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In economic and financial networks, the strength (total value of the connections) of a given node
has always an important economic meaning, such as the size of supply and demand, import and
export, or financial exposure. Constructing null models of networks matching the observed strengths
of all nodes is crucial in order to either detect interesting deviations of an empirical network from
economically meaningful benchmarks or reconstruct the most likely structure of an economic network
when the latter is unknown. However, several studies have proved that real economic networks are
topologically very different from networks inferred only from node strengths. Here we provide a
detailed analysis for the World Trade Web (WTW) by comparing it to an enhanced null model
that simultaneously reproduces the strength and the number of connections of each node. We study
several temporal snapshots and different aggregation levels (commodity classes) of the WTW and
systematically find that the observed properties are extremely well reproduced by our model. This
allows us to introduce the concept of extensive and intensive bias, defined as a measurable tendency
of the network to prefer either the formation of new links or the reinforcement of existing ones. We
discuss the possible economic interpretation in terms of trade margins.

I. INTRODUCTION

Over the last fifteen years, there has been a dramatic
rise of interest in the understanding of the mechanisms
for network formation [1–3]. One of the reasons for this
interest is the fact that the dynamics of a wide range
of important phenomena, including the spread of dis-
ease and information diffusion, is strongly affected by
the topology of the underlying network that mediates
the interactions. In particular, economic networks are
responsible for the phenomenology of many processes of
societal relevance, such as globalization, economic inte-
gration, financial contagion and the build-up of systemic
risk [4].

A. Null models of economic networks

In order to identify the statistically significant struc-
tural properties in a real network, one needs the appropri-
ate definition and implementation of a null model. Null
models of networks are often built through a randomiza-
tion or reshuffling process that generates an ensemble of
graphs which preserve part of the observed topology - the
constraint(s) - while all the other properties are random.
Comparing a real network with its null model allows one
to detect the emergence of some empirical stylized facts
that depart from the random ensemble. A lot of effort

has been devoted to the introduction of null models for
graphs [5–13].

In economics, the use of purely random models is not
new and spans from industrial agglomeration (see for ex-
ample [14, 15]) to International Trade (e.g. the “bins-
and-balls” model of trade [16]). The identification of the
observed properties of real economic networks that carry
useful and non-trivial information allows one to select
the target quantities that meaningful economic models
should aim at explaining or reproducing. If one enforces
only local (e.g. node-specific) network properties and
obtains a very close agreement between observed and ex-
pected higher-order features, it means that the chosen
constraints alone are able to explain such features. On
the contrary, a bad prediction of the null model indicates
the need for the introduction of additional information
or mechanisms explaining the observed structure. The
quantities that are interesting from an economic point of
view are precisely those that call for additional explana-
tions. Null models therefore represent an intermediate
approach between statistical null hypotheses and mech-
anistic models.

An important economic case study that has been inves-
tigated in great detail is the World Trade Web (WTW),
or International Trade Network (ITN), where nodes are
world countries and links represent international trade
relationships. Several authors have focused especially on
the binary version of the network [17–19], showing the
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presence of a disassortative pattern and a stable nega-
tive correlation between node degrees and clustering co-
efficients. The relevant role played by the topology on
the whole network structure is undeniable. In fact, the
observed topological properties turn out to be important
in explaining macroeconomics dynamics: Kali and Reyes
[20, 21] observed that country positions in the trade net-
work (e.g. in terms of their node degrees) has substantial
implications for economic growth and a good potential for
explaining episodes of financial contagion. Furthermore,
network position appears to be a substitute for physical
capital but a complement for human capital.

The introduction of null models in the analysis
of WTW seems quite natural. It allows assessing
whether the network formalism is really conveying addi-
tional, non-trivial information with respect to traditional
international-economics analyses, which instead explain
the empirical properties of trade in terms of country-
specific macroeconomic variables alone. Indeed, the stan-
dard economic approach to the empirics of international
trade [22] has traditionally focused on the statistical
properties of country-specific indicators like total trade,
number of trade partners, etc., that can be easily mapped
to what, in the jargon of network analysis, one denotes
as local properties or first-order node characteristics.

A recent series of studies [23–25] showed that much of
the binary WTW architecture, where countries are con-
nected by binary (directed) links if there is a (directed)
trade relationship (irrespective of the magnitude of the
latter), can be reproduced by a null model controlling for
the (in- and out-)degrees of all countries. These results
hold both at the aggregate and product-specific level.
From a theoretical point of view, this means that it is in
principle possible to reproduce the topology of the WTW
starting from purely local information: the number(s) of
trade partners of each country. This has important con-
sequences for economic modelling, since most macroeco-
nomic theories of trade do not consider the number(s)
of partners as a relevant target quantity to explain. By
contrast, the aforementioned results imply that, if the
degrees of all countries are not reproduced, it is quite
difficult to reproduce the large-scale structure of the net-
work as well.

Despite its fundamental role, the binary version of the
WTW suffers from an important limitation: it does not
account for link heterogeneity and so gives only partial
information about the network. Hence, it seems quite
natural to analyse the WTW as a weighted network,
where (directed) links are now weighted by the magni-
tude of the observed (directed) trade relationships, and
the (in- and out-) strength of a country corresponds to
its total (import and export) trade. Indeed Fagiolo et al.
[26, 27], Fagiolo [28] showed that the binary and weighted
version of the WTW are very different from a statis-
tical point of view. For example, the strength distri-
bution is highly left-skewed, indicating that a few in-
tense trade connections co-exist with a majority of low-
intensity ones [29, 30]; moreover WTW countries holding

many trade partners (and/or very intense trade relation-
ships) are also the richest and most (globally) central.
They typically trade with many partners, but very in-
tensively with only few of them (which turn out to be
themselves very connected), and form few but intensive-
trade clusters (triangular trade patterns) Fagiolo et al.
[27].
Given the importance of weights in the WTW, Fagi-

olo et al. [24], Squartini et al. [31] extended the analysis
performed on [23] to the weighted version of the net-
work, now randomizing the latter while preserving the
(in- and out-)strength of each country. In contrast with
the binary analysis, they found not only a very bad agree-
ment between observed and expected values of higher-
order weighted properties, but also a bad prediction of
the bare topology, since the rewired networks turn out
to be systematically much denser than the observed one.
Other works using different methodologies obtained simi-
lar results [12, 30, 32–34]. The standard interpretation of
these findings is the existence of higher-order mechanisms
shaping the structure of the WTW as a weighted net-
work, or equivalently the impossibility to reconstruct the
WTW starting from purely country-specific information.
Again, this interpretation has important consequences
for economic modelling, quite opposite to those reached
in the binary analysis. In this case, the strength (to-
tal trade) of a country is indeed one of the main targets
of macroeconomic theories, but the above findings imply
that reproducing the observed strengths is by no means
enough in order to explain the structure of the network as
a whole. Even if for the opposite reason, this conclusion
calls again for a change of perspective in the way eco-
nomic models approach the international trade system.

