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Abstract

A stochastic discrete choice model and its related estimation method are presented which

allow to disentangle non-linear externalities from the intrinsic features of the objects of

choice and from the idiosyncratic preferences of agents. Having verified for the ergodicity

of the underlying stochastic process, parameter estimates are obtained through numerical

methods and so is their statistical significance. In particular, optimization rests on suc-

cessive parabolic interpolation. Finally, the model and its related estimation method are

applied to the case of firm localization using Italian sectoral census data.

JEL codes: C12, C13, C46, C52, R12.

Keywords: Externalities, Heterogeneity, Computational methods, Firm localization.

1 Introduction

A variety of individual choices are determined by the intrinsic features of the object of choice

as well as by the choices of other individuals. For instance, a consumer might choose to buy

a product partly for its qualities and partly as a function of the number of other consumers

possessing the same product. This is clearly the case for network goods like telephones or social

medias, as well as in any other market in which consumers have some preference for conformity.

Similarly, a firm might choose where to place its plants looking also at the localization of other

firms, be it to cluster with them in a Silicon Valley style, or to be as far as possible from them

so as to escape local competition. In all these cases, the number of agents operating a certain

choice today affects how many agents will make the same choice tomorrow, thus generating

dynamic externalities among agents. Notably, as shown by the firm localization example, there

is no straightforward prior about the functional shape of such externalities.
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The present work introduces a framework to detect non-linear externalities, net of given

intrinsic features of the object of choice. In this sense, it generally contributes to tackling the

problem of identifying social interactions, as discussed in Blume et al. (2011). More specifically,

the endogenous choice model developed by Bottazzi and Secchi (2007) and the associated esti-

mation method in Bottazzi and Gragnolati (2012) are here extended to the case of quadratic

externalities. While still allowing to estimate the presence of externalities in high dimensional

problems, the extension to the quadratic case impedes to derive a closed-form likelihood func-

tion. Therefore, the parameter estimates are here obtained computationally, and so is their

variance. In particular, point estimates are the result of χ2 minimization resting on successive

parabolic interpolation (see Brent, 1973), while their variance is estimated through Monte Carlo

simulations. It follows that the present framework is able to evaluate the statistical significance

of the parameter estimates by evaluating their corresponding p-value. This entire methodology

is included in the MATLAB (2011) functions minoptfun SQA.m and minoptfun GRID.m that

accompany this paper.

After a general presentation of the underlying endogenous choice model and of its corre-

sponding estimation method, this paper presents also an application to the case of firm local-

ization. Using sectoral census data on Italian commuting zones, the aim is to detect whether

the localization of firms across commuting zones displays quadratic externalities. In this case,

a positive estimate of the quadratic parameter would signal that the probability for a firm to

choose a certain location grows more than linearly in the number of firms already settled in the

same location. Vice versa, a negative estimate would signal the presence of spatial congestion.

2 Model

At each time step, one of N agents is chosen at random to die and make room for a new entrant.

Given an individual utility function ui(·) mapping into R≥0, the entrant i chooses the option l∗i
that satisfies

l∗i = argmax
l

{ui(gl, εl,i) | l ∈ {1, ..., L}} , (1)

where L is the number of available options, gl is a component common to all agents, and εl

is a random variable capturing preference heterogeneity across the N agents. Following either

Yellott (1977, Th.6 ➜4) and Luce (1959, Axiom 2.1) or Raouf Jaibi and ten Raa (1997), Bottazzi

and Secchi (2007) demonstrate that the probability pl for the new entrant to select option l is

pl =
gl

∑L
j=1 gl

, (2)

which is independent from the idiosyncratic preferences εl,i. Therefore, the result of the decision

process is entirely characterized, in probability, by the vector g.

It follows that the different drivers of individual choices enter in the composition of gl. In

particular, it is postulated that gl is a function of the intrinsic features of the object of choice
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al, and of the number of agents that have already chosen it, nl,t−1:

gt(al, nl,t−1) , (3)

where t indexes time periods. To give some concrete examples, al would be determined by the

physical qualities of products, if looking at consumer choices; or by the level of local demand

and infrastructural endowments of regions, if looking at the localization choices of firms. On

the other hand, conformity to other nl,t−1 agents might attract or repulse the choice of the new

entrant, thus determining whether externalities are positive or negative.

Generally, al is a multivariate function of H variables, each being a relevant intrinsic feature

of the object of choice. According to this idea, al is here specified in the standard Cobb-Douglas

form

al =
H
∏

h=1

xβh

h,l exp(β0) . (4)

This specification has a probabilistic interpretation: if, on average, the probability to choose l

according to variable h is proportional to xβh

h,l, and if the effects of the different factors can be

assumed as roughly independent, then the combined probability for the agent to choose this

location is given by expression (4).

