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Università del Piemonte Orientale

Corso Borsalino 54, 15100, Alessandria, Italy

vito.fragnelli@mfn.unipmn.it

Maria Erminia Marina
Dipartimento di Economia e Metodi Quantitativi

Università di Genova
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1 Introduction

In this paper we consider environmental pollution risks depending on firms that in their

production processes may have as a side effect the release of polluting wastes, that damage

the environment.

Firms may interact with the environment in different ways; more precisely they can alter

the standard environment, influence the possibilities of using it damaging public or private

goods, compromise directly or indirectly the human health, contaminate biological resources

and ecosystems.

The consequences may be described as damages to persons and/or materials or interrup-

tion of various activities (industrial, agricultural or recreational).

We want to recall some environmental pollution risks according to a simple classification:
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• air pollution, generated by emissions, harmful gases, exhaust fumes, stenches, waste
disposals, chemical productions;

• water pollution, when the factories discharge effluents in the rivers;
• soil pollution, deriving from rubbish, solid wastes, industrial wastes, for example from
farms that use chemical manures or pesticides or from factories that dispose their

wastes in the soil;

• marine pollution, this happens in the case of coastal firms that get rid wastes and
sewage in the sea or by oil tankers accidents;

• acoustic pollution, due to high noise level and vibrations with a risk for workers and
neighboring inhabitants.

In order to limit the costs related to environmental risk a firm generally effects an in-

surance policy that cover both third party liability for any damage that may be caused to

persons or materials and unpollution costs due to removal of pollutants (cfr. Bazzano, 1994).

The losses for environmental pollution can be very heavy as it is shown in Table 1.

Y ear P lace Cost ∗ Cause (pollutant)

1976 Seveso (Italy) 103 Chemical plant (dioxin)

1978 Los Alfaques (Spain) 15 Tanker truck explosion (propylene)

1982 Livingstone (USA) 41 Derailment (toxics)

1984 Denver (USA) 20 Tank (gasoline)

1985 Kenora (Canada) 7 Spill (PCB)

1986 Basilea (Switzerland) 16 Fire with river Rhein pollution

1987 Herborn (Germany) 8 Tanker truck

1988 Floreffe (USA) 67 Tank explosion (oil)

1988 S. Basile (Canada) 39 Fire (toxic wastes)

1988 Piper Alpha (Northern Sea) 111 Explosion (gas)

* in millions of euros

SCOR NOTES (1989)

Table 1

Costs refunded after main accidents in OCSE countries 1976-1988

Naval transportation accidents are not included

Moreover we want just to mention that the Lloyd’s alone were charged with about 15

billions of euros (cfr. ”Il sole 24 ore” 27 September 2001), only to refund damages related to

absestos in about twenty years (but some trials are still lasting). So it is not possible that

a single insurance company accepts to assume this risk on her own; as a consequence it is

insured by a pool of companies.

For example in Italy there is a pool of 61 insurance companies that is the unique re-

sponsible for all such kind of risks, where each company assumes a percentage of risk as in

Table 2. Here we suppose that n companies all together have to insure a given risk. Two

important intertwined practical questions that arise then read: Which premium should they

charge? How should they split the risk and the premium in order to make the n companies
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as competitive as possible and obtain a fair division? This problem can be modelled as a

cooperative game.

We want to remark that the first examples of applications of game theory to insurance

were given by Borch (1962a, 1962b) and Lemaire (1977, 1991) and more recently by Suijs,

Borm, De Waegenaere and Tijs (1999); we address to Suijs (2000) for a survey on these

topics.

The organization of the paper is the following: In Section 2 we give the formal description

of a co-insurance problem introducing suitable notations and hypotheses, and state some

preliminary results; Section 3 deals with a class of co-insurance games, paying particular

attention to the property of balancedness and analysing some classical game theoretical

solutions; Section 4 is devoted to the case of optimal decomposition of the risk in constant

quotas; finally in Section 5 we summarize our results applying them to a case study, using

the data of the Italian situation.

2 Hypotheses and Notations

As already said in the Introduction we consider a problem in which a risk is evaluated too

much heavy for a single insurance company, but it can be insured by n companies, where

each company assumes a quota of the risk and receives a fraction of the premium.

We consider a fixed and suitable probability space; we denote the set of companies by

N = {1, ..., n} and we suppose that every company i ∈ N , expresses her valuation of a
random variable X as the value Hi(X), where Hi is a functional from a class L of random
variables (the insurable risks) into the set of real numbers, IR; this means that, given a

risk X, Hi(X) provides a measure of X (expected claims and security considerations). In

order to determine the commercial premium to be charged, each company have to take into

account her evaluation of the risk and usual economic factors (commissions and expenses).