B. Network reconstruction

There is another attractive reason for using null mod-
els in empirical network studies: the possibility to recon-
struct a network from its local properties. In the eco-
nomic literature, a typical example of increasing interest
is that of interbank networks. Generally, it is relatively
easy to know the total exposures of each bank, however
privacy issues make it much more difficult to know who is
lending to whom, and how much [13, 35, 36]. When the
available information is just local, one only knows O(N)
quantities (e.g. the degrees of all nodes) instead of the to-
tal O(N2) ones (e.g. all entries of the adjacency matrix)
fully describing the network. This makes the network re-
construction problem very challenging, since the number
of missing variables is still O(N2). In this respect, the
aforementioned results about the WTW [23, 24, 31] sug-
gest that purely weighted local properties (strengths) are
much less informative than binary ones (degrees). This
would imply that, while the reconstruction of some bi-
nary graphs can be achieved successfully, that of weighted
networks may be inherently more problematic and prac-
tically unfeasible.
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However, we recently introduced an enhanced method
to build ensembles of networks that simultaneously re-
produce the strength and the degree of each node [37].
The application of this method allowed us to show that,
for many real networks where the specification of the
strengths alone give very poor results, the joint specifica-
tion of strengths and degrees can reconstruct the original
network to a great degree of accuracy. This result com-
pletely reverses the standard interpretation about the
reconstruction of weighted networks: the knowledge of
purely local information can indeed be enough in order
to infer the structure of the whole network, provided that
both weighted and purely binary local properties are spec-
ified.
While we already analysed one (aggregated and static)

snapshot of the WTW as part of the analysis described
above [37], this is not enough in order to conclude that,
for this particular economic system, those results can be
straightforwardly extended to different temporal snap-
shots and different levels of resolution. Given the impor-
tance of the problem for the more general understanding
of economic networks, in this paper we carry out an in-
depth investigation of the WTW spanning several years
and multiple layers of trade (i.e. commodity classes).
Following the mentioned recent works in this direction
[23, 24, 31], we use our network reconstruction method
to understand if the network approach is really convey-
ing additional and non-trivial information with respect
to standard international trade theories.
Our results confirm that, taken separately, the to-

tal trade (strength) and the number of trade partners
(degree) of all world countries are both uninformative
about the weighted structure of the whole WTW. How-
ever, when considered together, these local quantities are
enough in order to reproduce many higher-order proper-
ties of the network, for all levels of disaggregation and
all temporal snapshots in our analysis. In order to fully
explain the structure of the WTW, binary constraints
must therefore be added to the weighted ones. This sug-
gests that, remarkably, additional economic mechanisms
besides those accounting for the joint evolution of degrees
and strengths are not really necessary in order to explain
the structure and dynamics of the WTW.

C. Extensive and intensive margins

One of the added values of our analysis is the fact that,
from an economic point of view, we can relate these find-
ings to the so-called extensive and intensive margins of
trade. These two concepts, firstly introduced by Ricardo
et al. [38], are widely used in economics. In the con-
text of international trade between countries, the exten-
sive and intensive margins refer to the birth (or death)
of trade connections and to the growth (or decrease) of
their weight, respectively. They can therefore be defined
employing a network approach at the worldwide level
De Benedictis and Tajoli [39], even if most contributions

typically focus only on selected cases and use different
(sometimes conflicting) perspectives.

Indeed, even if both margins are known to be rele-
vant, in the economic literature there is neither a sys-
tematic treatment of their role in the prediction of the
international trade relationships, nor a unified agreement
on their relative importance. In fact, some works agree on
the relevance of extensive margins: Hummels and Klenow
[40] show a cross-country analysis revealing that exten-
sive margin accounts for the 60% of exports for the larger
economies; Evenett and Venables [41] find that increas-
ing in the extensive margin has a fundamental role for
augmented exports for developing countries.

On the contrary, a large body of work stresses the
relevance of intensive margin. Felbermayr and Kohler
[42] and Helpman et al. [43] show that intensive mar-
gin represents a fundamental factor in the period 1970-
1990, while Amiti and Freund [44] focus on its impact on
China’s growth in exports in the period 1992-2005. Eaton
et al. [45] claim that one half of Colombian countries ex-
porting are “new” in any considered year. Besedeš and
Prusa [46] find that the majority of trade growth is due
to the intensive margins rather than the extensive one,
stressing the importance to concentrate on a dynamical
comparison against a standard static approach. Indeed,
they introduce the concepts of “survival” and “deepen-
ing” to characterize export relationships. Moreover they
claim that the controversial results existing in the liter-
ature are due to the different levels the two margins are
examined: some works define extensive margins at the
country-product level, others at the product level, and
finally others at the country level.

This problem, together with the composite effect of in-
ternational changes on trade, could determine mixed and
contradictory results. For example, trade liberalization
affects trade flows in two ways. On the one hand, since
trade is less costly, the trade quantities increase (intensive
margin at product level), on the other hand, more firms
trade more and more goods are traded (extensive margin
both at product and country-product level). Chaney [47]
observes that also the elasticity of substitution should be
taken into account because it has opposite effects on each
margin: high elasticity makes intensive margin more sen-
sitive to changes in trade barriers (trade costs), whereas
the extensive margin results less sensitive in this case.

Our work complements the existing literature by in-
troducing the general concepts of extensive and intensive
bias. While extensive and intensive margins are defined
at an intrinsically dynamic level, we define extensive and
intensive biases as purely static notions. Indeed, we fo-
cus on cross-sectional data and evaluate whether, at a
given point in time, pairs of countries are ‘shifted’ along
the intensive or extensive direction as compared to an ap-
propriate null model defined for the specific snapshot in
consideration. We do not explicitly establish whether the
WTW evolves along the extensive or intensive margin in
the traditional way, i.e. by accounting for the variation
over time of trade connections and their weights. Rather,
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our methodology allows us to identify a bias toward ei-
ther the extensive or the intensive limit in a fundamen-
tally novel way, by exploiting a mathematical property of
the null model that specifies both strengths and degrees.
We show that, for any economic network, the speci-

fication of the strengths without the separate specifica-
tion of the degrees corresponds to the assumption that,
at a static level, the system is neutral with respect to
the two tendencies, i.e. the extensive and intensive bi-
ases are perfectly balanced. By contrast, if the degrees
are also specified, then for every pair of vertices there is
a specific tendency to favour one of the two directions.
The fact that the latter model reproduces the real WTW
very well, while the former performs very bad, is then a
clear indication that the network is not neutral with re-
spect to the two biases. Moreover, for each pair of coun-
tries we can measure the entity of the bias towards the
dominating direction. Rather than assuming aggregate
or average effects, our approach allows different pairs of
countries to be characterized by opposite tendencies, ex-
ploiting the entire observed complexity of interactions at
a static level.
Despite its static character, our analysis allows us

to draw some interesting implications on the predictive
power of trade margins also from a dynamic perspective.
In particular, our study of the temporal evolution of the
WTW allows us to suggest relationships between the ex-
tensive/intensive biases and the extensive/intensive mar-
gins of trade.
The rest of this paper is organized as follows. In Sec. II

we introduce the data and briefly summarize the method-
ology we use to specify both strengths and degrees in
weighted networks [37, 48]. In Sec. III we apply the
methodology to several temporal snapshots and different
aggregation levels (commodity classes) of the WTW. In
Sec. IV we discuss our results and their general implica-
tions, as well as their economic interpretation in terms of
intensive and extensive biases of trade.