Also, the dynamics of the system can be studied by specifying a functional form for gl(·).

Assuming linearity in g(nl), Bottazzi and Secchi (2007) prove that the dynamical system is a

finite Markov chain converging to an ergodic distribution π(·), which can be derived in closed

form. This allows to estimate the underlying parameters of log π(·) by maximum likelihood. In

the present case, however, the assumption of linearity in g(nl) is abandoned in order to assume

a quadratic form and test for non-linearity. The price to pay for this extension is ergodicity

cannot be demonstrated analytically, nor can log π(·) be derived in closed form. Therefore,

numerical simulations will serve here to verify ergodicity, while estimating the parameters

through computational methods.

Using a quadratic specification to equation (3), at each time step the probability for l to be

chosen is determined by

pl =

∑H
h βhxl,h + γnl + θn2

l
∑L

l

∑H
h βhxl,h + γnl + θn2

l

, (5)

where (β, θ, γ) is a set of unknown parameters. Notably, when the aim is just to detect non-

linearity in n rather than to measure and compare its strength relative to other variables,

equation (5) can be reduced parametrically by dividing numerator and denominator by a com-

mon parameter (for instance β1). Such a simplification reduces the number of parameters to be

estimated to H+1. This is relevant here because the application proposed in Section 5 presents

H = 1, so that only ˆb/β1 and ˆc/β1 will be estimated. Accordingly, the relevant expression for

pl becomes

pl ∼ xl,1 + bnl + cn2
l , (6)

where b = γ/β1 and c = γ/β1. Hence, at each time step, the distribution of agents across

the L alternatives will be in agreement with equation (6), thus determining the configuration
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(a) c = 0 (b) c = +1 · 10−2 (c) c = −1 · 10−3

(d) c = −4.9 · 10−3 (e) c = −5 · 10−3 ≡ cmin (f) c = −7 · 10−3 < cmin

Figure 1: The probability pl as a functoin of nl for varying values of c.

Note: The parameters of this example are L = 2, N = 100, a1 = 1, a2 = 2, b = 0.5.

n = {n1, . . . nL}. Such vector constitutes the configuration of the system at each discrete unit

of time.

3 Numerical simulations

According to equation (6), the present model describes the evolution of the choices of a

population across alternatives in probabilistic terms. Given the vector of intrinsic features

x = (x1,1, . . . , xL,1), the realization of the stochastic process can be simulated numerically

through an algorithm that is governed by the parameters (b, c). In the case of linear exter-

nalities (i.e. c = 0), such distribution is ergodic, which is a crucial requirement to estimate

the model (see Bottazzi and Secchi, 2007). Therefore, the primary concern of this section is

to verify whether ergodicity is preserved with non-linear externalities, so that the model can

still have empirical applications. In fact, ergodicity turns out to be preserved even with non-

linear externalities, as verified through the comparison of time averages and variances with

ensemble ones. The following subsections define first the domain over which it is relevant to

study the behavior of the stochastic process, then verify its ergodicity, and finally describe the

computational cost of the simulations.

3.1 Domain definition

The study of non-linearity in the present model is meaningful only within a given domain of

its parameter values. In particular, since all the parameters enter in the definition of the prob-

ability pl, it must be verified that the parameter values maintain pl ∈ [0, 1] for all alternatives.
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Moreover, since ul(·) maps into R≥0, it must generally hold that gl ≥ 0 for any l ∈ {1, . . . , L}.

These various constraints suffice to identify the lower and upper bound of the parameter c,

which inform the successive numerical simulations.

On the one hand, the lower bound of c follows straightforwardly from the constraint gl ≥ 0.

c ≥−
al + bnl

n2
l

, ∀l = 1, . . . , L , (7)

≥−
min{al}+ bmax{nl}

max{nl}2
, (8)

cmin ≡−
min{al}+ bN

N2
. (9)

Equation (9) corresponds to “full concentration”, that is when all N agents choose the same

alternative l. If the condition gl ≥ 0 is respected for the alternative l that is chosen by all agents

under this extreme scenario, then it will also be respected for all other alternatives under any

other scenario. In parallel, conditions (7)–(9) imply a restriction also on the denominator of

equation (5), namely

A+ bN + c
L
∑

l=1

n2
l ≥ 0 , (10)

A−min{al} > 0 ,with c ≥ cmin , (11)

where A =
∑L

l=1 al.

On the other hand, the upper bound of the parameter c is obtained considering that the

interest of the present analysis is on small deviations from linearity. As a consequence, the

quadratic coefficient has to be of the order |c| . 1/nl, thus fixing the upper bound to

cmax ≡ max
l=1,...,L

{

1

nl

}

, (12)

where nl is the time average of nl.