As in Deprez and Gerber (1985) (see also Gerber, 1980 and Goovaerts et al., 1984), we

add the hypotheses that a loading for a degenerate risk is not justified (a) and that if a risk

is increased by an additive constant, this constant has to be added to the evaluation of the

risk (translation invariance b), so for each i ∈ N we ask that:

Hypothesis 1 a) Hi(w) = w, ∀ w ∈ IR;
b) Hi(w +X) = w +Hi(X), ∀ w ∈ IR, ∀ X ∈ L.

Many classical principles satisfy this hypothesis, for example:

• the net premium principle H(X) = E(X), where E(X) is the expectation of X;

• the variance principle H(X) = E(X) + aV (X), where V (X) is the variance of X and

a > 0;

• the standard deviation principle H(X) = E(X) + β
p
V (X), where β > 0;
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• the zero utility principle H(X) = H̄, where H̄ satisfies E[u(z + H̄ − X)] = u(z)

and u is the utility function of the insurance company which has an initial surplus

z; in particular for exponential utility u(x) = 1
a
(1 − e−ax), with a > 0 we have H̄ =

1
a
lnE(eaX).

• the ε-percentile principle H(X) = min {x|F (x) ≥ 1− ε}, where F is the distribution
function of X.

Now we suppose that the n companies have to insure a given risk R and receive a premium

π. Each company can decide to co-insure the risk or not, i.e. she has to be considered a
decision maker; as a consequence in order to define ”fair” allocations of the pair (π, R)
we introduce the following notations, referring to all subsets (coalitions) S of companies

involved. For any subset of companies S ⊆ N we denote by D(S) the set of feasible divisions
of the premium π, i.e.:

D(S) =
(
(di)i∈S ∈ IR|S| s.t.

X
i∈S
di = π

)

and by A(S) the set of the feasible decompositions of the risk R, i.e.:

A(S) =
(
(Xi)i∈S ∈ L|S|, s.t.

X
i∈S
Xi = R

)

and we suppose that A(S) is non-empty. According to the allocation (di, Xi)i∈S ∈ D(S) ×
A(S), for each i ∈ S the company i receives the amount di and pays the random variable

Xi. Now we suppose that for each subset S ⊆ N it is possible to compute an optimal

decomposition of the risk, i.e. we introduce the hypothesis:

Hypothesis 2 ∀ S ⊆ N there exists min
(Xi)i∈S∈A(S)

(X
i∈S
Hi(Xi)

)
= P (S)

P (S) can be seen as the evaluation that the companies in S (as a whole) give of the risk

R.

Example 1 ∀ i ∈ N the variance principle holds, i.e.:

Hi(Y ) = E(Y ) + aiV ar(Y ) ∀ Y ∈ L, 0 < a1 ≤ ... ≤ an
It is possible to prove (Deprez - Gerber, 1985) that P (N) =

P
i∈N Hi(qiR); moreover as in

Fragnelli-Marina (2001) we have:

P (S) =
X
i∈S
Hi

µ
qi
q(S)

R

¶
∀ S ⊂ N

where 1
a(S)

=
P

i∈S
1
ai
, qi =

a(N)
ai

and q(S) =
P

i∈S qi and we can also write:

P (S) = E(R) + a(S)V ar(R) ∀ S ⊆ N ♦
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Now we consider the allocations of (π, R) that assign to each company a risk and an
amount high enough to cover this risk. Formally for any subset of companies S ⊆ N we

define the set of individually rational allocations:

B(S) = {(di, Xi)i∈S ∈ D(S)×A(S)| di −Hi(Xi) ≥ 0, ∀ i ∈ S}
Remark 1 B(S) 6= ∅ ⇐⇒ P (S) ≤ π, i.e. if the premium is larger than the evaluation (of the
set of companies in S) of the optimal decomposition of the risk, there not exist individually

rational allocations and vice versa.

Remark 2 B(S) 6= ∅ ⇒ B(T ) 6= ∅, ∀ T ⊃ S. In fact P (T ) ≤ P (S) because Hi(0) = 0, ∀i ∈
N .

Remark 3 In order to avoid trivial situations we suppose that π > P (N), i.e. the n

companies all together may obtain a positive gain.