II. DATA AND METHODOLOGY

A. Data

We employed international trade data provided by
the United Nations Commodity Trade Database (UN
COMTRADE[49]) in order to build a time sequence of
binary and weighted networks. The sample refers to
11 years, 1992-2002, represented in current U.S. dollars.
The choice of this time span, for which we can construct a
consistent and rather comprehensive panel of 162 coun-
tries and 97 commodity classes, allows us to disaggre-
gate trade flows between most world countries and at
various levels of resolution. We can therefore investigate
whether local properties are sufficient to explain higher-
order quantities for different levels of matrix sparseness.
We chose the classification of trade values into C = 97

possible commodities listed according to the Harmonized

System 1996 (HS1996 [50]). For each year t and each
commodity c, the starting data are represented as a ma-
trix whose elements are the trade flows directed from each
country to all other countries [51]. The matrix elements
are therefore ecij(t) > 0 whenever there is an export of
good c from country i to country j, and ecij(t) = 0 oth-
erwise. Rows and columns stand for exporting and im-
porting countries respectively. The value of ecij(t) is in
current U.S. dollars (USD) for all commodities.
Given the commodity-specific data ecij(t), we can com-

pute the total (aggregate) value of exports eAGG
ij (t) from

country i to country j summing up over the exports of
all C = 97 commodity classes:

eAGG
ij (t) ≡

C
∑

c=1

ecij(t) (1)

The particular aggregation procedure described above,
introduced in [52], allows us to compare the analysis of
the C commodity-specific networks with a (C + 1)−th
aggregate network, avoiding possible inconsistencies be-
tween aggregated and disaggregated trade data.
We put special emphasis on the 14 particularly rele-

vant commodities identified in Barigozzi et al. [52] and
reported in table I. They include the 10 most traded com-
modities (c = 84, 85, 27, 87, 90, 39, 29, 30, 72, 71 according
to the HS1996) in terms of total trade value (following the
ranking in year 2003, Barigozzi et al. 52), plus 4 classes
(c = 10, 52, 9, 93 according to the HS1996) which are less
traded but still important for their economic relevance.
Taken together, the 10 most traded commodities (see ta-
ble I) account for 56% of total world trade in 2003; more-
over, they also feature the largest values of trade value
per link (also shown in the table). The 14 top commodi-
ties account together for 57% of world trade in 2003. As
an intermediate level of aggregation between individual
commodities and fully aggregate trade, we also consider
the network formed by the sum of these 14 commodi-
ties. In this way we can also draw conclusions about
the robustness of our methodology with respect to the
sparseness of the network.
In our analyses, we will focus on the undirected (sym-

metrized) representation of the network for obvious rea-
sons of simplicity, even if the extension to the directed
case is straightforward once the method in ref. [37] is ap-
propriately generalized. In any case, several works have
shown that the percentage of reciprocated interactions in
the WTW is steadily high [23, 26, 31], giving us reason-
able confidence that we can focus on the temporal series
of undirected networks. We therefore define the symmet-
ric matrices

w̃c
ij(t) ≡ ⌊

ecij(t)+ecji(t)

2 ⌉ (2)

w̃AGG
ij (t) ≡ ⌊

eAGG
ij (t)+eAGG

ji (t)

2 ⌉

where ⌊x⌉ represents the nearest integer to the nonneg-
ative real number x [53]. The above matrices define an
undirected weighted network where the weight of a link
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HS Code Commodity Value (USD) Value per link (USD) % of aggregate trade
84 Nuclear reactors, boilers, machinery and

mechanical appliances; parts thereof
5.67× 1011 6.17× 107 11.37%

85 Electric machinery, equipment and parts;
sound equipment; television equipment

5.58× 1011 6.37× 107 11.18%

27 Mineral fuels, mineral oils & products of
their distillation; bitumin substances; min-
eral wax

4.45× 1011 9.91× 107 8.92%

87 Vehicles, (not railway, tramway, rolling
stock); parts and accessories

3.09× 1011 4.76× 107 6.19%

90 Optical, photographic, cinematographic,
measuring, checking, precision, medical or
surgical instruments/apparatus; parts &
accessories

1.78× 1011 2.48× 107 3.58%

39 Plastics and articles thereof. 1.71× 1011 2.33× 107 3.44%
29 Organic chemicals 1.67× 1011 3.29× 107 3.35%
30 Pharmaceutical products 1.4× 1011 2.59× 107 2.81%
72 Iron and steel 1.35× 1011 2.77× 107 2.70%
71 Pearls, precious stones, metals, coins, etc 1.01× 1011 2.41× 107 2.02%
10 Cereals 3.63× 1010 1.28× 107 0.73%
52 Cotton, including yarn and woven fabric

thereof
3.29× 1010 6.96× 106 0.66%

9 Coffee, tea, mate & spices 1.28× 1010 2.56× 106 0.26%
93 Arms and ammunition, parts and acces-

sories thereof
4.31× 109 2.46× 106 0.09%

ALL Aggregate (all 97 commodities) 4.99× 1012 3.54× 108 100.00%

TABLE I. The 14 most relevant commodity classes (plus aggregate trade) in year 2003 and the corresponding total trade value
(USD), trade value per link (USD), and share of world aggregate trade. Source: Barigozzi et al. [52].

is the average of the trade flowing in either direction be-
tween two countries.
In order to wash away trend effects and make data

comparable over time, we normalized our weights accord-
ing to the total trade volume for each year:

wc
ij(t) ≡

w̃c
ij(t)

w̃c
TOT

and wAGG
ij (t) ≡

w̃AGG
ij (t)

w̃AGG
TOT

(3)

where w̃c
TOT =

∑N
i=1

∑N
j=i+1 w̃

c
ij and w̃AGG

TOT =
∑N

i=1

∑N
j=i+1 w̃

AGG
ij . We end up with deflated and adi-

mensional weights that allow proper comparisons over
time and consistent analyses of the evolution of network
properties.

B. Methodology

Given a network withN vertices, there are several ways
to generate a family of randomized variants of it. Most
of them suffer from severe limitations and give biased re-
sults. Here we use a recent unbiased method based on
the maximum-likelihood estimation of maximum-entropy
models of graphs [48]. We briefly recall the main steps of
this procedure and of the enhanced network reconstruc-
tion method [37] that can be derived from it.
Firstly, we specify a set of constraints {Ci(G)}, where

G denotes one particular graph in the ensmeble of pos-
sible networks. These constraints are the network prop-

erties that we want to preserve during the randomiza-
tion procedure, according to the specific network and re-
search question. In general they are local constraints,
such as the degree sequence (the resulting null model is
known as the Configuration Model, CM) or the strength
sequence (Weighted Configuration Model, WCM), but
this methodology can also account for non-local con-
straints [54, 55]. In order to construct an ensemble of
weighted networks where both the degree sequence and
the strength sequence are specified [37], we choose