Given these constraints, Figure 1 shows the behavior of pl as a function of nl for varying

values of c. Clearly, when c = 0 like in Figure 1a, the probability pl grows linearly in nl

according to equation (5), thus delineating the standard Polya model exposed in Bottazzi

and Secchi (2007). By converse, as c moves away from 0, the probability pl becomes a non-

linear function of nl (see Figures 1b–1e). In particular, while c < 0 identifies some degree of

congestion, such condition is not sufficient to render pl strictly non-monotone. For instance,

in Figures 1c–1d the probability pl never decreases despite c being negative. In Figure 1e,

instead, pl decreases beyond a certain level of nl. Notice also that Figure 1e is drawn using the

lower bound cmin expressed in equation (7); not surprisingly, then, the values of pl escape the

probability boundaries [0, 1] as soon as c drops below cmin.
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Table 1: Comparison between time averages and ensemble averages.

c n1(t) n2(t) R
1/2
11 (τ) R

1/2
22 (τ) 〈n1〉 〈n2〉 Var(n1)

1/2 Var(n2)
1/2

10−3 15.94 84.05 15.16 15.16 15.77 84.23 18.96 18.96

0 29.76 70.23 17.77 17.77 31.68 68.32 18.30 18.30

-10−3 41.40 58.59 12.22 12.22 42.13 57.87 12.62 12.62

Note: The columns report, respectively (1) the values of parameter c; (2-3) the time averages
of locations 1 and 2; (4-5) the autocorrelation of the time series for locations 1 and 2; (6-7) the
ensemble averages for locations 1 and 2; (8-9) the ensemble standard deviations for locations
1 and 2. The common parameters of these examples are L = 2, N = 100, a1 = 1, a2 = 2,
b = 0.5. For each value of c, computations are made over 100 realizations of the process. Time
averages are computed over T = 105, while ensemble averages are computed at t̃ = 5 · 104.

3.2 Ergodicity

Also in the non-linear case the model may be considered an ergodic with the same approach

used for the linear case in Bottazzi and Secchi (2007).

Anyway a double-check has been presented and recover this conditions numerically.

Given the relevant domain of c, it is necessary to verify whether the stochastic process that

characterizes the present model is ergodic. For stochastic process to be ergodic, its moments

have to consistently estimable through a single realization. In practical applications, this con-

dition is required in particular for the first two moments. That is, the ensemble mean and

variance have to be equivalent, respectively, to the average and autocorrelation of the time

series.

Labeling the stochastic process with X and being p(X) the corresponding marginal distribu-

tion of agents across alternatives for a given set of parameters (a, b, c), the following equations

define the time average, the serial autocorrelation, and the first two moments of the stochastic

process:

X t = lim
T→∞

1

2T

∫ T

−T

X(t′)dt′ , (13)

RXX(τ) = lim
T→∞

1

2T

∫ T

−T

X(t′)X(t′ + τ)dt′ , (14)

E[X] =

∫ ∞

−∞

X p(X)dX , (15)

Var(X) =E[X2]− E[X]2 = Cov(X,X) = E[X,X] . (16)

For X to be ergodic, it must satisfy

X t =E[X] , (17)

RX,X(τ) =E[X,X] . (18)

The attainment of conditions (17)–(18) must be verified empirically. To do so, the ensemble

moments are computed at a time t̃ at which the process has reached its equilibrium. On the
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Figure 2: Distributions of agents across alternatives for different values of c.

Note: The common parameters of these examples are L = 2, N = 100, a1 = 1, a2 = 2, b = 0.5.

other hand, time averages are computed over the entire span of the simulation T > t̃. As an

hindsight, Table 1 shows the results of this exploration for varying values of the non-linear

coefficient c. For the sake of consistency, the other parameter values underlying the results of

Table 1 are the same as those in Figure 1. The first thing to notice in Table 1 are the results for

c = 0. In this case, the model has linear externalities, and thus its ergodic distribution follows

the Polya shape derived in Bottazzi and Secchi (2007). As a consequence, when c = 0, it is

possible to have direct theoretical predictions of the ensemble averages, these being respectively

〈ñ1〉 = 33.3̄ and 〈ñ2〉 = 66.6̄ given the parameter values adopted in Table 1. Through these

theoretical predictions one can sense how close averages actually have to be in order to be

regarded as non-different for practical purposes. In particular, 〈ñ1〉 = 33.3̄ is to be regarded

as compatible to 〈n1〉 = 31.68 and n1 = 29.76, as reported in Table 1 for c = 0. Using this

benchmark, the comparison of ensemble averages with time averages in Table 1 suggests that

the stochastic process underlying the present model should be compatible with condition (17).

Similarly, also ensemble variances and serial autocorrelation appear to be close enough to be

compatible with condition (18).

