesser extent, MUR) along with LAR, which seems
to fit better in the large Group 4. This group includes regions with an
important industrial weight (and CAN) and presents a high synchronization
level. Finally, group 5 contains the most developed regions of the country
with a high connection to the rest.

These results should be taken into account by policy-makers and academisc
when dealing with the Spanish business cycles. Policy-makers should take
advantage of devolution and the degree of freedom that the Spanish fiscal
system offers to design specific regional measures. Technicians that work
in the field of cycle dating and that forecast recessions should be conscious
of the differences across regions and use regional comovements to analyse
Spanish economic developments.

5 5. Conclusions

We have carried out a comprehesive analysis of Spanish regional business
cycles by using different approaches. In sum, this paper has found severe
dissimilarities in regional business cycles, highlighting the importance of
considering business cycles from a regional point of view. The most isolated
regions are characterised by low asymetries in their business cycle phases
while more synchronized regions show high asymmetries in favour of ex-
pansions and cumulation during them. Evidence of an inverse relationship
between economic growth and regional comovements is found, which hinders
the convergence. As well as considering the previous results, it is necessary
for economic policy design to take into account that the convergence process
of the Spanish regions is a long run economic growth process more than a
process related to fluctuations in the economy, which is confirmed by the

32We have computed cohesion for each group of k=5. The results show that regions
are more cohesive inside each cluster and, in general, throughout different frequencies.
Cohesion clearly increases in the long run for all the groups but group 1 while, in the
short run, the increase is not so clear in groups 4 and 5. Details are available upon
request.
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strong asymmetries we find in the regional cohesion between the long and
the short run.

On the whole, although there are many papers on intra-country linkages
in an international context, this paper is the first to propose a systematic
analysis of these linkages in Spain. Although policy-makers may not con-
sider this analysis to be a previous step to the decision of whether or not
to belong to more integrated economic areas, it is surely fundamental for
reducing economic intra-country heterogeneity through the design of ade-
quate economic policies. We do this for Spain, adding to its scarce regional
business cycle literature. Given that the cycle of some regions is not similar
to that of the country as a whole and that the Spanish path is not shared
by the seventeen regional business cycles but is merely a consequence of
aggregating them, carrying out economic policy measures at national level
could bring about unwanted distortions in some regions and slow down their
convergence processes, which would be further evidence of the need to ap-
ply specific economic measures. Macroeconomic stabilization policies, which
are primarily related to the cyclical evolution of the economy, are very con-
strained in the European Union by the common monetary policy and the
Stability and Growth Pact. Therefore, fiscal policy and devolution should be
used to reduce regional disparities because, if their regional cyclical shapes
are different, policy measures to fight recessions could be too accommodative
for some regions and too tight for others.
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Fig 1. Seasonally adjusted Spanish and regional industrial production
indexes (levels).
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Fig 4. Dissecting the cycles of Spain and its regions.
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Fig 11. Regional specific variance with 4 factors.

Fig 12. Cluster map

TABLE II
Multivariate Synchronization test

test asymptotic critical value bootstrap critical value

SPPS 3671.99 164.22 1.4255

SMS

ρ = 0.1 2959.57 164.22 1.1465x105

ρ = 0.2 2363.13 164.22 0.8984x105

ρ = 0.3 1882.67 164.22 0.7131x105

ρ = 0.4 1518.19 164.22 0.5264x105

ρ = 0.5 1269.70 164.22 0.3760x105

ρ = 0.6 1137.19 164.22 0.2830x105

ρ = 0.7 1120.66 164.22 0.2256x105

ρ = 0.8 1120.11 164.22 0.2493x105

ρ = 0.9 1435.55 164.22 0.2933x105

PS 234.66 27.59 721.4989
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TABLE III
Correlations with Structural Variables

industrial weight unemployment ratio per capita income human capital border

concord reg 0.48
(0.059)

−0.79
(0.000)

0.68
(0.004)

0.60
(0.014)

−0.60
(0.013)

concord sp 0.47
(0.064)

−0.72
(0.001)

0.62
(0.010)

0.60
(0.014)

−0.57
(0.021)

conting reg 0.51
(0.045)

−0.83
(0.000)

0.65
(0.006)

0.68
(0.019)

−0.68
(0.003)

conting sp 0.50
(0.049)

−0.78
(0.000)

0.59
(0.016)

0.56
(0.022)

−0.69
(0.003)

corre reg 0.51
(0.043)

−0.82
(0.000)

0.66
(0.005)

0.60
(0.014)

−0.63
(0.008)

corr sp 0.49
(0.054)

−0.74
(0.001)

0.61
(0.001)

0.60
(0.013)

−0.59
(0.015)

p values in brackets.

TABLE IV
Do Borders Matter?

ratio neighbour regions

AND 1.17 3
ARA 1.11 6
AST 1.15 3
BAL 0.93 2
CAN − 0

CANT 1.21 3
CYL 1.01 9
CLM 0.88 7
CAT 1.01 3

CVAL 1.11 5
EXT 1.93 3
GAL 1.07 2
MAD 1.12 2
MUR 0.81 3
NAV 1.33 3
PVAS 1.16 4
LAR 1.27 4

Wilcoxon test 21

The critical value of the Wilcoxon test at 1% is 23.
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