{Ci(G
∗)} ≡ {ki(G

∗), si(G
∗)} (4)

where ki stands for the i-th node degree, si for the i-
th node strength and G∗ for the observed network. We
refer to this model as the “Mixed Configuration Model”
(MCM) [37].
Secondly, we need to find the analytical expression for

the probability P (G) that maximizes the Shannon-Gibbs
entropy

S(G) ≡ −
∑

G

P (G) ln(P (G) (5)

with the constraints 〈Ci〉 ≡
∑

G P (G)Ci(G) = Ci(G
∗)

for all i, and
∑

G P (G) = 1. Note that P (G) stands
for the occurrence probability of the graph G in the en-
semble of all possible graphs, and the sums are over all
such graphs. The formal solution [48] of this constrained
maximization problem can be written as a function of
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the graph mamiltonian H(G, ~θ) and the partition func-

tion Z(~θ):

P (G|~θ) ≡
e−H(G,~θ)

Z(~θ)
(6)

where H(G, ~θ) ≡
∑

i θiCi(G) and Z(~θ) ≡
∑

G e−H(G,~θ).
The Hamiltonian is a linear combination of the con-
straints, with the coefficients θi being the Lagrangian
multipliers introduced in the constrained-maximization
problem. For the MCM, it is possible to show [37] that

P (W |~x, ~y) =
∏

i<j

qij(wij |~x, ~y) (7)

where ~x and ~y are two N -dimensional Lagrange multipli-
ers (N stands for the number of nodes) controlling for the
expected degrees and strengths respectively (with xi ≥ 0
and 0 ≤ yi < 1 ∀i) and qij(w|~x, ~y) is the conditional
probability to observe a link of weight w between nodes
i and j. The latter is

qij(w|~x, ~y) =
(xixj)

Θ(w)(yiyj)
w(1− yiyj)

1− yiyj + xixjyiyj
(8)

The third step of our procedure prescribes to find the
values of the Lagrange multipliers ~x∗, ~y∗ that maximize
the log-likelihood

L(~x, ~y) ≡ lnP (G∗|~x, ~y) =
∑

i<j ln qij(w
∗
ij |~x, ~y) (9)

representing the logarithm of the probability to observe
the empirical graph G∗. The maximization of the like-
lihood is equivalent to the requirement that the de-
sired constraints are satisfied on average by the ensem-
ble of networks [56], i.e. in this case 〈ki〉 = ki(G

∗) and
〈si〉 = si(G

∗) for all i.
As a final step, one can use the Lagrange multipliers

~x∗, ~y∗ to compute the expected value 〈X〉 of any (higher-
order) network property X(G):

〈X〉 ≡
∑

G

X(G)P (G| ~x∗, ~y∗) (10)

Comparing 〈X〉 with the observed value X(G∗) allows us
to verify whether the ‘reconstructed’ value of the prop-
erty is indeed close to the empirical one.
We will also compare the predictions of the MCM with

those of the WCM, that can be obtained by setting ~x∗ =
~1 and maximizing the likelihood with respect to ~y alone
[37].

III. RESULTS

We first report detailed results for the 2002 for the
aggregated network, and then consider its temporal evo-
lution. Finally, the commodity-specific analysis is pre-
sented. In all cases we show the outcomes for both the
binary and weighted part.

First, we are interested in assessing to what extent
the MCM is able to replicate the higher-order proper-
ties characterizing the WTW over time. We focus on
the Average Nearest Neighbor Degree and Strength (re-
spectively indicated by knni and snni ) and the Binary and
Weighted Clustering Coefficient (respectively indicated
by ci and cWi ). We document the assortative (disas-
sortative) nature of the WTW over time and its ten-
dency to form triangles both in binary and weighted case.
We measure the (Pearson) correlation coefficient between
degree and higher-order binary properties (knni , ci) and
between strength and higher-order weighted properties
(snni , cWi ). We show this correlation coefficient for each
temporal snapshot, together with 95% confidence inter-
vals.
Secondly, we are interesting in exploring the perfor-

mance of the MCM at different levels of disaggregation.
We analyse both binary and weighted higher-order prop-
erties for selected commodities in the 2002 snapshot.
This also allows us to investigate the effectiveness of local
constraints in replicating higher-order properties accord-
ing to different levels of network density.

A. Binary and weighted aggregated network

We recall the analytical expressions and briefly de-
scribe the aforementioned higher-order quantities that
we want to study. Moreover, for the sake of clarity we
write down the explicit formula for computing the same
quantities overall the ensemble according to the general
expression in (10).
If we indicate with A the adjacency matrix and with

W the weighted matrix representing our network, we can
compute the Average Nearest Neighbor Degree as:

knni (W ) ≡

∑

j 6=i aijkj

ki
=

∑

j 6=i

∑

k 6=j aijajk
∑

j 6=i aij
(11)

where ki =
∑

j 6=i aij stands for the i-th node degree.

This quantity averages the degrees of the partners of
a node with degree k, in other terms it gives a measure
of the “activity” of node partners just looking at the
number of their edges.
The Binary Clustering Coefficient has the following ex-

pression:

ci(W ) ≡

∑

j 6=i

∑

k 6=i,j aijajkaki
∑

j 6=i

∑

k 6=i,j aijaki
(12)

It measures the tendency to form triangles of each node:
it counts how many closed triangles are attached to each
node with respect to all the possible triangles.
The corresponding weighted quantities are the Average

Nearest Neighbor Strength, defined as

snni (W ) ≡

∑

j 6=i aijsj

ki
=

∑

j 6=i

∑

k 6=j aijwjk
∑

j 6=i aij
(13)
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where si =
∑

j 6=i wij stands for the i-th node strength,

and the Weighted Clustering Coefficient [57] defined as

cWi (W ) =

∑

j 6=i

∑

k 6=i,j(wijwjkwki)
1/3

∑

j 6=i

∑

k 6=i,j aijaki
(14)

The snni measures the average strength of the neighbors
of a given node with strength si. Similarly to the bi-
nary counterpart, it reveals the “intensity” of activity
of a node looking at the strengths of its partners. The
weighted clustering coefficient measures the propensity of
node i to be involved in triangular relations taking into
account also the edge-values.
The related expected values can be obtained by simply

replacing aij with the occurrence probabilities pij for the
binary case:

〈knni (W )〉 ≡

∑

j 6=i pij〈kj〉

〈ki〉
=

∑

j 6=i

∑

k 6=j pijpjk
∑

j 6=i pij
(15)

〈ci(W )〉 ≡

∑

j 6=i

∑

k 6=i,j pijpjkpki
∑

j 6=i

∑

k 6=i,j pijpki
(16)

where

pij ≡
xixjyiyj

1− yiyj + xixjyiyj
(17)

and, by construction, 〈ki〉 ≡ ki, ∀i.
For the weighted case, we have:

〈snni (W )〉 ≡

∑

j 6=i pij〈sj〉

〈ki〉
=

∑

j 6=i

∑

k 6=j pij〈wjk〉
∑

j 6=i pij
(18)

where, 〈wij〉 ≡
xixjyiyj

(1− yiyj)(1− yiyj + xixjyiyj)
and, for

assumption,〈si〉 ≡ si, ∀i.