More compelling evidence on the ergodicity of the stochastic process underlying the present

model comes from comparing the simulated configuration n = (n1, . . . , nL), both across different

realizations and among different parameter values. Figure 2 illustrates this exercise for two

revealing parameter sets. In the left panels, the model is simulated for the case c = 0, in

which ergodicity is proved analytically (see Bottazzi and Secchi, 2007). In the right panels,

simulations are run tuning the non-linear coefficient to c = cmin. Notably, the introduction
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Figure 3: Average number of agents in l = 1 for c < 0.

Note: The common parameters of these examples are L = 2, N = 100, a1 = 1, a2 = 2, b = 0.5.

of the non-linear term reduces fluctuations and stabilizes n as compared to the linear case.

Therefore, it seems safe to regard the process as ergodic.

It is also worth to discuss the effect of the non-linear term on the configuration n. Intuitively,

the non-linear term reinforces concentration as long as c > 0. Conversely, the distribution

among alternatives becomes gradually less skewed the more c plunges below 0. To illustrate

this latter effect, Figure 3 shows the evolution of 〈nl〉 for values of c < 0. Again, this exercise

is carried out using the same parameter values as in Table 1.

4 Estimation

The final target of this study is to investigate whether some observed distribution of agents

across alternatives can be accurately “predicted” by the discrete choice model described in

Section 2. Practically, this translates in estimating the parameters (b, c) that govern the model

through equation (6), while testing also whether these estimates are statistically different from

zero. Therefore, the null hypothesis to be tested is H0 : b, c = 0. The parameter estimates and

their statistical significance are then evaluated as stylized in Figure 4.

First, the estimate of the relevant parameter, say c, is obtained from the observed con-

figuration of agents across alternatives, no. Starting from the configuration no, the model is

simulated for a time ∆t with varying values of c, searching algorithmically for the one that gen-

erates the closest configuration to the observed one. To give an intuition, this would correspond

to evolving the model from no into a number of new configurations governed by different values

of c, so as to identify the value of c that generates the closest configuration to no. More pre-
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observation model

no ns

n
′
o(c1) . . . n

′
o(ck) . . . n

′
o(cK) n

′
s(c1) . . . n

′
s(ck) . . . n

′
s(cK)

F(n′
o(c1),no) . . . F(n′

o(ck),no) . . . F(n′
o(cK),no) F(n′

s(c1),ns) . . . F(n′
s(ck),ns) . . . F(n′

s(cK),ns)

argmin
ck

{F(ck)}

ĉ

argmin
ck

{Fs(ck)}

c∗s

(bi, ci = 0)

c1 ck cK c1 ck cK

for s = {1, . . . , S}

Hypothesis testing

0 ĉ c∗

f

Figure 4: Estimation approach

cisely, defining no → n
′
o = no(∆t, ck), the objective function F measures the distance between

n
′
o(ck) and no. The parameter estimate is then identified as

ĉ = argmin
ck

{F(n′
o(ck),no)} ∀k = 1, . . . , K. (19)

Second, the statistical significance of ĉ is tested through Monte Carlo simulations. Initially

the model is simulated setting c = 0, which corresponds to the null hypothesis to be tested

statistically. Under this hypothesis, the model generates the configuration ns. Starting from

there, the model is further simulated for a time ∆t with varying values of c, again searching

for the value c∗s that minimizes the distance of the final configuration from the initial ns. This

process is repeated for S stochastic realizations, thus having

ns=1
∆t
→ ns=1(∆t) 7→ c∗1

ns=2
∆t
→ ns=2(∆t) 7→ c∗2

...

ns=S
∆t
→ ns=S(∆t) 7→ c∗S ,

(20)
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Figure 5: Multistage estimation procedure.

As a result, one ends up with a distribution of c∗ revealing the probability to measure ĉ under

the null hypothesis c = 0. Hence, the corresponding p-value is used to test the null hypothesis.

As a remark, the present estimation method relies on a multistage procedure. Generally,

the kind of estimation exercises that are relevant for the model presented in Section 2 concern a

multidimensional space. Each dimension corresponds to one of the parameters to be estimated,

thus determining a complex parameter space. In the present case, however, the parameter

space has been intentionally reduced to two dimensions to keep the exposition as simple and

effective as possible without losing any substantial generality. In any case, multidimensionality

leads to adopt a multistage procedure. That is, each single parameter estimate is obtained

conditionally to an initial value of the other parameter(s), in an iterative cycle that stops as

soon as convergence is reached. Figure 5 gives an illustration of this procedure. Point A

identifies the estimate b̂0 obtained under the parametric restriction c = 0. From there the

algorithm searches for an estimate of c under the restriction b = b̂0, thus reaching ĉ0 and

identifying point B, and so on to points C, D, and E. In particular, the algorithm stops when

the new set of estimates is not statistically different from the set encountered at the previous

search round.