For any subset of companies S ⊆ N such that B(S) 6= ∅ we may define the set of allocations
of (π, R) corresponding to optimal risk decompositions:

O(S) =
(
(di, Xi)i∈S ∈ B(S) |

X
i∈S
Hi(Xi) = P (S)

)
and the set of Pareto optimal allocations of (π, R):

PO(S) = {(di, Xi)i∈S ∈ B(S) |
6 ∃ (d0i, X 0

i)i∈S ∈ B(S), s.t. d0i −Hi(X 0
i) > di −Hi(Xi), ∀ i ∈ S}

We can state the following theorem similar to Proposition 3.5 of Suijs and Borm (1999):

Theorem 1 O(S) = PO(S).
The proof is close to that of Proposition 1 in Fragnelli-Marina (2001), with S in the role of

N .

Remark 4 If B(S) 6= ∅ then if we take (Xi)i∈A(S) s.t.
P

i∈SHi(Xi) = P (S) and define

di = Hi(Xi) +
1
|S|(π − P (S)), ∀ i ∈ S then (di, Xi)i∈S ∈ PO(S).

Finally we define two subsets of the set of Pareto optimal allocations for the grand coalition

N :

Q(N) = {(di, Xi)i∈N ∈ PO(N) | ∀ S ⊂ N s.t. B(S) 6= ∅,
6 ∃ (d0i, X 0

i)i∈S ∈ PO(S) s.t. d0i −Hi(X 0
i) > di −Hi(Xi), ∀ i ∈ S}

CO(N) =
©
(di, Xi)i∈N ∈ PO(N) | ∀ S ⊆ N

P
i∈S(di −Hi(Xi)) ≥ max {0,π − P (S)}

ª
The allocations in the set Q(N), restricted to the subsets S ⊂ N , are such that there do

not exist Pareto optimal allocations for the set S preferable to them (for those subsets S for

which individually rational allocations exist), while the set CO(N) contains those allocations

for which the restriction to any subset S ⊆ N is rational for that subset, i.e. guarantees that

S cannot do better acting separately by itself. We have:
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Theorem 2 CO(N) = Q(N)

Proof.

”⊆” Let (di, Xi)i∈N ∈ CO(N); if there exists a coalition S s.t. B(S) 6= ∅ and there exists
an allocation (d0i, X

0
i)i∈S ∈ PO(S) s.t. d0i − Hi(X 0

i) > di − Hi(Xi), ∀ i ∈ S then
π−P (S) =Pi∈S(d

0
i −Hi(X 0

i)) >
P

i∈S(di −Hi(Xi)). Contradiction.
”⊇” Let (di, Xi)i∈N ∈ Q(N); as (di, Xi)i∈N ∈ B(N) then ∀ S ⊆ N

P
i∈S(di − Hi(Xi)) ≥

0; suppose that there exists a coalition S with π−P (S) > 0 (so B(S) 6= ∅) s.t.P
i∈S(di − Hi(Xi)) < π − P (S). Let (X 0

i)i∈S ∈ A(S) s.t.
P

i∈S Hi(X
0
i) = P (S). If

we define, ∀i ∈ S, d0i = di −Hi(Xi) +Hi(X 0
i) +

1
|S|

³
π − P (S)−Pj∈S(dj −Hj(Xj))

´
then

P
i∈S d

0
i = π and d0i −Hi(X 0

i) > di −Hi(Xi) ≥ 0, ∀i ∈ S. Contradiction. 2

The argumentations of the previous proof are similar to those of Theorem 2 in Lari - Marina

(2000).

3 Co-Insurance Games

All what we said in the previous sections can be reviewed under the light of game theory.

We recall that a cooperative game in characteristic function form with transferable utility

(TU-game) is a pair (N, v) where N is the set of players and v is a real valued function on

2N , with v(∅) = 0, where v(S), S ⊆ N is the worth of coalition S.

Given a game (N, v) the core is the set Core(v) = {(xi)i∈N ∈ IR|N | s.t.
P

i∈S xi ≥
v(S),∀ S ⊆ N and

P
i∈N xi = v(N)}. The first condition is called coalition rationality and

expresses that given an allocation x ∈ Core(v) each coalition S get at least its worth; the
second condition is called efficiency and says that the core allocations divide exactly the

worth of the grand coalition N . When a game has non-empty core it is said to be balanced.

For our co-insurance problem we define a game whose characteristic function v is:

v(S) = max {0,π − P (S)} ∀ S ⊆ N

The following theorem states a connection between the allocations of the co-insurance

problem and the allocations of the co-insurance game.

Theorem 3 CO(N) 6= ∅ ⇐⇒ Core(v) 6= ∅
Proof.