For the expected value of the cW one should be more
careful, indeed it is necessary to compute the expected
product of (powers of) distinct matrix entries:

cwi (W ) =

∑

j 6=i

∑

k 6=i,j(wijwjkwki)
1/3

∑

j 6=i

∑

k 6=i,j aijaki
(19)

In general we observe that:
〈

∑

i 6=j 6=k,...

wα
ij · w

β
jk · . . .

〉

= (20)

∑

i 6=j 6=k,...

〈wα
ij〉 · 〈w

β
jk〉 · 〈. . . 〉

with the generic term:

〈wγ
ij〉 =

+∞
∑

w=0

wγqij(w|~x
∗, ~y∗) = (21)

x∗
i x

∗
j (1− y∗i y

∗
j )Li−γ(y

∗
i y

∗
j )

1− y∗i y
∗
j + x∗

i x
∗
jy

∗
i y

∗
j
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FIG. 1. Comparison between the observed undirected binary
and weighted properties (red points) and the corresponding
ensemble averages of the WCM (green points) and the MCM
(blue points) for the aggregated WTW in the 2002 snapshot.
(a) Average Nearest Neighbor Degree knn

i versus degree ki.;
(b) Binary Clustering Coefficient ci versus degree ki; (c) Av-
erage Nearest Neighbor Strength snn

i versus strength si; (d)
Weighted Clustering Coefficient cWi versus strength si.

where Lin(z) ≡
∑+∞

l=1 zl/ln is the nth polylogarithm of
z. The simplest cases γ = 1 and γ = 0 yield the ex-
pected weight 〈wij〉 and the connection probability pij ,
respectively.

In figure 1 we show the higher-order binary quantities
versus the node degree and the weighted ones versus the
node strength, for the 2002 snapshot. We plot together
the observed values (red points), the corresponding quan-
tities predicted by the WCM (green points) and by the
MCM (blue points).

From a theoretical point of view, it emerges a very close
agreement between the observed values and the expected
ones computed on the maximum-entropy ensemble gen-
erated by the MCM.

In recent papers Squartini et al. [23, 31] have shown
that, at a binary level, the degree correlations and clus-
tering structure of the ITN are excellently reproduced by
the Configuration Model, i.e., using only the knowledge
of the degree sequence. By contrast, when the WCM is
implemented as a natural extension of the CM for valued
graphs, the binary quantities and also the corresponding
weighted quantities are very different from the predicted
counterparts. The authors have also proved that these
results are very robust and hold true over time and for
various resolutions (i.e., for different levels of aggregation
of traded commodities).

This outcome, here emerging from the comparison be-
tween red and green points, perfectly illustrates that the
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näıve expectation that weighted quantities are per se
more informative than the corresponding binary ones is
fundamentally incorrect. On the contrary, the MCM per-
forms excellently both for the binary and weighted ver-
sions of the WTW. Firstly, it reveals a slightly improved
agreement for the binary trends. In fact, the monotonic
trend predicted by the degree sequence only now follows,
in a closer way, the observed cloud of points, while the
prediction by WCM are concentrated far from the ob-
served (red) points. Secondly, we also find a much bet-
ter agreement between the observed and the randomized
weighted trends.
Despite the apparent good agreement between the ob-

served weighted clustering coefficient and its expected
value given by the WCM (fig. 1 (d)), we will show later
that total level of clustering is in general higher than the
one predicted by WCM over time and when we disaggre-
gate for commodities.
Note the difference with the WCM predictions: the ex-

pected values for the binary and the weighted quantities
are similar to those for a fully connected topology:

〈ki〉WCM ≃ N − 1 (22)

〈knni 〉WCM ≃ N − 1 (23)

〈c〉WCM ≃ 1 (24)

〈snni 〉WCM ≃

∑

j 6=i pijsj

〈ki〉
≃

∑

i si
N − 1

≃
2WTOT

N − 1
(25)

Where N stands for the number of nodes in the network,
whileWTOT is total trade volume for the considered year.
Predictions (23) and (25) are represented by the black

dashed line respectively in fig. 1 (a), (c), while the (23)
corresponds to the black top line in fig.1 (b). So the un-
constrained quantities, badly reproduced by the strength
sequence alone, become now consistent with the predic-
tion of a null model using the binary information also to
predict the weighted structure itself. This implies that
the weighted structure alone does not allow a deep un-
derstanding of the topology, representing an irreducible
piece of information to be accounted for from the begin-
ning.
From an economic point of view knni and ci give infor-

mation about indirect interactions respectively of lengths
2 and 3 (the terms aijajk and aijajkaki are involved in
their computation). Plotting them versus the degree dis-
tribution helps in understanding the structural organiza-
tion of the web. Therefore, the Pearson correlation coef-
ficients allows inspecting whether these 2/3-paths are a
simple outcome of the concatenation of two independent
edges.
In accordance with the existing literature we find a dis-

sortative pattern for the WTW and a decreasing trend
of ci versus ki. This confirms that it is very likely to
find nodes with many trade partners connected with
nodes with small degree (and vice-versa), while trade
partners of poorly connected nodes are highly inter-
connected. Similar considerations hold true when we
introduce weights, indeed snni and cWi are related with
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FIG. 2. Temporal evolution of the properties of the ANND
knn

i in the 1992-2002 snapshots of the observed undirected
WTW and of the corresponding maximum-entropy ensem-
bles with specified degrees and strengths: (a) average of knn

i

across all vertices (red: obs., blue: randomized); (b) standard
deviation of knn

i across all vertices; (c) correlation coefficient
between knn

i and ki; (d) correlation coefficient between knn

i

and 〈knn

i 〉. Red points stands for observed values, blue for the
randomized ones; the 95% confidence intervals of all quanti-
ties are represented as vertical bars.

indirect paths of length 2 and 3, respectively, but now
they summarize mixed information about topology and
weights (the term aijwjk are determinant in this sense).
Again by plotting these quantities versus the strength we
gather signals that countries highly involved in the ITN
are connected with poorly trading countries, confirming
a dissasortative pattern (even if less prominent) for the
weighted network. Interestingly, these patterns are per-
fectly reproduced by the quantities predicted using the
MCM. This implies that the knowledge of both the num-
ber of trade partners of each node and the total amount
of trade flowing through each country is maximally infor-
mative about the higher-order and non local dynamics of
the whole network.
To further investigate this issue, in next section we

explore the evolution of the same properties over time.

B. Evolution of the aggregated-network properties

In this section we want to test the robustness of our re-
sults performing an over time study of the same network
properties. In order to show in a more compact way the
whole analysis for the desired period, we consider sep-
arately the four network quantities, eq. (11)-(14). We
compare the observed values and the expected ones com-
puted on the ensemble generated by the MCM.
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FIG. 3. Temporal evolution of the properties of the BCC ci
in the 1992-2002 snapshots of the observed undirected WTW
and of the corresponding maximum-entropy ensembles with
specified degrees ans strengths: (a) average of ci across all ver-
tices (red: obs., blue: randomized); (b) standard deviation of
ci across all vertices; (c) correlation coefficient between ci and
ki; (d) correlation coefficient between ci and 〈ci〉. Red points
stands for observed values, blue for the randomized ones; the
95% confidence intervals of all quantities are represented as
vertical bars.