Having provided a general picture of the present estimation method, it is now time to focus

in greater on its two key elements, that is the objective function and the optimization algorithm

through which ĉ and c∗s are selected.

4.1 Objective function

As mentioned above, the objective function F serves here to measure the distance between two

configurations of the system. In particular, this happens here through the χ2 function applied

on occupancy classes.

An occupancy f(n) is defined as the number of alternatives chosen by n agents. For instance,

f(0) is the number of alternatives not selected by any agent, f(1) is the number of alternatives
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(a) (b) (c)

Figure 6: Binning procedure.

selected exactly by one agent, and so on. It follows that the sum of all occupancies is equal

to the number of available alternatives, that is
∑N

n=0 f(n) = L. Occupancies are then grouped

into classes C1, . . . , CJ of variable width and constant size:



















Cj = [cj, cj+1) j = 0, 1, . . . , J,

f(Cj) =
∑

n∈Cj

f(n),

f(Cj) = f(Ci) ∀i, j = 0, 1, . . . , J,

(21)

The resulting histograms tends to be flat, since each bin counts the same number of occurrences

(see Figure 6). Notice that classes are computed only on the observed configuration no, and

then they are maintained constant for all other simulated configurations. By doing so, it is

ensured that the bins are chosen according to the real data while the cost of defining new

classes is limited to the moment in which a new observation no is considered. Moreover, this

also allows to have an immediate visual hindsight of how two configurations may possibly differ

(see Figure 6c). Given this definition of occupancy classes, the objective function used to

compare configurations reads

F ≡ χ2(∆t) =
J
∑

j=1

(

h
(∆t)
j − h

(0)
j

)2

h
(0)
j

(22)

where h
(0)
j is the frequency of class j at time 0, h

(∆t)
i is its counterpart at time ∆t, and J is the

total number of classes.

4.2 Optimization methods

Problem (19) can be solved numerically searching for the argument that minimizes χ2, either

via the classic grid method or via successive parabolic interpolation. It is worth to describe

both approaches in some detail to motivate why one is preferable relative to the other in the

applications that can be of interest for the model presented here.
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Figure 7: Grid search method.

4.2.1 Grid

With the classic grid method, problem (19) is tackled as represented in Figure 4. Starting

from no, multiple evolutions are generated with different values of c. Each of these evolutions

is then compared to the initial configuration through the objective function, thus identifying

the parameter value that minimizes χ2. In particular, the minimization problem (19) is faced

limiting the search in the interval Ic = [cmin, cmax], as defined in Section 3.1. Having set these

boundaries, the central choice to be made concerns the step size to be adopted in the search.

Intuitively, a finer step size tends to guarantee a higher definition in the measure of the

parameter estimates. Nonetheless, the process under scrutiny is stochastic, thus making the

value of χ2 noisy. As a consequence, an excessively fine step size would be useless, since it

would not manage to discern values beyond a certain resolution. Figure 7 gives and example in

this direction: the relatively fine step size brings highlights the oscillations deriving from the

random nature of the process.

In addition, the time of search R is proportional to the number of points in the interval.

Therefore, when generating a distribution of the statistics of c∗ with S samples, the cost of

the computation is proportional to S · R ∼ S · O(T ), where T is the length of the temporal

evolution of the stochastic process in Code 1. Clearly, this implies that the step size cannot be

too fine if time-efficiency is to be guaranteed for practical purposes.

On the other hand, a coarser step size entails a loss in definition as well as greater fluctuations

around the “true” value of the parameter estimate. Such fluctuations increase the variance of

the estimate, and thus the probability not to reject the null hypothesis. Overall, then, the grid

method entails a choice in the step size which cannot be easily controlled.

12



(a) Initial triplet. (b) Parabolic interpolation.

(c) New triplet and interpolation. (d) Convergence.

Figure 8: Successive parabolic interpolation.

4.2.2 Successive parabolic interpolation

An alternative optimization method rests on exploiting the quadratic behavior of the objective

function χ2 around its minimum. Relying on this, the method of successive parabolic interpo-

lation implements a numerical technique based on function evaluation only. In particular, the

algorithm does not require the function to be differentiable, nor its derivative to be known or

easily computable.

To give a visual intuition, Figure 8 illustrates the method of successive parabolic interpo-

lation in its four salient moments. The algorithm aims at finding the minimum of a function,

that is the black dot on the solid line in Figures 8a-8d. The search starts by drawing three

points lying on the function to be optimized, as represented by the gray dots in Figure 8a. This

initial triplet is then interpolated by a parabola (the dashed line in Figure 8b), whose minimum

is determined analytically together with the value of the abscissa at which it occurs (the black

dot in Figure 8b). By taking on board this new point while dropping the furthest one from it, a

new triplet is formed and a new parabola is interpolated (see Figure 8c), thus identifying a new

minimum. This process continues iteratively until it converges to a stable point, which means

that the previous and the successive minimum correspond within a certain range of tolerance.