”⇒” Let (di, Xi)i∈N ∈ CO(N); if we define yi = di−Hi(Xi) ∀ i ∈ N then (yi)i∈N ∈ Core(v).
”⇐” Let (yi)i∈N ∈ Core(v), (X∗

i )i∈N ∈ A(N) s.t.
P

i∈N Hi(X
∗
i ) = P (N) and define d∗i =

yi +Hi(X
∗
i ) ∀ i ∈ N ; then (d∗i , X∗

i )i∈N ∈ CO(N). 2

6



Before studying the properties of the game we can reorder the players in such a way that:

(1) P (N) ≤ P (N \ {n}) ≤ ... ≤ P (N \ {1})

As a consequence we have
P

j∈N P (N \ {j})− (n− 1)P (N) ≥ P (N \ {i}),∀ i ∈ N .

In these general hypotheses we can state the following results:

Lemma 1 π ≤ P (N \ {1})⇒ the game is balanced.

Proof. If P (N) < π ≤ P (N \ {1}) a core-allocation is given by x = (π − P (N), 0, ..., 0).
In fact x is efficient as

P
i∈N xi = π − P (N) = v(N); x is coalitionally rational because

if S ⊇ {1} then Pi∈S xi = π − P (N) ≥ max{0,π − P (S)} = v(S) and if S 6⊇ {1} then
S ⊆ N \ {1}⇒ P (S) ≥ P (N \ {1})⇒ π−P (S) ≤ π −P (N \ {1})⇒ v(S) = 0 =

P
i∈S xi.

2

Lemma 2 π >
P

i∈N P (N \ {i})− (n− 1)P (N)⇒ the game is not balanced.

Proof. Note that by hypothesis it follows that π > P (N \ {i}) and then v(N \ {i}) =
π−P (N \ {i}),∀ i ∈ N . For a balanced game we have that for each core allocation (xi)i∈N :

v(N)− xi =
X

j∈N\{i}
xj ≥ v(N \ {i}) ∀ i ∈ N

and consequently:

(n− 1)v(N) ≥
X
i∈N

v(N \ {i})

But we have:

1

n− 1
X
i∈N

v(N \ {i}) > v(N)⇐⇒ n

n− 1π −
1

n− 1
X
i∈N

P (N \ {i}) > π − P (N)⇐⇒

⇐⇒ 1

n− 1π >
1

n− 1
X
i∈N

P (N \ {i})− P (N)

that is equivalent to the hypothesis of the lemma, so the core is empty. 2

Finally we can state the following theorem:

Theorem 4 There exists bπ such that the game is balanced if and only if π ≤ bπ
The proof is similar to that of Theorem 1 in Fragnelli et al. (2000).

Now we introduce a hypothesis that allows us to determine the value of bπ defined in

Theorem 4.

Hypothesis 3 We ask that the cost function P satisfies the (reduced convexity) hypothesis:

P (N \ {i})− P (N) ≤ P (S)− P (S ∪ {i}), ∀ S ⊆ N \ {i}
s.t. P (S) <

P
j∈N P (N \ {j})− (n− 1)P (N)
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Theorem 5 Suppose that P satisfies Hypothesis 3, then bπ =
P

j∈N P (N\{j})−(n−1)P (N).

Proof. In view of Lemma 2 and of Theorem 4 it is sufficient to prove that the game is

balanced for π=
P

j∈N P (N \ {j})− (n− 1)P (N).
We will prove that the marginal solution x = (P (N \ {1})− P (N), ..., P (N \ {n})− P (N))
is a core allocation. Note that xi ≥ 0,∀ i ∈ N . x is efficient in fact:X

i∈N
xi =

X
i∈N

P (N \ {i})− nP (N) = π − P (N) = v(N)

To prove that x is coalitionally rational we consider first the case of v(S) = 0 that is trivial

as x ≥ 0; in the case of v(S) > 0 we have:X
i∈S
xi ≥ v(S)⇐⇒

X
i∈S
(P (N \ {i})− P (N)) ≥

X
i∈N

P (N \ {i})− (n− 1)P (N)− P (S)⇐⇒

⇐⇒
X
i∈N\S

(P (N \ {i})− P (N)) ≤ P (S)− P (N)

Let N \ S = {t1, ..., tm}; the previous inequalities holds as a surrogate of the following
relations:

P (N \ {t1})− P (N) ≤ P (S)− P (S ∪ t1)
P (N \ {t2})− P (N) ≤ P (S ∪ t1)− P (S ∪ {t1, t2})

...