Basically, for each network property we take the se-
ries of observed values, e.g. {knni }, and the series of its
expected values, e.g. {〈knni 〉}. Then, we compute four
quantities to perform an over time comparison: the mean
and the standard deviation of both lists, the correlation
coefficient between the two lists and the correlation co-
efficient between the analyzed property and the related
constraint, e.g. ki (for assumption ki ≡ 〈ki〉). All these
quantities are plotted together with the associated 95%
confidence interval.
Figures 2 and 3 show results perfectly in line with the

outcome of the CM for the same data-set [23]. This
implies that by simultaneously preserving degrees and
strength, the MCM does not affect the ability of the
CM to predict the topology of the WTW. We obtain a
very close agreement between observed and expected val-
ues over time as confirmed by the correlation coefficient
around 1 in figures 2 (d), 3 (d). Moreover we gather
information about the decreasing trend of the Average
Nearest Neighbor Degree and the almost stable trend of
the clustering, perfectly replicated by the MCM predic-
tion over time (see figs. 2 (a), (b), 3 (a), (b)). Finally,
also the relation of those properties with the node de-
gree, besides being very stable over time, is in excellent
agreement with the randomized counterpart.
Also for the weighted network properties we observe an

excellent agreement between observed quantities and the
corresponding averages over the MCM-ensemble for the
whole period. Indeed the correlation coefficients between
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FIG. 4. Temporal evolution of the properties of the ANNS snn

i

in the 1992-2002 snapshots of the observed undirected WTW
and of the corresponding maximum-entropy ensembles with
specified degrees ans strengths: (a) average of snn

i across all
vertices (red: obs., blue: randomized); (b) standard deviation
of snn

i across all vertices; (c) correlation coefficient between
snn

i and si; (d) correlation coefficient between snn

i and 〈snn

i 〉.
Red points stands for observed values, blue for the random-
ized ones; the 95% confidence intervals of all quantities are
represented as vertical bars.

observed and randomized properties is almost 1 all the
time (figs.4 (d) and 5 (d)). Moreover the MCM is able to
capture the slightly increasing, then quite stable, trend
of the snni (fig. 4 (a), (b)) and the stable trend of the
clustering coefficient (fig.5 (a), (b)). For concluding, also
the correlation of these properties with the node strength
is well explained by the MCM in the whole period (figs.
4 (c), 5 (c)).
Once again, we can conclude that the addition of a

purely binary information as the number of node part-
ners, makes the MCM very powerful in predicted the
WTW higher-order properties, independently on the con-
sidered temporal snapshot.

C. Commodity-specific binary and weighted

networks

We complete our analysis of the ITN as an undirected
network by studying whether the picture changes when
one considers the individual networks formed by imports
and exports of single commodities.
This application allows us also to gather information

about the MCM’ s ability to predict different networks
according to their level of sparseness. Indeed, we know
that the undirected WTW is a highly dense network
(density ∼ 0.5) and we have already observed that some
randomization techniques work only under specific con-
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FIG. 5. Temporal evolution of the properties of the WCC cWi
in the 1992-2002 snapshots of the observed undirected WTW
and of the corresponding maximum-entropy ensembles with
specified degrees ans strengths: (a) average of cWi across all
vertices (red: obs., blue: randomized); (b) standard deviation
of cWi across all vertices; (c) correlation coefficient between
cWi and si; (d) correlation coefficient between cWi and 〈cWi 〉.
Red points stands for observed values, blue for the random-
ized ones; the 95% confidence intervals of all quantities are
represented as vertical bars.

ditions. Indeed, the commodities have been chosen and
ordered according to the intensity of trade and level of ag-
gregation. We selected the two least traded commodities
in the set (c = 93, 9), two intermediate ones (c = 39, 90),
the most traded one (c = 84), plus the network formed
by combining all the top 14 commodities. The last sub-
network represents an intermediate level of aggregation
between single commodities and the completely aggre-
gated data (c = 0), which corresponds to the case ex-
plored in section IIIA. For brevity we just show the
scatter plot between binary and weighted higher-order
properties and the related constraints, respectively ki and
si.

We find that the results obtained in our aggregated
study also hold for individual commodities, indepen-
dently on the level of aggregation. We recognize a small
improvement in the prediction according to the increase
of network density (this is especially true for the weighted
case), nevertheless the agreement is always very good.

From an economic point of view, we can just point
out a slight growth of dissortativity when less traded
commodities are considered. Moreover, we observe more
sparse scatter plot associated with less traded good and
this is even more pronounced for the weighted quantities.

While the binary results confirm again the outcome of
the work by Squartini et al. [23], the excellent agreement
between observed and randomized weighted properties
also for the commodity-specific case is surprising. The
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FIG. 6. ANND knn

i and BCC ci versus degree ki in the 2002
snapshots of the commodity-specific (disaggregated) versions
of the observed binary undirected WTW (red points), and
corresponding average over the maximum entropy ensemble
with specified degrees and strengths (blue points): a) com-
modity 93; b) commodity 09; c) commodity 39; d) commodity
90; e) commodity 84; f) aggregation of the top 14 commodi-
ties (see table I for details). From a) to f), the intensity of
trade and level of aggregation increases.

case of weighted clustering coefficient is really interesting
in this sense. Indeed, in the aggregated case also the
WCM seemed to show a good prediction of this quantity,
but this outcome is not robust to disaggregation. On the
contrary, figure 7 shows that the MCM is not affected
by this limit neither for cWi nor for any other network
quantities.

D. Theoretical comparison between WCM and

MCM

The last step of our analysis consists in the comparison
between the new enhanced model and the ordinary WCM
in term of trade-off between accuracy of the results and
parsimony in the use of constraints. Indeed, even if it is
evident that the MCM performs better than the WCM
in replicating WTW properties, we want to check if the
former over-fits the network, i.e., if the introduction of
degrees is redundant.
As we mentioned, the WCM can be obtained as a
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FIG. 7. ANNS snn

i and WCC cWi versus degree ki in the 2002
snapshots of the commodity-specific (disaggregated) versions
of the observed binary undirected WTW (red points), and
corresponding average over the maximum entropy ensemble
with specified degrees and strengths (blue points): a) com-
modity 93; b) commodity 09; c) commodity 39; d) commodity
90; e) commodity 84; f) aggregation of the top 14 commodi-
ties (see table I for details). From a) to f), the intensity of
trade and level of aggregation increases.

particular case of the MCM by setting x∗
i = 1, ∀i, by

“switching” off the Lagrange parameters controlling for
the degrees. The log-likelihood of the WCM is therefore
the reduced function L(~1, ~y) of N variables, and is max-
imized by a new vector ~y∗∗ 6= ~y∗, where (~x∗, ~y∗) stands
for the solution of the MCM and ~y∗∗ the solution of the
WCM for the same observed network.