The convergence point is the approximate solution to problem (19).

The fundamental property supporting this method is that a unimodal function can approx-

imated by a parabola over an interval that includes the minimum. More precisely, having a

triplet of points x0, x1, x2 and their function values f(x0), f(x1), f(x2), the second-order La-

grange interpolation is used to construct a second-degree polynomial which approximates the
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parabolic function:

q(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1) +

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2) , (23)

Clearly, the critical point of equation (23) is given by the first order condition dq(x)/dx = 0.

For practical purposes, however, equation (23) can also be seen as a quadratic polynomial

q(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) , (24)

where a0, a1, a2 have to be such that equation (24) agrees with f(x) at the three points. That

is f0 ≡ f(x0) = q(x0), f1 ≡ f(x1) = q(x1) and f2 ≡ f(x2) = q(x2). In follows that

a0 = f0 , a1 =
f1 − f0
x1 − x0

, a2 =
1

x2 − x1

(

f2 − f0
x2 − x0

− a1

)

, (25)

thus making equation (24) equivalent to equation (23). In this alternative form, the critical

point to be sought be the algorithm is

x̄ =
x1 + x0

2
−

a1
2a2

. (26)

Indeed, we use formulations (24)-(26) in the implementation of the algorithm. In doing so,

one needs to consider at least two things. First, the sign of a2 determines the concavity of our

parabola, thus making the critical point a candidate for a minimum (a2 > 0) or for a maximum

(a2 < 0). Second, the three points involved in equation (26) lie on a line if a2 = 0, thus imposing

to change the step size between the triplet.

Given this parabolic interpolation, another important detail of the algorithm concerns the

stopping criterion. Having to deal with a stochastic process, the objective function χ2 is noisy,

and this introduces the necessity to fix a tolerance criterion based on the variance of the pro-

cess. To this purpose, the standard deviation of the χ2 function is calculated computationally.

Consequently, the algorithm is set to stop when the fluctuations of our minimum values are of

the same order of magnitude of the estimated standard deviation, that is

|f(x̄)− f(xmin)| ≤ σ(fχ2) (27)

Finally, convergence is generally fast. As discussed in Brent (1973), the convergence rate for

a deterministic function is r ≈ 1.324, hence defining a superlinear convergence. In the stochastic

case, however, it can happen that the interpolation parabola has a local convex behavior for

a given triplet, as shown in Figure 9. This is due to the random nature of the function. In

this case, the quadratic interpolation is repeated with the same triplet but recalculating the

stochastic function value of the central point of the triplet. Such recalculation is repeated until

that point is associated to a function value that is under the straight line passing through the

two external points of the triplet.

14



Figure 9: Local convexity problem.

4.2.3 Time performance of the optimization methods

The performance of the two optimization method can be evaluated according to their speed of

convergence. As mentioned above, successive parabolic method can have convergence limita-

tions related to far solutions, point alignment, and convexity. Each of these issues needs ad hoc

control conditions, which also entail some cost in terms of efficiency. Nonetheless, successive

parabolic estimation is much faster than the grid method. In particular, we performed a test for

a given vector of x = {x1, . . . , xL}, an elevated number of alternatives L = 1 · 103, and conspic-

uous number of agents N = 1 · 104. With these parameter values, the grid method managed to

construct the the histogram of c∗ in Figure 10a in 120 minutes. On the other hand, successive

parabolic interpolation allowed to construct the corresponding histograms in Figure 10b in 20

minutes, reaching convergence in 8−−10 steps on average. Due to this remarkable difference in

performance, successive parabolic interpolation is adopted as the default optimization method

to carry out estimation.

More generally, the algorithm of the stochastic process has asymptotic computational com-

plexity O(T ), where T is the length of evolution of the process, which thus generates T config-

urations. Hence, if the first t = 104 steps take 0.7 seconds to be simulated, the computation

of t = 105 steps is achieved in 7 seconds. The performance and the time cost of the algorithm

depends on many factors (programming language, CPU, the type of data) and, besides that,

its efficiency depends also on the RAM of the calculator and the way data is stored. As a

consequence, the behavior of the algorithm complexity can only be measured qualitatively. In

particular, the estimates of time costs are meaningful only if the following conditions are met,

namely: (i) the use of the same programming language; (ii) the use of the same calculator

machine; and the (iii) the use of the same dataset as input. In the presents work, we have used

the Matlab language, on a 64 bit Linux OS within a machine with Quad Core Intel i7 3612QM

@ 2.10GHz, and a RAM of 8,00 GB Dual-Channel DDR3 @ 798MHz.
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(a) Grid method. (b) Successive parabolic interpolation.