P (N \ {tm−1})− P (N) ≤ P (S ∪ {t1, ..., tm−2})− P (S ∪ {t1, ..., tm−1})
P (N \ {tm})− P (N) = P (S ∪ {t1, ..., tm−1})− P (N) 2

Now we want to analyse the particular case in which P satisfies Hypothesis 3 and the

premium is precisely bπ =
P

j∈N P (N \ {j}) − (n − 1)P (N), referring to classical game
theoretical solution concepts.

We claim that the core is the singleton whose only element is the marginal solution

x = (P (N \ {1})−P (N), ..., P (N \ {n})−P (N)). Suppose that there exists a different core
allocation y; by efficiency there exists a player j such that yj > xj; in this caseX
i∈N\{j}

yi <
X

i∈N\{j}
xi =

X
i∈N\{j}

P (N \ {i})− (n− 1)P (N) = bπ − P (N \ {j}) = v(N \ {j})
so y is not coalitionally rational and does not belong to the core.

As a consequence x is also the nucleolus of the game. This solution concept corresponds

to the unique allocation that minimize the maximum excess of the coalitions, according to a

lexicographic order and it lies in the core if it is non-empty (for more details see Schmeidler

1969).

In 1981 Tijs introduced as a solution for a TU-Game the τ -value, the first of a series of

compromise values; it is defined as follows:

Let Mi = v(N) − v(N \ {i}), i.e. the marginal contribution of player i and let mi =

max
n
v(S)−Pj∈S\{i}Mj | S ⊆ N,S 3 i

o
; if the game is quasi-balanced (Mi ≥ mi, ∀i ∈ N
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and
P

i∈N mi ≤ v(N) ≤
P

i∈NMi

¢
the τ -value is the unique convex combination of M and

m s.t.
P

i∈N τi = v(N). In our situation, for each player i we have:

Mi = v(N)− v(N \ {i}) = bπ − P (N)− bπ + P (N \ {i}) = xi
As the game is balanced then it is also quasi-balanced and so Mi ≥ mi; on the other hand

by definition of mi we have:

mi ≥ v(N)−
X

j∈N\{i}
Mj =Mi

and finally mi =Mi = τi.

Remark 5 If π>
P

j∈N P (N \ {j})− (n− 1)P (N) then not only the game is not balanced
but it is neither quasi-balanced in fact:

v(N) = π − P (N) >
X
j∈N
(P (N \ {j})− P (N)) =

X
j∈N

Mj

Moreover we have also:

mi ≥ v(N)−
X

j∈N\{i}
Mj > Mi

Referring to Example 1 we have that the cost function P satisfies the reduced convexity

hypothesis 3 and the optimal decomposition consists of constant quotas. In the next section

we study this more general situation.

4 Constant Quotas

In this section we suppose that there exist a convex function H and n real numbers q1 ≥
... ≥ qn > 0,

P
i∈N qi = 1 s.t.:

Hi(Y ) = qiH

µ
Y

qi

¶
, ∀ i ∈ N,∀ Y ∈ L

(In Example 1 H(Y ) = E(Y ) + a(N)V ar(Y )).

If the function H verifies Hypothesis 1 and is strictly convex (i.e. H(sY +tZ) < sH(Y )+

tH(Z) for s + t = 1, s ∈ ]0, 1[, ∀ Y, Z ∈ L, unless Y − Z is a constant) and is Gâteaux
differentiable, we have (cfr. Deprez - Gerber (1985) and Lari - Marina (2000)) that, for each

S ⊆ N :

P (S) = q(S)H

µ
R

q(S)

¶
=
X
i∈S
Hi

µ
qi
q(S)

R

¶
≤
X
i∈S
Hi(Xi) ∀ (Xi)i∈S ∈ A(S)

(where q(S) =
P

i∈S qi)

Remark 6 The equality holds only if there exist (γi)i∈S ∈ IR|S| s.t.
P

i∈S γi = 0 and Xi =
qi
q(S)
R+ γi, ∀i ∈ S.
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Now we have:

Proposition 1 The function P verifies Hypothesis 3.

Proof. We define the functions g(z) = H(zR) and h(z) = zg
¡
1
z

¢
for each z > 0.