Information-theoretic criteria exist [58] to assess
whether the increased accuracy of a model with more
parameters implies an excessive loss of parsimony. The
most popular choice is the Akaike’s Information Crite-
rion (AIC), showing that the optimal trade off between
accuracy and parsimony is achieved by discounting the
number of free parameters from the maximized likelihood
(more details about this criterion can be found in Mas-
trandrea et al. 37). For our two competing null models,
following the suggestion in Burnham and Anderson [58]

we implement the corrected version of AIC, i.e.:

AICcMCM ≡ −2L(~x∗, ~y∗) + 4N +
8N(2N + 1)

N2 − 5N − 2
(26)

AICcWCM ≡ −2L(~1, ~y∗∗) + 2N +
4N(N + 1)

N2 − 3N − 2
(27)

The additional term provides the correction to the test
when the number of parameters is not negligible with
respect to the sample cardinality (more quantitatively,
when n/k < 40, n being the sample cardinality and k
being the number of parameters Burnham and Anderson
[58]), thus further reducing the probability of overfitting.
Notice that as long as n >> k2, the additional term con-
verges to 0, recovering the standard form of AIC. Pre-
cisely for this reason, AICc should be always employed
regardless. However, if the AIC difference is small, the
two models will still be comparable. To correctly inter-
pret the quantitative AIC differences, it is important to
introduce the so-called Akaike Weights, which in our case
read

wAICc
MCM ≡

e−AICcMCM/2

e−AICcMCM/2 + e−AICcWCM/2
(28)

wAICc
WCM ≡ 1− wAICc

MCM (29)

and to quantify the weight of evidence in favour of a
model, i.e., the probability that the model is the best
one among the (two) models considered.
Given a real network, a low value of wAICc

MCM will indi-
cate that the addition of the degree sequence is redun-
dant (the relevant local constraints effectively reduce to
the strength sequence, so the “standard” WCM is prefer-
able), while a high value of wAICc

MCM will indicate that the
local constraints are irreducible to the strength sequence
(so the degrees must be separately specified).
We stress that the result of this procedure is not pre-

dictable a priori (it depends on the numerical values of
{si} and {ki}) and can only be achieved after a compar-
ison with the MCM. Thus, even in cases when the WCM
turns out to be the best model, our introduction of the
MCM is still a necessary step making the whole approach
self-consistent.

TABLE II. AICc and BIC values, AICc and BIC weights for
the considered null models applied to the WTW in 2002.

AICc BIC wAICc wBIC

WCM 209, 972 211, 179 0 0
MCM 165, 731 168, 137 1 1

In table II we show the results for the two competing
model. We also used the Bayesian Information Criterion
(BIC), Burnham and Anderson [58], that puts a higher
penalty on the number of parameters, but is very similar
to the AIC formulation.
Both criteria confirm that addition of the degree se-

quence to the WCM is non-redundant and extremely in-
formative for the prediction of the WTW properties.
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IV. DISCUSSION

In economic and financial networks, the total strength
of the connections reaching a node has generally an im-
portant meaning, such as the size of supply and demand,
import and export, or financial exposure. Hence, gen-
erating random ensembles of networks matching the ob-
served strengths of all nodes is crucial in order to detect
interesting deviations of a known empirical network from
economically meaningful benchmarks, to reconstruct the
most likely structure of an unknown network, or finally to
define a model of economic networks specified by purely
local (node-specific) information.
Our results show that, in order to correctly reproduce

the whole structure of the WTW as a weighted network,
the degree sequence must be constrained in addition to
the strength sequence. From the general point of view
of network reconstruction, these findings consolidate and
widely extend the results in [37]. We confirmed the ef-
fectiveness of the MCM in reproducing the higher-order
properties of the WTW starting from local constraints,
and succesfully tested the robustness of the model with
respect to several temporal snapshots and levels of ag-
gregation. So, while the strength sequence (a weighted
constraint) turns out to be uninformative about the bi-
nary topology of the WTW, the degree sequence (a bi-
nary constraint) plays a fundamental role in reproducing
its weighted structure. This asymmetric role of binary
and weighted constraints is a non-trivial result.
From an economic perspective, the fact that purely

local information is enough in order to reproduce the
large-scale structure of the WTW implies that parsimo-
nious models of international trade can largely discard
additional mechanisms besides those accounting for the
number of partners and total trade of world countries.
The importance of reproducing and/or explaining the de-
grees of all world countries, first pointed out in [23], is
confirmed by our study, and shown to hold even when
one considers the weighted representation of the WTW.
This strengthens the view that theories and models of
trade, if aiming at explaining the network structure of
international trade, should seriously focus on the num-
ber of trade partners of countries as an important target
quantity to replicate.
We now show that our results have additional and im-

portant interpretations in terms of the intensive and ex-
tensive margins of trade. As we mentioned in the Intro-
duction, the economic literature has mostly tried to quan-
tify the extent to which international trade has evolved
along each of the two margins, with the purpose of iden-
tifying, for selected case studies, the most important di-
rection of trade growth. In addition to this dynamic
approach to the characterization of trade margins, our
results naturally suggest a novel, intrinsically static per-
spective.
To see this, we note that the MCM specified by eq.(8)

has an important property. It is mathematically equiva-
lent to a network formation process where the connection

between any two (initially disconnected) nodes i and j is
first established, with probability pij given by eq.(17),
via a link of unit weight, and then (if the previous at-
tempt is successful) strengthened with probability yiyj
by the addition of another unit of weight. For each pair
of vertices, such weight-increasing attempts are iterated
with the same probability yiyj if the previous attempt
was successful, and stop as soon as the previous attempt
fails. This means that the probability of establishing a
unit link for the first time is pij , while that of reinforcing
an existing link by a unit amount is yiyj . It is easy to
show that pij > yiyj if and only if xixj > 1. Therefore,
if xixj > 1 (xixj < 1) the creation a link of unit weight
between nodes i and j has a larger (smaller) probabil-
ity than the reinforcement of the same link by a unit
of weight. This feature makes the model particularly
appropriate to study the extensive/intensive dichotomy
in a novel sense, as the value of xixj can bias the net-
work, at a purely static level, towards either the extensive
(xixj > 1) or the intensive (xixj < 1) direction.

More in general, in the network formation process the
probability of establishing a link of weight w between two
previously disconnected vertices (irrespective of possi-
bile further reinforcements) is pij(yiyj)

w−1, while that of
adding a weight w (again, irrespective of possible further
increases) to an already existing connection is (yiyj)

w.
In this case as well, the former probability is larger than
the latter if and only if xixj > 1. So, independently of
the value of w, xixj > 1 implies a tendency towards the
extensive direction, while xixj < 1 signals a preference
for the intensive one. For this reason, we denote xixj as
the ‘extensive bias’ for the pair i, j.

If xixj = 1 for all i, j, then the network ‘is indiffer-
ent’ with respect to link creation and link reinforcement.
Now, it should be noted that this is precisely what is ob-
tained in the WCM (where only the strengths are spec-
ified), as the latter can be regarded as a particular case
of the MCM where xi = 1 for all i [37]. So the WCM
assumes that the network is neutral with respect to the
two biases, as there is no preference between the extensive
and intensive direction. By contrast, the MCM assumes
that, for each pair of nodes, there can be a different bias
towards one of the two limits.