Figure 10: Histogram of c∗.

Note: The parameters of this example are L = 1 · 103 and N = 1 · 104.

5 Application

The model presented in Section 2 and its associated estimation method discussed in Section 4

are here applied to the case of firm location. The N agents of the model are identified with the

plants of various manufacturing and service sectors in the Italian economy, while the alternatives

correspond to the L = 686 commuting zones across which plants are localized. Is the observed

distribution of plants across spatial units affected by non-linear externalities? In the present

context, answering this question means to estimate whether the parameter c in equation (6) is

statistically different from 0.

This inquiry is relevant under at least two dimensions. On the one hand, and regardless of

the sign of ĉ, it serves to understand whether the inclusion of a non linear term actually adds

explanatory power to the model. If the null hypothesis c = 0 is never rejected across sectors,

then the addition of a non-linear terms would prove to be rather irrelevant for the geography

of firm location. On the other hand, it is especially important to verify if c is often negative

and statistically significant across sectors. In that case, congestion costs would turn out to

play a non-negligible role in the localization choices of firms. This would open a breach in the

literature, as most studies investigating the effect of localized externalities ignore entirely the

possibility of congestion costs, both at a theoretical and empirical level (see Arthur, 1990, Black

and Henderson, 1999, Bottazzi and Gragnolati, 2012, Bottazzi et al., 2007, 2008, Desmet and

Fafchamps, 2006, Devereux et al., 2004, Dumais et al., 2002, Duranton and Overman, 2005,

Ellison and Glaeser, 1997, 1999, Henderson, 2003, Maurel and Sédillot, 1999, Rosenthal and

Strange, 2001).

Previous analysis on Italian data has revealed that the two main drivers of the spatial

distributions of firms are population and localized externalities (see Bottazzi and Gragnolati,

2012). All other factors are generally orders of magnitude weaker. Therefore, the present

application will simplify the analysis by depicting the intrinsic features of spatial units as being
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(a) Sector 45-Construction. (b) Population.

Figure 11: Maps of the data (year 2001).

shaped only by population (i.e. al = xl so that H = 1). It follows that equation (5) can be

simplified to equation (6), thus focusing the estimation only on parameters b and c. Considering

that the interest here is just on the detection of non-linearity, only the estimates of c will be

actually reported and discussed. To provide a visual summary of the data, Figure 11 illustrates

the spatial distributions of plants for the construction sector, as well as the spatial distribution

of population. Moreover, the second column of Table 2 reports the number of plants N for each

of the sectors taken into account. The data come from the Italian census of manufacturers and

services, and they refer to year 2001 (see ISTAT, 2006).

The results of the estimation procedure as applied on some manufacturing and service

sectors are reported in Table 2. As a premise, it should be noted that the estimates can be

derived for high values of both N and L, thus allowing to apply the present methodology at

virtually any spatial scale or sectoral disaggregation. Given this premise, at least two main

considerations emerge from Table 2. First, it is not the case that the null hypothesis c = 0

is always, or never, rejected. Indeed, the statistical significance of ĉ varies across sectors, at

least according to the standard confidence levels used for hypothesis testing (i.e. 95% or 99%).

Second, when the estimate is statistically significant, the sign of ĉ varies across sectors. For

instance, using a 95% confidence level, the localization of plants in sector 17-Textiles results

to be affected by a by positive quadratic term, while in sector 20-Wood processing such term

is negative. Overall, these results entail that no general rule can be derived about the way in

which non-linear externalities affect firm location, as the effects are markedly sector-specific.

In some sectors, firms are co-localizing with other similar firms without reaching a saturation

point, while in other sectors spatial congestion is possibly playing a role.
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Table 2: Number of plants and parameter estimates by sector.

NACE-Sector N 〈c〉 ĉ p-value

15-Food and beverages 73680 -0.24 -0.34 0.66

17-Textiles 31984 -0.07 1.76 0.01

18-Apparel 46377 -0.12 1.90 < 0.01

19-Leather products 24195 0.03 1.70 < 0.01

20-Wood processing 50250 -0.11 -0.62 0.02

22-Publishing and printing 29166 0.00 1.68 0.01

23-Coke, petroleum and nuclear fuel 913 -0.01 0.72 0.22

25-Rubber and plastic products 15115 0.01 1.60 0.06

26-Non-metallic mineral products 31177 0.02 -0.54 0.08

27-Basic metals 3984 0.10 0.56 0.33

30/32-33-Computers and electronics 37636 -0.07 1.70 < 0.01

45-Construction 529757 -0.51 2.00 0.12

55-Hotels and restaurants 261304 0.27 0.24 0.41

64-Post and telecommunications 18056 -0.41 -1.70 0.46

Note: For each sector, N is the number of plants, 〈c〉 is the average value of c∗

across simulations, and ĉ is the estimate of c. The number of alternatives is fixed
to L = 686 commuting zones.