By the convexity of H we have that g is a convex function. Moreover let 0 < z1 < z2 and

let λ ∈]0, 1[; we have

g

µ
1

λz1 + (1− λ)z2

¶
= g

µ
λz1

λz1 + (1− λ)z2

1

z1
+

(1− λ)z2
λz1 + (1− λ)z2

1

z2

¶
≤

≤ λz1
λz1 + (1− λ)z2

g

µ
1

z1

¶
+

(1− λ)z2
λz1 + (1− λ)z2

g

µ
1

z2

¶
and so

h(λz1 + (1− λ)z2) = (λz1 + (1− λ)z2) g

µ
1

λz1 + (1− λ)z2

¶
≤

≤ λz1 g

µ
1

z1

¶
+ (1− λ)z2 g

µ
1

z2

¶
= λh(z1) + (1− λ)h(z2)

So we have that h is a convex function and then P verifies Hypothesis 3. 2

As a consequence of Theorem 5 also in this more general case if the value of the premium is

exactly
P

j∈N P (N \ {j})− (n− 1)P (N), the core is non empty and the only core allocation
is the marginal solution, that assigns to each player exactly his marginal contribution; it

corresponds to the co-insurance problem allocation (qiP (N) + P (N \ {i})− P (N), qiR)i∈N
that belongs to CO(N).

Before concluding the paper we want to analyze the widely used proportional (problem)

allocation (qiπ, qiR)i∈N ; more precisely we are interested if this allocation belongs to CO(N).
First we check that this solution belongs to B(N); we have:

qiπ −Hi(qiR) ≥ 0⇐⇒ qiπ ≥ qiH(R)⇐⇒ qiπ ≥ qiP (N)⇐⇒ π ≥ P (N)
where the last inequality is true according to our hypothesis of non-trivial situation.

The previous result guarantees that
P

i∈S(qiπ−Hi(qiR)) ≥ 0, so if π−P (S) ≤ 0 ∀S 6= N
then trivially the proportional allocation belongs to CO(N).

Otherwise at least π−P (N \ {n}) > 0 and for those S 6= N such that π−P (S) > 0 the
condition is:X

i∈S
qi(π − P (N)) ≥ π − P (S) ⇐⇒ q(S)(π − P (N)) ≥ π − P (S)⇐⇒

⇐⇒ π(1− q(S)) ≤ q(S)
³
H
³

R
q(S)

´
−H(R)

´
⇐⇒

⇐⇒ π ≤ H( R
q(S))−H(R)

1
q(S)

−1

By the convexity of H the last condition holds for all S 6= N s.t. π−P (S) > 0 if and only
if it holds for S = N \ {n}, so for the proportional allocation we have:

(qiπ, qiR)i∈N ∈ CO(N)⇐⇒ π ≤ 1− qn
qn

µ
H

µ
R

q(N \ {n})
¶
−H(R)

¶
= eπ

10



If the premium is exactly eπ as above, reverting to the game we have:

v(N) = eπ − P (N) = 1

qn
P (N \ {n})− q(N \ {n})

qn
P (N)− P (N) = 1

qn
(P (N \ {n})− P (N))

In this case the game solution related to the previous proportional allocation is³
qi
qn
(P (N \ {n})− P (N)

´
i∈N
; this means that player n gets exactly its marginal contri-

bution, while each player i ∈ N \ {n} gets the marginal contribution of player n times the
ratio among qi and qn. Note that these amounts are non increasing.

We can also investigate the relationship of the proportional solution with the marginal

solution of the previous section, when the function P satisfies the hypothesis of convexity

and the premium is π=
P

j∈N P (N \ {j}) − (n − 1)P (N). In this case the proportional
solution assigns to player i the amount qi

³P
j∈N P (N \ {j})− P (N)

´
, while the marginal

solution assigns the amount P (N \ {i})− P (N). This means that the proportional solution
divides each marginal contribution proportionally among all the players (that get also the

”refund” of the risk assumed) while, as we said above, the marginal solution assigns to each

player exactly his marginal contribution (besides the ”refund” of the risk assumed).

5 Case Study

In this concluding section we want to apply our results to the data of the Italian case (see

Section 1). We lack of suitable real data so we make some assumptions. We suppose that the

61 companies, as in Example 1, express their evaluation of a random variable X according

to the variance principle. Next we suppose that qi, i ∈ N are the quotas of the risk as in

Table 2 and a(N) = 0.1; finally we suppose that the distribution function of the risk R is

F (x) = 1− e−µx, so we have E(R) = 1
µ
and V ar(R) = 1

µ2
.

We make the assumption that E(R) is 1.05 (µ = 1
1.05

and V ar(R) = 1.1025) and compute

(in millions of euros):

P (N) = 1.160250bπ = 1.274612eπ = 1.270816

and some allocations for the problem and for the game, as in Table 3.