Since we found that the WCM and the MCM perform
very bad and very good respectively, we have a strong
empirical indication that the WTW is not neutral with
respect to the two biases. The extensive bias x∗

i x
∗
j mea-

sured on a particular snapshot/layer of the WTW indi-
cates the preference of a specific pair of countries for the
dominant direction. The notion of extensive or intensive
bias as indicated by the value of x∗

i x
∗
j should therefore

not be interpreted in the same sense as the extensive or
intensive margin, i.e. as a preferred direction for the dy-
namical evolution of the network, but in terms of the
‘static’ deviation of the real network (well reproduced by
the MCM) from the neutral topology expected under the
WCM. In this sense, the WCM is serving as a null model
indicating how an economic network would look like if
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the extensive and intensive biases were balanced. Note
that, since the extensive bias is a product of two country-
specific values, it is not possible to determine, on the ba-
sis of the value of x∗

i for a single country, whether the
dominant bias for that country is the extensive or the
intensive one. Thus the preference for one bias turns out
to be an inherently dyadic property.
These considerations lead us to interpret that, in order

to reproduce the observed structure of the WTW, we
need to enforce realistic extensive and intensive biases as
detected by the MCM through the additional knowledge
of the degrees. From the strengths alone, it is indeed
impossible to infer the bias towards a specific direction.
As a final consideration we note that, to the best of

our knowledge, in the economic literature there has been
no systematic analysis of the predictive power of exten-
sive and intensive trade margins so far. Starting from one
snapshot of the international trade network, is the knowl-
edge of the growth of trade along the intensive and/or
extensive margin enough to predict the structure of the
network at a later time?
Even if our results cannot fully answer such question,

they suggest a plausible scenario. We first note that a
change in the degree (number of partners) of a country
implies that the network is evolving along the extensive
margin of trade. On the other hand, a change in the
strength (total volume) can be either be due to changes
in the number of partners or to changes of the amount of
trade for existing links. This means that, while changes
in the degree only reflect the extensive margin, changes in
the strength reflect both the extensive and intensive mar-
gins: this is a second asymmetry between the different
pieces of information encoded into the degrees and the
strengths. It is also another indication that the WCM,
by enforcing the strengths alone, cannot distinguish be-
tween the two margins, while the MCM can isolate the
extensive information (degrees) from the combined one
(strengths).
Our findings imply that, if the structure of the

international trade network is known at time t, and if
the growth (or decrease) of both strengths and degrees
from time t to time t + ∆t is also known, then it is
possible to predict the structure of the network at time
t + ∆t with great accuracy. By contrast, if only the
growth of the strengths is known, the future structure
of the network cannot be satisfactorily predicted. These
results can then be interpreted in terms of the fact
that a combined knowledge of intensive and extensive
margins (in this case, the change of the strengths) does
not allow us to correctly model the network, while if

the extensive margin (change of the degrees) is also
separately specified (thus indirectly controlling for the
residual intensive margin as well), then the model can
successfully explain the data. Although these considera-
tions require further verification, it is encouraging that
these arguments derived from a dynamical interpretation
of trade margins are perfectly consistent with the role of
extensive and intensive biases that we have characterized
through a completely static analysis.

V. CONCLUDING REMARKS

In this paper we employed a maximum-entropy ap-
proach to economic networks. We illustrated the ac-
curacy of this method in reproducing the higher-order
properties of the WTW starting from the knowledge of
local constraints, provided that these constraints include
both strenghts and degrees. Our results are robust for
both the binary and weighted representations of the net-
work, for different levels of disaggregation, and for several
temporal snapshots.

From a theoretical point of view, our findings com-
pletely reverse the standard results concerning the re-
construction of weighted networks. We proved that it
is indeed possible, using only local information, to re-
produce at highly satisfactory level several higher-order
binary and weighted properties for the WTW, for various
temporal snapshots and at different levels of aggregation.

Economically speaking, these and previous results
[23, 24, 31] allow making some considerations in relation
to the extensive and intensive margins of trade. In par-
ticular, they suggest that different pairs of countries have
different intrinsic biases towards either the extensive of
the intensive direction. If such biases are not taken into
account, it appears impossible to explain the observed
structure of the WTW. This is presumably the reason
why the strengths alone, by assuming balanced biases,
fail in reproducing the real network. Since the effective-
ness of the MCM has been shown for various other net-
works including non-economic ones [37], the importance
of separately specifying the extensive and intensive biases
might actually be a very general result. Important future
steps in this direction include the verification of the rela-
tionship between trade margins and extensive/intensive
biases through the exploration of a complementary, ex-
plicitly dynamic framework.
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[6] P. Erdős and A. Rényi, in Publication of the Mathematical

Institute of the Hungarian Academy of Sciences (1960)
pp. 17–61.

[7] P. Holland and S. Leinhardt, Sociological Methodology
7, 1 (1976).

[8] A. Rao, R. Jana, and S. Bandyopadhyay, Sankhya: In-
dian Journal of Statistics 58, 225 (1996).

[9] J. Roberts, Social Networks 22, 273 (2000).
[10] M. E. J. Newman, S. H. Strogatz, and D. J. Watts,

Physical Review E 64, 026118 (2001).
[11] S. Maslov, K. Sneppen, and A. Zaliznyak, Physica A:

Statistical and Theoretical Physics 333, 529 (2004).
[12] G. Ansmann and K. Lehnertz, Physical Review E 84,

026103 (2011).
[13] L. Bargigli and M. Gallegati, Journal of Economic Be-

havior and Organization 78, 396 (2011).
[14] G. Ellison and E. L. Glaeser, Journal of Political Econ-

omy 105, 889 (1997).
[15] M. Rysman and S. Greenstein, Economics Letters 86,

405 (2005).
[16] R. Armenter and M. Koren, A Balls-and-Bins Model of

Trade, Working Paper DP7783 (CEPR, 2010).
[17] A. Serrano and M. Boguñá, Physical Review E 68,
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[46] T. Besedeš and T. J. Prusa, Journal of Development Eco-
nomics 96, 371 (2011).

[47] T. Chaney, The American Economic Review 98, 1707
(2008).

[48] T. Squartini and D. Garlaschelli, New Journal of Physics
13, 083001 (2011).

[49] Http://comtrade.un.org/.
[50] Http://unstats.un.org/.
[51] We employ the flow as reported by the importer [26] since

the importer and exporter records do not always match.
[52] M. Barigozzi, G. Fagiolo, and D. Garlaschelli, Physical

Review E 81, 046104 (2010).
[53] Rounding to integers is required by the randomization

procedure (for more details see [48] and [37]).
[54] T. Squartini, F. Picciolo, F. Ruzzenenti, and D. Gar-

laschelli, Nat. Sci. Rep. 3 (2013), 10.1038/srep02729.
[55] F. Picciolo, T. Squartini, F. Ruzzenenti, R. Basosi, and

D. Garlaschelli, in Signal Image Technology and Internet
Based Systems (SITIS), 2012 Eighth International Con-
ference on (IEEE, 2012) pp. 784–792.

[56] D. Garlaschelli and M. I. Loffredo, Physical Review E 78,
015101 (2008).

[57] G. Fagiolo, Physical Review E 76, 026107 (2007).
[58] K. P. Burnham and D. R. Anderson, Sociological meth-

ods & research 33, 261 (2004).