6 Conclusion

This paper has spelled out a discrete choice model accounting for different determinants of

the agents’ decisions. In particular, the model disentangles the effect of externalities from

other factors such as the intrinsic characteristics of the object of choice and the idiosyncratic

preferences held by agents. Relative to previous works in the same line of inquiry, the present

one has taken a step forward in allowing for non-linear externalities among agents. Among

other things, this extension allows to check for congestion effects, which may possibly act as a

boundary to positive externalities.

Together with the theoretical model, also an entire estimation framework has been devel-

oped. Numerical simulations have first served to unravel the stochastic process underlying the

model and verify its ergodicity. Then, they have been used to estimate the unknown parameters

through a multistage procedure and test their statistical significance. This involved different

numerical optimization techniques, at last finding a preferable approach in successive parabolic

interpolation.

Finally, the model and its related estimation method have been applied to the case of firm

localization. Using Italian sectoral census data disaggregated by commuting zones, non-linear

externalities of localization have been detected in some sectors and not in others. But even

where the non-linear term is statistically significant, its direction might change across sectors.

This indicates that some economic activities are not hit by spatial congestion, while others
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are. Overall, then, the empirical results point to sectoral specificities rather than to general

features in the localization behavior of firms. This might possibly have to do with the varying

technological regimes underlying the different sectors.
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Code 1: Stochastic evolution of the model.

1 function n=s t o c h a s t i c e v o l u t i o n (a , b , c , n0 ,T)

2 % (a , b , c ) are the t h r ee parametrs o f the non−l i n e a r equat ion f o r the p r o b a b i l i t y

3 % the output i s the con f i g u ra t i on a f t e r the time i n t e r v a l T

4 N = sum( n0 ) ;

5 L=length ( a ) ;

6 b=b0 .✯ ones (1 ,L) ;

7 % I n i z i a l i z a t i o n

8 a=a ( : ) ’ ;

9 n0=n0 ( : ) ;

10 n=zeros (L ,T) ;

11 n ( : , 1 )= repmat (n0 , [ 1 1 ] ) ;

12 t=1;

13 % s t o c h a s t i c e v o l u t i on :

14 for t=2:T

15 ra = ce i l (N ✯ rand ( 1 , 1 ) ) ;

16 [ k ,˜ ]= find ( ra > [0 ; cumsum(n ( : , t−1) ) ] ) ; %the e x i t p o s i t i o n

17 m=k(end) ;

18 n(m, t−1)=n(m, t−1)−1; % remove the dead agent

19 pD=sum( a )+b✯n ( : , t−1)−b(m) +sum( c . ✯ ( n ( : , t−1)’− (m==(1: length (b) ) ) ) . ˆ 2 ) ;

20 pN= a+ b .✯n ( : , t−1)’− b . ✯ (m==(1: length (b) ) ) + . . .

21 + c . ✯ ( n ( : , t−1)’− (m==(1: length (b) ) ) ) . ˆ 2 ;

22 p=pN./pD ;

23 r=rand ( 1 , 1 ) ;

24 [ ˜ , kk]= find ( r > [0 , cumsum(p) ] ) ;

25 in=kk (end) ;

26 n ( : , t )=n ( : , t−1) ;

27 n(m, t−1)=n(m, t−1)+1;

28 n( in , t )=n( in , t )+1;

29 end
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Code 2: Re-binning procedure

1 function [ e b in , h ,CF, a]= c r ea un ib i n (x )

2 a=(0:max( x ) ) ;

3 i =1;

4 nB=5;% number o f b in s

5 CF=zeros (1 , length ( a ) ) ;

6 while i<=length ( a ) ,

7 CF( i )=sum(x<=a ( i ) ) ;

8 i=i +1;

9 end

10 percent=1+nB;

11 e vec=ce i l ( linspace (min(CF) , length ( x ) , percent ) ) ; % s c r o l l i n g vec t o r

12 e=1;

13 e b in=zeros (1 , length ( e vec ) ) ;

14 while e<=length ( e vec )

15 E=sum( CF <= e vec ( e ) ) ;

16 e b in ( e )=E;

17 e=e+1;

18 end

19 e b in (1 ) =0; % since [ 0 ; min(CF) ] i s empty

20 h=zeros ( length ( e b in ) −1 ,1) ; % i t i s the f requency e q u i d i s t r i b u t e d i n s i d e e b i n s

21 for k=1: length ( e b in )−1

22 h(k )=sum(x>=e b in (k ) & x<e b in (k+1) ) / length ( x ) ;

23 end
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