These allocations clearify why if π =
P

j∈N P (N \ {j})− (n− 1)P (N) the proportional
allocation is not in the core of the game: It assigns too much to last players, w.r.t. what is

assigned to the first players. This means that the unique core allocation, i.e. the marginal

solution, is favourable to the first players, i.e. those who assume larger quotas of risk; on

the other hand the proportional solution is more ”levelled” so that in order to have a core

allocation it is necessary to have a lower premium that produces an amount assigned to the

last player by the proportional allocation at most equal to the amount of the marginal one.
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COMPANY QUOTA %
1 ALLIANZ SUBALPINA 1.286
2 LE ASSICURAZIONI DI ROMA 0.286
3 ASSICURAZIONI GENERALI 5.263
4 ASSIMOCO 0.429
5 ASSITALIA-LE ASSICURAZIONI D’ITALIA 5.263
6 AUGUSTA ASSICURAZIONI 0.717
7 AURORA ASSICURAZIONI 1.071
8 AXA ASSICURAZIONI 2.460
9 BAYERISCHE RUCK (*) 2.857
10 BERNESE ASS.NI-COMP. ITALO-SVIZZERA 0.429
11 BNC ASSICURAZIONI 0.286
12 COMPAGNIA ASSICURATRICE UNIPOL 2.231
13 COMPAGNIA DI ASSICURAZIONE DI MILANO 5.263
14 IL DUOMO 0.574
15 ERC - FRANKONA AG (*) 5.714
16 F.A.T.A. 1.429
17 LA FONDIARIA ASSICURAZIONI 5.263
18 GAN ITALIA 0.791
19 GENERAL & COLOGNE RE (*) 2.714
20 GIULIANA ASSICURAZIONI 0.286
21 ITALIANA ASSICURAZIONI 0.857
22 ITAS ASSICURAZIONI 0.529
23 ITAS SOC. DI MUTUA ASSICURAZIONE 0.529
24 LEVANTE NORDITALIA ASSICURAZIONI 1.029
25 LIGURIA 0.429
26 LLOYD ADRIATICO 1.340
27 LLOYD ITALICO ASSICURAZIONI 0.429
28 MAECI - SOC. MUTUA DI ASS.NI E RIASS.NI 0.286
29 MAECI ASSICURAZIONI E RIASSICURAZIONI 0.429
30 LA MANNHEIM 0.429
31 MEDIOLANUM ASSICURAZIONI 0.429
32 METE ASSICURAZIONI 1.143
33 MUNCHENER RUCK ITALIA (*) 3.286
34 LA NATIONALE 0.429
35 NATIONALE SUISSE 0.429
36 NAVALE ASSICURAZIONI 0.963
37 NEW RE (*) 2.571
38 NUOVA MAA ASSICURAZIONI 0.429
39 NUOVA TIRRENA 1.743
40 PADANA ASSICURAZIONI 2.143
41 LA PIEMONTESE SOC. MUTUA DI ASS.NI 0.429
42 LA PIEMONTESE ASSICURAZIONI 0.429
43 RISPARMIO ASSICURAZIONI 0.286
44 RIUNIONE ADRIATICA DI SICURTA’ 5.263
45 ROYAL & SUN ALLIANCE 0.857
46 SAI 5.263
47 SARA ASSICURAZIONI 0.429
48 SASA 0.429
49 SCOR ITALIA RIASSICURAZIONI (*) 2.571
50 S.E.A.R. 0.286
51 SIAT-SOCIETA’ ITALIANA ASS.NI E RIASS.NI 0.429
52 SOCIETA’ CATTOLICA DI ASSICURAZIONE 1.186
53 SOCIETA’ REALE MUTUA DI ASSICURAZIONI 1.429
54 SOREMA (*) 2.571
55 SWISSE RE - ITALIA 7.714
56 TICINO 0.306
57 TORO ASSICURAZIONI 2.857
58 UNIASS ASSICURAZIONI 0.686
59 UNIVERSO ASSICURAZIONI 0.429
60 VITTORIA ASSICURAZIONI 0.840
61 WINTERTHUR ASSICURAZIONI 0.857

TOTAL 100.000
(*) Reinsurance company

Table 2

Division Plan for the Italian Pool for Environmental Risk Insurance
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PROBLEM GAME

Comp.(i) % qi qifπ qicπ marg qi(fπ − P (N)) qi(cπ − P (N)) marg
55 7.714 0.07714 98,031 98,324 98,717 8,529 8,822 9,216
15 5.714 0.05714 72,614 72,831 72,978 6,318 6,535 6,681
3 5.263 0.05263 66,883 67,083 67,189 5,819 6,019 6,125
5 5.263 0.05263 66,883 67,083 67,189 5,819 6,019 6,125
13 5.263 0.05263 66,883 67,083 67,189 5,819 6,019 6,125
17 5.263 0.05263 66,883 67,083 67,189 5,819 6,019 6,125
44 5.263 0.05263 66,883 67,083 67,189 5,819 6,019 6,125
46 5.263 0.05263 66,883 67,083 67,189 5,819 6,019 6,125
33 3.286 0.03286 41,759 41,884 41,872 3,633 3,758 3,746
9 2.857 0.02857 36,307 36,416 36,391 3,159 3,267 3,242
57 2.857 0.02857 36,307 36,416 36,391 3,159 3,267 3,242
19 2.714 0.02714 34,490 34,593 34,565 3,001 3,104 3,076
37 2.571 0.02571 32,673 32,770 32,739 2,843 2,940 2,909
49 2.571 0.02571 32,673 32,770 32,739 2,843 2,940 2,909
54 2.571 0.02571 32,673 32,770 32,739 2,843 2,940 2,909
8 2.460 0.02460 31,262 31,355 31,323 2,720 2,813 2,781
12 2.231 0.02231 28,352 28,437 28,401 2,467 2,551 2,516
40 2.143 0.02143 27,234 27,315 27,279 2,369 2,451 2,414
39 1.743 0.01743 22,150 22,216 22,179 1,927 1,993 1,956
16 1.429 0.01429 18,160 18,214 18,178 1,580 1,634 1,598
53 1.429 0.01429 18,160 18,214 18,178 1,580 1,634 1,598
26 1.340 0.01340 17,029 17,080 17,045 1,482 1,532 1,497
1 1.286 0.01286 16,343 16,392 16,357 1,422 1,471 1,436
52 1.186 0.01186 15,072 15,117 15,084 1,311 1,356 1,323
32 1.143 0.01143 14,525 14,569 14,536 1,264 1,307 1,275
7 1.071 0.01071 13,610 13,651 13,620 1,184 1,225 1,194
24 1.029 0.01029 13,077 13,116 13,085 1,138 1,177 1,146
36 0.963 0.00963 12,238 12,275 12,245 1,065 1,101 1,072
21 0.857 0.00857 10,891 10,923 10,896 948 980 953
45 0.857 0.00857 10,891 10,923 10,896 948 980 953
61 0.857 0.00857 10,891 10,923 10,896 948 980 953
60 0.840 0.00840 10,675 10,707 10,680 929 961 934
18 0.791 0.00791 10,052 10,082 10,057 875 905 879
6 0.717 0.00717 9,112 9,139 9,115 793 820 796
58 0.686 0.00686 8,718 8,744 8,721 758 785 762
14 0.574 0.00574 7,294 7,316 7,296 635 656 636
22 0.529 0.00529 6,723 6,743 6,724 585 605 586
23 0.529 0.00529 6,723 6,743 6,724 585 605 586
4 0.429 0.00429 5,452 5,468 5,452 474 491 475
10 0.429 0.00429 5,452 5,468 5,452 474 491 475
25 0.429 0.00429 5,452 5,468 5,452 474 491 475
27 0.429 0.00429 5,452 5,468 5,452 474 491 475
29 0.429 0.00429 5,452 5,468 5,452 474 491 475
30 0.429 0.00429 5,452 5,468 5,452 474 491 475
31 0.429 0.00429 5,452 5,468 5,452 474 491 475
34 0.429 0.00429 5,452 5,468 5,452 474 491 475
35 0.429 0.00429 5,452 5,468 5,452 474 491 475
38 0.429 0.00429 5,452 5,468 5,452 474 491 475
41 0.429 0.00429 5,452 5,468 5,452 474 491 475
42 0.429 0.00429 5,452 5,468 5,452 474 491 475
47 0.429 0.00429 5,452 5,468 5,452 474 491 475
48 0.429 0.00429 5,452 5,468 5,452 474 491 475
51 0.429 0.00429 5,452 5,468 5,452 474 491 475
59 0.429 0.00429 5,452 5,468 5,452 474 491 475
56 0.306 0.00306 3,889 3,900 3,889 338 350 338
2 0.286 0.00286 3,635 3,645 3,635 316 327 316
11 0.286 0.00286 3,635 3,645 3,635 316 327 316
20 0.286 0.00286 3,635 3,645 3,635 316 327 316
28 0.286 0.00286 3,635 3,645 3,635 316 327 316
43 0.286 0.00286 3,635 3,645 3,635 316 327 316
50 0.286 0.00286 3,635 3,645 3,635 316 327 316

Table 3

Some allocations for the problem and for the game (in euros)

For the problem marg = qiP (N) + P (N \ {i})− P (N); for the game marg = P (N \ {i})− P (N)
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